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Abstract. — Let F be a non-Archimedean locally compact field, of residual characteristic
p, and (G, G′) a reductive dual pair over F of type II. In this article we show how the results
of [Mi1], [Mi2], [Mi3] and [MS] imply that the local theta correspondence is bijective for
l-modular representations if l 6= p is a banal prime for G and G′. Moreover, we give some
counterexamples which show that the local theta correspondence can be non-bijective for
l-modular representations if l is not banal.

Introduction

Let F be a non-Archimedean locally compact field, of residual characteristic p, and fix

ψ : F → C a non-trivial additive character of F. Let W be a finite-dimensional symplectic

vector space over F and denote by S̃p(W) the metaplectic group [MVW]: it is a group

which fits in the short exact sequence

0 → C → S̃p(W) → Sp(W) → 0,

where Sp(W) is the symplectic group. It is equipped with a complex representation,

canonically attached to ψ, the Weil representation, also called the mataplectic represen-

tation, which, in this introduction, will be denoted by σ.

Let G and G′ be two reductive subgroups of Sp(W), each one the centralizer of the

other in Sp(W) (we say that they form a dual (reductive) pair). Dual pairs (G,G′) come

in two types:
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(I) G,G′ are unitary groups defined over F (or one is symplectic and the other ortho-

gonal);

(II) G,G′ are general linear groups over a p-adic division algebra D.

Denote by G̃ and G̃′ their pre-images in S̃p(W). We are interested in the restriction

of the Weil representation to the product G̃ × G̃′. Its irreducible quotients are of the

form π ⊗ π′ where π and π′ are irreducible smooth complex representations of G̃ and G̃′

respectively. Roughly speaking, the local theta correspondence says that π′ is uniquely

determined by π.

More precisely, let π be an irreducible smooth representation of G̃. Consider the biggest

π-isotypic quotient of σ. One proves that, as a G̃× G̃′-module, it is of the form π⊗Θ(π),

where Θ(π) is a finite length smooth representation of G̃′.

Howe and Waldspurger [MVW], [Wal] proved that, if the dual pair is of type I, p 6= 2

and Θ(π) 6= 0, then Θ(π) has a unique irreducible quotient, denoted by θ(π). The map

π 7→ θ(π) is called the local theta correspondence (or the Howe correspondence).

The proofs of Howe and Waldspurger are non-constructive: they give the existence of

the theta correspondence without explicitly describing the bijection or when Θ(π) 6= 0.

In [Mi1] a new method was given for proving the theta correspondence in the case of dual

pairs of type II. This proof is valid for F of any (residual) characteristic (in particular,

it is permitted p = 2) and allows the correspondence to be made explicit in terms of the

Langlands classification.

So far we have only been concerned with complex representations. Recently, however,

the applications of the representation theory of p-adic reductive groups in number theory

have required considering l-modular representations also: that is, representations over an

arbitrary algebraically closed field R of characteristic l.

The study of these representations has been developed by Vignéras (see [Vig]), and

their behaviour is very different depending on whether l = p or l 6= p. We will only be

interested in the latter case, where Vignéras introduced the notion of banal characteristic:

for example, if G = GLn(F) then l is banal if and only if it is coprime to |GLn(kF)| =∏n−1
i=0 (qn

F − qi
F), where qF is the cardinality of the residue field kF of F. In general, l is

banal for a p-adic reductive group G if the l-modular representations of any compact open

subgroup of G are all semisimple.

In this article we would like to answer to the following question: is the local theta

correspondence still bijective for l-modular representations? We will show that the proof
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given in [Mi1] is also valid for l-modular representations in the banal case and even for

banal representations (see Section 5). The main theorem we prove is:

Theorem 0.1 (see Theorems 6.1 and 7.1). — Let R be an algebraically closed field

of characteristic l different from p. Let n,m be a pair of integers such that n ≤ m

and denote by σn,m the restriction of the metaplectic R-representation to the dual pair

GLn(D)×GLm(D).

Let π be a m-banal irreducible R-representation of GLn(D) (see 5.9). There exists a

unique R-representation π′ of GLm(D) such that

HomGLn(D)×GLm(D) (σn,m, π ⊗ π′) 6= 0.

Moreover, we have dim
(
HomGLn(D)×GLm(D) (σn,m, π ⊗ π′)

)
= 1.

Write π′ = θm(π). The mapping π 7→ θm(π) is a bijection between the set of m-banal

irreducible R-representations π of GLn(D) such that HomGLn(D) (σn,m, π) 6= 0 and the set

of banal irreducible R-representations π′ of GLm(D) such that HomGLm(D) (σn,m, π
′) 6= 0.

We deduce a formula (see Theorem 7.1 for more details) giving the “Zelevinsky” pa-

rameters of θm(π) in terms of those of π.

Intriguingly, however, the theta correspondence can be non-bijective when l is not

banal – that is, given an irreducible R-representation π1 of GLn1(F), there may be several

inequivalent R-representations π2 of GLn2(F) such that π1 ⊗ π2 occurs as a quotient of

the Weil representation.

We give now a brief account about the contents, section by section. In the first sec-

tion we introduce notation and the theory of R-representations. We recall the theory of

l-modular zeta functions of [Mi3] in Section 2: this theory provides us with an intertwining

operator between the metaplectic representation restricted to the pair (GLm(D),GLm(D))

and π ⊗ π̃ for each irreducible R-representation π of GLm(D), where π̃ denotes the con-

tragredient representation of π. In Sections 3 and 4, we recall the computations of [Mi1]

which will allow us, in Section 6, to prove that Θ(π) has a unique irreducible quotient.

In Section 5, we recall the classification of [MS], in terms of segments, of the set of banal

representations. With this classification in hand, we make the correspondence explicit in

Section 7. Finally, in the last section we give some examples of the failure of the theta

correspondence in the non-banal case.

I would like to thank G. Henniart for introducing me to the theory of the theta corre-

spondence and all his helpful conversations, H. Saito for his invitation to the University
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of Kyoto and his warm reception and K. Hiraga for inviting me to take part of the RIMS.

conference on automorphic forms and write this article for its proceedings. When the

final version of this paper was written I was supported by a JSPS grant and I would like

to acknowledge the JSPS.

1. Notation

1.1. Let F be a non-Archimedean locally compact field, of residual characteristic p. We

denote by OF its ring of integers, pF its maximal ideal and kF its residue field. We denote

by qF the cardinal of kF.

1.2. Let R be an algebraically closed field of characteristic l different from p (eventually

l can be 0) and let G be the group of rational points of a reductive group defined over F.

By a smooth R-representation we understand a pair (π,V) where V is a vector space over

R and π is a group morphism from G into GL(V) such that the stabilizer of every vector

in V is an open subset of G. In this text all representations are supposed to be smooth.

A R-character of G is a R-representation of dimension 1, that is, a morphism from G

into R× with open kernel.

We denote by IrrR(G) the set of all classes of irreducible R-representations of G. Given

π ∈ IrrR(G) we will denote by π̃ the contragredient representation of π.

1.3. We suppose in this paragraph that R is an algebraic closure of a local field. We

denote by O the ring of integers of R and by k its residue field which is algebraically

closed and supposed of characteristic different from p.

A R-representation π of G in a R-vector space V is integral if it is admissible and it

possesses an integral structure, that is, a sub-O-module stable by G and generated by

a basis of V over R. A R-representation π of G is integral if, and only if, its cuspidal

support is integral.

Let π be an integral irreducible R-representation of G. Then, for every integral structure

Γ of π, the k-representation of G in the k-vector space Γ ⊗O k is of finite length and its

semi-simplification does not depend on the choice of Γ. We will call it the reduction of π

and denote it by rR(π).

An integral irreducible R-representation is k-irreducible if its reduction is an irreducible

k-representation.
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1.4. Let π and π′ be two R-representations of G. We denote by

HomG (π, π′)

the space of intertwining operators from π into π′. We will omit the index G if there is

no confusion.

1.5. Let D be a division algebra over F of finite dimension over F. For any integers

n,m ≥ 1, we denote by Mn,m(D) the F-algebra of n×m matrices with coefficients in D,

by Mm(D) the F-algebra of m×m matrices with coefficients in D and by Gm = GLm(D)

its multiplicative group. For convenience, we denote by G0 the trivial group.

Let Nm (resp. trm) be the reduced norm (resp. reduced trace) of Mm(D) over F and

let | |F be the normalized absolute value of F. We see it as a R-character of F×. The map

g 7→ |Nm(g)|F is a R-character of Gm, which we simply denote by ν. Its order is the order

of qF in R×.

1.6. To every partition α = (m1, . . . ,mr) of the integer m, we denote Mα the subgroup

of Gn of invertible matrices which are diagonal by blocs of size mi and Pα (resp. Pα) the

subgroup of upper (resp. lower) triangular matrices by blocs of size mi.

1.7. We denote by ]− rGm
m1,...,mr

the non-normalized Jacquet functor associated to the

standard parabolic Pα and by ]−rGm
m1,...,mr

the Jacquet functor associated to Pα.

Fix q
1
2
F a square root of qF in R. We set

rGm
m1,...,mr

= δ
−1/2
Pα

]−rGm
m1,...,mr

,

(resp. rGm
m1,...,mr

= δ
−1/2

Pα
]−rGm

m1,...,mr
),

the normalized Jacquet functor.

Given a R-representation ρi of each Gmi
, we denote by

]−IndGm
Pα

(ρ1 ⊗ · · · ⊗ ρr) ,

the non-normalized parabolically induced R-representation.

We denote also by ρ1 × · · · × ρr the R-representation

IndGm
Pα

(ρ1 ⊗ · · · ⊗ ρr) = δ
1/2
Pα
]−IndGm

Pα
(ρ1 ⊗ · · · ⊗ ρr) ,

that is, the normalized parabolically induced R-representation.
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1.8. Let n and m be some positive integers. We denote by SR (Mn,m(D)) the R-vector

space of locally constant, compactly supported functions Φ from Mn,m(D) to R.

Set σn,m the natural R-representation of Gn ×Gm on SR(Mn,m(D)) defined by

σn,m (g, g′) Φ (x) = Φ
(
g−1xg′

)
,

for g ∈ Gn, g
′ ∈ Gm, x ∈ Mn,m(D) and Φ ∈ SR(Mn,m(D)).

Up to a character, this R-representation is isomorphic to the metaplectic representation

restricted to the dual pair Gn ×Gm (cf. [MVW, 2.II.6]).

1.9. We have two linear groups acting by multiplication on the left and on the right in

a space of matrices. From now on, to distinguish these two actions, we will denote by G′

and P′ the linear and parabolic groups acting on the right and G and P the same groups

acting on the left. If there might be confusion we will also denote by ν ′ the R-character

ν when it acts on G′. This notation is very useful, though it may seem artificial or weird.

2. l-modular zeta functions

In this section, following [Mi3] and generalizing the results of [GJ], we associate to each

irreducible R-representation π of GLm(D), two invariants L(T, π), ε(T, π, ψ), where T is an

indeterminate and ψ is a non-trivial R-character of F. It allows us to construct an explicit

intertwining operator between σm,m and π ⊗ π̃ for each irreducible R-representation π of

GLm(D).

2.1. We fix F a non-Archimedean locally compact field, of residual characteristic p and

D a division algebra over F of dimension d2 over F. We also fix a positive integer m and

set n = md.

Let ψ be a non-trivial additive R-character of F, dµ(x) a Haar measure on Mm(D) with

values in R and dµ×(x) a Haar measure on GLm(D) with values in R (see [Vig, I.2.4]).

For every function Φ ∈ SR (Mm(D)), we denote by

Φ̂ (x) =

∫
Mm(D)

Φ (y)ψ (trm (xy)) dµ(y)

its Fourier transform. As usual, we suppose the Haar measure to be autodual.

Let π be an irreducible R-representation of Gm and f a coefficient of π. We denote by

f̌ the coefficient of π̃ defined by f̌(g) = f(g−1). Let Φ ∈ SR (Mm(D)) and N ∈ Z. Then
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the integral ∫
Gm,ν(x)=q−N

F

Φ (x) f (x) dµ×(x)

is well defined, as
{
x ∈ Gm : ν(x) = q−N

F

}
∩ supp (Φ) is a compact subset of Gm and Φ

and f are locally constant on it.

We can now define the formal sum (the zeta function):

Z (Φ, T, f) =
∑
N∈Z

(∫
Gm,ν(x)=q−N

F

Φ (x) f (x) dµ×(x)

)
TN .

As Φ is compactly supported, for N small enough, we have :∫
Gm,ν(x)=q−N

F

Φ (x) f (x) dµ×(x) = 0.

Hence, Z (Φ, T, f) ∈ R ((T )).

2.2. In [Mi3] it is proved the following theorem:

Theorem 2.1. — Let π be an irreducible R-representation of Gm. Then :

(1) There exists P0 (π, T ) ∈ R [T ] such that, for every coefficient f of π and every

Φ ∈ SR (Mm(D)), we have

Z (Φ, T, f)P0 (π, T ) ∈ R
[
T, T−1

]
.

(2) There exists a gamma factor γ (T, π, ψ) ∈ R (T ) such that, for every coefficient f

of π and every Φ ∈ SR (Mm(D)), we have

(2.1) Z
(
Φ̂, q−

1
2
(n+1)T−1, f̌

)
= γ (T, π, ψ) Z

(
Φ, q−

1
2
(n−1)T, f

)
.

(3) Set Z (π) the sub-R-vector space of R (T ) generated by the functions Z
(
Φ, T q

1−n
2 , f

)
with f coefficient of π and Φ ∈ SR (Mm(D)) . Then Z (π) is a fractional ideal R [T, T−1]

containing the constants. It admits a generator of the form

L (T, π) =
1

P0 (π, T )

with P0 (π, T ) ∈ R [T ] and P0 (π, 0) = 1.
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Set

γ (T, π, ψ) = ε (T, π, ψ)
L (q−1T−1, π̃)

L (T, π)
.

Then the functional equation (2.1) reads:

Z
(
Φ̂, T−1q

−1−n
2 , f̌

)
L (q−1T−1, π̃)

= ε (T, π, ψ)
Z
(
Φ, T q

1−n
2 , f

)
L (T, π)

.

2.3. The zeta functions allow us to construct a non-trivial intertwining operator between

σm,m and π ⊗ π̃, for each irreducible R-representation π of Gm. It is defined by:

Zπ : SR (Mm(D)) → V ⊗ Ṽ

Zπ (Φ) (f) = lim
T→1

Z (Φ, T, f)

L (Tq−(n−1)/2, π)
,

for every Φ ∈ SR (Mm(D)), f ∈ V ⊗ Ṽ coefficient of π and where lim
T→1

Z(Φ,T,π)

L(Tq−(n−1)/2,π)
is the

evaluation of the polynomial Z(Φ,T,f)

L(Tq−(n−1)/2,π)
at T = 1.

A classical argument (cf. [MVW, 3.III.5] which is also valid for R-representations,

see [MiThe, 5.7.3], for more details), shows now that, for all m ≥ n, there exists an

irreducible composition factor π′ of the induced R-representation ]−Ind
G′

m

P′
m−n,n

(1m−n ⊗ π̃)

such that

(2.2) HomGn×G′
m

(σn,m, π ⊗ π′) 6= 0.

Remark 2.2. — Hence, for any algebraically closed field R of characteristic l 6= p, n ≤ m

and π irreducible R-representation of Gn there exists at least one R-representation π′ of

G′
m such that (2.2) is satisfied.

The problem is now to prove that, under some other assumptions, this irreducible

R-representation is unique.

3. The boundary of the metaplectic representation

3.1. Let

0 = St+1 ⊂ St ⊂ · · · ⊂ S1 ⊂ S0 = SR(Mn,m),

be the filtration of σn,m by support (cf. [Mi1, §2]), and set

σk = Sk/Sk+1 ' ]−Ind
GnG′

m

Pn−k,kP′
m−k,k

(µk) ,
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where µk is the R-representation of Pn−k,kP
′
m−k,k on SR (Gk) defined by:

µk (p, p′) Φ (h) = Φ
(
p−1

4 hp′4
)

= ρk (p4, p
′
4) Φ (h) ,

for all Φ ∈ SR (Gk) , h ∈ Gk, p =

(
p1 0

p3 p4

)
, p′ =

(
p′1 p′2
0 p′4

)
and ρk the natural

R-representation of Gk ×G′
k on SR (Gk) defined by

(3.1) ρk (p4, p
′
4) Φ (h) = Φ

(
p−1

4 hp′4
)
.

Definition 3.1. — We say that an irreducible R-representation π ∈ IrrR(Gn) occurs on

the boundary of σn,m if there exists k < n such that HomGn (σk, π) 6= 0.

3.2. In [Mi1, Corollaire 2.3] we prove the following lemma, which is valid for any R:

Lemma 3.2. — Let π ∈ IrrR(Gn). The following conditions are equivalent:

(1) The R-representation π does not occur on the boundary of σn,m.

(2) For every integer k < n, there doesn’t exist a R-representation τ ∈ IrrR(Gk), such

that

HomGn

(
]−IndGn

Pn−k,k
(1n−k ⊗ τ) , π

)
6= 0.

Remark 3.3. — One can prove that, for banal R-representations (see Section 5), these

conditions are equivalent to the following:

(2’) The L-function L(π, T ) does not have a pole at T = q−
n−1

2 .

3.3. We deduce as in [Mi1, 2.4]

Theorem 3.4. — Let n,m be some positive integers n ≤ m. Let π ∈ IrrR(Gn) and

π′ ∈ IrrR(G′
m) such that

HomGn×G′
m

(σn,m, π ⊗ π′) 6= 0.

Suppose that π does not occur on the boundary of σn,m. Then π′ is a quotient of the

induced R-representation ]−Ind
G′

m

P′
m−n,n

(1m−n ⊗ π̃). Moreover,

dim
(
HomGn×G′

m
(σn,m, π ⊗ π′)

)
= 1.

Remark 3.5. — In particular, if the representation ]−Ind
G′

m

P′
m−n,n

(1m−n⊗ π̃) has a unique

irreducible quotient (for example if π is a cuspidal R-representation or, more generally

see Section 5), then there exists a unique π′ such that

HomGn×G′
m

(σn,m, π ⊗ π′) 6= 0.



10 ALBERTO MÍNGUEZ

4. Kudla’s filtration

4.1. The computations of [Mi1, §3] are valid for any algebraically closed field R of

characteristic l 6= p. We have then:

Proposition 4.1. — Let t be an integer 0 ≤ t ≤ n. The Jacquet module rGn
t,n−t (σn,m)

has composition factors τi for i = 0, . . . ,min {t,m}, where

τi ' Ind
M(t,n−t)×G′

m

Pt−i,i×Gn−t×P′
i,m−i

(ξt,i ⊗ ρi ⊗ σn−t,m−i) ,

ρi is defined by (3.1) and ξt,i is the R-character

ξt,i =



ν
2m−n+t−i

2 on Gt−i

ν
2m−n+2t−i

2 on Gi

ν
t
2 on Gn−t

ν
−m−2t+i

2 on G′
i

ν
−2t+i

2 on G′
m−i.

We have a similar proposition (see [Mi1, 3.3]) for the Jacquet functor acting on G′
m.

4.2. This computation is used to prove the following proposition:

Proposition 4.2. — Let n,m, r be some positive integers and π ∈ IrrR(Gn), π′ ∈
IrrR(G′

m) such that π ⊗ π′ is a quotient of σn,m. Let χ be an irreducible cuspidal R-

representation of Gr non isomorphic to the R-characters of D×, ν
n+1

2 and ν
2m−n+1

2 . Then

a = b where a and b are defined by the following conditions:

(1) There exists ρ ∈ IrrR(Gn−ra) such that π is a subrepresentation of

χ× χ× · · · × χ︸ ︷︷ ︸
a times

×ρ,

where a is maximal.

(2) There exists ρ′ ∈ IrrR(G′
m−rb) such that π′ is a subrepresentation of

ρ′ × ν
m−n

2 χ̃× · · · × ν
m−n

2 χ̃︸ ︷︷ ︸
b times

,

where b is maximal.
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Moreover we have

Hom
(
σn−ra,m−ra, ν

−ra
2 ρ⊗ ν

ra
2 ρ′
)
6= 0.

Proof. — The proof of Proposition 4.4 in [Mi1] is valid in this setting, we will give an

idea of how we use Proposition 4.1 to prove it.

Let π ∈ IrrR(Gn), π′ ∈ IrrR(G′
m) and χ a cuspidal R-representation of Gr as in the

proposition and let a be a positive integer such that there exists ρ ∈ IrrR(Gn−ra) with π

a subrepresentation of

χ× χ× · · · × χ︸ ︷︷ ︸
a times

×ρ.

We suppose a to be maximal satisfying to these conditions.

As the Jacquet functor is exact, we get a surjectif morphism from rGn
ra,n−ra (σn,m) onto

rGn
ra,n−ra (π) ⊗ π′ and hence by Frobenius reciprocity we get a non-trivial morphism from

rGn
ra,n−ra (σn,m) onto χ× χ× · · · × χ⊗ ρ⊗ π′.

By Proposition 4.1, there exists i ∈ {0, . . . , ra} such that

Hom (τi, χ× χ× · · · × χ⊗ ρ⊗ π′) 6= 0.

As we have supposed that χ 6' ν
2m−n+1

2 it is easy to check that only τra can have such

a quotient so we get:

Hom (τra, χ× χ× · · · × χ⊗ ρ⊗ π′) 6= 0.

Then, by Proposition 4.1

Hom
(
Ind

M(ra,n−ra)×G′
m

M(ra,n−ra)×P′
ra,m−ra

(ξra,ra ⊗ ρra ⊗ σn−ra,m−ra) , χ× · · · × χ⊗ ρ⊗ π′
)
6= 0.

Using again Frobenius reciprocity, after some simplifications, we get

Hom
(
Ind

G′
m

P′
ra,m−ra

(
ν

m−n
2 χ̃× · · · × ν

m−n
2 χ̃⊗ ν

ra
2 σn−ra,m−raν

′−ra
2

)
, ρ⊗ π′

)
6= 0.

Let b ≥ 0 be now a maximal integer such that there exists ρ′ ∈ IrrR(G′
m−rb) with π′ a

subrepresentation of

ρ′ × ν
m−n

2 χ̃× · · · × ν
m−n

2 χ̃︸ ︷︷ ︸
b times

.

By Frobenius reciprocity, after conjugation, we get a non-trivial morphism from

r
G′

m
rb,m−rb(π

′) onto ν
m−n

2 χ̃× · · · × ν
m−n

2 χ̃⊗ ρ′.
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Hence, as before, we get:

Hom
(
r
G′

m
rb,m−rb ◦ Ind

G′
m

P′
ra,m−ra

(
ν

m−n
2 χ̃×. . .×νm−n

2 χ̃⊗ ν
ra
2 σn−ra,m−raν

′−ra
2

)
,

ρ⊗ ν
m−n

2 χ̃× · · · × ν
m−n

2 χ̃⊗ ρ′
)
6= 0.

Now we use the maximality of b, the fact that χ is not isomorphic to the R-character

ν
n+1

2 and Proposition 3.3 of [Mi1] to see that b = a and finish the proof. For all details

see [Mi1, Proposition 4.4].

5. Banal representations: Zelevinsky parameters

In this section we will make a brief account of the results in [MS] and [Mi2]. We define

the set of banal representations and then we classify it in terms of segments.

5.1. Let fix R an algebraically closed field of characteristic l 6= p. Let C be a field of

characteristic 0 such that it is an algebraic closure of a local field and its residue field is

isomorphic to R. For example, if R is of characteristic 0 we can choose C to be an algebraic

closure of the field R((T )) of formal series with coefficients in R; if the characteristic of R

is positive, we can choose C to be an algebraic closure of the fraction field of the ring of

Witt vectors of R. If l is a prime number different from p and if R is an algebraic closure

Fl of Fl, it is enough to take C as the algebraic closure Ql of Ql.

5.2. Let r be a positive integer and ρ a cuspidal R-representation of Gr. In [MS] we

prove that there exists a R-character νρ of the form νbρ , where bρ is an integer, such that

if r′ is a positive integer and ρ′ is a cuspidal R-representation of Gr′ , the parabolically

induced R-representation

ρ× ρ′

is irreducible if, and only if, ρ′ is not isomorphic to ρνρ or ρν−1
ρ . For example, if R = C

and D = F, then, for any cuspidal R-representation ρ, we can take bρ = 1.

We denote by ρZ the set of classes of cuspidal R-representations of the form ρνk
ρ where

k is an integer. We remark that if l > 0, ρZ is a finite set.
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5.3. We say that the group Gm is banal if l does not divide the cardinal of the finite

group GLm(kD).

Let π be an irreducible R-representation. We denote by supp(π) its cuspidal support.

We will see it as a set (with multiplicities) of cuspidal R-representations

supp(π) = {ρ1, ρ2, . . . , ρk} .

We say that π is a banal R-representation if

(1) For all ρ ∈ supp(π), ρ is a R-representation of a banal group.

(2) for all 1 ≤ i ≤ k, ρiZ * supp(π).

5.4. Let r be a positive integer and ρ a cuspidal R-representation of Gn. Suppose Gn

is a banal group. We need to fix a choice of bρ. As Gn is a banal group, there exists an

integral cuspidal C-representation ρ† such that ρ ' rC(ρ†) (see 1.3). To fix bρ we choose

bρ† > 0 and suppose that bρ† = bρ in R.

5.5. Let ρ be a cuspidal R-representation of Gn, a, b ∈ Z, a ≤ b. We set

∆ =
{
νa

ρρ, ν
a+1
ρ ρ, . . . , νb

ρρ
}
.

We say that ∆ is a segment and we will denote it often by ∆ = {a, b}ρ.

A segment ∆ = {a, b}ρ is said to be banal if ρ is a R-representation of a banal group

and ρZ * ∆.

We say that {a, b}ρ, {a′, b′}ρ′ are linked if {a, b}ρ ∪ {a′, b′}ρ′ is still a segment and

{a, b}ρ * {a′, b′}ρ′ and {a′, b′}ρ′ * {a, b}ρ. We say that {a, b}ρ precedes {a′, b′}ρ′ if they

are linked and there exists τ ∈ {a, b}ρ such that ρ′νa−1
ρ′ ' τ .

To each banal segment ∆ = {a, b}ρ it corresponds an irreducible R-representation,

denoted by 〈∆〉, defined as the unique quotient of the R-representation

νa
ρρ× νa+1

ρ ρ× · · · × νb
ρρ.

For example, if R = C, then, for every segment ∆, the R-representation 〈∆〉 is essen-

tially square integrable and, in fact, all essentially square integrable representations are

of this form.

If ∆ = {a, b}ρ is a banal segment we denote by ∆̃ = {̃a, b}ρ the segment {−b,−a}eρ, so

that we have 〈
∆̃
〉

= 〈̃∆〉.
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5.6. A multisegment is a multi-set of segments as above. We will usually see a multi-

segment m as an indexed set (with multiplicities) (∆1, . . . ,∆N), where N is a positive

integer.

We denote by supp(m) the support of the multisegment m = (∆1, . . . ,∆N), that is,

the multiset of cuspidal R-representations defined by:

supp(m) (ρ) =
∑
ρ∈∆

m (∆) ,

for all cuspidal R-representations ρ. We will usually see it as an indexed set (with multi-

plicities) {ρ1, . . . , ρt}.
A multisegment m is banal if for all ρ ∈ supp(m), ρ is a cuspidal R-representation of

a banal group and for each cuspidal R-representation ρ, we have ρZ * supp(m).

5.7. In [MS] it is proved the following theorem:

Theorem 5.1. — (1) Let (∆1, . . . ,∆N) be a banal multisegment. Suppose that for

each pair of indices i, j such that i < j, ∆i does not precede ∆j. Then the R-representation

〈∆1〉 × · · · × 〈∆N〉 has a unique irreducible quotient. We denote it by 〈∆1, . . . ,∆N〉. It is

a banal R-representation.

(2) The R-representations 〈∆1, . . . ,∆N〉 and 〈∆′
1, . . . ,∆

′
N ′〉 are isomorphic if, and only

if, (∆1, . . . , ∆N) and (∆′
1, . . . ,∆

′
N ′) are equal up to a rearrangement.

(3) Any banal R-representation of Gm is isomorphic to some representation of the form

〈∆1, . . . ,∆N〉.

5.8. To prove the local theta correspondence for R-representations we will need some

results of [Mi2] which are valid in this setting.

Theorem 5.2. — Let π = 〈∆1, . . . ,∆N〉 be a banal R-representation. Let ρ =

〈∆1, . . . ,∆r〉 be a banal R-representation such that one the following properties is

satisfied:

(1) The R-representation ρ is a R-character of a banal group, or

(2) the multisegment (∆′
1, . . . ,∆

′
r) is banal and for each pair of indices i, j such that

i 6= j, ∆′
i = ∆′

j or ∆′
i ∩∆′

j = ∅.

Suppose moreover that the multisegment (∆1, . . . ,∆N ,∆
′
1, . . . ,∆

′
r) is banal.
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Then the R-representation π × ρ (resp. ρ× π) has a unique irreducible quotient and a

unique irreducible subrepresentation and they appear with multiplicity 1 in the parabolically

induced R-representation π × ρ (resp. ρ× π).

5.9. We need a last lemma which is proved in [Mi1] using the results in the ap-

pendix of [Mi2] and it is valid for R-representations with some modifications. Let

n,m be a pair of positive integers such that m ≥ n and let π = 〈∆1, . . . ,∆N〉
be a banal R-representation of Gn. We say that π is m-banal if the multisegment({
ν−

m−n−1
2

}
, . . . ,

{
ν

m−n−1
2

}
, ∆̃1, . . . , ∆̃N

)
is still banal. In this case we denote by θ∗m(π)

the banal R-representation of Gm:

θ∗m(π) =
〈{

ν−
m−n−1

2

}
, . . . ,

{
ν

m−n−1
2

}
, ∆̃1, . . . , ∆̃N

〉
.

In particular, if m = n then θ∗m(π) ' π̃.

The following result is proved in [Mi1, Corollaire 6.5]:

Lemma 5.3. — Let χ be a banal cuspidal R-representation of Gr, non isomorphic to the

R-characters of D× ν
n+1

2 and ν
2m−n+1

2 . Let a be a positive integer and ρ = 〈m〉 a banal

R-representation of IrrR(Gn−ra) such that m + {χ} is still a banal multisegment. Denote

by π the unique irreducible subrepresentation of

χ× · · · × χ︸ ︷︷ ︸
a times

×ρ.

Suppose π is m-banal and let π′ be the unique subrepresentation of

ν
−ra
2 θ∗m−ra(ν

−ra
2 ρ)× ν

m−n
2 χ̃× · · · × ν

m−n
2 χ̃︸ ︷︷ ︸

a times

.

Then

π′ ' θ∗m(π).

6. The proof, part I: uniqueness of the quotient

We are now ready to prove the bijectivity of the local theta correspondence for l-modular

representations. The goal of this section is to prove the following theorem:
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Theorem 6.1. — Let n,m be a pair of integers such that n ≤ m. Let π be a m-banal

irreducible R-representation of Gn. There exists a unique R-representation π′ of G′
m such

that

HomGn×G′
m

(σn,m, π ⊗ π′) 6= 0.

Moreover, we have dim
(
HomGn×G′

m
(σn,m, π ⊗ π′)

)
= 1

Proof. — The proof is the same as for Theorem 5.1 of [Mi1]. Let us sketch it.

By induction hypothesis we can suppose that the theorem is true for all dual pair(
Gi,G

′
j

)
, such that ij < nm. We prove it for the pair (Gn,G

′
m).

Let π′ ∈ IrrR(G′
m) such that π⊗π′ is a quotient of σn,m (we know that there exists such

a quotient by Remark 2.2). We will prove that π′ is uniquely determined by π.

Case 1. Suppose that there exists a triple (a, χ, ρ) where a > 0 is an integer, χ is

a cuspidal R-representation of Gr (r being a positive integer) non isomorphic to the R-

characters of D× ν
n+1

2 and ν
2m−n+1

2 and ρ ∈ IrrR(Gn−ra) such that π is a subrepresentation

of

χ× χ× · · · × χ︸ ︷︷ ︸
a times

×ρ.

We suppose a to be maximal satisfying to these conditions.

Then, by Proposition 4.2, there exists ρ′ ∈ IrrR(G′
m−ra) such that π′ is a subrepresen-

tation of

ρ′ × ν
m−n

2 χ̃× · · · × ν
m−n

2 χ̃︸ ︷︷ ︸
a times

.

Moreover, we have:

Hom
(
σn−ra,m−ra, ν

−ra
2 ρ⊗ ν

ra
2 ρ′
)
6= 0.

By induction hypothesis, ρ′ is uniquely determined by ρ and, by Theorem 5.2, π′ is

then the unique irreducible subrepresentation of

ρ′ × ν
m−n

2 χ̃× · · · × ν
m−n

2 χ̃︸ ︷︷ ︸
a times

.

Case 2. If there doesn’t exist such a triple, it is very easy to see, using Lemma 3.2 that

π does not occur on the boundary of σn,m. Then by Theorem 3.4, π′ is an irreducible

quotient of ]−Ind
G′

m

P′
m−n,n

(1m−n ⊗ π̃). But, by Theorem 5.2, such a representation have just

one irreducible quotient.
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7. The proof, part II: explicit correspondence

Theorem 7.1. — (1) Let n,m be a pair of integers such that n ≤ m. Let π be a m-

banal irreducible R-representation of Gn. Denote by θm(π) the unique R-representation

of G′
m given by Theorem 6.1. Then θm(π) = θ∗m(π) (see 5.9).

(2) The mapping π 7→ θm(π) is a bijection between the set of m-banal irreducible R-

representations π of Gn such that HomGn (σn,m, π) 6= 0 and the set of banal irreducible

R-representations π′ of G′
m such that HomG′

m
(σn,m, π

′) 6= 0.

Proof. — The second par of the theorem is a consequence of the first one and Theorem

5.1. The idea of the proof of the first part is the same as for Theorem 6.1 of [Mi1]. As in

the previous theorem, by induction hypothesis, we can suppose that the theorem is true

for all dual pairs
(
Gi,G

′
j

)
, such that ij < nm. Let us prove it for the pair (Gn,G

′
m).

Let π be a m-banal irreducible R-representation of Gn. Let us see that θm(π) ' θ∗m(π).

We have again two cases.

Case 1. Suppose that there exists a triple (a, χ, ρ) where a > 0 is an integer, χ is

a cuspidal R-representation of Gr (r being a positive integer) non isomorphic to the R-

characters of D× ν
n+1

2 and ν
2m−n+1

2 and ρ ∈ IrrR(Gn−ra) such that π is a subrepresentation

of

χ× χ× · · · × χ︸ ︷︷ ︸
a times

×ρ.

We suppose a to be maximal satisfying to these conditions.

Then, by Proposition 4.2, there exists ρ′ ∈ IrrR(G′
m−ra) such that

(7.1) π′ ↪→ ρ′ × ν
m−n

2 χ̃× · · · × ν
m−n

2 χ̃︸ ︷︷ ︸
a times

.

Moreover, we have:

Hom
(
σn−ra,m−ra, ν

−ra
2 ρ⊗ ν

ra
2 ρ′
)
6= 0.

By induction hypothesis, we get

(7.2) ρ′ ' ν
−ra
2 θ∗m−ra

(
ν

−ra
2 ρ
)
.

In this case, the theorem is now a consequence of equations (7.1), (7.2) and Lemma 5.3.

Case 2. If there doesn’t exist such a triple, the proof is the same as [Mi1, §9]: such

representations have very particular Jacquet modules; using carefully the properties of

the classification, in terms of segments, of banal R-representations, we get the remaining

part of the theorem. We omit the details.
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8. Some examples in the non-banal case

In this last section we study the local theta correspondence in the non-banal case and

its behavior by reduction modulo l.

8.1. We use the notations of paragraph 5.1. Let fix R an algebraically closed field of

characteristic l 6= p. Let C be a field of characteristic 0 such that it is an algebraic closure

of a local field and its residue field is isomorphic to R. Denote by OC its ring of integers.

8.2. First, let us give some counterexamples to the bijectivity of the local theta corre-

spondence in the non-banal case. The theta correspondence may fail in two ways:

(1) For π an irreducible R-representation of Gn, there might exist π′ an irreducible

R-representation of Gm such that

dim (HomGn×Gm (σn,m, π ⊗ π′)) > 1.

The easiest example appears already when n = m = 1, π and π′ are the trivial R-

characters of F× and qF ≡ 1 mod l. In this case we find two non-proportional intertwining

operators between σ1,1 and π ⊗ π′ defined by:

Φ 7→ Φ(0),

Φ 7→ Z (Φ, 1, 1) .

See that this implies that S ′R(F), the R-vector space of F×-equivariant distributions on

SR(F), is, when qF ≡ 1 mod l, of dimension 2.

(2) For π an irreducible R-representation of Gn, there might exist several π′ irreducible

R-representations of Gm such that

HomGn×Gm (σn,m, π ⊗ π′) 6= 0.

For π an irreducible R-representation of Gn, denote by µm(π) the number of irreducible

R-representation π′ of Gm (with multiplicities) such that π ⊗ π′ is a quotient of σn,m.

Let us study in detail the theta correspondence for the dual pair (GL1(F),GLm(F)).

Theorem 8.1. — Let ξ be a C-character of GL1(F) with values in OC. Denote by ξ its

reduction. Then µm

(
ξ
)

= 1 but when

L (ξ,−m) /∈ OC ;

in this case µm

(
ξ
)

= 2.
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Proof. — The proof is similar to [MiThe, §4.5]. We omit the details.

Remark 8.2. — We dispose of similar results for the dual pair (GL2(F),GLm(F)). It

would be interesting to have a formula relating the multiplicities appearing in the theta

correspondence to the integrality of some special values of the L-functions of Godement-

Jacquet.

8.3. Let n,m be a pair of integers such that n ≤ m. Let π be an integral irreducible

C-representation of Gn. Suppose, just for the sake of simplicity, that it is R-irreducible.

As the characteristic of C is 0, θm(π) is a well defined irreducible C-representation of Gm.

It is an integral C-representation as, by Theorem 7.1, its cuspidal support is integral. It

might not be R-irreducible.

Write now π = rC(π) and suppose first that π is m-banal (see 5.9). Then, by Theo-

rem 6.1, θm (π) is a well defined irreducible R-representation of Gm and it appears as a

composition factor of rC (θm(π)). That is, we have a commutative diagram:

π

rC

��

θm // θm(π)

rC

��

C-representations

rC

��
π

θm
88� � � R-representations

Suppose finally that we are in the non-banal case. Now θm(π) is not well defined.

Still there is one irreducible R-representation π′, appearing as a composition factor of

rC (θm(π)), such that π ⊗ π′ is a quotient of the metaplectic R-representation σn,m. In

the non-banal case it can appear some semi-simplification: for example Theorem 5.2 is

no longer true. But it appears already at the level of Θ(π) (see introduction), that is

why there might exist some irreducible R-representation π′0 which is not isomorphic to

any composition factor of rC (θm(π)) such that π ⊗ π′0 is a quotient of the metaplectic
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R-representation σn,m. Now, the picture is:

Θ(π)

rC

���X
�X

�X
�X

�X
�X

�X
�X

�X
�X

�X

yy
π

rC

��

θm // θm(π)

rC

��

C-representations

rC

��
π 88 44� � � � R-representations
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[MiThe] A. Mı́nguez, Correspondance de Howe l-modulaire : paires duales de type II, thèse,

Orsay 2006.
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