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The principal goal of our paper is to classify the automorphic representa-
tions (over number fields) or the irreducible admissible representations (over
local fields) of unitary groups which are not quasi-split, under the assump-
tion that the same is known for quasi-split unitary groups. The classification
of automorphic representations is given in terms of automorphic representa-
tions of general linear groups. At the core of our proof is the trace formula
as in Arthur’s seminal work [Art13] but our novelty is to treat the new phe-
nomena which do not appear in the quasi-split case. We note that the local
classification result for general reductive groups over local archimedean fields
has been known due to Langlands and Shelstad. Concerning the analogue for
unitary groups over non-archimedean fields, complete results are due to Ro-
gawski [Rog90] for unitary groups in up to three variables and some partial
results are due to Moeglin [Mceg11] in general. Our secondary aim is to build
some foundation for the endoscopic study of more general non-quasi-split re-
ductive groups. Arthur himself outlined a strategy to deal with inner forms of
quasi-split reductive groups, most notably in the last chapter of [Art13]. The
basic materials we develop are largely complementary to his.

The current work constitutes the first installment in a series of three papers.
Here in the first part we state the main results (Theorems 1.6.1, 1.7.1, and 2.6.2)
in full generality and establish most of the main argument, but obtain complete
results only for tempered parameters (i.e. A-parameters which are generic in
Arthur’s terminology) locally and globally and only for unitary groups aris-
ing from Hermitian spaces associated to quadratic extensions of local or global
fields. In the local case, this accounts for all unitary groups, but in the global
case, this omits unitary groups arising from more general central simple alge-
bras equipped with an involution of the second kind. In particular we obtain
a precise version of the local Langlands correspondence for all unitary groups,
which includes a partition of the tempered spectrum into L-packets according
to tempered parameters, endoscopic character identities for tempered repre-
sentations, and internal parametrisation of each tempered packet via certain
characters of the centralizer group of the tempered parameter. (The Langlands
quotient theorem allows us to extend the construction of L-packets from the
tempered case to the general case.) We are going to extend our results to the
case of non-tempered local and global A-parameters (but still for pure inner
twists) in the second part of the series and to all unitary groups in the final
part. As each extension requires a good amount of additional technical work,
we decided to separate it to keep the first paper readable and in a reasonable
length. We marked each main theorem as well as some lemmas and proposi-
tions with symbol * to indicate that the theorem, lemma, or proposition is only
partially proven in this paper and to be completed in the next two papers.

As the work of Arthur [Art13] and Mok [Mok] is the most relevant to our
paper, we would like to explain the relevance at the outset. Arthur established
the endoscopic classification for quasi-split symplectic and special orthogonal
groups over local and global fields and also outlined some general strategy for
other groups. Modeling on his work, Mok gave the analogous classification for
quasi-split unitary groups. Our work borrows the basic structure of proof (as



one can see from the table of contents) and the proof of a number of interme-
diate assertions from Arthur. From Mok’s work we strived to import only the
main theorems (other than the basic setup) so as to make our paper more self-
contained. In this spirit we usually repeat or sketch the argument also when
we could have referred to a result in [Art13] (with just a few words for modi-
fications). We tried to choose compatible conventions (if not always notation)
with [Art13] and [Mok], but see §0.1 below for differences.

Having mentioned that we take on faith the main results of [Mok], which
will be explained more precisely in §1.5 below, our results in this first paper
are unconditional otherwise (except we are still awaiting the sequel to [CL10]
and [CL12], where Chaudouard and Laumon will establish the weighted fun-
damental lemma in general; we need it for the stabilization of the untwisted
trace formula for inner forms of unitary groups but note that the sequel is al-
ready needed in the quasi-split case).At the time of writing Mok’s main results
are themselves conditional (see [Mok] for a fuller discussion), most notably on
the stabilization of the twisted trace formula. Waldspurger in partial collabo-
ration with Moeglin has been actively releasing a series of papers on the latter
problem lately so we are hopeful that presumably the most serious hypothesis
will be removed in the near future.

Now we discuss more details about inner forms of a quasi-split (unitary)
group G* over a local or global field F' of characteristic zero and their endo-
scopic classification, which are the main subject of this paper and the sequels.
More precisely we consider inner twists, which consist of (G, ) where G is
an inner form of G* and ¢ : G* — G is an isomorphism over F, an algebraic
closure of F, such that £~ '¢(€) is an inner automorphism of G*. Given an L-
parameter or an A-parameter, it is believed that the corresponding packet is
determined by (G, §) in both local and global cases. However in the local case,
it is not known how to give a natural internal parametrisation of each packet
when G is not quasi-split; in the quasi-split case there is a canonical way re-
lying on an extra choice of Whittaker datum for G = G*. A closely related
problem is that there is no natural way to normalize local endoscopic trans-
fer factors for GG in general. One might try to proceed by fixing an arbitrary
normalization of transfer factors at each place but this would entail multiple
issues. For example, one would need to worry about compatibility of choices
when dealing with multiple groups simultaneously. One would also need to
incorporate these choices in all stated theorems. In particular, the local clas-
sification theorem will have to give the internal parametrisation of L-packets
dependent on the arbitrary choice of a transfer factor.

In response to these issues, various rigidifications of inner twists have been
suggested. A full discussion of this matter would lead us too far off field and
we refer the reader to [Kall4a] and the introduction to [Kal13]. Here we limit
ourselves to a brief overview. The prototype is Vogan’s notion of pure inner
twists. An (equivalence class of) pure inner twist corresponds to an element
of the Galois cohomology set H!(Gal(F/F),G*) over any ground field F, in
contrast to an (equivalence class of) an inner twist, which corresponds to an
element of H!(Gal(F/F),G*,). When F is local, a pure inner twist and a Whit-



taker datum for G* determine a canonical normalization of the transfer factors.
When F' is a number field, a pure inner twist and a Whittaker datum for G*
lead to normalized transfer factors at each place which satisfy the necessary
product formula, as can be shown by means of results on Galois cohomology
for algebraic groups. However the limitation of pure inner twists is that not all
inner twists can be rigidified as pure inner twists. Extensions of the concept
of pure inner twists in the local context have been put forward by Adams-
Barbasch-Vogan [ABV92] in the archimedean case and by Kaletha [Kal13] in
both the archimedean and the non-archimedean cases, the latter nontrivially
coinciding with the former in the archimedean case. These extensions have the
capacity to rigidify all inner twists over local fields but their global analogues
have not been found yet. A different extension stems from the work of Kot-
twitz on isocrystals with additional structure. It was initially only available
in the non-archimedean context [Kot85], [Kot97], but was recently extended
to the archimedean context as well as to the global context [Kot14]. This ex-
tension has the capacity to rigidify all inner twists of a quasi-split group with
connected center. It is this latter extension of the concept of pure inner twists
that we have chosen to use in this article. Since the center of a quasi-split uni-
tary group is connected, every inner twist can be rigidified using an isocrystal,
and we call the result an extended pure inner twist.

Once an inner twist and its rigidification are given the precise statements
of the main theorems in the local and global cases are given in §1.6 and §1.7
below. In the course of proving them, however, we were surprised by the sub-
tlety of the local intertwining relation (LIR) for inner forms (of unitary groups).
Not only its proof but its correct formulation already seems highly nontrivial
to us even with the notion of extended pure inner twist in hand, much of the
difficulty being rooted in the correct normalization of intertwining operators
for parabolically induced representations. It is perhaps fair to say that the dif-
ficulty and novelty of our work are mainly concentrated on the LIR. Actually
the LIR is the main reason why we divide our work into three papers; it seems
sensible to establish the LIR in three steps as quite a few technical results may
be reasonably isolated to the second and third steps. Once LIR is proven in full,
the main local theorem (i.e. the local classification theorem) for unitary groups
will follow rather painlessly by imitating the arguments in the quasi-split case.
On the other hand it is worth pointing out that the LIR is still far from trivial for
inner twists of a general linear group and will be completed in the third article,
even though the local classification theorem is already known for them. Unlike
the quasi-split case, the main global theorem is an immediate consequence of
the LIR and the local classification theorem.

The general structure of our argument is similar to that in the quasi-split
case but there are differences. The spine of the argument is again a long induc-
tion that is resolved at the end of the paper. However, we have a stronger start-
ing point than is the case in [Art13] and [Mok] since we are given some funda-
mental facts about the parameters and stable linear forms on quasi-split groups
(such as the two seed theorems, cf. Propositions 1.3.1, 1.3.3, and 1.5.1 below)
as well as the stable multiplicity formula (Proposition 3.3.1). The twisted trace



formula also plays a smaller role than in [Art13] and [Mok]. In fact, in the cur-
rent paper we can make do without it, but it will be used in the third part of
our series to establish the LIR in the remaining cases. Thanks to all this our use
of the trace formula is mostly more transparent and simpler than [Art13] and
[Mok]. It is also worth noting that our proof of LIR is quite different. It might
look like a great advantage to assume the LIR for quasi-split groups from the
start, but this does not take us too far because we cannot always realize a non-
quasi-split local unitary group as the localization of a global unitary group at
a place, with the property that the group is quasi-split away from that partic-
ular place, when the number of variables is even. It turns out that we should
generally allow the global unitary group to be non-quasi-split at another auxil-
iary place. This roughly means that if the LIR is known at one non-quasi-split
place then one hopes to deduce the LIR at the other non-quasi-split place by
a global method based on the trace formula. So the basic strategy for proving
LIR is to build a reduction step by globalising the given non-quasi-split lo-
cal unitary group and its tempered parameter to a global unitary group and a
global parameter such that the global parameter at the auxiliary place is easier
to deal with than the original local parameter. Combining this idea with other
reduction steps of purely local nature due to Arthur, we reduce the proof of
LIR in some sense to the proof of LIR for the real unitary group U(3, 1) relative
to its Levi subgroup isomorphic to U(1,1) x C* and some special parameters
amenable to explicit computations.

Our style of exposition is deliberately mixed. We elaborate, sometimes in
great length, on the foundational or new materials regarding inner twists and
their endoscopic study, such as how extended pure inner twists are tied with
the normalization of transfer factors and local intertwining operators. We hope
that this will serve as a stepstone to further investigation of inner twists. In
contrast we often try to be brief and refer to an external reference (most likely
[Art13]) for details especially when we are proving assertions which can be
shown in the same way as for quasi-split groups with rather obvious modifi-
cations. For instance this applies to the so-called standard model in §3.6, the
initial step in the comparison of the trace formulas. On the other hand we oc-
casionally give more details than Arthur even if the statements and proofs are
similar, when we believe the effort is worthwhile. This is the case, for exam-
ple, in the reduction steps when proving the LIR, cf. §2.7 and §2.8 below. Let
us also mention that the contents are arranged in such a way that whenever
possible, we explain what happens for general reductive groups first and then
specialize to (inner twists of) unitary groups and general linear groups.

Now we explain the organization of the paper with some commentaries.
Chapter 0 is the preliminary chapter where basic definitions and properties of
unitary groups and their L-groups, their inner twists and extended pure inner
twists as well as their Levi subgroups, parabolic subgroups and the associated
Weyl groups. Part of the chapter would offer an introduction to the relatively
new notion of extended pure inner twists with examples. Chapter 1 begins
with some basic definitions and technical lemmas in endoscopy. Next we in-
troduce local and global parameters for unitary and general linear groups. As



in [Art13] and [Mok] our global parameters are formally constructed from au-
tomorphic representations of general linear groups to avoid the issue with the
hypothetical Langlands group. There is nothing new except §1.3.7 on the rele-
vance of parameters, which matters only outside the quasi-split case, and §1.3.8
on canonical global parameters (without reference to any L-morphism). The
endoscopic correspondence for parameters in §1.4 is not new either but we in-
cluded a version which is suitable for extended pure inner twists. After giving
a precise list of main results we are importing from [Mok], we state the local
and global main theorems in the last two sections of Chapter 1. The proof of
these theorems will take up this paper and the two forthcoming papers except
that we establish on the spot Theorem 1.6.4 concerning the inner twists of local
general linear groups. Chapter 2 is all about local intertwining operators and
LIR. Our sections §2.1 through 2.6 correspond to much of [Art13, 2.3-2.4] but
contain new materials and constructions as we remarked earlier. Notice that
our statement of the LIR in Theorem 2.6.2 consists of three parts, only the last
of which was referred to as the LIR in [Art13]. We initiate the reduction steps
for LIR by purely local methods in §§2.7-2.8 and then verify LIR for U(3,1)
in some special cases, which will enter the proof of LIR as the basis of the in-
ductive argument. Chapter 3 is concerned with the global machinery based
on the trace formula and analogous to §3.1 through §4.5 of [Art13]. We claim
little originality here other than taking care of the necessary changes and ad-
ditional justifications for inner twists. Chapter 4 is similar to §6.2 through §6.7
of [Art13] but the proof of LIR is different. As explained above we need differ-
ent kinds of globalizations as constructed in §4.4 to feed into the trace formula
argument in the following two subsections. All this effort toward LIR comes
together in §4.6 to finish the proof for tempered parameters on local unitary
groups. The remainder of the chapter flows in a similar manner as the par-
allel part in [Art13] and leads to the proof of the main local theorem for the
same parameters. Chapter 5 carries out the rather short and straightforward
proof of the main global theorem assuming all the local results. So the proof
is complete only for global generic parameters on pure inner twists of a quasi-
split unitary group. Finally Appendix A extends Ban’s result on the invariance
of the Knapp-Stein R-groups under Aubert involutions to the case of unitary
groups and beyond. Thereby it fills in the gap in the case of quasi-split unitary
groups and will provide us with an input in the sequels to this paper.

We end introduction by mentioning the results which are not completed
in this paper. The immediate sequel [KMSb] will be devoted to the study of
non-generic local A-parameters, thereby completing the proof of the main lo-
cal theorem (Theorem 1.6.1) in the remaining cases. Lemma 2.2.4 will be fully
proved along the way. In the final paper [KMSa] we will justify some facts
about transfer factors which are unproven outside the case of pure inner twists
(see §1.1.2 below) and settle Lemmas 2.2.3, 2.7.1, and 2.7.2 as well as Proposi-
tion 3.5.3 and Theorem 1.7.1 in complete generality.

Acknowledgment
We are grateful to Jussieu and MIT for their hospitality during our visit



and collaboration in the summer of 2012 and 2013, respectively. Our project
began in Jussieu and would have been impossible without the generous help
and support from Michael Harris. It will be obvious to the reader that our
work owes immensely to the lifelong work of James Arthur. Special thanks
are due to him for his patience to answer our questions and his kindness to
allow access to his book [Art13] before publication. We are grateful to Robert
Kottwitz for providing the cohomological foundations of extended pure inner
twists and preparing the manuscript [Kot14] that is used throughout this paper.
We would like to thank Ioan Badulescu, Wee Teck Gan, Kaoru Hiraga, Atsushi
Ichino, and Colette Moeglin for helpful discussions and communications.

0 CHAPTER 0: INNER TWISTS OF UNITARY GROUPS

0.1 Notation

In this paper we declare once and for all that every field is of characteristic
zero. So a local field is either R, C, or a finite extension of Q, for some prime p.
A global field is going to be synonymous to a number field, a finite extension
of Q. Let F be a field (of characteristic zero). We denote its full Galois group
Gal(F/F)by T or I'r. Now let E/F be a quadratic extension of number fields,
and let v be a place of F'. We write F), for the completion of F' with respect to v,
and I, or I'p, for Gal(F, /F,). For such an F we fix an F-embedding F — F,
between algebraic closures for every place v of F' so that there is an induced
embedding I', — I at every v. Moreover we fix an F’-embedding £ — F once
and for all. This determines an embedding E — F, for each v, singling out a
distinguished place w of E above v. When v splits in E, we often write w for
the other place above v. The ring of adéles over a number field F' is denoted
Ap, or simply A if the field F'is well understood. For a finite set S of places of
F we write A% for the ring of adéles away from S (i.e. the restrict product is
taken away from ).

When G is an algebraic group over a field E, which is an extension of a
tield F', we use Resg, G to denote the Weil restriction of scalars. The center of
a group G is written as Z(G).

Every infinite tensor product (over the places of a number field) is denoted
by the usual symbol for tensor product ® but understood as a restricted tensor
product.

By SU(2) we denote the compact special unitary group in two variables.

The following is the list of major instances where our notation or conven-
tion is quite different from [Art13] and [Mok].

e Here G is typically an inner form of Ug,r(N) (or a connected reductive
group in a general discussion). We write G* for the quasi-split form of G,
which is hence Ug,p(N) in most instances.

e In [Mok] an endoscopic datum for the quasi-split unitary group Ug (V)
is denoted (G', s',¢’) (or U(N1) x U(N2), (), often abbreviated as G’, and
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the transfer of a function f on Ug,r(N) to G’ is denoted f’. Our nota-
tion for an endoscopic datum is (G*, s, n°®) and abbreviated as ¢. (In the
twisted case, appearing rarely, write ¢ = (G*,s%,7).) The transfer from
G to G° is denoted f*. To be precise the transfer f¢ also depends on the
structure of inner twist or extended pure inner twist on G, but we omit
the reference to such a structure in the notation.

e When ¢ is an (Arthur) parameter for GG, over either a local or global field,
their group Sy is denoted by S, in our paper. We generally use the bar
notation to indicate that the definition involves taking quotient by the
Galois invariants in the center of G. (See diagram (3.5.2) below for in-
stance.) Our Sy, modulo such Galois invariants is their S,.

e The conjugate dual of an irreducible representation 7 is denoted 7* in
[Mok]. We write 7* to avoid using * too much.

e Our formulation of local intertwining operators and local intertwining
relations is a little different. It is technical to explain here but the reader
is referred to Chapter 2 below for details.

0.2 Reductive groups and their L-groups
0.2.1 The based root datum and the Langlands dual group

Let G be connected reductive group defined over an algebraically closed field.
Associated to G there is the based root datum brd(G) = (X, A, Y, AY) obtained
as follows. For any Borel pair (7, B) of G we have the based root datum

brd(T, B) = (X*(T), A(T, B), X.(T), A(T, B)).

Given two pairs (T;, B;), i = 1, 2, there exists a canonical isomorphism 77 — 15
given by conjugation by any element of g which sends (71, B1) to (T2, Ba).
This isomorphism produces an isomorphism brd(73, B1) — brd(T%, B2). In
this way, we obtain a system brd(7T’, B) indexed by the set of Borel pairs for G,
and taking its inverse limit, we obtain brd(G).

In fact, in the same way one can define the absolute Borel pair (T, B) of G.

Let G now be a quasi-split connected reductive group defined over a field
F of characteristic zero. Fix an algebraic closure F of F and let I' denote the
Galois group of F/F. If a Borel pair (T1, B1) of G is defined over F, then
brd (T4, By) carries a natural I'-action. If (T5, Bs) is a second such pair, then the
natural isomorphism brd(73, By) — brd(Tz, By) is I'-equivariant. This gives a
natural T'-action on brd(G).

A dual group for G is the datum of a connected reductive group G de-
fined over some field, which we will take to be C, together with an action of

I'onG by algebraic automorphisms preserving a splitting of G, and a fixed
I'-equivariant isomorphism brd(G) = brd(G)". Here the I'-action on brd(G)
is derived in the same way as that on brd(G), namely using I'-invariant Borel

pairs (T, B) which exist by assumption.

11



Given (G, we have the Galois form of the L-group given by LG = GxT.If
F'is a local or global field, it may also be useful to consider the Weil-form of

the L-group, given by “G = G x W, where W is the Weil group of F.

0.2.2 Quasi-split unitary groups Ug/p (V)

In this paragraph and the next we set up the basic notation for quasi-split uni-
tary groups as well as the relevant general linear groups which possess unitary
groups as twisted endoscopic groups. The L-groups of these groups will be
made explicit below. In the next subsection they will be related to each other
via L-morphisms and endoscopic data.

Let E be a quadratic F-algebra so that E is either a quadratic field extension
or isomorphic to F' x F. In the latter case fix the isomorphism and identify
E = F x F. Define ¢ € Autp(E) to be the unique nontrivial automorphism in
the former case. In the latter ¢(z, y) := (y, z) for =,y € F. Following Rogawski
[Rog90, §1.9], we define the quasi-split unitary group in N-variables defined
over F' and split over E as

Ug/p(N)(F) = GLy(F)
with the Galois action is given by
M(g) = On,0(0(9))

forany o € T, g € GLy(F). Here,

0 ()_ g 7J€FE
VAT =N Ad(In)gt o €Tr~Th

g

where

Iy = 1

(-

and ¢! denotes the transpose of the inverse of g. This is the definition used
in [Rog90, §1.9] (the element £ € E* of trace zero used there is irrelevant for
the definition of the group and we have thus omitted it). The standard split-
ting (T, B*,{X,}) of GLy, consisting of the group T* of diagonal matrices,
the group B* of upper triangular matrices, and the set {E; ;11 }i=1,.. n—1, is
invariant under o and provides a standard F-splitting for Ug,p(N).

As a dual group for Ug,p(NN), we fix ﬁE/F(N) = GLy(C) endowed with
the standard splitting (T, B,{X.}), where T is the subgroup of diagonal ma-
trices, B is the subgroup of upper triangular matrices, and {X,} is the subset
of root vectors given by E; ;41 for ¢ = 1,...,N — 1. The action of I' factors
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through I'g/r and the non-trivial element 7 € I'g/ acts by g — Ad(Jn) gt
The adjoint group Ug/p(N)aa = Ug/p(N)/Z(Ug,r(N)) has as its dual group
[ﬁE/F(N)]SC = SLy(C). The centers of the dual groups of U/ (V) and Ug /(N )aq
are given by C* and py, respectively, with 7 acts by inversion on both of these
subgroups. We form the L-group “Ug,r(N) to be the semi-direct product
GLy(C) x T using the above I'-action.

So far we allowed the case when I = F' x F. It is worth noting some simpli-
fications in this case. It is easy to see that the projection from F' x F to the first
(resp. second) copy of I’ induces an isomorphism Ug,r(N) ~ GL(N)F, to be
denoted ¢; (resp. t2). An easy computation shows that Lng_l(g) = Jyt gfng,l.
Moreover ¢;, j € {1,2}, induces isomorphisms 7; : (/}i(N)F ~ ﬁE/F(N) and
LLj : LGL(N)F ~ LUE/F(N)

When E/F is a quadratic extension of number fields and v is a place of F’
split as ww in E, we may assume that w is a distinguished place, cf. §0.1. In
this case we identify E, := E ®p F, = F,, X Fy and write ¢, for ¢; and w5 for
t2. Similarly for z,,, L1, 7, and Lig.

0.2.3 The groups G,p(N) and GE/F(N)

Let E, F, and c be as above. Denote by Resg,r the Weil restriction of scalars.
By applying Resg,p to GL(V) over E, we obtain an F-algebraic group

We sometimes simplify G/ (V) as G(IN) when there is no danger of confu-
sion. There is an F-automorphism of order two on Gg,p(N) given by

0(g) == JIn'eclg) ' IN', g€ Ggr(N).

The dual group and L-group of Gg/r(N) are given as
Gpr(N) = GL(N,C) x GL(N,C), “Gp/p(N) = Gg/r(N) x W,

where W acts through Gal(E/F) on Gr /r(N) by permuting the two factors
(so that the nontrivial Galois element sends (g1, g2) to (g2,91).) Here we are
using the standard F-splitting of Gz, (V) consisting of the diagonal maximal

torus, the upper triangular Borel, and {F; ;1}2 ;" on each copy of GL(N, C).
We have an automorphism 6 of G 5, (N) such that

0(g1,92) = (In'gy "INt Intgr I,

(There is a general recipe for 0 when 0 is given, cf. §1.1.1 below.) Define a
Gg/r(N)-bitorsor

so that if we identify éE/F(N) ~ Gg/p(N) via g x 0 — g then the action of
g € Gg/p(N) is multiplication by g (resp. 6(g)) on the left (resp. right).

13



0.3 Inner twists

Our goal in this volume is to give an endoscopic classification of representa-
tions for unitary groups which are not quasi-split. This can be done by real-
izing the unitary group as an inner twist of a quasi-split unitary group and
comparing stable trace formulas. In order to carry out this comparison how-
ever, it turns out that the notion of an inner twist is insufficient. For a general
discussion of the problem, we refer the reader to [Kall4a] and the introduction
of [Kall3]. In this section we will introduce two modifications of the notion
of inner twist that will be important for us. The first was defined by Vogan
in [Vog93] and is called a pure inner twist. This notion is sufficient when deal-
ing with unitary groups associated to Hermitian spaces defined over quadratic
extensions of the ground field. In particular, it is sufficient for all unitary
groups over local fields. The second notion stems from the work of Kottwitz
on isocrystals with additional structure [Kot85], [Kot97], [Kot14] and is called
an extended pure inner twist. It generalizes the notion of a pure inner twist and is
needed when one wants to work with a unitary group associated to a non-split
central simple algebra endowed with an involution of the second kind. The
additional datum provided by an (extended) pure inner twist will play a role
not only in the technical parts of the paper, but already in the statement of our
local theorems. The global theorems will be less dependent on this additional
datum.

0.3.1 Definition of inner twists and their variants

Let F be a field of characteristic zero, F an algebraic closure, and I the Galois
group of F'/F. Let G be a connected reductive group defined over F. An inner
form of G is a connected reductive group G, defined over F' for which there
exists an isomorphism ¢ : G x F — G x F with the property that forall o € T,
the automorphism ¢ 1o (£) = 71 oo 0 0 07! of G is inner. The isomorphism
£ 1 G — @G itself is called an inner twists. If & : G - Gy and & : G — G»
are two inner twists, then an isomorphism &; — £, consists of an isomorphism
f : Gi — G defined over F and having the property that &' o f o ¢ is an
inner automorphism of G. The map ¢ — £~ 1o (£) sets up a bijection from the
set of isomorphism classes of inner twists of G to the set set H (', Gaq)

For a fixed inner form G of G, the set of all inner twists G — G carries an
equivalence relation, with two twists being equivalent if and only if idg, is an
isomorphism between them. We will oftentimes work with the classes of this
equivalence relation.

A pure inner twist ({,2) : G — G; is a pair consisting of an inner twist
¢ : G — Gy and an element z € Z'(T', G) having the property that {1o(¢) =
Ad(z,). Given two pure inner twists ({1,21) : G — G1 and (£2,22) : G — G,
an isomorphism (&1, 21) — (&2, 22) consists of a pair (f, g), with f : & — & an
isomorphism of inner twists, and g € G an element satisfying the conditions
&' o fo& = Ad(g) and 2(0) = gzi(0)o(g)~". The map (€,2) — z sets up
a bijection from the set of isomorphism classes of pure inner twists to the set
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HY(T,G).

Before we can introduce the notion of an extended pure inner twist, we
need to recall some recent results of Kottwitz [Kot14]. Let F' be a local or
global field. In [Kot14, §10], Kottwitz has constructed a certain cohomology
set B(F, Q) for each affine algebraic group G defined over F'. This set is con-
structed as the colimit

B(F,G) = lim H,,(£(K/F), G(K))
K

where IS runs over the set of finite Galois extensions of F' in a fixed algebraic
closure F' of F', £(K/F) is a certain extension

of the Galois group of the extension K/F by group of K-points of a certain
group D, p of multiplicaitve type defined over F, and H),, (£(K/F),G(K))
is a set of algebraic cohomology classes of £(K/F) with values in G(K), as
defined in [Kot14, §2].

The set B(F, G)) comes equipped with a Newton map [Kot14, §10.7]

v: B(F,G) — [Homp(Dr, G) /G(F)|T,

where Dp = lim Dy, p. The preimage of Homp(Dp, Z(G)) under the New-
ton map is called the set of basic elements, denoted by B(F, G)ps.. There is a
natural inclusion H'(I', G) — B(F, G)ps.. When the center Z(G) of G is triv-
ial, this inclusion is also surjective. Using this fact, we obtain a natural map
B(Fa G)bsc — B(F’ G/Z(G))bsc ~H! (Fa G/Z(G))

The notion of basic can already be defined on the level of cocycles, so we can
speak of Z! . (£(K/F),G(K)). Moreover, if H is another group for which there
is a natural inclusion Z(H) C Z(G), we can speak of H-basic elements, which
are those whose Newton point belongs to the subgroup Z(H) of Z(G). We
will use the corresponding notation B(F, G) g —psc and Z};_, (E(K/F),G(K)).
From an element of Z._ (£(K/F), G(K)) we obtain an element of Z* (T g/, Gaa(K)).
In other words, basic algebraic 1-cocycles of £(K/F) with values in G(K) lead
to inner forms of G.

When F is local, Kottwitz has constructed [Kot14, §11] a canonical map of
pointed sets

kG : B(F,G)pse = X (Z(Q)T), (0.3.1)
which is a bijection if F is p-adic, and which extends the map
H'(T,G) = X" (m(Z()"))

defined in [Kot86].
Let now F be global. For each place v of F there is a localization map
B(F,G) — B(F,,G) which preserves the property of being basic [Kot14, §10.9].
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If we choose one place of F' lying over each place of F and combine these
localization maps, we obtain a map

B(F, G)bsc — H B(Fva G)bsm (032)

where | [ denotes the subset of the direct product consisting of elements whose
components at almost all v are equal to the neutral element in B(F,, G)psc-
Kottwitz has shown [Kot14, §15.7] that the kernel of (0.3.2) is in bijection with
ker' (F, G). The usual twisting argument tells us that the fiber over b € B(F, G)psc
is in bijection with ker! (F, G®), where G? is the inner form of G correspond-
ing to b. According to [Kot84, (4.2.2)] (in which the assumption of not hav-
ing Fg factors can be dropped by the work of Chernousov [Che89]), each set
ker' (F, G?) is in bijection with the finite abelian dual to ker'(T', Z (G)). More-
over, according to [Kot14, Prop. 15.6], the image of (0.3.2) is equal to the kernel
of the composition

[1B(Fu. Gloe 3 @ x7(2(G)") =5 X7(2(G)"). (0.3.3)

We will be most interested in the case when G is a quasi-split connected
reductive group. Using the cohomology sets B(F, G) for local and global fields
we define an extended pure inner twist (£, z) : G — G; to consist of an inner
twist ¢ : G — G7 and an element z € Z} _(£(K/F),G(K)), for some finite Ga-
lois extension K /F, whose image in Z}_ (£(K/F), Gaa(K)) = Z' (k) p, Gaa(K))
equals £ 'o(£). Since K is arbitrary, it will be convenient to use the sym-
bol Z! .(€,G) instead of Z} (E(K/F),G(K)). An isomorphism of extended
pure inner twists is defined in the same way as for pure inner twists. The
isomorphism classes of extended pure inner twists are in bijection with the
set B(F,G)psc. When G has connected center, Kottwitz has shown [Kot14,
Prop. 10.4] that the natural map B(F, G)vsc — B(F,Gad)bse = H (L', Gaq) is
surjective. This implies that, when G has connected center, any inner twist
& : G — (1 can be made into an extended pure inner twist (£, 2) : G — Gj.

Given two extended pure inner twists ({1,21) : G — Gy and (&2, 22) : G1 —
G2, we define composition and inverse as (§2, z2)0 (&1, 21) = ({2082, 51_1 (22)-21)
and (£1,21) 7" = (&1, &1(21)7Y). The operation of composition allows us to talk
about commutative diagrams of pure inner twists.

0.3.2 Extended pure inner twists of general linear groups

Let us describe concretely the discussion of Section 0.3.1 for the group GLy. It
is well-known that the inner forms of GL v are the groups Resp,rGLys, where
D is any division algebra over F of degree s, where s|N and M = N/s.
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Let first F' be local. We have the commutative diagram

B(F,GLy)pse — HY(T', PGLy)

| |

Z Z/NZ

where the left map is (0.3.1), the right map is the classical Kottwitz map [Kot86,
§1], and the horizontal maps are the natural maps.

When F is a p-adic field, both vertical maps are bijections. Moreover, if D is
a division algebra of degree s*> and invariant r/s, then the equivalence classes
of extended inner twists GLy — Resp,rGLas correspond to the elements = €
Z whose class in Z/NZ is represented by r .

When F is the field of real numbers, both vertical maps are injective, but
the description of their images depends on whether N is even or odd. When
N is odd, the image of the left map is NZ and the image of the right map is
0. When N is even, the image of the left map is £ Z and the image of the right
map is £ Z/NZ. Moreover, the non-trivial element z € £ Z/NZ corresponds
to the inner form Resy/r GL v, where H denotes the quaternion algebra. When
F' is the field of complex numbers, both vertical maps are injective, the image
of the left map is NZ and the image of the right map is 0.

Let now F' be global. Then the localization map (0.3.2) is injective due to the
vanishing of ker!(I', C*). Thus we can identify B(F, GLy)psc with the subset
of @, Z consisting of tuples that sum to zero and whose entries for places v|oo
belong to §Z when v is real and N is even and to NZ otherwise.

0.3.3 Extended pure inner twists of unitary groups

Let us now describe concretely the discussion of Section 0.3.1 in the case of the
quasi-split group Ug, (V) defined in Section 0.2.2.

We begin with F' being a local field. In that case, the injection H*(T', Ug/p(N)) —
B(F,Ug;r(N))bsc is in fact a bijection, so it suffices to recall the classical com-
putations of Galois cohomology. We have the diagram

Hl(F,UE/F(N)) *>H1(F, UE/F(N)ad>

| |

7)27 7./87.

where § = 2if Nisevenand § = 1if NV is odd. The top map is surjective. When
F' is p-adic, the vertical maps are bijective. When F' is real, the vertical maps
are surjective, but not injective. In fact, we have H'(T, Ug/rp(N)) ={(p,q)|0 <
p,q < N,p+q= N}and H'(T, Ug/r(N)aq) is the quotient of this set by the
symmetry relation (p,q) ~ (g,p). The left map is given by (p,q) — [§] +
g mod 2.
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We now turn to F' global. The localization map (0.3.2) is injective due to
the vanishing of ker! (F,C (X_l)), where C (X_l) denotes the abelian group C* on
which I'g acts trivially and each element of I' \ I'; acts by inversion. Thus we
can identify B(F,Ug,p(N))bsc with the kernel of (0.3.3). From the discussion
of local linear and unitary groups, we can now extract the following: For each
place v of F, let =, be an equivalence class of extended inner twists of Ug, (),
and let a, be its invariant, which for v is finite and split in F belongs to Z, for
v is finite and inert in E belongs to Z/2Z, for v is real and split in £ belongs
to %Z C Zif N iseven and to NZ C Z if N is odd, and for v real and inert
belongs to Z/27Z. Then the collection (Z,) is the localization of the a global
extended inner twist if and only if almost all a, are equal to zero and, after
mapping each a, into Z/2Z using the natural projection Z — Z/2Z, the sum of
all a,, is zero in Z /27Z.

It is also instructive to describe which collections of local inner twists come
from a global inner twist. If v is a finite place split in F, such a twist gives
the group Resp, /r, GLyy, for some division algebra D, /F,, which provides an
element a, := N - inv(D,) € Z/NZ — 7Z/27Z. If v is finite and inert in F we
obtain either the quasi-split group Ug, /5, (N), which leads to a, = 0 € Z/2Z,
or the unique non-quasi-split inner twist of that group (only available for even
N), whichleads to a, =1 € Z/2Z. If vis real and splitin E, we obtain either the
group GLy, which leads to a, = 0 € Z/2Z, or its unique non-quasi-split inner
twist Resy /RGL% (available only for even N), which leads to a,, = % €7/2Z.
When v is real and inert in E, we obtain the unitary group U(p, q) for some
0 < p,qg < Nwithp+ ¢ =N, and it leads to a, = 0 € Z/2Z if N is odd or
toa, = 5 4+ ¢ € Z/2Z if N is even. In order for this collection of inner twists
to come from a global inner twist it is necessary that a, = 0 for almost all v.
This is also sufficient if IV is odd, and if IV is even a necessary and sufficient
additional condition is that the sum of all a, is zero in Z/27Z.

Finally, let us note which inner forms of unitary groups can be realized as
pure inner forms. This discussion works over any field F. For any separable
quadratic extension of fields E/F we have the exact sequence

H'T,Ug/p(N)) = H (D, Up/r(N)/Ug/r(1)) = H'(T',Resp, p(PGL(N))).

By the generalized Hilbert 90 theorem [KMRT98, Theorem 29.2], we know that
the connecting homomorphism

H' (T, Resg,r(PGL(N))) = H*(T,Resg/r(Gyn)) = H* (T, Gy) = Br(E)

is injective. The composed homomorphism H'(I', Ug/r(N) /Ug/r(1)) — H*(T,Resg,p(PGL(N)))

Br(FE) sends a unitary group G to the class of the division algebra over E which
is the base algebra of the Hermitian space defining G. This shows that the in-
ner forms of unitary groups that can be realized as pure inner forms are pre-
cisely those unitary groups constructed from Hermitian spaces over the field
E, rather than over a division algebra over E.
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0.4 Parabolic subgroups and Levi subgroups

Here we collect some general facts about parabolic and Levi subgroups of a
reductive group and its L-group and give a classification of Levi subgroups for
inner forms of unitary groups. We work with the Galois form of the L-group
in this section for the obvious reason that the Weil group for a general field F'
does not make sense. When F' is a local or global field, it is straightforward to
adapt the results to the Weil form of the L-group.

0.4.1 Relationship between G and LG

Let G be a connected reductive algebraic group, defined and quasi-split over a
field F'. Let P(G) denote the set of G-conjugacy classes of parabolic subgroups
of G. The inclusion relation among parabolic subgroups imposes a partial or-
dering < on P(G). There is a canonical order-preserving bijection between
P(G) and the powerset of of A. Fixing a particular Borel pair (7', B) of GG, each
class in P has a unique element P that contains B. Moreover, P has a unique
Levi factor that contains T'.

Now let I" be a group acting on G. Then I" acts on P and on A, and the
bijection P <+ PB(A) is I'-equivariant. For any class [P] € P, a necessary con-
dition for this class to have a I'-invariant element is that it be I'-invariant itself.
When G possesses a I'-invariant Borel subgroup B, then this condition is also
sufficient, for then the unique element of [P] containing B is necessarily I'-
invariant. If G does not contain a I'-invariant Borel subgroup, this condition is
not sufficient.

Let M be the set of G-conjugacy classes of Levi components of parabo-
lic subgroups. Recalling that all Levi components of a given parabolic sub-
group are conjugate under that parabolic subgroup, we see that we have a
I'-equivariant surjection P — M. Two elements of P lying in the same fiber
of this map are called associate. By the same argument as above, the existence
of a I'-fixed Borel pair of G ensures that each I'-invariant class in M has a I'-
invariant element.

Now consider the semi-direct product G = G x I'. A subgroup P of this
product will be called full if the restriction of the projection G xI' — I" to P
is surjective. It will be called a parabolic subgroup, if it is full and GNP is a
parabolic subgroup of G. The maps

P—PNG and P— N(P,G)

are mutually inverse bijections between the set of parabolic subgroups of G and
the set of those parabolic subgroups of G whose conjugacy class is I'-invariant.

Given a parabolic subgroup P C G, we will call a subgroup M C P a Levi-
factor of P if M is a full subgroup of P and moreover M N G is a Levi factor of
P N G. The maps

M—MNG and M — N(M,P)
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are mutually inverse bijections between the set of Levi factors of P and the
set of Levi factors of P. All these bijections are evidently equivariant under
conjugation by G.

A Levi subgroup M of a parabolic subgroup of G will be called a Levi
subgroup of G for short. If we put Ay = Cent(M,G)°, then we have M =
Cent(Am, G).

It is elementary to check the validity of the above statements. In doing so,
the following elementary observation is useful: Two subgroups A, B of G are
equal assoonas A C B, AN G = BN G, and the images of A, B in I coincide.

0.4.2 Transfer of Levis and relevance of parabolics

We continue with £ a field of characteristic zero and G* a quasi-split group de-
fined over F. Set LG* = G* x T, the Galois form of the L-group of G*. The dis-
cussion in Section 0.4.1 provides a bijection between the conjugacy classes de-
fined over F of parabolic subgroups of G* x F and the £ G*-conjugacy classes of
parabolic subgroups of G*. Since G* is quasi-split, and G* has a I-fixed pin-
ning, every conjugacy class defined over F of parabolic subgroups of G* has an
element defined over F, and every L' G*-conjugacy class of parabolic subgroups
of LG* contains an element whose intersection with G* is I-invariant.

Let = : G* — G be an equivalence class of inner twists. It provides a I'-
equivariant bijection P(G*) — P(G), hence a bijection P(G*)'' — P(G)'. If G
is not quasi-split, then an element of P(G)" may not have a I'-invariant mem-
ber. This necessitates the following definition.

Definition 0.4.1. An element of P(G)" is called relevant if it has a T-invariant
representative. We will write P(G)yel for the set of relevant elements of P(G)".

The study of what elements of P(G)" are relevant leads naturally to the
question of transfer of Levi subgroups. Let M* be a Levi subgroup of G*,
and let Ay~ be the maximal split torus in Z(M*). It is known that M =
Cent(An+, G*).

Lemma 0.4.2. The following are equivalent.
1. There exists £ € = whose restriction to Apy- is defined over F.

2. There exists a Levi subgroup M C G and £ € Z which restricts to an inner
twist £ : M* — M.

3. The class of H'(F, G%,) determined by = belongs to the image of the injection
H(F,M*[Z(G*)) = HI(F, G}y).

Proof. Take ¢ € E with £]4,,. defined over F and put Ay; = §(Aas+). Then Aps
is a split torus in G, and M = Cent(Ays, G) is a Levi subgroup of G, and Ay
is the maximal split torus in Z(M). Moreover, for any g € G* with {1o(¢) =
Ad(g), we have g € Cent(Ap~,G*) = M*. Thus £ : M* — M is an inner twist.
It follows right away that the cocycle o — £~ 1o(¢) is inflated from M*/Z(G*).
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Finally, if we assume that £ 710 (€) takes values in M*/Z(G*), then we see right
away that &| 4,,. is defined over F. O

Definition 0.4.3. We say that M* transfers to G (with respect to =) if the equivalent
conditions of the proposition hold.

The following question will also be relevant: Given an equivalence class
of inner twists 257 : M* — M, does there exist an equivalence class of inner
twists = : G* — G and an embedding of M as a Levi-subgroup of G such that
E ) is the restriction of =? For this we consider the following diagram

1 — H'(T, A5) HY(T, 7M7) H(D, Z43) (0.4.1)

T

H*(T, Z(M*))

H2(T, Z(G*))

1

To justify the two “1”s in the diagram, recall that an induced torus is an alge-
braic torus whose character module (equivalently co-character module) has a
I'-invariant basis. For such a torus S Shapiro’s lemma and Hilbert’s theorem
St

90 imply H'(T, ) = 0. Furthermore, if S is the complex dual torus, then ST is

connected, because the X*(ST/5T°) = X, (S)r 4or = 0.

Lemma 0.4.4. If M* C G* isa Levi subgroup, then the algebraic group Z(M*)/Z(G*)

is an induced torus. If M C LG* is a Levi subgroup, then Z(MnN G*)/Z(G*) is the
dual of an induced torus.

Proof. Let T* C G* be a minimal Levi. Conjugating M* within G* we may
assume that 7 C M*. Then Z(M*)/Z(G*) is the subgroup of T*/Z(G*) given
as the intersection of the kernels of a I'-invariant set of simple roots (for some
choice of a Borel subgroup B* containing 7). The complement of that set in
the set of all simple roots projects under X*(T*/Z(G*)) — X*(Z(M*)/Z(G*))
to a basis. This proves the first statement. The second is proved the same way,
by taking T* to be part of a I'-invariant splitting of G- O

With the above diagram at hand, we can now answer the question as fol-
lows.

Corollary 0.4.5. There exists an embedding of M as a Levi subgroup of G such that
the equivalence class Zpp - M* — M of inner twists is the restriction of an equivalence
class of inner twists = : G* — G if and only if the class of Epy in HY(T, M* /Z(M*))
is mapped via the connecting homomorphism into the subgroup H*(T, Z(G*)) of
H2(T, Z(M*)).
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When F is a number field, it is useful to know a local-global principle for
transfers.

Lemma 0.4.6. Assume that F' is a number field. Then M* transfers to G over F if
and only if M* transfers to G over I, at every place v of F'.

Proof. We reproduce here the proof that one of us learned from Robert Kottwitz
while being a graduate student. We are thankful to Kottwitz for allowing us to
reproduce this proof.

If M* transfers to G over F, then it tautologically does so over all com-
pletions F,. Assume conversely that M* transfers to G over each F,. Let
z € HY(T, G?,) be the class of Z. Our task is to show that z is the image of z; €
HY(I',M*/Z(G*)) under the injection H'(T', M*/Z(G*)) — HY(T',G,). Our
assumption implies that the restriction z,, € H' (', G,) is the image of zs,,, €
HY(T,, M*/Z(G*)) under the injection H*(T',, M*/Z(G*)) — H' (T, G%,), for
each place v.

We claim first that there exists '/, € H'(I', M*/Z(G*)) whose restriction
at each v is equal to . According to [Kot86, Prop. 2.6], this is equivalent
to showing that if x s, is the character of my(Z (J\Z*C)F) corresponding to s,
under the map [Kot86, Theorem 1.2], then the sum of all xs, is the trivial
character. But we know that this is true for the pull-backs x M:'U|7r0( 2@y
because they correspond to the classes (x,) under the analogous map for the
group G7 ;. We consider the exact sequence

1= Z(Gl) » Z(ME) = Z(M)/2(GL) = 1.
According to Lemma 0.4.4, the third term is an induced torus, so its I'-fixed
points are connected, which implies that the map

m0(Z(G2,)) — mo(Z (ML)

is surjective. We conclude that the sum of the characters x s, is indeed trivial
and obtain the existence of a class 2y, € H'(I', M*/Z(G*)) as required.

Let 2’ € H' (T, G},) be the image of ;. We have by construction z/, = z,
for all v, but this does not yet mean that 2’ = x. Let G’ be the twist of G by 2’
and let M’ be the twist of M* by z ;. By construction M’ is a Levi subgroup of
G’ and 2’ = 1in HY(I',G"). Thus z € ker' (T, G,).

We claim that the natural map ker' (T, M’ /Z(G")) — ker' (T, G" ) is surjec-
tive (in fact it is bijective, but we will not need this). By [Kot84, (4.2.2)], thereis a
natural duality between ker! (I', H) and ker!(I', Z(H)) for any reductive group
H. Thus it is enough to show that ker! (T, Z(G.)) — ker! (T, Z(J\//L*C)) is injec-
tive. This however follows from the surjectivity of mo(Z (Gr)) = mo(Z (]\ZTKC))
by [Kot84, Cor. 2.3].

The surjectivity of ker' (', M'/Z(G")) — ker'(T,G",) allows us to choose
xy € ker' (T, M’/ Z(G")) lifting . Then 2/, viewed as an element of H*(T', M*/Z(G*))
also lifts « and the proof is complete. O
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Having discussed the transfer of Levi subgroups, we return to the relevance
of parabolic subgroups. Let F' be an arbitrary field of characteristic zero again.
If a Levi subgroup M* C G* transfers to M C G, then a { as in part 2 of
Lemma 0.4.2 provides a I'-equivariant isomorphism as;- — ap; and thus also
a I'-equivariant bijection between the set of parabolic subgroups of G* with
Levi factor M* to the set of parabolic subgroups of G with Levi factor M. This
bijection depends only on = and not on &.

Lemma 0.4.7. An element element [P] € P(G*)'' maps to a relevant element [P] €
P(G)Y ifand only if one (hence every) Levi component of one (hence every) T-invariant
element P* of [P*| transfers to G.

Proof. Let P* be a parabolic subgroup of G* defined over F. It has a I'-invariant
Levi component M* [Bor91, §20.5]. If M* transfers to G, then fixing an element
¢ € E as above and looking at the map ap/- — ap it provides, we see that
P = ¢(P*) is I'-invariant. Thus Z([P*]) is relevant.

Conversely suppose that Z([P*]) is relevant, and let { € = be such that P =
&(P*)is I'invariant. Then ¢ 10 (€) € N(P*,G?,) = P*/Z(G*). Fix Levi factors
M* and M of P* and P which are I'-invariant. Modifying ¢ by an element
of P* we achieve that {(M*) = M. But then ¢ 1o(¢) € N(M*, P*/Z(G*)) =
M*/Z(G*) and we see that { : M* — M is an inner twist. In particular {|4,,.
is defined over F'. O

Corollary 0.4.8. If [P*] € P(G)ye1 and [P] € P(G)" with [P*] < [P], then [P] €
P(G)rel-

Proof. We may choose P* and P within the corresponding classes as well as
Levi factors M* and M in such a way that M* C M. Then Aj; C Ay~ and the
statement follows from the preceding lemma. O

From now on we assume that F is local. In that setting, Kottwitz’s map
HY(T, Gag) = X*(2(G2)")

assigns to = a character (z : Z (Gr)F — C*. ALG -conjugacy class of parabolic
subgroups will be called =-relevant (or (G, £)-relevant or {-relevant, where & is
any element of Z), if the corresponding element of P(G)" is relevant. Given a
LG*-conjugacy class of Levi subgroups of “G*, let M be an element of it. We
will write M* for MNG* and ]\/4\;; for the inverse image of M*in Gz, Note that
this is different from the simply-connected cover of M*. The latter is equal to
Z\/l\s*c_’ ders the derived group of Z\Z,*C, which is easily seen to be simply-connected.
Consider R .
Z(GL)T N Z(M)"e.

This is a subgroup of Z (@:C)F which is evidently independent of the choice of
M within its ©G*-conjugacy class.
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Lemma 0.4.9. If the parabolic subgroup P of “G* is Z-relevant, then for one (hence
any) Levi component M of P, the character (z is trivial on Z G )Nz (J\Z*C)F’O,
Conversely, if the character (= is trivial on Z(G%)" N Z (]\Z?‘C)F*o, then any parabolic
subgroup P of L G* with Levi factor M is E-relevant if F is p-adic, and is ='-relevant
for some =’ belonging to the same K-group as Z, if F is real.

Proof. Fix a Levi component M of P, and a parabolic subgroup P* of G* cor-
responding to P. Then M* = M G* is a Levi of G* and is the dual group of
a Levi component M* of P*. According to Lemma 0.4.7, P* is relevant if and
only if M* transfers to G, which by Lemma 0.4.2 is equivalent to = belonging
to the image of H'(F,M*/Z(G*)) — H'(F,G};). Then M, is a dual group
for M*/Z(G*). The map H'(F, M*/Z(G*)) — H'(F,G},) translates under the
Kottwitz homomorphism [Kot86, §1.2] to the map

X*(mo(Z(Mg)")) = X (Z(Gl)").

According to [Art99, Lemma 1.1], we see that (z belongs to the image of the
last map if and only if it satisfies the assumption of the Lemma. O

Lemma 0.4.10. The square

Z(M3)" — Z(M*)T
is both cartesian and cocartesian.

Proof. The fact that the square is cartesian is easily checked. To show that
it is cocartesian, assume first that the I'-action is trivial. The group Z\/l\s*c is a
Levi subgroup of G*.. Moreover, we have Z(J\//.?*)/Z(é*) = Z(]/\/[\*/Z((A}’*)) as
well as the analogous statement with M* replaced by ]\//TS*C. Since M* 1Z(G*) =

]\Z*C /Z (@;‘C), we see that the square is indeed cocartesian assuming I acts triv-
ially. Putting together what we have proved, we see that the sequence

1= Z(G%) = Z(G*) x Z(M~) — Z(M*) = 1,

where the first map is given by 2z — (271, 2), is exact. We now want to show
that R e e
Z(G)" x Z(Mg)" — Z(M*)"

is surjective, and for this it is enough to show that

HNT, Z(GL)) — HY(T, Z(ML))
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is injective. This follows from Lemma 0.4.4 and the remark preceding it, which

imply that [Z (]\Z*C) /Z(G:)]F is connected and consequently that the connect-
ing homomorphism

(Z(M2)/2(GL))E — HY(T, 2(Gy)),
which has to factors though m, is trivial. O

We close this discussion on the relationship between extended inner twists
of G* and those of M*. Note first that in general there is no map B(F, M*)psc —
B(F, G*)psc- There is however a natural map B(F, M*)g_bse = B(F, G*)psc-

Lemma 0.4.11. 1. The map B(F, M*)g»_vsc — B(F,G*)psc is injective and
corresponds, via the natural transformations k- and ke~ of [Kot14, §11] to

the natural inclusion Z(G*) — Z(]\/I*)

2. Letx e X* (Z(Z/W\*)F) be the image under .+ of an element of v € B(F, M*)psc.
Then x € B(F, M*)g~_uvsc if and only if for some finite Galois extension L/F
containing splitting G*, Ny, (x) annihilates Z(M*) N G,

Proof. The injectivity of B(F, M*)g+_psc — B(F, G*)ps follows directly from
the injectivity of H'(I', M*) — H'(I', G*) and the injectivity of Homp (Dp, Z(G*)) —
Homp(Dp, Z(M*)). The compatibility of this map with Z(@*) — Z(]\//f*) fol-
lows from the fact that the latter is dual to the map Aj- — Ag- of algebraic
fundamental groups coming from M* C G*.

For the second claim, we use Diagram (1.6) in [Kot14] for the Galois ex-
tension L/F. Recalling that X(L) = Z has trivial I'-action and is identified
with [L : F]7'Z C X*(Dp), we see that the Newton point of = belongs to
X*(ZTl\*/J/W\;M)F @ [L : F]7'Z and is the unique element y ® [L : F|~! thereof
such that the restriction of y € X*(J\/J\*/]\//_Tgfer)F to Z(M\*) is equal to Np,/p(x).
We conclude that the Newton point y®|[L : F]~! belongs to X*(G* /G%_ )T ®[L :
F]~'7Zif and only if Ny, (x) annihilates Z(M*)N Gy, O

0.4.3 The group W (M)

As before, F is a field of characteristic zero and G* is a quasi-split group de-
fined over F. Let = : G* — G be an equivalence class of inner twists. For a Levi
subgroup M C G, we have the relative Weyl-group W (M) = N(M,G)/M.
It is a finite group scheme defined over F. It is well-known that the map
HY(I',M) — HY(I',G) is injective and this implies that N (M, G)(F)/M(F) —
W(M)(F') is an isomorphism.

Consider now the dual side. Let M C “G* be a Levi-subgroup of “G*. Then
we have the finite group

N(M,G*)/(G* " M) = N (A, G*)/Cent(Ay, G*).
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Let P C ©G* be a parabolic subgroup with Levi-component M, and assume
that the conjugacy classes of P and P match. Then we claim that the data of
(M, P), (M, P), and Z, provides an isomorphism

N(M,G*)/(G* " M) = W (M)(F).

To see this, fix T-invariant splittings of G* and G*. There exists a unique
standard parabolic pair (M*, P*) of G* for which there exists { € E that caries
it over to (M, P). Then this ¢ is unique up to composition by an inner auto-
morphism of M* and is an inner twist M* — M. Thus we obtain a canonical

~

isomorphism W (M*) = W (M) defined over F'. There also exists a unique stan-
dard parabolic pair (M*, P*) of G* such that (M* x T, P* x T) is G*-conjugate
to (M, P). An element of G* that conjugates (M* xT', P* xT') to (M, P) is unique
up to multiplication by an element of A/* and so we have a canonical isomor-
phism

NM, G/ (G*NM) > N(M* xT,G*)/M™*.
Next we claim that the inclusion

N(M*, G /(M*)' = N(M* xT,G*)/M*
is an isomorphism. It is clearly injective. For surjectivity, take g € N (Z\/f\ * X
I'G*) C N(M*,G*). Then

gM*o(g™") = M" & go(g™") € M"
together with the injectivity of H'(I', M*) — H(',G*) imply g € N(M*,G*)-
M* as claimed. Furthermore, we have the isomorphism
N(M*, G /M*T — [N(M*,G*)/M*]".
It remains to show that we have a canonical I'-equivariant isomorphism
W(M*) = N(M*,G*)/M*.

This follows from the fact that W(M™*) can be realized as a subquotient of the
absolute Weyl group W (T, G). If we let W(T*, M*,G*) be the stabilizer in
W (T™*,G*) of the root system of M *, then we have

w(IT*,M*) c W(T*,M*,G*) Cc W(T*,G")
and W(M*) = W(T*,M*,G*)/W (T*, M*). The I'~equivariant isomorphism
W(T*,G*) = W(T*, G*) restricts to isomorphisms W (T, M*, G*) = W (T™*, M*,G*)
and W(T™*, M*) = W(T*, M*). Composing the isomorphisms described above
we obtain the isomorphism

N(M,G*)/(G* " M) = W (M)(F).

It is easy to see that this isomorphism does not depend on the chosen splittings
of G* and G*.
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0.4.4 Centralizers of parameters and Levi subgroups

For this subsection, the field F' may be arbitrary. Keep assuming that G* is
quasi-split over F. Let L be an abstract group equipped with a surjective map
toT, and let ¢ : L — “G* be an L-homomorphism, i.e. a group homomor-
phism commuting with the projections of L and “G* onto I'. (Later we will be
mainly concerned with the case where F is a local or global field and ¢ is an
L-parameter or A-parameter. In that case ¢ will be a map over the Weil group
W but it is easy to adapt our discussion below to that setup.) We introduce
the following notation

S¢ = Cent(¢(L)7 é*)’ Stlﬁad = Cent<¢(L)7 ééer>o7 S(?) = S¢/S!Ii’ad

o

We will assume that Sg is reductive. This is automatically true if L is an al-
gebraic group, or a locally compact group, and ¢ respects this structure. Then
one observes that

[S;]der C Sésad
as the left hand side is a connected subgroup of Sy generated by commutators.
In particular, Sg/ Sf;‘d is a torus, and the map Z(53)° — 53/ Sj;ad is surjective.

It is clear that Z(G*)T is a central subgroup of S,. Restricting the central
character of irreducible representations thus provides a map cc : Irr(Sy) —

X*(Z(G)").
Lemma 0.4.12. Consider the maps

Levi subgroups of “G* Levi subgroups

containing ¢(L) of Sg
entr: M = SgnNM

infl : Cent(Z(M")°,LG*) «— M

These maps are inclusion preserving, and satisfy
entr(infi(M")) =M’ and  infl(entr(M)) C M.
In particular, entr is surjective and infl is injective.
Proof. Given M, put Ay = Cent(M, G*)°. Then M = Cent(Ay, “G*), and
S5 MM = Cent(Awm, S3).

By assumption, ¢(L) C M, thus Ay C S3, and it follows that Cent(Awm, S;) isa
Levi subgroup of S3.

Conversely, let M’ be a Levi subgroup of S3. Then Z(M')° is a torus in G,
hence Cent(Z(M’)°,G*) isa Levi subgroup of G*. Moreover, M := Cent(Z(M')°, L G*)
contains ¢(L) by definition, and the surjectivity of L — I' ensures that M is full.

From S3 N Cent(Z(M')°,*G*) = Cent(Z(M')°, S3) = M’ we conclude that
cntr(infi(M”)) = M'. Conversely, Ay C Z(S3NM)°, thus infl(cntr(M)) C M. O
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In particular, we see that the minimal Levi subgroups of “G* containing
¢(L) are precisely the centralizers in “G* of the maximal tori of S3 and are
thus conjugate under Sg.

Lemma 0.4.13. We have
Sp/SEZ(G*) = S4/852(G*) .

Proof. We need to show that S3Z (G = Sz (G*)T, and this is equivalent to
the surjectivity of

_ 59Z(G*)F
Z(G)' — 7¢Srad
[

Let M be a minimal Levi subgroup of “G* containing ¢(L). Then Ay is a maxi-
mal torus of 5§, and since Sf;‘d contains the derived group of S5, we see that

A —S‘;
M~ rad
S¢
is surjective. Notice that Ay = Z (]\//.7 “)F°. (Recall that M* = MNG*.) Applying
Lemma 0.4.10, we see that Ay C Z(MZ)F - Z(G*)'', and thus

.y - S3Z(G*)"
Z(MZ)" - 2(C) = =g
¢

is surjective. Applying [Art99, Lemma 1.1] to M, we see

Z(]/M\—S*C)F . Z(é*)l“ _ Z(]E*C)F,OZ(@*)F.

The image of Z (Mz)F°in G* belongs to both S4 and G .. Being connected, it
thus belongs to S, and this proves the surjectivity of Z(G*)"' — S3Z(G*)" / Sk,
O

Definition 0.4.14. Let E : G* — G be an inner twist and (= € X*(Z(@’S“C)F) the
corresponding character. We will say that ¢ : L — “G* is E-relevant, if any Levi
subgroup of LG* containing ¢(L) is the Levi-component of a =-relevant parabolic
subgroup of LG*.

According to Corollary 0.4.8 and the above remark, it is enough to check
this for one smallest Levi subgroup of “G* containing ¢(L).

Now let M be any Levi subgroup of “G* containing ¢(L). Given ¢ € X*(Z(G*)T)
mapping to (=, we are going to construct a canonical element (3, € X*(Z (M*)F)
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which maps to €. For this, consider the diagram

o~

XH(Z(M*)") —— X*(2(G")F)

s |

X* Z * )F)

J /

By assumption, (g~ belongs to the image of the diagonal injection. Thus there
exists a canonical element of X*(Z(Mz,)F) mapping to (=. Applying Lemma
0.4.10, we see that the top square is cartesian, hence there exists a unique ele-
ment (- € X*(Z(M*)') which maps to ¢ in X*(Z(G*)') and the the canoni-
cal lift of (= in X*(Z(Mz)D).

It is clear form the construction that if M C M’ are two Levi subgroups of
L@G* containing ¢(L), then the image of (- under X*(Z(M*)T) — X*(Z(M*)")
is equal to (ps.

Lemma 0.4.15. Let M be a Levi subgroup of L G* containing ¢ (L), and let S,(M) =
Cent(¢p(L), M*). If p € Trr(S,(M*)F) satisfies cc(p) = Car-, then p belongs to

e (S (M) /(S5 (M) 11 S5)).

Proof. We know that S,(M) = S, N M and that S; N M is a Levi subgroup of
S5, in particular connected. Then S,(M) N Srad is also connected, as it is a Levi
subgroup of S}*!. Then S4(M) N S = S¢(M)° N S%4. We know from Lemma
0.4.13 that S¢(M) Z(M*)T S(b(M)radZ(M*)F. Thus we get

So(M) 1S54 (S, (M)™AZ(3T)7) 1 55 = 5, (M) (Z(3T)F (1 552).
We already know that p is trivial on S, (M) 4, and is (;+-isotypic on Z (ML
Now, e -

Z(M*)" = Z(M3)" 2(G*)" = Z(M3)"°2(G")"

by Lemma 0.4.10, as well as [Art99, Lemma 1.1] applied to M. Since Z(Mz2,)F° c
Sf;d, we see that

(Z(ME)"°Z(G*)T) NS5 = Z(MZ,)™°(Z(G*)T n 85d).

By construction, (ps~ is trivial on Z (]\//.TS*C)F’O and restricts to ¢ on Z(G*). Since

we are assuming that Irr(Si, ¢) # 0, we know that ( restricts trivially to Z(G*)'n

Srad . O
¢
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0.4.5 Levisubgroups of linear groups

Let F be alocal or a global field, and G* = GLy/F. A Levi subgroup M* C G*
has the form

k
M+ =]]GLy,, > Ni=N.
=1 i

An equivalence class =j; : M* — M of inner twists breaks up into a product
Ej, : GLN, — ReSDi/FGLMi

for some division algebras D;/F satisfying [D; : FIM? = N?. According to

Corollary 0.4.5, in order for =), to come from an equivalence class of inner

twists 2 : G* — G with M C G a Levi subgroup, it is necessary and sufficient

that the division algebras D; are all the same.

0.4.6 Levi subgroups of unitary groups

Let F'be alocal or a global field, £/ F' a quadratic extension, and G* = Ug/p(N).
A Levi subgroup M* C G* has the form

L5) L5)
M*:UE/F(N%)XHRQSE/FGLN“ N% +22Ni:N'
=1 =1

Here the terms with index ! are understood to appear only if k is odd.

An equivalence class of inner twists 257 : M* — M again breaks up into a
product (Z;) with

(1]

LE3% :UE/F(N%)%U, Ei:ReSE/FGLNi —>ReSDi/FGLM”

where U is a not necessarily quasi-split unitary group, and D; is a division
algebra over E satisfying [D; : EJM? = N2. We apply again Corollary 0.4.5
to see when =j; comes from an equivalence class of inner twists = : G* — G
with M C G a Levi subgroup. The first condition is that the classes of all D;
in H*(T'g, G,,) coincide, thus all D; are equal to a fixed division algebra D/E.
The second condition is that the class of D belongs to the image of

H*(T,Ug/p(1)) = H*(T,Resg/rGr) = H* (T, Gp), (04.2)

where the first map is induced by the inclusion Ug,p(1) — Resg/pG,, and
the second map is the Shapiro isomorphism. The third and final condition is
that, in case % is odd, the composition of the above map with the connecting
homomorphism H' (T, Ug;p(N )aa) = H*(L',Ug (1)) sends Sxp1 to the class
of D.

If F is local, then H?(I',Ug,r(1)) = 0 and hence D = E. If F is global
then the map (0.4.2) is injective and its image corresponds to those division
algebras D which are split at all places of £ fixed under I';/ , and which satisfy
inv(D,,) = —inv(D,y,) for all pairs (w,w’) of places of E which are conjugate
under '/ .
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0.4.7 The group W (M*, G*) for unitary groups and lifts of its elements

Let F be a local or global field of characteristic zero, E/F a quadratic algebra,
and G* = Ug,p(N). Thus G* is the quasi-split unitary group in N variables
when E/F is a field extension, or G* is isomorphic to the general linear group
in N variables over F' when E/F is the split quadratic algebra. Recall that G*
has a distinguished pinning (7, B*, { Xa }aca(r+,6+))-

Let (M*, P*) be a standard parabolic pair — P* is a parabolic subgroup of
G* containing B*, M* is a Levi subgroup of P* containing 7, and both M*
and P* are defined over F'. We have the decomposition M* = M7 x M?*,
My = M{ x --- x My, where M} = Resg;p(GL(N;)), M* = Ug/p(N-)
and 23 N; + N_ = N. The pinning of G* induces a pinning of M*, namely
(T, B* N M* {Xa}aear= m+))-

The relative Weyl group W (M*, G*) can be identified with a subquotient of
W(T*,G*), namely

N(Ay=, W(T", G)) [ Z(Ap-, W(TT, GT)),

where A+ is the maximal split torus in the center of M*. Note that the sub-
group Z(An+, W(T*,G*)) of W(T™*, G*) is naturally identified with W (T, M*),
the absolute Weyl group of M*. This subquotient comes with a splitting

W(M*,G*) = N(Ap-, W(T*,G*)) (0.4.3)

defined to map a given coset of Z(Ap+, W(T*,G*)) in N(Ap-, W(T*,G*)) to

its unique member that preserves the set of positive roots R(T™*, M* N B*). Via

this splitting we will regard elements of W (M*, G*) as elements of W (T™, G*)
without change in notation.

Furthermore, there are two splittings of the quotient W (7™, G*) = N(T™*,G*)/T*.

The first one is the traditional splitting for the group G*(F) = GLy(F), given

by permutation matrices. We denote it by w +— @. It is multiplicative, but

not I'-equivariant unless E/F is split. The second one is the one studied by
Langlands-Shelstad in [LS87, §2.1]. We denote it by w +— w. It is I'-equivariant,

but not multiplicative. The relationship between @ and w is easily described.

Lemma 0.4.16. Ifw € W (T, G*) belongs to the image of (0.4.3), the element w-w~*
belongs to Z(M*) and is of order 2.

Proof. Certainly @ - w—' belongs to T*. According to [Kal12, Prop 6.2.1], it is

given by
tw= [[ wa(-1)

a€ER(T*,G™)
a>0
wta<0

where z,,y, € X.(T*) are the unique members of the standard basis such that
a¥ = x4 — Yo If wbelongs to the image of (0.4.3) and if =, — y, is the coroot
of a root belonging to the index set of the above product, then so is z, — uyq

for all w € W(T*, M*). Hence t € T* is fixed under the action of W (7™, M*)
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and, M* x F being the product of general linear groups, this is equivalent to
te Z(M*). O

We see in particular that the automorphisms of M* given by conjugation
by @ and w coincide. The group W (M*, G*) is a finite algebraic group defined
over F' and via the map w — @, the group W(M*, G*)(F') acts on M* by auto-
morphisms over F. This action can be described as follows. There is a natural
isomorphism W (M*, G*)(F) = (Z/2Z)* x S with S C Sk, corresponding to the
decomposition M* = My x --- x M x M*. The subgroup S C S, is defined
by § = {o € Sl[vi =1,....k : dim M7 = dim M, }. The i-th basis vector
(0,...,0,1,0,...,0) of (Z/2Z)* acts on M* by the pinned outer automorphism
on M; and the identity on the other factors, and o € S acts by permutation of
the factors M7, ..., M.

The element ¢, = @ - w' is not multiplicative in w. However, it does
exhibit certain multiplicativity that will be useful for later. Namely, decompose
tyw = tw,+ X ty — according to the decomposition M = My x M_.

1

Lemma 0.4.17. The map W (M*,G*)(F) — Z(M*) given by w > t,, — is a group
homomorphism.

Proof. Letus write M = M, x --- x My x M_ and identify W (M*, G*)(F') with
(Z/27)k x S, with S C Si. The formula for t,, given in the proof of Lemma
0.4.16 implies that t., = (—1)"i for ¢; € (Z/2Z)* the i-th standard basis
vector, and t; _ = 1 for s € S. The claim follows. O

We remark that this lemma can be used equally well for the dual group G
and its Levi subgroup M*, with W (M*, G*)(F') replaced by W (M*, @*)F The
proof is the same.

0.4.8 Extended pure inner twists for Levi subgroups of unitary groups

If = : G* — G is an equivalence class of extended pure inner twists and
(M*, P*) and (M, P) are parabolic pairs whose conjugacy classes are identi-
fied by =, then the set 2y, = {(&, 2) € E|§(M*, P*) = (M, P)} is an equivalence
class of extended pure inner twists M* — M.

Lemma 0.4.18. Assume that F is local, = : G* — G is an equivalence class of
extended pure inner twists, and (M, P) is a parabolic pair of G corresponding to
(M*, P*). There exists an element (£, z) € E such that £(M*, P*) = (M, P) and z
commutes with  for all w € W(M*, G*).

Proof. Consider first the case when G* is linear. Then we have the product
decomposition M* =2 M7 x --- x M} with M} = GLy, and N = )" N;. Let
h € Hi._..(E,M*) be the class of Z); and decompose it h = hy x - X hy,
accordingly. The Newton point of all h; is the same. The usual twisting ar-
gument, coupled with the generalized Hilbert theorem 90 [KMRT98, Theorem
29.2] implies that all fibers of the Newton map H.. (€, M}) — Homp(Dr, G,,)
are trivial. Thus, for i, j with N; = N; the classes h; and h; in HY (€, M}) =
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H], (€, M) are equal. This allows us to choose a representative z = 2 X - - X 2
of h such that for any ¢, j with N; = NN; we have z; = z;. Since w acts by per-
muting the factors M, the statement follows.

Now consider the case when G* is unitary and letagain h € H¢,. ,..(€, M*)
be the class of =s. Since D is split and Z(G*) is anisotropic, the Newton point
of h is trivial, and thus h € H'(I', M*). We have the product decomposition
M* = M x--- x My x M*,with M = Resg,p(GLy,), M* = Ug,p(N_), and
N =23 N;+N_. Decomposing h = hy X - - - X hy, X h_ accordingly, we see that
all h; are trivial. Thus we may choose a representative z = z; X -+ X 2 X 2_
with z; = 1. Since w fixes M* pointwise, the statement follows. O

Lemma 0.4.19. Assume that F is global, = : G* — G is an equivalence class of inner
twists, and (M, P) is a parabolic pair of G corresponding to (M*, P*). There exists an
element £ € = such that £(M*, P*) = (M, P) and an element z € Zk. _,..(E,M*)
that commutes with w for all w € W (M*,G*), such that (&, z) is an extended pure
inner twist.

Proof. Let £ € = be an arbitrary inner twist satisfying {(M*, P*) = (M, P), let
h € HYI', M*/Z(G*)) be the class of the 1-cocycle z, = £~ 'o(£). Decompose
M* = Mf X e X M]: X Mi, with Mi* = RGSE/F(GLNi), M* = UE/F(Nf),
and N = 2% N; + N_. We will produce a class H € Hf,. 1 (€,Ug/p(Ny) x
- xUg/p(Ny)xUg/p(N-)) whose image in H. (€, M™) lifts h and which,
when written as H = H; x - -- X Hy, x H_, satisfies H; = H; whenever N; = Nj.
Any 1-cocycle representing H will then have the property of being fixed by all
Langlands-Shelstad lifts of elements of W (M*, G*)''.

We begin the construction. Let h be the image of h in H'(T', M*/Z(M*)),
which we can write as h = hy x - - - X hj, X h_ according to the decomposition of
M*. Wehave Z(M;) = Resg,pG, and Z(M* ) = Ug/r(1), and the embedding
of Z(G*) = Ug,p(1) into Z(M*) = (Resg;rGm)" x Ug/r(1) is the diagonal
embedding. According to Equation (0.4.1) and Corollary 0.4.5, the images of h;
in H?(T', Resg, p(Gyy)) coincide and belong to the subset H?(T', U (1)). Since
the map HY(I', M} /Z(M})) — H?*(T,Z(M;})) is injective by the generalized
Hilbert theorem 90 [KMRT98, Theorem 29.2], this means in particular that for
any 4,j with N; = N; the classes h; and h; are equal. Applying Lemma 0.4.20
below we obtain a lift »} € H'(T',Ug/r(N;)/Ug/r(1)) for each h; which we
may moreover choose so that 1 = h; whenever N; = N;. By construction, all
classes h; have the same image in H*(I',Ug, (1)) and this image also equals
the image of h_. Thus, the element A} x --- x h} x h_ of

V(p Uspp(N1)  Ug/p(Nik)  Ug/p(N-)
" (R Ug/r(1) . Ug/r(1) 8 UE/F(l))

lifts to an element A’ of

1 UE/F(NI)XXUE/F(Nk>XUE/F(N7)
" (F’ Ug/r(1) )
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The image of h' in H*(I,Ug,r(1)) = H*(T,Z(G*)) equals the image of h
there. This, together with the injectivity of the maps H'(T', M*/Z(G*)) —
HYT,M*/Z(M*)) and HY(T', M} /Z(M})) — H?*(T', Z(M})), which is part of
diagram (0.4.1) and follows from Lemma 0.4.4, implies that the image of A’
under

1 Ug/p(N1) x -+ x Ugyp(Ny) x Ug/p(N-) 1 M
w (. Unye(]) )~ (" 7

equals h. Using [Kot14, Prop. 10.4] wenow find aclass H' € Hy, (€, Ug/r(N1)%
- x Ug/p(Ng) X Ug/p(N_)) that lifts /. The Newton point of this element
necessarily belongs to the diagonally embedded copy of Ug, (1), hence the im-
age of H' in H} (€, M*) actually belongs to Hl.. _, ..(€, M*) and will be called
H. By construction, the image of H in H'(I', M*/Z(G*)) equals h. Moreover,
H has a representative z which is valued in the subgroup Ug,r(Ny) x --- X
Ug/p(Ny) x Ug/p(N-) of M* and if we write itas z = (z1,. .., 2, 2 ), then for
all N; = N; we have z; = z;. But this implies that z is fixed by all Langlands-
Shelstad lifts of elements of W (M*, G*)'. O

Lemma 0.4.20. Let E/ F be a separable extension of fields and let R = Resg,p(GL(N)).
Let 0 be the pinned automorphism of R whose group of fixed points is G* = Ug/p(N).
The image of HY(T',G*/Z(G*)) in HY (T, R/Z(R)) coincides with the preimage of
H?(T', Z(G*)) seen as a subset of H*(T', Z(R)).

Proof. The image of H'(T', G*/Z(G*)) in H*(I', R/Z(R)) clearly maps into the
image of H*(T', Z(G*)) in H*(T, Z(R)) by functoriality of the long exact coho-
mology sequence. We turn to the converse inclusion.

According to the generalized Hilbert theorem 90 [KMRT98, Theorem 29.2],
the maps H'(I', R/Z(R)) — H*(,Z(R)) and H*(T, Z(G*)) — H?*(T, Z(R))
are injective. Let h € H'(T', R/Z(R)) have image = € H*(T', Z(R)) and assume
r € H*(T', Z(G*)). We want to find a lift v’ € H' (T, G*/Z(G*)) of h. The norm
map Z(R) — G,, induces a map H?(TI', Z(R)) — H*(T, G,,), which, under the
Shapiro isomorphism H%(T', Z(R)) & H*(T' g, G,,) becomes identified with the
corestriction map H?(I'g, G,,) — H2(T,G,,). The element z lies in the kernel
of this map, which implies via [KMRT98, Theorem 3.1] that the central simple
algebra A/FE corresponding to x admits an involution 7 of the second kind.
The corresponding unitary group U(A,7) (see [KMRT98, §23.A]) is an inner
form of G* and corresponds to a class h’ € H*(T', G*/Z(G*)). The image of I’/
in H*(T', Z(R)) 2 H*(T'g, G,,) corresponds to the central simple algebra A and
thus equals z. We conclude that the image of »’ in H'(I', R/Z(R)) equals h. O

1 CHAPTER 1: PARAMETERS AND THE MAIN THEOREMS

1.1 Endoscopic data

In this section we introduce endoscopic data that are relevant for studying the
representations of unitary groups. There are two kinds of endoscopic data: one
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for (not necessarily quasi-split) unitary groups and the other for a twisted form
of GL(N). Though the latter already enters the very definition of parameters
for unitary groups in a way, we will be mainly concerned with the former in
this paper. One reason is that we never have to work directly with the twisted
trace formula for GL(/V) as long as we are willing to accept various results in
the quasi-split case (in which the twisted formula is indispensable).

1.1.1 Endoscopic triples

We recall some general definitions of endoscopic data from [LS87, 1.2] and
[KS99, 2.1] taking into a simplification that the group H can be taken to be
the L-group of H in all cases of our concern. Let F' be a local or global field.
Consider a pair (G*, 8*) consisting of a connected quasi-split reductive group
G* over F', equipped with a fixed I'-invariant pinning, and a pinned automor-
phism 6* of G*. As explained in [KS99, 1.2] we have an automorphism 0 of G*
and may assume that 6 preserves a I'-pinning for G*, the latter being fixed once
and for all. Set 20 := 6 x idyy,., an automorphism of “G*. An (extended) endo-
scopic triple is a triple (H, s,n), where H is a connected quasi-split reductive
group over F, s € G*,andn:LH — LG* isan L-morphism such that

o Int(s)of preserves a pair of a Borel subgroup and a maximal torus therein
in G*, and Int(s) o Lo =n.

° n(ﬁ ) is thE connected component of the subgroup of Int(s) o f-fixed ele-
ments in G*.

We say that (H, s,7) is elliptic if n(Z(H)T)° ¢ Z(G*). In case § = id an en-
doscopic triple is often said to be ordinary. If (H, s,n) is an endoscopic triple
then by considering (H, % H, s,7), it can be viewed as an endoscopic datum in
the sense of [KS99, 2.1]. In general, not all endoscopic data arise in this way.
In the cases needed for this volume however, all endoscopic data do arise in
this way and we find it more convenient to work with the notion of (extended)
endoscopic triples.

We also need to define three notions of isomorphism between endoscopic
triples. A strict isomorphism (resp. weak isomorphism, resp. isomorphism)
is (H,s,m) — (H',s',n) is an element g € G* such that gn(*H)g~! = o/ (*H')
and gsf(g)~! = ¢ (resp. gs0(g)~! = s’ modulo Z(G*)T, resp. gsb(g)~t = &
modulo Z ((A}’ *)). The definition of isomorphism is the same as in [KS99, (2.1.5),
(2.1.6)] but sometimes too loose for our purposes; that is why we introduce
stricter versions. Clearly n(h) for each h € H is an automorphism of (H, s,n).
Define the outer automorphism group

Outgxe- ((H. 5,1)) := Aut((H, s,m))/n(H),

using strict automorphisms. Likewise Outg. 9« ((H, s,71)) and Outg+ xe+ ((H, s,1))
are defined by means of weak automorphisms and automorphisms, respec-
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tively.!

Finally when (G, 0) is an inner form of (G*,0*) then the notion of endo-
scopic triple for G is the same as that for G*. In this paper we prefer to use the
notation

e = (G s% )

to denote an endoscopic triple or a twisted endoscopic triple, instead of (H, s, n).
We write £(G x 0) (resp. EY(G x 0), resp. E(G x 0)) for the set of strict isomor-
phism classes (resp. weak isomorphism classes, resp. isomorphism classes) of
all endoscopic triples. The corresponding subsets of elliptic endoscopic triples
will be denoted £(G % 0), EX(G x 6), and Ean(G x 6). It will be convenient to
work with a set of representatives for the isomorphism classes, cf. §1.1.4 be-
low. If 6 = id then simply write £(G), £ (G), etc. In general we should have
used endoscopic data in the definition, but this does no harm to us since all
endoscopic data are represented by endoscopic triples in all cases we consider.

1.1.2 Normalization of transfer factors

An important ingredient in the stabilization of the Arthur-Selberg trace for-
mula is the transfer factor, defined for ordinary endoscopy in [LS87] and for
twisted endoscopy in [KS99]. Given an endoscopic triple ¢ for a connected re-
ductive (possibly twisted) group G defined over a local field F', these references
provide a canonical relative transfer factor. For the purposes of the stabilization,
we need an absolute transfer factor. While in some cases one can work with an
arbitrary choice of absolute transfer factor, in order to extract the necessary
information from the spectral side of the trace formula, one needs to fix a spe-
cific normalization that has the right properties. We will do this now in the
case of ordinary endoscopy, as well as in a simple case of twisted endoscopy,
which will be used for the normalization of intertwining operators. In fact, the
simple case of twisted endoscopy that we need is a generalization of ordinary
endoscopy, so we will present our arguments in this case.

Let F be a local field. Before we begin with the construction, we remind
the reader that there are two different normalizations of the relative transfer
factor for twisted endoscopy. These are explained in [KS12, §5], where they
are called Ap and A’. The factor Ap is compatible with the normalization
of the local Artin reciprocity map F* — W3 used by Deligne, which sends
a uniformizing element to the inverse of the Frobenius automorphism, while
the factor A’ is compatible with the normalization which sends a uniformiz-
ing element to the Frobenius automorphism. The absolute transfer factor we
will define will correspond to the relative transfer factor A’ and will thus be
compatible with the classical normalization of the reciprocity map, and so also
with the classical Langlands correspondence for tori [Lan97]. We will however
use the symbol A to denote this absolute transfer factor, and not A’. The reader
should be warned that the symbol A is used in [KS12] to denote yet another

1 As usual the overline notation indicates that something is taken modulo the center of the dual
group.
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normalization of the relative transfer factor, which is available for ordinary, but
not for twisted, endoscopy, and which follows the conventions of [LS87]. The
difference between the relative factor A of [LS87] and the relative factor A’ of
[KS12] is easy to explain: One obtains A from A’ by replacing the endoscopic
element s with its inverse s~!. Despite our notation, our absolute transfer fac-
tor A will be compatible with the relative factor A’ of [KS12], and not with the
relative factor A. This choice of normalization was made for multiple reasons,
an important one being that the internal structure of L-packets it leads to is
compatible with the formulations of the local Langlands conjectures of [Vog93]
and [GGP12]. It will however lead to the occasional appearance of an inverse
in some formulas.

The construction of the transfer factor will involve the cohomology of com-
plexes of tori of length two. When dealing with pure inner twists, it will be
enough to consider Galois cohomology and all we need has already been de-
veloped in the appendices to [K599]. When dealing with extended pure inner
twists, we have to use the more general cohomology B(F, —)ps. defined by Kot-
twitz in [Kot14] and discussed in Section 0.3.1. More precisely, we will need the
following.

o Let T — S be a complex of length 2 of tori defined over a local field
F. We have the cohomology group B(F,T — S). This group is func-
torial in T — S and fits into the two long exact sequences of hyper-
cohomology described in [KS99, §A.1]. There is a natural embedding
HY(F,T — S) — B(F,T — S). Each element of B(F,T — S) provides a
character of H' (W, S — T). If the element happens to belong to the sub-
group H'(F,T — 9), this character coincides with the one constructed
in [KS99, §A].

e Let T'— S be a complex of length 2 of tori defined over a global field F.
We have the cohomology group B(A/F,T — S). This group is func-
torial in T — S and fits into the two long exact sequences of hyper-
cohomology described in [KS99, §A.1]. There is a natural embedding
HYA/F, T — S) - B(A/F,T — S). Each element of B(A/F,T — S)
provides a character of H!(Wp, S — T). If the element happens to be-
long to the subgroup H'(A/F,T — S), this character coincides with the
one constructed in [KS99, §C].

e There is a natural map B(F,,T — S) — B(A/F,T — S) for each place
v of F. This map is dual to the restriction map H'(Wg,S — T) —
Hl(WF S — T)

v

When F' is a p-adic field, these results were obtained in [Kot97, §9,10,11].
In general they will be established in [KMSa]. For now, we will take them
for granted. We emphasize again that in the case of pure inner twists, the
cohomology groups H'(F,T — S) and H'(A/F,T — S) are sufficient and
the results we need have already been established in [KS99].
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We now proceed to construct the transfer factor. Let G* a quasi-split con-
nected reductive group defined over F’ and endowed with a pinning, and let
0* be an automorphism preserving that pinning. We assume that Z(G*) is
connected. Let further vr : FF — C* be a non-trivial additive character. It
determines, together with the pinning of G*, a Whittaker datum for G*, see
[KS99, §5.3]. Let (§,2) : G* — G be an extended pure inner twist. We assume
that 0*(2) = z and set = £ 0 0* o 1. This is an automorphism of G defined
over F. Not all twisted groups (G, 0) arise in this way, but those are the ones
that will be relevant for us. Luckily, normalizing twisted transfer factors for
these special twisted groups is very similar to normalizing non-twisted trans-
fer factors.

Let ¢ be an endoscopic triple for (G, 0). Let 6 € G(F) be 6-strongly regular
and f-semi-simple and let v € G*(F'). Assume that 7y is a norm of §. Following
[KS99, §5.3] and [KS12, §5.4] we are going to define the absolute transfer factor

Ale, €, 2(v,9)

as a product

1
6(57 Voe) AT (v, 8) T A (7, 8) A (7, 6) T Arv (7, 6).

The first factor is the Artin e-factor, normalized according to Langlands’ nota-
tion, for the virtual representation V = X*(T*)? ® C — X*(T*) ® C, where
T* and T are minimal Levi subgroups of G* and G*. The definitions of A;;
and Ajy are given in [KS99, §4.3,§4.5]. The definition of A}V is given in
[KS12, §3.4]. We will use these definitions without modification. It is the factor
Apqr that we must define. A definition of Arz;(7,9) is given in [KS99, §5.3]
under the assumption ({,z) = (id, 1), while a definition of a relative factor
Arrr(v,6,7,6") is given in [KS99, §4.4] for general {. We will now define a fac-
tor Azrr(7,6) adapted to the extended pure inner twist (¢, z) by extending the
arguments in [K599, §4.4].

Welet S’ C G¢ be the centralizer of vy, a maximal torus of G¢. Choose an ad-
missible isomorphism S’ — Sj., where (S*,C*) is a Borel pair of G* invariant
under 0* with S* defined over F'. The assumption that +y is a norm of § ensures
the existence of g € G* and ¢* € S* such that the image of 6* in Sj. equals the
image of v under S’ — S;. and moreover § = £(g~'6*0%(g)). Let K/F be an
finite Galois extension such that the element z € B(F, G*)s. has a representa-
tive in Z}_ (E(K/F),G*(K)) and such that g € G*(K). We use the same letter
z to denote this representative. For each e € E(K/F), let v(e) = gz(e)o.(g71),
where 0. € 'k, is the image of e. The argument of [KS99, Lemma 4.4.A]
shows that (v(e) ™!, §*) provides an element of Z._(£(K/F), S*(K) =0 5 (K)).
Notice that the restriction of v to the subgroup D, r C £(K/F) is equal to the
restriction of z, both of them taking values in Z(G*). In particular, v is G*-basic.

On the other hand, the x-data chosen for the construction of A provides,
as described in [KS99, §4.4], an L-embedding S’ — ©LG*, which composed
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with n° gives an L-embedding f : ©'S” — LG. The same x-data provides an L-
embedding £(S}.) — L'G. We compose this embedding with the isomorphism
LS — LS. dual to the chosen admissible isomorphism S’ — Sj. and obtain a
second embedding g : £S” — £G. We then have f(z xw) = g(ag(w) -z x w) for

any x Xw € S x Wr = £S’, and suitable ag(w) € S. The dual of the admissible
isomorphism S’ — Sj. is a composition of S - T% and T — 5%, and via the
latter map we can view s° as an element of 5*. A direct calculation shows that
(ag!, s°) is an element of Z!(Wp, S* =0 5.

We define Ajj;(7,0) to be the pairing of these two objects with respect to
the pairing between B(F,S* — S*) and H'(Wp, 5 — §*) discussed above.
This concludes the construction of Afe,§, z]. As a first step, we need to check
that this construction actually gives a transfer factor.

Proposition 1.1.1. Let y1,v2 € G*(F) be norms of strongly 6-reqular 6-semi-simple
elements 61,02 € G(F). Then

A[ev f, Z](’YL 61)
A[ev 5; Z] (727 52)

where the right hand side is the canonical relative transfer factor of [KS12, §5.4].

= A'(71,01:72, 02),

Proof. The proof of this proposition is very similar to that of Proposition 2.3.1
in [Kall4b]. We give the details for the sake of completeness. By construction
one sees immediately that the equality to be proved is equivalent to

Arri(71,61)
Arrr(y2,62)
where the factors on the left are the ones just constructed, while the factor on
the right is the one constructed in [KS99, §4.4]. Let (v;(c)~1,6}) fori = 1,2 be

the two elements of Z,. , (E(K/F),S;(K) = S¥(K)) constructed above
for the two pairs v;, d;, and let (agil, s7) be the two corresponding elements of

= Arrr(71, 01372, 62),

ZY(Wp, S; = S). We can interpret the left hand side of our equality as the
pairing of

Vig = ((v; 1, 67), (031, 05) ") € Za (E(K/F), [Sy x S3](K) — [ST x S3](K))
with the element

Az = ((ag,81), (ag) 85)) € Z' (W, ST x 85— 5} x 55).

On the other hand, the right hand side is given by the pairing of an element

Ve HY(T,U — S},) with an element A € H'(Wp, S, — U), both constructed
in [KS99, §4.4]. Our task is to show that the two pairings give the same result.
While doing so, we will recall the necessary notation from [KS99].
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We consider the torus S5, := S5 x S5 /Z(G*), with Z(G*) embedded via the
map z — (z,27'). The quotient map S} x S; — S7, extends to a map of com-
plexes of tori, under which we may map the element V;, to obtain an element
Viy € Z;lg(E(K/F), S1o(K) — S79(K)). Recalling that the restrictions of vq
and v, to D, are both equal to the restriction of z, we see that the restriction
of Vis to D p factors through the embedding of Z(G*) into ST x S5 whose
cokernel is ST,. This shows that VY, is trivial on D, and thus belongs to the
subgroup Z! (I, Si(K) — Siy(K)) of ZY, (E(K/F). Sip(K) — Siy(K)).
Now recall that U = S5 .. x S5 ../Z(G?.). We claim that the image of V under
the obvious map [U — S{,] = [STy — Sis) equals the class of V{,. This will be
obvious once we recall the construction of V. Indeed, V is represented by the
cocycle (V (o), D), where V() = (v1.x5(0) ", va.15(c)) and D = (85,05 1).
The 1-cochains v; ks € C*(T, Sf) are given by v; x5(0) = g;u(c)o(g; '), where
6 = &(g;'070% () and u(o) € C (g p, G (K)) lifts the 1-cocycle £ 1o (€).
For each e € £(K/F'), the images of u(o.) and z(e) in G, (K) are equal, where
again o, € I'g/p is the image of ¢ under the natural map £(K/F) — I'k/p.
Hence there exists a 1-cochain x € CY(E(K/F), Z(G*)) with z(e) = u(oe)x(e),
where 4 is the composition of u with the natural map G, (K) — G*(K). From
this one sees that the image of (V(0),D) in Z'(Tx/p, S{o(K) — S}y (K)) is
equal to V.

To complete the proof we need to produce an element of H*(Wp, §12
512) which s1rnultaneously maps to A € H'(Wg, 8’12 —~ U ) and to the class
of Ajy in HY(Wp, S1 X 52 — S1 X 52) This can be done as follows. For the
construction of the transfer factor we have chosen admissible isomorphisms
SF — T. We now use them to identify §1 and §2 with 7. Recalling that by
assumption Z(G*) is connected, one checks that the torus 512 dual to 512 is
equal to the subgroup of SrxS; consisting of those pairs (a, b) for which ab™!
Tdmr By construction, the elements s{ € S * are both identified with the element
st € T, so the pair (s§, s§) belongs to the subgroup 512 of Sl X SQ. On the other
hand, it is argued in the proof of [KS99 Lemma 4.4.B] that for each w € Wg
the quotient ag, (w)/as, (w) belongs to 53 der- Thus again, the pair (agl, agzl)
takes values in the subgroup 512 of S1 X ,5'2 We have thus seen that A2 €
Z*(Wr, 512 — Su). The fact that its image in Z (W, S12 — U) represents A
follows by inspecting the construction of A given just before the statement of
[KS99, Lemma 4.4.B].

O

We will now study some basic equivariance properties of the factor Afe, £, z].
On the one hand, given z € Z (G*)T, we can consider the endoscopic triple
ze = (G, x5°,m°). On the other hand, given y € Z,, (€, Z(G*)?"°), we may
consider the inner twist (§,yz), which is of the same special type as (¢, z). In
order to study how Ale, ¢, z] would change if we replace ¢ by ze or (£, 2) by
(&,yz), we recall that Kottwitz’s map (0.3.1) provides a pairing between the set
B(F, G*)psc and the group Z(G*)T, as well as between the set B(F, Z(G*)?"°)
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and the group [G*/ Gdel] B.tre .~ Which is the set of I'-fixed points in the torsion-

free quotient of the f- comvarlants of G* /G er- We denote both of these pairings

by ().

Lemma 1.1.2. Let 5° denote the image of s¢ in [@*/@zer]
we have

Bfree’ Then 5° is T'-fixed and
A[(L’Q, g’ Z] = <Z7 $>A[2, 57 Z]
and

Ale, &, yz] = (y,5°)Ale, &, 2.

Proof. That 5¢ is I'-fixed follows immediately from the definition of endoscopic
triple given in Section 1.1.1. Replacing ¢ by xe multiplies the element

(a;l,se) € Zl(WF,g* -9 §*)

by (1, z) and hence the factor A/ gets multiplied by ((v(e) ™!, %), (1, z)). Since
(1,z) is the image of z € H'(Wp,1 — Z(G*)) under the map induced by

[1— 2(G")] =[5 =% &7
we may map (v(e) !, d*) under the dual map

[s* =% 5 = (67— 1).

I and

The image of (v(e)™',6*) in B(F, G*)psc is by construction equal to 2~
thus A7 is multiplied by (z,z) 1.

Replacing z by yz multiplies the element
(v(e)™",6%) € Zhy (€, 5 =% 57)

by (y~*, 1) and hence the factor Ay is multiplied by ((y~1, 1), (ag", 5%)). Since
(y~',1) is the image of y ! € Z}, (€, Z(G*)” ), we may map (ag',s%) under
the natural map induced by

[§* 1__9; §*] — [1 — (é*/ézer)e*,ﬁee]

to obtain the element 5¢ € [G* /ézer]£*7free. Thus Ajp; gets multiplied by

(y=',s%).
Since Ay contributes to Ale, £, 2] via its inverse, the proof is complete. [

We now consider the global situation. Let F' be a global field and as be-
fore we chose an extension to F for each place v of F, thereby identifying
the absolute Galois group of F, with the decomposition group I',. We as-
sume that (£,z) : G* — G is an extended pure inner twist and ¢ is an ex-
tended endoscopic triple, but now all defined over the global field F'. Further-
more, we assume given a I'-invariant pinning of G* and a non-trivial character
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Yr : A/F — C*. At each place v we obtain the corresponding local objects de-
fined over F,. Given v € G*(A) a norm of a #-strongly regular #-semi-simple
element 0 € G(A), we define

Asle,€(,0) == [ Ale, &, 20) (0, 00)

Almost all terms in the product are equal to 1, so the product is well-defined.
Furthermore, the product is independent of z. This follows from Lemma 1.1.2
and the exact sequence (0.3.3).

Proposition 1.1.3. The factor Ayle, ] coincides with the inverse of the canonical
adelic transfer factor defined in [KS99, §7.3].

Proof. Let Ay kg denote the canonical adelic transfer factor of [KS99, §7.3]. It is
defined under the assumption that there exists vy € G*(F') which is a norm of
a -strongly regular, #-semi-simple element §, € G(A). Under this assumption,
for any 71 € G°(A) and 0; € G(A) with the same properties, the defining
equation is

Ap xs(71,61) = AL (71,0137, 00) ~*{obs(dp), ko).

Here the first factor on the right is the canonical relative adelic transfer factor
and the second factor will be recalled in a moment. Given Proposition 1.1.1, in
order to prove

Anle,](1,01) = Ap s (y1,61) 7

it will be enough to show

Aple, €](70,00) = (obs(do), o) "

For this, we let S’ C G* be the centralizer of 7, a maximal torus defined over F.
We choose an admissible isomorphism S” — Sj., where S* C G* is a §*-stable
maximal torus defined over F' and contained in a #*-stable Borel subgroup
defined over F. Choosing a-data and x-data globally, the argument in the proof
of [KS99, Lemma 7.3.A] shows that the adelic versions of A}V, A;rand Ajy
are all equal to 1. We thus have to show that the adelic version of our factor
Ajr1(70,90) is equal to (obs(dp), ko). For this we must recall the definitions of
obs(dp) and of kg. The construction of obs(dy) is the subject of [KS99, §6.3]. By
assumption there exists 6* € S*(A) and g € Gy.(A) such that the image of §*
in S}. is equal to the image of v under the admissible isomorphism S’ — S;.,
and such that §* = g¢~1(6)0*(g~1). As in the local case, one defines vi s(o) =
gu(o)o(g"). Recall that u € C1(T', GZ,) lifts ¢ 1o (€) € Z1(T, GZ,). Then
S*

o1 s 5455 £)

The class of this cocycle is called obs(dp). It is seen to belong to the subgroup
H'(A/F,S:. — V) of H'(A/F,S% — S*), where V is the kernel of the natural

projection S* — S..

42



Now let K/ F be a large Galois extension for which g € G%,(Ak) and z has
a representative in Z,,,(£(K/F),G*(K)). Consider v(e) = gz(e)oe(g™") for
e € £(K/F). This is an element of S*(Af) and for any d € Dg,r, we have
v(de) = gz(d)z(e)oe(g™!) with z(d) € Z(G*)(K). It follows that when valued
in $*(A)/S*(K), the function v is invariant under Dy, » and hence descends
to I'xc/p. We obtain v € Z'(T, S*(A)/S*(F)). Moreover, the argument used
in the proof of Proposition 1.1.1 shows that v is the image of vxg under the
natural map Z*(T, S%,(A)/Sz.(F)) — ZY(T,S*(A)/S*(F)). We conclude that
the image of (vks(c)™!,6*) in Z'(A/F,S* — S*)is equal to (v(e)~!,5*).

We now turn to the element xy. Choose an admissible embedding 5 = Ge.
Using global y-data, extend it to an L-embedding S’ — LG* and compose
it with n° to obtain an L-embedding f : 1S’ — LG. Using the same x-data
we obtain another L-embedding g : ©S’ — “G. We may arrange that the
two L-embeddings coincide on S’ and take it into 7. Then we have f(z x w) =
g(as(w)-zxw) forany zxw € 5" xWg = L5’. The properties of the endoscopic
triple ¢ imply the equation

Int(s)olfo f=f

from which we get (1—5)(a§1) = 0s. This means that (ag', s) € Z}(Wp, g+ 14
S*). The image of the class of (ag',s) in the group H*(Wg,V — S¥;) under
the natural map [S* — S*] — [V — §},] is the element xo. We thus see that

(obs(do), ko) = ((v(0) ™", 8"), (a5",9)).

By construction, the image of (ag', s) under the restriction map H!(Wp, 5 —
§*) — H'(Wg,, 5 — §*) for each place v of F is equal to the element (ag', s)
used in the construction of the local factor A;r;. At the same time, the element
(v(o)71,6*) € HY(A/F,S* — S*) is equal to the sum over all places of the
images in this group of the elements (v(e)™!,6*) € B(F,, S* — S*) used in the
construction of the local factor A;r;. We conclude that

<(U(U)717 5*)7 (a§17 5)> == H AIII[ev gva Z1;]('70,1)7 50,1))-

O

We will now return to the case when F'is a local field and gather some prop-
erties of the transfer factor Afw, ¢, z] under the assumption # = 1. First, we
observe that the construction of the term Ajrr simplifies. The map S*(K) py
S*(K) is the trivial map, so H}. . (£(K/F), S*(K) — S*(K)) = H. (E(K/F), S*
HY(E(K/F),S*(K)). The second factor is equal to H*(Ukp, S*(K)) = S*(F).
In the same way, H(Wy, 5 — §) = HY(Wp, §) x H'(T, S). Finally, the pair-
ing between these groups also breaks into the product of the Langlands dual-
ity pairing between S*(F) and H'(Wp, S ) and the Kottwitz-pairing between
HL (E(K/F))and ST, Finally, the element §* € S* used in the construction of
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Aj; now belongs to S*(F). With this, one sees that the factor Afe, &, z|(, d) is
given by

6(%7‘//‘/}F>Ar}ew(775)71AII(776)<U(6)75€>K0t<aSa6*>LanAIV(775)' (1.1.1)

Lemma 1.1.4. Let M* C G* be a standard Levi subgroup. Assume that E(M) C
G is a Levi subgroup defined over F, so in particular z € B(F, M*)g«_psc. Let
e = (M*,s%,&%) be an endoscopic triple for M* and let ¢ = (G¢,s°,£°) be the
corresponding endoscopic triple for G*, so that M C G* is a Levi subgroup.

1. For each G*-reqular related pair of elements v € M*(F') and § € M(F) we
have .
D oy’

A[QA4,§7Z](’776) = A[e7§72]('77§) : ( ‘D]C\';I((S)‘

2. Let f € H(G)and f* € H(G®) have Ale, §, z]-matching orbital integrals. Then
far and f5, have Alens, &, z]-matching orbital integrals.

Proof. We begin with the first statement. We will compare the two transfer
factors using the expression (1.1.1). In order for the individual factors to make
sense, we need to fix a-data and y-data. Since S* is a maximal torus of M*,
no root of S* outside of M* can be symmetric. We choose the a-data and x-
data so that it is trivial on the roots of S* outside of M*. We first observe that
the virtual representation V' is the same for the pairs (G¢,G*) and (M€, M*),
because G* and M* share the same minimal Levi subgroup, and so do G and
M¢. The terms A}°" are also equal. The definition of this term is given in [KS12,
§3.4] and involves besides a-data also an element h € G* conjugating S* to the
fixed minimal Levi 7. We are free to choose h € M* with this property. Then
formula [KS12, (2.1.4)], once executed within M* and once within G*, gives
the same element of H!(I", T*), due to our choice of a-data and the fact that the
pinning of M* is inherited from G*.

The terms Ay are equal due to our choice of a-data and x-data. The terms
(v(e), s*) are equal because the element g € G* with § = £(g~'6*g) that defines
v(e) can be chosen within M*. The terms (ag,¢*) are equal because the 1-
cocycle ag is constructed for G and M using the same y-data (in particular it is
trivial for roots of G* outside M *). Finally the ratio of the terms Ay coincides
with the ration of the Weyl discriminants in the statement of the Lemma.

We now proceed to the second statement, which essentially follows from
the first. Namely, let v € M¢(F) and § € M (F') be G*-strongly regular, which
we may assume as the reduction to M *-regular elements follows by continuity.
Then we have the basic identity for parabolic descent of orbital integrals

O3 (fur) = IDF (9) 2 OF ().
The same identity holds on the side of G* for usual orbital integrals. Since the

map H'(T, M*®) — H'(I',G*) is injective, the set of M¢(F)-conjugacy classes
within the M ¢-stable class of + is in bijection with the set of G*(F')-conjugacy
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classed within the G¢-stable class of . This implies that the analog of the above
identity holds for the stable orbital integrals of f},. and f¢, that is

SOM*(f3,0) = |Drc (1)|ZOS" (f°).

These two equations together with the first statement of the lemma now imply
the second. O

1.1.3 Simple descent for twisted endoscopy

This section contains a simple version of descent for twisted endoscopy that
will be used in the normalization of intertwining operators. Let G* be a quasi-
split connected reductive group defined over a local field F' and let (&, 2) :
G* — G be an extended pure inner twist. We fix a natural number n and
define G* = G* x --- x G*, where we have taken n copies of G*. We define
the group G in the same way and let €= & ...,8 and Z = (2,...,2). Then
(£,%) : G* — G is an extended pure inner twist.

We fix a pinning (T, B*, { X, }) of G* and let #* be an automorphism of G*
that preserves the pinning. We assume that §*(z) = z and thenset § = £ 0 6* o
¢~1, which is an automorphism of G defined over F'. Define the automorphism
0" of G* by 0 (g1, ., 9n) = (0°(gn)s 1, Gn 1) The group G* inherits a
pinning (T*, B*,{X}) from G*. More precisely, T* and B* are obtained by
taking the product of n copies of T* and B*, respectively. Any o € R(T*,G*) =
U R(T*,G*) can be identified with a pair (i,a0), where 1 < ¢ < mand a €

R(T*,G*), and then X5 is equal to (0,...,0,X,,0,...,0), with X, placed in
the i-th slot. The automorphism 0* preserves this pmnmg We have 6* (“) zZ.
Let 6 be the automorphism of G given by H(gl, coisgn) = (0(9n)s 91,5+, gn—1)-
Then 6 is defined over F and satisfies § = 5 00* o E -1 s

The purpose of this section is to compare twisted endoscopy for (G, ) with

twisted endoscopy for (G,6). Fix a Langlands dual group G for G* with a
pmmng (T, B, X.,) dual to the pinning of G*. Let 6 be the automorphism of
G dual to 6* and preserving the pinning. Thus the action of fon X *(T)

identified with the action of 6* on X, (T™). We form the dual group G of G*
by taking G x --- x G with the pmrung (T, B {Xz}) inherited from G. The

automorphism 0 dual to 6* is given by H(gl, cesgn) = (92, -+ Gn, é(gl))

We begin our comparison by constructing an endoscopic datum for (G*, 8*)
from one for (G*,0%). Lett = (G%,G%,s*,n°) be an endoscopic datum for
(é*,g*) Write s® = (s1,...,8p) and let s* = s1 - s2...s,. Itis easy to see that
seGisa a—semi-simple element, we will give the argument further down. A
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routine computation shows that

/;8000 ~ e
G - G¥
(gla"'7gn) = g1
(9,57 gs1, (s251) 'g(s281), .-, (51 8n—1) 'g(s1...8n-1)) 1 g (112)

are mutually inverse isomorphisms. Letting G* = G¥, G* = G° and taking
n° : G¢ — LG to be the composition of 7° with the map G — LG sending
(g1,---,9n) ¥ w to g1 X w, we obtain an endoscopic datum ¢ = (G*, G¢, s¢,7%)
for (G*, 6*). The routine verification that e satisfies the axioms of an endoscopic
datum is left to the reader. B

Next, we compare twisted conjugacy in G and G. Consider the map ®* :
G* = G given by ®*(g1,...,9n) = gn - gn—1 ... 1. It is clear that ®* is a map
of varieties that respects the F-structure. One checks furthermore that for any
h=(h1,...,hn) € G* we have

®*(h-G- 0" (™)) = hy, - ®*() - 0" (b, ). (1.13)

We can also define the map @ : G — G by the same formula and obtain the
same properties. Note that

dof=C¢o0d* (1.1.4)

Furthermore, note that ® defines a bijection between the f-twisted conjugacy
classes of G and the f-twisted 1 conjugacy classes of G, as well as between the 0-

twisted conjugacy classes of G(F) and the 6-twisted conjugacy classes of G(F).
We will prove the second point, the proof of the first being analogous. First,
according to (1.1.3) the map

@ : {0 — twisted classes in G(F)} — {6 — twisted classes in G(F)}

is well-defined and surjective. To show injectivity, take §, » € G(F) and assume
that ®(h) = 2®(3)0(z ") for some z € G(F). Replacing g by its 5—conjugate
(1,...,1,2)30((1,...,1,2)"1) we may assume that ®(g) = ®(h). Next we re-
place g = (g1, ..,9n) by T7'g0(Z), where T = (g1, (9291); - - - » (gn—1 - - 9201), 1)
This does not change ®(g), accordmg to (1.1.3), but allows us to assume g =

(1,...,1,g,). We do the same with h. But then ®(5) = ®(h) implies g = hand
this completes the proof of claimed bijectivity.

The maps ®* and ® preserve the notion of twisted semi-simplicity. Indeed,
letg=(91,.-.,9n) € G. A maximal torus S C Gis of the form S = S; x -+ x S,,
for maximal tori S; C G. If S is preserved by Ad(g) o 0, then S,, is preserved
by Ad( (7)) o 8. Conversely, 1f S, is preserved by Ad(®(3)) o 6, then S =
Sy x---x S, with S; = ¢;S;_19; ' is preserved by Ad(g )09 The same argument

works for Borel subgroups. We conclude that § € G is f-semi- simple if and
only if ®(g) is f-semi-simple. We will see below that ®* and @ also preserve
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the notions of twisted strong regularity. Note that the analogous argument

applied to s* € G shows that s° € G is §—semi—simple.
We now study the notion of norms and transfer factors. These notions are
unaffected if we replace the endoscopic datum ¢ by an equivalent one. It will

be convenient to do so and to thereby assume that s° € 7. Then S15--.58n € T
and s¢ € T. We claim that v € GF is a norm of 6* € G* (or of 6 € G) if and only
if 7, seen now as an element of G¢, is a norm of §* = ®*(5*) (or of § = ®(9)).

To see this, we note that the following two commutative diagrams are dual to
each other

(R Fr o (1.1.5)

I

[7]+°

IR

Ty =—1T*
Here the left-most vertical isomorphism comes from the isomorphism (1.1.2),

the map A sends ¢t € Tto(t,...,t) € T,and m is the multiplication map. This
proves the claim for elements g* € T* and the general case follows from (1.1.4),
(1.1.3), and the fact that ® and ®* induce bijections on the level of twisted
conjugacy classes.

We now assume that y € G¥(F) is anorm of 6 € G(F) and set § = ®(3). For
simplicity we assume that there exists an isomorphism G* — G* and upgrade
the endoscopic data ¢ and ¢ to endoscopic triples using this isomorphism, with-
out change in notation. We obtain the transfer factors Ale, 3 z] and Ale, &, 2] as
in Section 1.1.2 and claim

A[E’aa(’%g) = A[%fvz](r%(s)' (1.1.6)

Before we can begin the proof of this equality, we must choose various objects
and fix notation. Let S® C G* be the centralizer of 7. There exists a maximal
torus S* C G* defined over F and a Borel subgroup C* C G* defined over

F and containing 5*, such that both S* and C* are §* invariant. Furthermore,
there exists an admissible isomorphism 5S¢ — Sg* and an element 5* € S*

whose image in §* _(F) equals the image of v under the admissible isomor-

phism. Finally, there exists § € G* such that § = §~1£(6)6(5). All of this
comes from the assumption that v is a norm of 4.

The maximal torus S* is of the form S* x- - - x S* for some 0*-stable maximal
torus S* C G*. In the same way, C* = C* x --- x C* for some #*-stable Borel
subgroup C* C G* containing S*. Let §* = ®*(5*). According to (1.1.3) and
(1.1.4) we have § = g, *£(5%)0(g,), where we have written § = (g1, ..., gn)-

We further have R(5*, G*) = R(S*, G*)L- - -UR(S*, G*). We fix §*-admissible
a-data for R(S*,G*) [KS12, §2.2]. Placing it in each copy of the disjoint union,
we obtain 6*-admissible a-data for R(S* G*)
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We have the isomorphism
(517 =A{(s,...,9)ls €[5y = [57)7".
This isomorphism induces a bijection between the sets of restricted roots
Ryes(S*,G*) 22 Ryes(S*,G¥) 1.17)

and this bijection preserves the type Ri, Ra, R3 of each root [K599, §1.3]. We
fix x-data for these two sets of restricted roots so that it is compatible with this
bijection.

Having fixed the necessary objects for the construction of A[e, £, Z] (7, ) and
Ale, &, 2](7, ), we begin the comparison. Consider first A", For this we
choose h € G* such that hB*h~! = C*. Then we obtain ¢t € Z*(I, S*) by
formula [KS12, (2.1.4)]. If we let h = (h, ..., h) € G*, then hB*h~! = C*. Us-
ing h to obtain 7 € Z(T', S*) by the same formula, we see that t = (¢,...,1).
Pairing ¢ with s¢ = (s1,...,s,) under Tate-Nakayama duality gives the same
result as pairing t with s, ... s,, = s°. This proves the equality

AYV[EE A (,0) = AFV[e. €, 2)(7. ).

Next we consider the factors A;; and Ajy. The e-versions of these involve
terms of the form [Nj.a](0*), where N, & is the sum of the members of the

f*-orbit of &. But [N5.qa] (5*) = &rCS(Ng*g*), where now N, 5 e [g*](;* is the
product of the members of the *-orbit of 6*, and ;e is the restriction of & to
[S*]%". One sees quickly that

N7.(8%) = (Np-(6),..., No+ (57))

and it thus follows that if a,es corresponds to oyes under the bijection (1.1.7),
then Qres(Ng. (0%)) = ues(Ng=(6*)). Recalling that this bijection preserves the
types of restricted roots and using Lemmas 4.3.A and 4.5.A of [KS99] we obtain
the equalities

AIIE; 57 2]('77 6) = All[e» 57 Z](’% 6)7
and B B

AIV[Ea 57 2](77 6) = AIV[ea 57 Z](’W 5)

Finally, we consider the factor A;;; constructed in Section 1.1.2. For this,
we consider the following two dual commutative diagrams

S,’* Pn S* 5; in §
10*J{ Lle* 1_§T T1§
[ §<—58
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Here m is the multiplication map, A is the diagonal inclusion, p,, is the projec-
tion of the n-th coordinate, and i,, is the inclusion into the n-th coordinate. The
left commutative diagram can be interpreted as a morphism of complexes of
tori of length 2, the complexes being given by the vertical maps, and the mor-
phism being given by the horizontal maps. One checks that this morphism is a
quasi-isomorphism. It follows that this morphism induces an isomorphism

B(F,§ =% §*) = B(F, 5" =% s7). (1.1.8)

The element inv(y, 8) € B(F,S* e 5*) is the class of ((§Z(w)w(g) 1)1, %)
and this class is translated by the above isomorphism to ((g,z(w)w(g,) )71, %),
which is in fact a representative of inv (v, J).

In order to prove the equality of the A;;; factors for ¢ and ¢ it will be enough

to show the following. Letag : Wp — S and as : Wp — S be the 1-cochains
constructed at the end of Section 1.1.2. Then the map

H'(Wp, S 288) = H' (Wp, S =4 9) (1.1.9)
induced by the rlght commutative diagram above, sends the class of (ag', s¢)

to the class of (ag ', s%). We will in fact show that this is true already at the level
of cocycles. For this we consider the following diagram

/\
\/

LsH LS&

Here G! is the group of fixed points of fin G, or equivalently that group of

fixed points of 0in G. The diagonal arrows on the right are given by

Lgt = {gxw|g€é§,w€WF}CL
= {(g.-,9) @ wlge ¥ we W}t

We recall that the diagonal arrows on the left are given by the condition that
n°(h x w) = g x w € LG if and only if

UE(h X w) = (gasfl ©g - wsy, (3132)71 cg-w(s182),- .. ),
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where s¢ = (s1,...,8p). Writing og(w) for the action of Wy on §, we then
compute

as(w) = (as(w), (s1 ' os(w)s1) - as(w), ((s152) "' os(w)(s152)) - as(w),...).
The element (a3, s°) of Z' (W, § 1;5> § ) is thus given by
[(as(w), (s7 tos(w)s1)-as(w), ((s152) " 'os(w)(s182))-as(w), ... )7 (51,5 80)].

On the other hand, the image of the element (ag', s*) under (1.1.9) is given by

[(as(w),as(w),...,as(w)) ™ (1,1,...,1,81 - 82...5,)].

~

These two cocycles are cohomologous via the coboundary (1, s1, s182,...) € S.
We have thus proved the following.

Proposition 1.1.5. Given an endoscopic triple ¢ for (G, 0) we obtain an endoscopic
triple ¢ for (G, 0) with the property G = G*. Then v € G*(F) isanorm of § € G(F)
ifand only if v € G* is a norm of 6 = ®(6) € G(F). Furthermore,

A[6,€,2](7,6) = Ale,€,2)(7.9).

We will now compare twisted orbital integrals. Let 6 € G(F) be f-semi-
simple and let § = ®(5) € G(F). Write I5 for the centralizer Cent (56, G) and
use the analogous notation I5 for §. Just as in (1.1.2) we have the mutually
inverse isomorphisms

I — I (1.1.10)
(hla-”ahn) = hn
(010(hn )01, 62010(hn ) (5201) 7", k) 4 P,
In particular we see that 0 is strongly f-regular if and only if §is strongly 6-
regular
We fix a Haar measure dg on G(F') and endow G(F') with the product Haar

measure dg = dg X -+ X dg. For two functions f1, fo on G(F'), we define their
convolution as

(f1* f2)(g /f1 ) fo(gz™)de.

Given functions f1, ..., f, on G(F) we then have
(fr* - fo)(z /f1 x1) fa(xa2x] h.. .fn_l(zn_lx;;)fn(gx;il)dxl coodx,_q.
Now let f = f1®---® f,, be a function on G (F) and consider the orbital integral

/~ F(hé6(h=1))dg/di
G(F)/Ix
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for a fixed Haar measure di on I5(F). A direct computation shows that this
orbital integral is equal to the orbital integral

G(F)/1s5(F)

where di has been transported to I5(F') via the isomorphism (1.1.10). Combin-
ing this equation with Proposition 1.1.5 we arrive at

Corollary 1.1.6. If the functions f' € H(G%)and f = fix---x f,, € H(G(F)) have
Ale, &, Z)-matching orbital integrals, then the functions f € H(G*) and f1x---xf, €
H(G(F)) have Ale, &, z]-matching orbital integrals.

Our final task in this section is to compare twisted characters. An irre-
ducible admissible representation 7 of G(F) is -stable if and only if it is of
the form 7 = 7 ® - - - ® 7 for an irreducible admissible §-stable representation
of G(F). We write V; for the space on which 7 acts and let 7 act on V™. Fix an
isomorphism s : (=1, V,) — (m, V) and define 5 : (706!, V.E") — (7, V.O")
by 5(v1 @ - @ v,) = (5(vy) @ V1 @ -+ @ Vp_1).

Lemma 1.1.7. Let f1,..., f, be smooth compactly supported functions of G(F') and
let f=fi® - fn Then

(F(f) 0 8) = tr(m(fr 5% fu) 0 8).

To prove this, let ¢; = m;(f;) € End(Vy). Then 7(f) = ¢1 @ --- @ ¢y, €
End(V,2™). On the other hand, a direct computation reveals m(fy * -+ x f,) =
¢no---0¢1 € End(V;). We are thus showing that given any Hilbert space V, any
automorphism s € Aut(V) and any trace class operators ¢4, ..., ¢, € End(V),
the equality

(61 ® - © 6) 0 3VE") = ta(g 0 0. 0 5|V)

holds, where 5 € Aut(V®™") is defined as above. We first reduce to the case
where each ¢; has finite rank, because a general trace class operator is a limit
of finite rank operators. Now that ¢; is of finite rank, it is given by a finite
sum » ; A{ ® Uf for )\g € Hom(V,C) and vf € V. Since the equation we are
proving is n-linear in (¢1, . . ., ¢, ), we reduce to the case ¢; = A\; ® v;. But then
G o---0p108 = Aa(v1)A3(v2) ... Ap(Vn—1) - (A1 08®v,,) and its trace is equal to
A2(v1) ... Adp(vp—1)A1(s(vy)). On the other hand, (41 ®-- - ®@¢d,) 08 = (M2 ®@ - ®
A ®@A105)® (11 @ - ®vy) and its trace is again Aa(v1) ... Ap (Vn—1)A1(s(vn)).
This completes the proof of the lemma.

1.1.4 Endoscopic data in the case of unitary groups

Here we will explicate the sets equivalence classes E.i1(G*) and £3,(G*) of el-
liptic endoscopic triples (§1.1.1) in three cases below, cf. [Rog90, 4.6,4.7].
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e " =Ug/r(N)and E/F is an extension of fields,
e G*=Ug/p(N)and E=F x F,
o« G* = éE/F(N) and E/F is an extension of fields.

We begin with a short discussion on characters. Let E/F be a quadratic
extension of local or global fields of characteristic zero. Set Cr := E* and
Cp = F* in the local case and Cg := A}, /E* and Cp := A} /F* in the global
case. Note that Cr C Cg and that there is a norm map Ng/p : Cp — Cr. We
shall denote by wg/p : Cr/Ng/pCg — {£1} the character associated to the
extension E/F via class field theory. Define the set of continuous characters

Zp = {x:Cg — C* unitary, yoc = x " '}.
We have a partition
Ze=Z2tUZg

where
Z;; ={x€Ze:xlc, =1}and Z; = {x € Zg : X|c, = wg/Fr}

Let x.. € Zj for K = £1. We shall often implicitly view these characters as
characters of the Weil group W, via class field theory.

We now discuss the endoscopic groups of G* = Ug,p(N), where E is a
field. Then &Y (G™) is identified with the following set of triples:

I 0
(Gemgeane) = (UE/F(Nl) X UE/F(NQ)a < 8[1 _IN ) 7<(X1’X2)) 3
2

as the pair (N1, N») varies subject to the condition that N; > Ny > 0, N =

N; + N». For each (N1, N), we choose any x; € 2 with k; = (—=1)V =i for
i = 1,2 and define the L-homomorphism

"Ug/r(N)
diag(gl,gg) X1
diag(Xm (w)INUan (w)INz) xwifw e Wg

Coanna) - “(Upyr(Ny) x Upyp(N2))
(91,92) © 1
(INlaINg) X w

(IN17[N2) X We

USSR

diag(ﬁlq)NmKQq)]\/é) ’ q)]:fl A We,

where W = Wi U Wgw,. We note that the U /r(IN)-conjugacy class of 7, is
independent of the choice of w..

The choice of x; does not change the isomorphism class of the endoscopic
triple. The set £,(G*) is in bijection with the set { N; > Ny > 0, N = N; +N,}.
The outer automorphism group Outg- (¢) is trivial if N7 # N3 and isomorphic
to Z/2if Ny = N3, in which case the nontrivial automorphism swaps Ug /- (N1)
and Ug,p(N2). The set &11(G*) has a similar description. It is a double cover

52



of £)(G*), with distinct elements (G*, £s°,7°) mapping to the same element
in EY(G*).

The second case to consider is G* = Ug,p(N) with E = F x F so that
G™* is isomorphic to GL(N, F'). Then it is elementary to verify that £},(G*) =
{(G*,1,id)} and Eu(G*) = {(G*, 2,id)|z € C* }.

Finally let G* = Gg /() where E is a field. We first describe the simple en-
doscopic triples. They are given by (Ug,r (), 1,7y ), where 1, is the following
L-embedding

Mt “Um/p(N) = Gpyp(N)
gxl = (g, JIn'g7 Iy %1
Inxw =  (Xe(w) Iy, x: (w)y) X wif w e Wg
In xw. — (In,cIN) X w,

if Wp = Wg U Wgw.. We note that the G g/r(N)-conjugacy class of 7, is
independent of the choice of w..

We note that when x = 1 (resp. —1), this L-homomorphism is referred to
as base change (resp. twisted base change). 1f x is chosen to be the identity char-
acter, then this L-homomorphism is referred to as standard base change. More
genefvally, we will say that the parity of the simple triple (Ug,r(N),1,7y) is
(—1)N1g.

We now turn to the set of elliptic endoscopic triples for Gr /r(N). A set of
representatives for it is given by

I 0
(UE/F(N1) x Ug/p(N2), ( 871 Iy, ) 777(X17X2)> )

where (N1, N3) varies over the set satisfying Ny > Ny > 0and N = N; + Ny,
and for each (N1, N2), we choose any x; € Z', i = 1,2. The L-homomorphism

Ny "(Ugyp(N1) X Ugyp(N2)) = *Gg/p(N)
is given by composing the product of the L-homomorphisms
Ny X Ny L(UE/F(Nl) x Ug/r(N2)) — HGE/r(Ny) x Gg/r(N2))
with the natural diagonal L-embedding

HGg/r(N1) x Ggip(N2)) — *Gg/r(N)
(91,92) X (h1,he) xw +— (diag(gi, h1) x diag(gze, h2)) X w.

There are generally two choices of (k1, k2):

( ) = (I,-=1)or (—1,1) if Ny = Ny mod 2,
FLR2) = (1,1) or (=1, 1) if Ny 2 N, mod 2,

The only nontrivial isomorphism occurs between (U(N1) x U(Ny), (1, —1)) and
(U(N1) x U(N1),(—1,1)). In other words, &Y,(G*) is in bijection with the set
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{(N1, N3, k1, k2)}, where Ny > Ny > 0, N = N; + Ny, and (k1, k2) is as above
except that only one of the two choices of (k1, k2) is taken if N; = Na. The set
Ean(G*) is again a double cover of £Y,(G*).

For later discussions it is useful to fix a choice of characters x; € Z;, and
X— € Z5 and also to fix representatives for endoscopic triples such that each
character x; € Z;/ aboveis x; if k; = 1and x_ if k; = —1.

1.2 Local parameters

In this subsection we will recall some of the well-known definitions about local
parameters and representations to set up some notation.

1.2.1 L-parameters and A-parameters

Let F be a local field. Define the local Langlands group

Loie Wp, if ' is archimedean,
£ Wg x SU(2), if F is non-archimedean,

as a topological group. The L-group LG = G x Wpis also a topological group
with complex topology on G and the usual topology on Wpg. A (local) L-
parameter, or a Langlands parameter, for a connected reductive group G over
F is a continuous homomorphism

¢ILF—>LG

commuting with the canonical projections of Lr and LG onto Wr such that
¢ maps semisimple elements to semisimple elements, cf. [Bor79, §8.2]. Two
L-parameters are considered equivalent if they are conjugate under an ele-
ment of G. Henceforth ®(G) (or ®(G, F) if the base field is to be emphasized)
will denote the set of equivalence classes of L-parameters. By abuse of nota-
tion we write a parameter to mean an equivalence class thereof. When F' is
a completion of a global field F' at a place v, then we often write ®,(G) for

(G, F) = ®(G, F,). We say that ¢ € ®(G) is bounded if the image of ¢
in LG projects onto a relatively compact subset of G and discrete (or square-
integrable) if the image does not lie in any proper parabolic subgroup of LG.
Define ®5(G) (resp. ®raa(G)) to be the subset of discrete (resp. bounded) pa-
rameters, and put @3 p44(G) := P2(G) N Praqa(G). We associate some complex
Lie groups to ¢ € ®(G). The general formalism of §0.4.4 applies to L = Lg
(with L-groups in the Weil form), yielding the definition of Sy, which is the cen-

tralizer group of ¢ in G, as well as Sipd and Sg- 1. We also define S¢ = 84/Z(G )",
Sp :=m0(Sy), and Sy 1= m(Sy) = S¢/SOZ( )T, In particular S, = S4(G) and
§¢ are (possibly disconnected) complex reductive groups [Kot84] and since
two equivalent parameters differ by an inner automorphism of G, we see that
an element in each of the groups S, Sg‘ld, Si, Ss, Sy, and S, is well-defined
up to an inner automorphism of Sy.
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If G is not quasi-split it is expected that the representations of G are clas-
sified by relevant parameters, which were introduced in a little more general
setting, cf. Definition 0.4.14, but are recalled below. Suppose that (G, §) is an
inner twist of a quasi-split group G*. Then we have an isomorphism G ~ FG*
canonical up to an inner automorphism. In particular there is a canonical iden-
tification ®(G) = ®(G*).2 So a parameter for G* may be viewed as a parameter
for G for any inner twist (G, £) (as we only care about the equivalence class
thereof after all).

Definition 1.2.1. An L-parameter ¢ for G* is (G, &)-relevant if every Levi subgroup
LM of EG such that ¢(Lr) C &M is relevant, i.e. if such an © M is a Levi component
of a (G, &)-relevant parabolic subgroup of LG, §0.4.2.

We simply call ¢ relevant if the inner twist is clear from the context. Ob-
viously the relevance of a parameter is invariant under equivalence. Define
®(G*)(G,¢)-rel to be the subset of (G, §)-relevant equivalence classes. We define
the sets ®3(G™)(g,¢)rel Dy intersecting ®5(G*) with ®(G*) (¢ ¢)-rel, and similarly
Ppad(G*)(,¢)rel- There is no need to introduce @2 14a(G*) (@ ¢)rel as the rele-
vance condition is vacuously satisfied for parameters in @2 1,44(G*).

The above parameter sets are in parallel with various sets consisting of rep-
resentations of G. Write II(G) (or II(G(F))) for the set of isomorphism classes
of irreducible smooth representations of G(F'). Again we often omit the ex-
pression “isomorphism classes of” by abuse of terminology if the context is
clear. Let Iiemp(G) (resp. II2(G)) denote the subset of tempered (resp. es-
sentially square-integrable) representations of G in II(G). Similarly as before
II3 temp (G) := II2(G) NILiemp (G), which therefore consists of square-integrable
representations. In addition we introduce II,,i; (G), the subset of unitary rep-
resentations. Then we have the following horizontal inclusions

H2,temp(G) C Htemp(G) - H(G)

I I I

| | |

4 \ ¥
(I)g’bdd(G*) C (bbdd(G*)(G,f)—rel C (I)(G*)(G,E)—rel

in which we have inserted the conjectural local Langlands classification as dot-
ted vertical arrows, which should each be a surjective finite-to-one map. In
other words, the hypothetical finite-to-one surjection II(G) — ®(G*) G ¢)rel
giving the Langlands classification should carry Ils temp(G) and Iiemp (G) sur-
jectively onto ® 1,qq(G*) and ®pad(G*) (¢ ¢)-rel- The construction of the general
surjection II(G) — ®(G™*)(@,¢)rel is reduced by the Langlands quotient con-
struction to the latter surjection.

In this paper (cf. Theorem 1.6.1 below) we construct a map Iiemp(G) —
Ppad(G*) (@,¢)-rel With such properties, uniquely determined by a family of char-
acter identities naturally occurring in the theory of endoscopy. Moreover the

2 Arthur’s convention [Art13, 1.3] is a little different in that his ®(G) is our @(G*)(q,¢)-rel- This
should not cause confusion as we will never mention ®(G) for non quasi-split groups G later.
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finite fiber over each ¢ € ®(G™) (¢ ¢)-rel, referred to as the L-packet I14(G, §),

will be described in terms of certain characters on the group Si.

We now introduce (local) A-parameters. One main motivation is that they
are useful to describe the local components of automorphic representations in
the discrete spectrum. As the local components are unitary but not necessarily
tempered, we need parameters to accommodate a little more than tempered
representations, but not too much more to be practical. This little more room
is created by an extra SU(2)-factor in the parameter. Thus a local A-parameter,
or an Arthur parameter, is a continuous homomorphism

Y Lp x SU(2) — LG~

such that |1, is a bounded L-parameter. Equivalent to the latter condition is
that ¢ has a relatively compact image in G* and commutes with the natural
projections of Ly x SU(2) and LG* onto Wg. Two A-parameters are equivalent
if they are conjugate by an element of G*. The set of equivalence classes of A-
parameters for G* is denoted ¥(G*). In fact it will be convenient to introduce a
set U (G*) consisting of continuous homomorphisms v : L x SU(2) — £G*
without requiring that v|;,. be bounded. An A-parameter 1), or generally an
element of ¥ (G*), is said to be generic (resp. non-generic) if ¢|gy o) is trivial
(resp. nontrivial). We define the groups S, S{Z}ad, Si}, §w, Sy, and gd, as before
by replacing ¢ with ¢ € ¥ (G*). Likewise the parameter sets W(G*) (¢ ¢)-rel
and ¥ (G*) (¢ ¢)rel are defined. Finally ¢ € ¥ (G*) determines a canonical

element s, € S, by
-1 0
s¢:w<1,< 0 _1)>.

Let us discuss the A-packet classification for inner forms with precise nor-
malizations coming from the extended pure inner twist data. Let G* and (G, §)
be as above. Now suppose that (G, , 2) is an extended pure inner twist. Write
Xz € X* (Z(CAT'*)F) for the image of z under the Kottwitz map (0.3.1). To each ¢
should be associated an A-packet, a finite subset I, (G, §) of II(G) (depending
only on the inner twist (G, £) and not on z). Moreover there should be a map
(which does depend on z)

I, (G, €) — Trr(S%, xz), 1.2.1)

where the latter denotes the set of irreducible characters on Si = S,/ Sf/j’d

which transform under Z (é*)F as x.. (Our work on the inner forms of uni-
tary groups builds the pairing (1.2.1). See §1.6.1 below for precise statements.)
If ¢ is not relevant then IT, (G, ) should be empty so (1.2.1) is vacuous. When

Y is (G, §)-relevant then the following lemma tells us that Irr(Si, X-) is always
nonempty.

SHowever if 9 is non-generic and if G is not quasi-split, it occasionally happens that IT,, (G, €)
is empty, already for G an inner form of a general linear group.
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Lemma 1.2.2. Suppose that the image of ¢ € ®(
embedding “ M* — LG*. Then . is trivial on Z(
fOi" ¢ € \II(G*)(G,f)-reb

Proof. We may assume that the Levi subgroup “M* is minimal such that it
contains the image of ¢. By the assumption ©'M* is relevant for G. Further we

)(G,¢)-rel factors through a Levi

G*
G n S, The same holds true

may conjugate ¢ so that “M* is standard, i.e. of the form M* x W as this does
not change the intersection in the lemma. Then (Z (]T/[\ “)10 is a maximal torus
of 53, and hence (Z(M*)N Sgpd)0 = (Z(M*)F)? is a maximal torus of 552, The
intersection Z(G*)T'N S is central in S and thus contained in that maximal
torus. Now we conclude by Lemma 0.4.9. The proof for ¢ is the same. O

It is useful to make a simple observation about the parameters for groups
obtained by restriction of scalars.

Lemma 1.2.3. Let E/F be a finite extension of local fields. Let G* be a connected
quasi-split reductive group over F'. Then there are canonical bijections

(I)(RGSE/FG*7F) :> CI)(G*,E), \I/(RGSE/FG*7F> :> \I/(G*,E)

Proof. Note that ®(G*, E) (resp. ®(Resg,rG*, F)) is a subset of H}(LE, G)
(resp. H. . (LF, ReﬁG*). Then Shapiro’s lemma provides a canonical bijec-
tion from HL  (Lg,G*) to HL (L, Reg/?G*) which carries ®(G*, E) onto
®(Resg,pG*, F) since Res/E/?G* is an induced group of G* relative to the ex-
tension E/F'. (See [Bor79, Prop 8.4] for details.) The argument for A-parameters
is analogous. O

There is a map
THGEY) — ®(GY)
Y o= gyrw e Y (w w20 1.2.2)
P - s 0 ‘w|71/2 . L.

In particular each A-parameter v has an associated L-parameter ¢,;.

1.2.2 Local parameters for general linear groups

When G is a general linear group we are on a firm ground thanks to the fact that
the local Langlands correspondence is known by Harris-Taylor and Henniart in
the non-archimedean case and Langlands in the archimedean case. It is fair to
say that our local classification theorem for inner forms of Ug/x(N) ultimately
hinges on that for GL(V, F) via endoscopy, just like in the case of Ug,r (V)
itself.

Let N > 1 be an integer. We shall write

O(N) := ©(GL(N)), ®5(N) := ®2(GL(N)),  Ppaa(N) = Praa(GL(N)),
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and so on. We set @y, (V) = P3(N). Define Pyeysp(N) to be the subset
of irreducible representations of Ly which factor through Wpr if F' is non-
archimedean. For an archimedean local field F' we take ®g.y5p(1) := ®(1) and
Pycusp(N) := 0 if N > 1. As before we define @, o(N) := P (N) N Po(N)
for any two subscript words  and ©. Exactly the same convention will be
adopted for II in place of ® except that the convention for supercuspidal rep-
resentations should be explained. We write Il .,sp (V) for the subset of super-
cuspidal representations in II(V), which has the usual meaning in the non-
archimedean case while the archimedean convention is that Iscusp (V) is just
II(N) if N = 1 and empty if N > 1. The meaning of II(N), IIo(N), Hiemp(V),
Mscusp,temp (IV), II2 temp (IV), etc, should be clear by now.

The local classification for GL(N, F') can now be formulated below. It is
due to Harris-Taylor and Henniart (independently) in the non archimedean
case and Langlands in the archimedean case. We fix ¢r a non-trivial additive
character of F. Recall that there is a canonical isomorphism W2 ~ F* for
every local field F'. Indeed if F' is non-archimedean it is given by local class
field theory (and normalized to send a lift of the geometric Frobenius element
to a uniformizer of F). If F = R, it is induced by the map Wr = C[[Cj — R*
such that z € C +— 2z and j + —1. If F = C, we have W = Wab = C*.

Theorem 1.2.4. There is a unique bijective correspondence ¢ — m from ®(N) onto
II(N) such that the following hold.

1. ®(1) = (1) via the canonical isomorphism WP ~ F* abouve.
® @ x — m® (x o det) for every character x € ®(1) =II(1).
det o¢p — 0, for the central character n, of m.

@Y — wV, where the superscripts designate dual representations.

SANEE O

If ¢ = 7, ¢ € (N;) fori=1,2, then

L(s,my x m2) = L(s,¢1 X ¢2) and (s, 71 X w2,bp) = €(s, b1 X ¢2,¢F).
Furthermore, the bijection is compatible with the two chains

Pycusp,bdd (V) C Pgim pad(N) C Praa(N) C $(N)

and
Hscusp,tcmp(N) - HQ,tcmp(N) C Htcmp(N) C H(N)

in the sense that it maps each subset in the first chain onto its counterpart in the second
chain.

So far we discussed subsets of L-parameters in ®(N). We also introduce a
chain of sets in the context of A-parameters:

Uensp(N) C W (N) C U(N) C ¥ F

unit

(N) C TH(N). (1.2.3)

58



The first set consists of (isomorphism classes of) irreducible N-dimensional
unitary representations of L. The second set is the collection of N-dimensional
representations of Ly x SU(2) of the form p ® v, where p € Ueygp(m), v =
Sym" ™', as m,n € Z>, vary subject to mn = N. The set ¥(N) (resp. ¥F(N)),
which was already defined above, consists of unitary (resp. possibly non-
unitary) N-dimensional representations of Lr x SU(2). The remaining set
Ut (N) is explained below.

Foreachy € U1 (V) one attaches an admissible representation 7, of GL(N, F)
as follows. Observe that there is a decomposition ¢ = ®,c1(¥; @ x;), where
v = ® Sym™i~! e Uim(N;i), xi : Lr — C* is a quasi-character, and
N = > ",c; Ni. Define 7y, to be the representation of GL(N;, F') whose L-
parameter is

n;—1 n;—3 1-mny
Do, = il det [T @ pug|det |5 @ - @ pug|det |7,
where each det is defined on a diagonal GL(N;/n;)-block in GL(N;). Viewing
X: as a character of GL(1, F'), and also of GL(N;, F) via the determinant map,
one can now define (a possibly reducible representation)

Ty =T (EB(W ® Xi)) . (1.2.4)

icl

Now ¥ . (N) is defined to be the set of ¢ € ¥ (N) such that 7, is irreducible
and unitary. If ¢ € W(N) then all x; may be chosen to be trivial, and the above
induction is irreducible and unitary by Bernstein’s theorem (since each my, is
unitary). Hence ¥(N) C ¥ . (N), justifying the third inclusion in (1.2.3).
Any ¢ € ¥T(N) can be written as a direct sum of irreducible representa-
tions ¢ = ®jes,¢;1;, where {; € Z>, and v; are mutually non-isomorphic.
Then Sy ~ [];¢;, GL(;,C), Sy = Sy = {1} and Sfp ~ C* (the latter isomor-

phism is induced by determinant on GL(N, C)).

1.2.3 Local conjugate self-dual parameters

Here we recall the definition and basic properties of conjugate self-dual param-
eters on GL(NN) which will then be related to parameters on unitary groups
below. Let E be a quadratic field extension of F, and ¢ € Gal(E/F) be the
nontrivial automorphism. Choose ¢ € Wp lifting c. Let L and Ly designate
either Ly and Lp or Lg x SU(2) and Lr x SU(2). We embed W in L via the
canonical injection Wy < Lp (isomorphism if F is archimedean; w +— (w, 1)
if F' is non-archimedean). Then ¢ acts on Lz by g — ¢gc—! (conjugation in
Lr). Given a continuous representation p : £Lr — GL(N, C) define p* := (p°)",
where p°(g) := p(cgc™!) (the same underlying vector space with twisted ac-
tion). Clearly the isomorphism class of p* is well-defined, independently of
the choice of ¢. We say that p is conjugate self-dual if p* is isomorphic to p.
We introduce the notion of parity for conjugate self-dual parameters fol-
lowing section 7 of [GGP12]. Let V be an N-dimensional vector space over C
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with tautological action by GL(V). Let H := (GL(V) x GL(V)) x Gal(E/F) be
a semi-direct product where Gal(E/F) acts on GL(V) x GL(V') by permuting
the two factors. Let H? := GL(V') x GL(V) denote the index 2 subgroup in H.
There is a decomposition as H-representations

IndZ,(VRV) = AsT(V) @ As™ (V),

where Ast (V') and As™ (V) are irreducible and N2-dimensional, characterized
by the property that tr (w./As™) = £N. Note that As™ (V) (resp. As™(V)) is
isomorphic to V X V' =~ Homc(V"Y,V) as an H%representation. An element
of Ast (V) (resp. As™(V)) is said to be nondegenerate if it corresponds to an
isomorphism VY ~ V.

A continuous representation p : Lg — GL(V') gives rise to a map

ﬁ:ﬁp—)H,

given by p(g) := (p(g),p(cgc™t)) € HO for g € L and p(¢) := (1,p(c?)) €
H\H°. The L p-action through p stabilizes As™ (V) and As™ (V) so we obtain

Lr — GL(AsT(V)), Lr — GL(As™(V)).

We call p conjugate-orthogonal (resp. conjugate-symplectic) if £ fixes a non-
degenerate vector in As™ (V) (resp. As™(V)). We say that p has parity o if o is
the sign such that As? (V) has a nondegenerate £p-fixed vector. It is not hard
to verify that these definitions do not depend on the choice of ¢. If p is con-
jugate self-dual and irreducible then it follows from Schur’s lemma that the
parity of p is unique. So such a p is either conjugate orthogonal or conjugate
symplectic but cannot be both. However the parity of p is not unique in general
in the reducible case (for a simple example consider the trivial representation
p when N > 1). We remark that an alternative definition of conjugate orthogo-
nal/symplectic parameters is given in the section 3 of [GGP12] in terms of the
existence of a certain nondegenerate bilinear pairing on V. The two definitions
are shown to be equivalent in [GGP12, Prop 7.5.1].

The decomposition of p into irreducibles may be put in the following form
(cf. [GGP12, §4])

p= (@ &'Pi) ® (@ i (p; @P§)) ; (1.2.5)

iel, jed,

where ¢;,(; > 1, Zielp dim p; + QZjer dimp; = N, and p; =~ p; and p; & pj
foreveryi € I, and j € J,. We say that p is elliptic if all /; and /; are equal to
1.

The discussion so far applies when p is either an element of ®(GL(N), E)
or U(GL(N), E). The subset of conjugate self-dual parameters is to be denoted
®(CGL(N), E) and ¥(GL(N), E). The parity of such parameters is defined as
above. The chain (1.2.3) gives rise to a chain of subsets

\Ijsim(N) C \iell(N) C {IVJ(N) C {f’+ (N) C {IV’+(N), (126)

unit
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which are obtained by collecting conjugate self-dual parameters. Observe that
we omitted Uousp(IV) in the chain but inserted W (V), the subset of ¥(XV)
consisting of elliptic parameters. It is clear from the definition that g, (N) C
Wen(N).

1.2.4 Local parameters for unitary groups

It is desirable to understand local L-parameters and A-parameters for Ug,p (V)
in relation to those for G/ (N), which amounts to understanding (a suitable
twist of) the local base change relative to E/F. A careful analysis is not only
important in the purely local context but also motivates the somewhat indirect
construction of global parameters on unitary groups via those on general linear
groups, where the global analogue of L is not available.

Assume that E is a quadratic field extension of F'. (The case £ = F' x F
is treated at the end of this subsection.) Let x € {£1} and choose x,. € Zf.
The composition with the L-morphism 7,, induces maps that we denote by
the same notation:

Nxwre : ®Ug/p(N)) = ®(Gr/r(N)),

Mxwre 2 Y(Ug/pr(N)) = ¥(Gg r(N)).

To describe the image of these maps, note that we can identify ®(Gg/p(N)) =
®(GL(N),E) and ¥(Gg/p(N)) = Y(GL(N), E) via Lemma 1.2.3, cf. [Mok,
(2.2.2)]. So the question is when a parameter for GL(NN) over E comes from
a parameter for Ug,p(N) via 7y, .. It is not hard to see that the image of
Ty« consists of conjugate self-dual parameters. The subtle part is to deter-
mine whether a conjugate self-dual parameter lies in the image of 7, . for
k = 1or k = —1 (or both or neither).

Lemma 1.2.5. The map 1)y, . is injective on ®(Ug,p(N)) (resp. V(Ug,p(N)))
and restricts to a bijection from the preimage of ®uim(Gg/p(N)) (resp. the preim-
age of Vim (G g/ r(IN))) onto the subset of conjugate self-dual parameters with parity
(—DN K in @i (G p(N)) (resp. Vi (Ggyp(N))).

Remark 1.2.6. The global counterpart of the lemma, Proposition 1.3.1 below, is a
much deeper result.

Proof. The lemma for L-parameters is proved in [GGP12, Thm 8.1, Cor 8.2], cf.
[Mok, Lem 2.2.1]. (The proof is given in [GGP12] when x = 1 but it is easy to

extend the result to the case kK = —1 by twisting by a character in Z,.) The
same argument works in the case of A-parameters, replacing L and Lg with

Let (G, 5, 1°) € Em(G(N)) so that GF ~ Ug/p(N). In comparison with
(1.2.6) we produce another chain

Ui (GF) C Uy(GF) C W(GF) C UF . (GF) C UH(GY), (1.2.7)

unit
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defined as follows. The set Ut (G*) was defined in §1.2.1. Take Wi ( G*) (resp.
\IIQ(Ge)) to be the set of ¢ € UH(GF) such that 7% belongs to Wy, (N) (resp.
Woi(N)). This set does not change if the group G® extends to another endo-
scopic triple, since 7% will only change by a character of GL(N). We can now
rephrase the preceding lemma as the decomposition

(I)sim(G(N)) = x4, * sun H Mx_, 51m ))

according to the parity of parameters, and likewise for W, (G(NN)). The other
sets U(G*) and W} (G¥) are given similarly in parallel with (1.2.6). By con-
struction ¢ — 1y is an injective chain-preserving map from (1.2.7) to (1.2.6).

Each parameter ¢» € U} (GL(N ) E) can be written as ¢ = ¢ ® v, where
¢ € By (GL(m), E), v is the Sym™ ™~ !_representation of SU(2), and mn = N.
Here we view ¢ (resp. v) as an irreducible conjugate self-dual representation
of Lg x SU(2) via its projection onto Lg (resp. SU(2)). We would like to com-
pare the sign of the L-embedding that 1) and ¢ each comes from. As irreducible
conjugate self-dual representations, the parity of each of ¢, ¢, and v is uniquely
determined. Write b(¢), b(¢), and b(v) for the parities. Since v is orthogonal
(resp. symplectic) as a representation of SU(2) when n is even (resp. odd),
the b(v) = (—1)"~1. (To see this one can apply the criterion in [GGP12, §3] for
conjugate orthogonality /symplecticity, which reduces to the usual orthogonal-
ity /symplecticity in this case.) Then the lemma 3.2 of [GGP12] tells us that

b(1)) = b(¢)b(v) = (—=1)"~"b(¢).

Lemma 1.2.5 implies that ¢ € 1,y ¥(U(N)) and ¢ € 1,4,V (U(N)) for

x}(:ﬁ) e 25" and x(¢) € Z5¥ with x() = (—1)N1b(¢)) and K(¢) = (~1)1b(¢).
Thus
k() = ()N k(). (1.2.8)

We can make S, explicit for each ¢y € U (Ug,p(N)). Letk € {£1}, x € 2,
and set ¥V := 1, 1). We can write

V= ( . wf“) ® ( P 4w,” eawj“)*)) :
i€l N JEJ N

where the notation is as in (1.2.5). Each y¥ € ®(GL(N;)) determines r; €
{=1} such that the parity of ¢ is x;(—1)Y:~!. Consider a partition I,n =
IzZN [11,~ such that i € I,~ belongs to Iy (resp. I, y) if k; = k(—1)N—Ni
(resp. otherwise). Then it follows that ¢; is even for each i € I N and that

~ [[ owi,c)x [] sp:,©)x [ GL(;,C).

zef;r i€l y JjedyN
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(See [GGP12, §4].) The group Z(G)T = {+1} is embedded diagonally into the
right hand side. It is easy to see that

[Tty |-1
+ - ZJ27) N,V , 2|4,
S, =8 = @jem), 5, ] PP ierty 2l
(Z/QZ)H“"Nl, otherwise.

Now we briefly discuss the easy case when E = F' x F. For each ¢ ¢
U (Ug/r(N)) one can write "V = 7,4 in the form ¢V = @jerNEj’L[};Vj. Then
Sw ~ HjGJwN GL(@,C) and Sw = gw = {1}

1.3 Global parameters

In this subsection we recall the formalism of global parameters for (quasi-split)
unitary groups according to [Art13] and [Mok]. Since the global analogue of
L of the last subsection is highly hypothetical, a different approach should
be taken to define the analogous global L-parameters in an unconditional way.
The idea is to substitute cuspidal automorphic representations of GL(V) for
irreducible N-dimensional representations of L. Then, loosely speaking, a
parameter for a unitary group can be constructed as a formal sum of cuspi-
dal automorphic representations of general linear groups subject to a suitable
conjugate self-duality condition.

1.3.1 Conjugacy class data of automorphic representations

We explain how to associate a string of local conjugacy classes in the L-group to
an automorphic representation via Satake isomorphism. This conjugacy class
data is used to state a sign dichotomy when descending a conjugate self-dual
automorphic representation of GL(N), cf. Proposition 1.3.1 below. Another
role is played in the decomposition of the discrete part of the trace formula in
§3.1 below.

Let F' be a global field, and G a connected reductive group over F. We have
the sets of automorphic representations of G(Ar), cf. [Art13, p.19]:

Acusp(G) C A2(G) C A(G),

where each set consists of irreducible unitary representations of G(Ar) whose
restrictions to G(Ar)' are constituents of L% (G(F)\G(Ar)') with { € {cusp, disc, 0}
in the same order.

For S any finite set of primes outside of which G is unramified, we define
C; (G) to be the set of adelic families of semisimple @—conjugacy classes ¢®
the form

of

CS = (Cv)vQS

where ¢, is a G-conjugacy class in “G,, = G x Wp, C LG represented by an
element of the form ¢, = ¢, x Frob, with ¢, a semi-simple element of G. We
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define C, . (G) to be the set of equivalence classes of such families, ¢* and (¢/)S’
being equivalent if ¢, equals ¢, for almost all v.

Let 7 = ®,m, be an automorphic representation of G(Ar) unramified out-
side some finite set S. For all places v ¢ .S, the Satake isomorphism associates
to the unramified representation 7, — c(m,) € XG, a semisimple @—conjugacy
class in “G,,. This allows us to associate to 7

S(m) = {e(my) 1v & S} € CL ().
We then have the mapping
T o(m) = % (n)

from A(G) — Ca,.(G). We define the image of this map to be C,,(G). When
G = GL(N) we will see that the map 7 +— ¢(n) is particularly well-behaved.

1.3.2 Global parameters for GL(V)
Let AS (N) (resp. Af,.,(N)) be the set of irreducible admissible representations

cusp
of GL(N, Ar) whose restriction to GL(N, Ar)! appears as a direct summand of
L3 . (GL(N, F)\GL(N,Ap)") (resp. L2, (GL(N, F)\GL(N,Ar)")). The sub-

cusp

set of unitary representations in A3 (N) (resp. Af,(N)) is denoted Ay(N)
(resp. Acusp(N)). Let AgO(N ) denote the set of 7 = ®, 7, which is an isobaric
sum

r=mHB- - -Bnm, (1.3.1)

for some r € ZZl, J\/vl7 ...7Nr € Zzl (Nl +---+ N, = N), T € Ajusp(Ni) for
1 < ¢ < r. The isobaric sum (1.3.1) means that =, is the Langlands quotient of
the normalized parabolic induction from 71 , ® - - - ® 7, , at every place v. The
interpretation via the local Langlands correspondence is that the L-parameter
for m, is the direct sum of the L-parameter for 7y ,, ..., 7, at every v.

Moeglin and Waldspurger identified .As(N) with a precise subset of A" (N).
Namely A5 (V) consists of representations of the following form:

pldet|"= B pldet |z 8- B pyldet| 2, (1.3.2)

where N = mn, m,n € Z>1, and u € Acysp(m). (No two representations of
such form are isomorphic unless m, n and y are the same.) Define A(N) to be
the set of (1.3.1) such that 7; € A3(NN;) instead of 7; € Af.,(N;). Then we have
a chain

Acusp(N) C A2(N) C A(N) C A (N). (1.3.3)

Moreover an element of A (N) is uniquely determined by the data at almost
all (unramified) places by the Jacquet-Shalika theorem, which tells us that the
map

AT

1S0

(N) — Cop(N), mwc(m)
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is a bijection onto its image (which is much smaller than Cy,. (N)). Here we
write Cp . (V) for Cy,. (GL(N)) as usual. The image in C,,. (V) will be denoted
Cout (N).
We shall introduce some formal parameter sets for GL(N) in the global
setting
Uousp(N) C Uginy (V) C U(N)

in parallel with the first three sets in (1.3.3). First off, put W ysp(N) := Acusp(N).
Next, let Uy (N) = Uginm (GL(N)) denote the set of formal tensor products

Yp=pv

where p1 € Acysp(m) and v is the irreducible representation of SU(2) of dimen-
sion n such that N = mn. We shall associate to such a 1) the automorphic
representation 7, given by (1.3.2) so that 1) — m, is a bijection from V,,(N)
onto Az(N). Finally ¥(NN) is going to be the set of formal unordered direct
sums

Y=Ly BB, (1.3.4)

for positive integers ¢, and distinct elements ¢, = p K vy in Wy (Ny). The
ranks here are positive integers Nj, = myn; such that

N = ElNl =+ ETNT = Elmlnl + -4 granr.
To such a v, we associate

Ty 1= Eﬂ,}“:l(ﬂ'wi B 7%1:)
——— —
4;

so that the map ¢ — my is a bijection from ¥ (V) onto A(N). By Bernstein’s
theorem that the normalized induction of irreducible unitary representations is
irreducible, we see that 7, may also be described as the normalized induction
I( ;:1(77'1/% - ® 7T1/1i))'4

Finally let E be a finite field extension of F. In view of the functorial iso-
morphism Resp/pGL(N,R) = GL(N, R ®r E) for F-algebras R, we define
U(Resp,rGL(N)) to be ¥(GL(N)Eg), namely the set of formal parameters for
GL(N) over E. Likewise ¥, (Resg,pGL(N)) is defined for various constraints
¢. In particular this applies to the case [E : F] = 2, where the group is

Gg/r(N).

1.3.3 Localizing global parameters for GL(N)

Consider a cuspidal automorphic representation p € Acysp (V) and v a place of
F. By the local Langlands correspondence, we can associate to p,, € II{(GL(N, F,))
an L-parameter ¢, € ®(GL(N, F,)). The L-parameter ¢, can be viewed as a
generic A-parameter ¢, € UT(GL(N, F,)).

“We could have introduced the analogues of ¥ (N) and \Iljmt (N) in [Art13] §1.5 (in the global
setting) but we do not need them.

65



This allows us to define for every N € Z>; the localization map
Veusp(N) = W (N)
o= Py,

This can be extended to define the localization map

Uam(N) — TH(N)
kv — ¢, Q.

This map can then be uniquely extended by requiring that 8 be carried over to
@ to produce the localization map

U(N) — U (N).

Similarly there is a localization map ¥(Gg/p(N)) = ¥V (Gg/r(N)). Con-
cretely it is identified (via Lemma 1.2.3) with the localization map Vg(N) —
UE(N)xWL(N) if v splits as ww in E, or the localization map ¥ (N) — ¥ (N)
if w is the only place of E above v.

1.3.4 Global parameters for Uy, (N)

We begin with the discussion of conjugate self-dual parameters on GL(N) as
the global analogue of §1.2.3. A careful consideration of parity will allow us to
define formal global parameters for unitary groups, depending on the sign of
an L-embedding “Ug/r(N) < “Gg,p(N). A definition which is independent
of choices will be discussed in §1.3.8 below.

If 7 is a cuspidal automorphic representation of GL(N, Ag), we shall denote
by 7* = 7¥:¢ the conjugate dual representation of 7. This notation shall also
be used in the context of local L-parameters and A-parameters to refer to the
conjugate dual representation.

Consider a partition N; + --- + N, = N and a formal global parameter
’(/} = 511/}1 H---H fr’lbr S \I/(N) where ’lﬁi = Xy, € \Psim(Ni) and N; = m;n;
fori=1,...,r. We define the conjugate dual parameter

W = O B B Ly

where ¢F = piXv; fori = 1,...,r. We remark that 7, >~ 7. Such a parameter
1 is said to be conjugate self-dual if 1) = ¢)* up to reordering, or more precisely
if there exists an involution i <+ ¢* of the indexing set {1, ...,r} such that

Y7 = and by = L« fori=1,...,7.

The subset of parameters ¢ € W(N) that are conjugate self-dual is denoted by
U(N). If the parameter 1 satisfies in addition the condition that

*=dand ¢; =1fori=1,...,r,
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then ¢ is said to be elliptic. The subset of elliptic parameters is denoted by
\TIEU(N ). We shall also have need of the subset of conjugate self-dual simple
parameters that shall be denoted by \f'sim(N ). We shall denote by 5(N ) C
U(N) the subset of conjugate self-dual generic parameters. (Recall that 1 is
called generic if v; is the trivial representation of SU(2) for alli = 1,...,7.) A
generic parameter is often written as ¢. Put Py (N) := S(N) N Wi (V).

A conjugate self-dual cuspidal automorphic representation ¢ is said to be
conjugate-orthogonal (resp. conjugate-symplectic) if the Asai L-function

L(s,¢,As™)  (resp. L(s,¢,As™))

has a pole at s = 1. Then ¢ € @, (N) is either conjugate-orthogonal or
conjugate-symplectic, and this is mutually exclusive. Indeed, there is a de-
composition of the Rankin-Selberg L-function

L(s,¢ x ¢°) = L(s,¢,AsT)L(s, ¢, As™),

which has a simple pole at s = 1 since ¢ is cuspidal and ¢* ~ ¢. Each factor on
the right hand side has no zero at s = 1 by a result of Shahidi ([Sha81, Thm 5.1]).
Hence exactly one factor on the right has a pole at s = 1. (See the paragraph
preceding the theorem 2.5.4 in [Mok] for more details and references.)

We are almost ready to define the global parameters for Ug, (V') by means
of conjugate self-dual parameters. Let us fix a pair of characters x+ € Z}, and
X— € Zg. (We can make the definition more natural by considering all choices
of x4+ and x_ at once. See §1.3.8 below.)

Proposition 1.3.1. (1st seed theorem) For each ¢ € EIgsim(N ) there exists a unique

ey = (Gg,84,Mp) € En(N) such that ¢(¢) = ne(c(m)) for some m € Az(G). The
datum ey is simple and may be represented by

(UE/F(N)a 1777Xh‘,)7

where 1 € {£1} is equal to (—1)N =1 (resp. (—1)N) if ¢ is conjugate-orthogonal (resp.
conjugate-symplectic).

Proof. This follows from the theorems 2.4.2 and 2.5.4 of [Mok]. O

Given a YV € \TJ(N ), which admits a decomposition (1.3.4), write K~ for
the indexing set {1,...,7}. We have the decomposition K~ = I~ U Jy~ LI
(Jy~)*, where I,,n consists of the set of indices that are fixed under the invo-
lution ¢ <+ i* whilst J,,~ is a set of representatives for the orbits of size two of
that involution. We can then write the parameter v in the following form.

YN = @icr, L) B (Bes, £ (057 ByiY)), (1.3.5)

where ¢; = p; Kv; € U (N;), N; = myn; fori = 1,...,r as before, and
where 9" are conjugate self-dual and w;vj are not. To each i € I, we can
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associate a pair (Ug,r(m:),7x,,.,) for a unique x(u;) € {£1} by considering

the pair associated to the simple generic factor p; € ®(m;). We shall let H; :=
Ug/p(m;). Toeach j € Jy, we shalllet H; := G p(m;).

We shall denote by {K,} the set of orbits of K, under the involution k «+
k*, which can be identified with I, LI J;. To each k € {K}, we have associ-
ated Hj, a connected reductive group defined over F'. We shall form the fibre
product over W

,Cq/, = H (L]‘I}€ — WF).
ke{Ky}

The group L, shall serve as our substitute for the part of the global Langlands
group that accounts for the parameter ¢. If k = i € I;, we have the embedding

i = Moy LUE/F(mi) - LGE/F(mi)

If k = j € Jy, then we define the embedding

fj: "Ggp(m;) — “Ggp(2my)
g1 0 g2 0
g1 X g2 Xw < 0 JutgytJ:t ) X ( 0 Julgrlu! > X w,
for w € Wr. Putting everything together, we associate to a parameter ¢V €
U(N) the L-homomorphism
’LZN : ,Cw X SL(Q,(C) — LGE/F(N)
which is defined as the direct sum
V= DR | e | D GG Ry)
iEII/, jGJu,

where we have identified an n-dimensional representation v : SL(2,C) —
GL(n, C) as the homomorphism
7:8L(2,C) — Gpg/p(n) = GL(n,C) x GL(n,C)
g = vig)xv(g)

We remind the reader that any finite dimensional representation of SL(2, C) is
self-dual. Consequently, we shall write v in place of v.
We shall now define the parameter set ¥(Ug,r(IV), 7y, ) to be the set con-

sisting of pairs ¢ = (¥, ¢) where ¢V € U(N) and
¥ : Lyn x SL(2,C) — LU/ p(N)
is an L-homomorphism (considered up to U -conjugacy) such that

¢N:77XH°J
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Denote by Uy (Ug/r(N),7y,.) the subset of ¥ = (N, 1) such that ¢ is elliptic
(i.e. all 4; and ¢; are 1 in (1.3.5)).

The group L, is a substitute for the conjectural global Langlands group
so that the datum 1; allows to define various invariants associated with ¢ =
(N, ) € W(Ug/r(N),ny, ), whichis only a formal parameter. If ¢ = v, in the

parameter set then ¢ = ¢’ in W(N), so in particular there is an isomorphism
Ly, ~ Ly, which is canonical (since there is a unique bijection between { Ky, }
and { K, } matching the x-orbits of simple parameters).

The centralizer group for 3 and its variants may be defined as follows,
where we put G* := Ug/p (V).

Sy 1= Cent(lm{/;, é*), Sy = Sw/Z(é*)F7
Sy = m0(Sy), Sy = mo(Sy),
S = (Sy N Ghe)®s  SE = Sy/S5.

We also write 5 (G*) and so on if the group G* is to be emphasized. If two

parameters 1, = (¥ ,1/J1) and 1, = (P& ,1/)2) are equal then 1/11 and 1/12 are
G*-conjugate by definition. So there is an isomorphism Sy, ~ Sy,, which is
canonical up to Sy, -conjugacy. Similarly the elements of Sy, Sy, Sy, S;*, and
SEZ} are well-defined up to inner automorphisms of Sy.

To describe the group S, explicitly, consider the decomposition of ¥ into
irreducibles as in (1.3.5) (with ¢V in place of ). Define (cf. (1.2.8))

R() = (=1)M T T R (g).
Take a partition I,n = Ity ]_[I ~ such that i € I~ belongs to *N (resp.
Ion) if k(i) = k(= 1)N=Ni (resp. otherwise). It follows from the analogue of
Lemma 1.2.5 for £, in place of L, using an analogous argument for obtaining

(1.2.8), that the parameter ; factors through 7,,(¢;). As in the local case we
have that ¢; is even for each 7 € I, N and that

~ [[ ow,c)x [] sp:,C)x ] GL(;,C). (13.6)

1€I$ i€l y JeJyN

Again the group Z(G*)' = {+1} is embedded diagonally into the right hand
side and

can

Iy l-1
_ 7/22)" Ty 2,
Sy B 5~ (z)2m) o, S¢~{ (z/22) ierty

+
(Z/ZZ)‘IW I, otherwise.

It is useful to consider a finer chain of parameter sets in U(G*, n,) for the
later trace formula argument. We write

\Ilsim(G*anx) C \112(G*a77x) C \Ilell(G*anx) C \I’disc(G*anX) - \II(G*anX)a
(1.3.7)
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which are defined in terms of the group Sy, as follows, cf. [Art13, §4.1].

V() = (e WG my) ¢ [Fol= 1)
‘Ijell(G*anX) = {11[} € \I’(G*anx) : ds € Sz,b,ssv |Si/),€| < 00}7
Vaise (G*,my) = {Y € U(G™,ny) & [Z(Sy)| < oo}

Here Sy s denotes the centralizer of s in Sy. The set ¥o(G*,7,) was already
defined and can also be characterized as the subset of ¢ € ¥(G*, 7, ) such that
?w is finite.

We have not talked about the trace formula yet but motivate the above def-
inition by means of the trace formula. A parameter ¢ in Wgmn(G*, 7, ) (resp.
Uy (G*,ny)) is supposed to contribute to the discrete spectrum of GL(N,Ag)
(resp. G*(Ar)). The set ¥ (G*, 1) consists of i) which contributes to the
discrete spectrum of an elliptic endoscopic group of G*. The condition ¢ €
U aisc (G, 1y ) should mean that the ¢-part of the discrete part of the trace for-
mula for G* does not vanish identically (i.e. I g;c,d) # 0 in later notation).
The reader is cautioned that Uy(G*,n,) (resp. Vei(G*,1ny)) is not the inter-
section of Wy (G(N)) (resp. Ve (G(NV))) with ¥(G*,n,) though it is true that

\I’sim(G*anx) = ¥(G™, nx) N Wgim (V).

Lemma 1.3.2. Let ¢ = (4N, 9) € U(G*,ny). Suppose that {1, ..., L, € Z>1 are the
multiplicities of simple factors in the decomposition of YN. Then 1 € Wo(G*,n,) if
and only if ¢; = 1 forall 1 <i <rand Iy = Jyv =0.

Proof. From the explicit description of (1.3.2) and the finiteness of Z (G itis
clear that S, is finite if and only if Sy, is finite if and only if all /; are equal to 1
and both I 'y and .J,~ are empty. O

We say that ¢ = (¢, QZ) is generic if ¥V € EI;(N), ie. if ¥V is generic.
Passing to subsets of generic parameters in (1.3.7), we obtain a chain of sets

q)sim(G*anx) C %(G*,TIX) C q)ell(G*anx) C (I)disc(G*anx) C ‘I’(G*,TIX)-

1.3.5 Localizing global parameters for U/ (N)

Fix characters x4 € 2} and xy_ € Z; as above. Let x € {£1} and consider a
parameter ¢y = (v, ¢)) € U(Ug,p(N), 1y, ). If vis a place of F, we would like

to define the localization , € U*(Ug, s, (N)) as the ([7' B, /F, (IN)-conjugacy
class of) L-homomorphism

¥y : Lp, x SU(2) = “Ug, /5, (N)

such that ¢ = 7, o1,. If such a homomorphism exists, it is necessarily
unique by Lemma 1.2.5.

Consider the easier case where v splits as ww in E so that E, = F,, x Fyg.
(Recall that w is determined by the composite of the distinguished embed-

dings E < F and F — F,.) Then ¢V € U(GL(N)g) has localizations
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¥N € W(GL(N)p, ) and ¥ € U(GL(N)g,), cf. §1.3.3. Let L&, : LFGL(N)g, ~
LUg, r, (N) be the isomorphism induced by the isomorphism &, : Ug, /5, (N) ~
GL(N)g, . Then

N L
Yy Ly, x SU@2) 8 LGL(N) g, & LUp, /5, (N)

(or its suitable U g,/F,(IN) = GL(N, C)-conjugate) is the desired localization.
When v does not split in E the existence of a localization ¢, turns out to
be highly nontrivial and is only proved as a part of an inductive argument
proving all the main theorems in [Mok] (like Proposition 1.3.1 above), as it was
the case in [Art13] for symplectic and orthogonal groups. More specifically, the
statement is contained in Theorem 2.4.10 and Corollary 2.4.11 in [Mok].
We summarize this discussion as follows.

Proposition 1.3.3. (2nd seed theorem) For each ¢ € W(Ug,p(N),7,) there exists
Yy € W (Ug, /p, (N)) as above, i.e. such that ) = n,, o,. The isomorphism class
of 1y is uniquely determined.

Proposition 1.3.3 can be used to produce a map Ly, — L at each v as well
as a localization map for centralizer groups Sy, — Sy, and its variants. We only
sketch the idea, keeping the same notation as in §1.3.4. Before the proposition
our definition and construction in §1.3.4 yield the following diagram without
the dotted arrows, in which every triangle and rectangle (not involving the
dotted arrows) commute.

N
wv

Lp, xSUQ2) = = = LUg, ;p,(N) —"Gg,/p,(N) — Wp,

o |

Ly x SL(2,C) —2 > LU, p(N) —2 > LGy p(N) —= W

IZN
Proposition 1.3.3 provides us with the top dotted arrow such that the top trian-
gle commutes (i.e. ¥ = n,1,) and the left dotted arrow such that the rectangle
enclosed by the first and third vertical arrows commutes. Since 7, is an injec-
tion (locally and globally), it follows that the leftmost rectangle also commutes.
Hence the full diagram commutes.
The diagram gives us localization maps for the centralizer groups. The

second vertical arrow carries Im(v,,) into Im(v), inducing a map
Sy — Sy,, thusalso S, — Sy, and Si — Sf/)w.

The map Sy — Sy, sends Z(Ug/p(N))F into Z(Ug,#(N)) ", so we also have
maps o L
S’(/J — Sq/,v and Sw — S’l/Ju'
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Each localization map is canonical up to an inner automorphism of Sy, .

1.3.6 Parameters for endoscopic groups of U, (V)

So far we have discussed the parameters sets only for G* = Ug,p(N). We
will introduce the analogues for endoscopic groups of G* (which include Levi
subgroups) in both global and local settings.

First we consider the global case. Let (G*,s¢,7°) € £(G*). Define the pa-
rameter set ¥(G*®,n°) to be

(G n) = { @V, 09), 0N € WIN), P51 Ly - FGE st o = N
B R (1.3.8)
where 7 is viewed as a G*-conjugacy class of L-morphisms. In other words
(N, ) and (), 5) are considered the same element if ¥V = ¢4 and if
% and 5 are @“—conjugate. For a more explicit description we fix x; € Z7
and y_ € Zj globally and locally. Let x € {£1} so that we have *G* —
LG g p(N). Notice that there is an isomorphism

a b
G~ [[VUs/rni) x ] Go/r(m;)) (1.3.9)

i=1 j=1
for suitable a,b > 0, ny,...,n, > 1, and m4,...,mp > lsuchthat N = Y . n; +
23 ;m;. Let K = (k;)j—; be a collection of signs given by r; = (—1)N=nig,
Without disturbing the weak isomorphism class of the endoscopic triple we
can choose 7 such that the following diagram commutes.

L (Hi Ug/r(ni) x I, GE/F(mj)) Ly (HZ— Gp/r(ni) x I, GE/F(2mj))

l |

LUg/p(N) LGE/r(N)

Here the right vertical map is given as in §1.1.4, and x./i; is the twist of the
L-morphism z; in §1.3.4 by x,.. With the aid of the above diagram we identify

a b
(G n) = [ Wer(ni),me) x [ ¥(Ge/r(m))).

i=1 j=1

We define ¥5(G*®, 1) by the product of the subsets of discrete parameters on
the right hand side. The subset of generic parameters is denoted ®(G¢,7°),
Oo(G*,n°), etc. For ¢ € ¥(G*,n®) we define the centralizer group Sy and its
variants as in the case G* = Ug,p ().

Next we put ourselves in the local case, where ¥(G*) and ¥5(G*®) are de-
fined by a general discussion of §1.2.1 without reference to an L-morphism 7°® :
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LGe — LG*. Still once we fix a choice of 7°, we can show that the two descrip-
tions in the global setting are valid. Namely there is a natural bijection between
U(G*) and the right hand side of (1.3.8) with £,,~ replaced with Lr x SU(2).
The explicit description of G* as in (1.3.9) is again available. Accordingly there
is a decomposition ¥(G*) = [/ ¥(Ug r(n;)) x H?:1
ilarly for discrete parameters.

Just like when G¢ = Ug,r(N) (or a general linear group), we have a local-
ization map U(G*,n°) — ¥(G%) compatibly with the product decompositions
in the source and the target.

V(G g/p(m;)) and sim-

1.3.7 Relevance of global parameters for U/ (N)

So far our global discussion has been only about quasi-split groups. Now
we consider the notion of relevant parameters for inner forms. As above let
ke {+t1tand ¢ = (YN, ) € V(Ug/p(N),nx). Now consider an inner twist
(G,€) of G* = Ug,p(N). The global parameter ¢ is said to be (G, £)-relevant
if it is relevant locally everywhere, i.e. if ¥, is (G, §,)-relevant at every place
v. We write V(G*,7x)(G,¢)rel, OF ¥(G*, N )crel if G is an extended pure inner
twist extending (G, ), for the subset of (G, £)-relevant parameters in ¥(G*, 7,,).
Similarly the notation W5 (G™*, 1) (¢,¢)-rel €tc will have the obvious meaning.

Lemma 1.3.4. Let ¢y € U(G*,n,) and M* C G* a Levi subgroup. Suppose that ¢
comes from a parameter on M* and that +) is relevant for an inner twist (G, €) of G*.
Then M* transfers to G in the sense of Definition 0.4.3.

Proof. By definition M* transfers to G locally at every place of F'. We conclude
by Lemma 0.4.6. O

1.3.8 Canonical global parameters for U, ()

Our definition of various global parameter sets has not been optimal in that it
depends on the choice of x; and x_, which has been fixed thus far. To remove
the dependence we consider all possible choices of x; and x_ simultaneously.
Define ¥(G*) to be the set of equivalence classes®

U(GH) ;:< 11 @(G*,nx)>/~, (1.3.10)
x€ZE 1125

where ¢ = (yN,4) € U(G*, 1) and ' = ((')N,4') € U(G*,7,+) are consid-
ered equivalent if
° (wl)N — wN ® X/X—l and

e the G*-orbits of {/; and ’(:ZJV/ are the same via the canonical isomorphism
£¢ s L‘,w/.

5In the global setup we refrain from using ¥(G*) as an abbreviation for ®(G*,7,) so as to
avoid confusion.
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Let us elaborate on these conditions. When we write ¢V = H_,lu; Xy, as
usual, the character twist ¢V @ x'x ! is defined to be

B4 (1 ® (xX'x ' o det)) Ku;.

We explained in §1.3.5 that £, ~ Ly canonically if ¢~ = (/). Now it is not
hard to see that the same remains true when they differ by x'x~!. (Since x'x !
is conjugate self-dual, the group © H}, with its projection onto W for ¢ and 1/
are identified for each k up to reordering &’s.)

Lemma 1.3.5. Suppose that 1) € U(G*,n,) and ¢' € V(G*,n,-) are equivalent. Let
v be a place of F. Then 1), = 1}, in U7 (G*). In particular the localization maps patch
together to a map

V(GE) = 0(G), [] — []e

Proof. The localizations 7, o 1, and 7,/ o 1], correspond to ¥)¥ and ()Y re-
spectively, if we view the representations v} and (¢')Y of GL(N, E,) as L-
parameters Ly, — ©G(N) via the local Langlands correspondence and Shapiro’s

lemma. Since (¢)) ~ ¢ @ x!x,; ! by assumption, the correspondence be-

tween 7, o ¢, and (¢')Y implies that 7, o 1, corresponds to ¥)¥ (noting that

x'x ! corresponds to the parameter Wy — LG(1) such that w — (x'x~(w), (')~ x(w))x
won Wg and w, — ('K, 1) x w,, cf. §1.1.4). We deduce from the injectivity in

Lemma 1.2.5 that v, and ], are isomorphic parameters. O

Further the following are verified rather easily.

e If ¢ and ¢’ are equivalent parameters as above then we have isomor-
phisms Sy ~ Sy and Sy, ~ Sy canonical up to an inner automorphism
of Sy. Hence we may associate to each [¢)] € ¥(G*) the groups

Sw S Sw Swp S|

L (1.3.11)

e When ¢ € {sim, 2, ell, disc}, the set U (G*) is well-defined as the image
of Wy (G*,ny) in ¥(G*) independently of the choice of x, since the set
is characterized by means of the group Sy. The definition of ®(G*) is
similar.

e Thelocalization map induces S}, — S|y, ] (canonical up to S, j-conjugacy)
and similarly for the other groups in (1.3.11).

e For each inner twist (G, £) of G*, the (G, §)-relevance property is invari-
ant under the equivalence relation. So V¢, (G*) (g ¢)-rel is well-defined.
1.4 A correspondence of endoscopic data

Here we recall a bijective correspondence between two kinds of endoscopic
data from a discussion in [Art13, §1.4] in the case of ordinary endoscopy for
Ug/rp(N).
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Some terminology and notation need to be set up. For the moment we fo-
cus on the local case and will remark below what to do in the global case. Let
G* be a connected reductive quasi-split group over F'. We assume that G, is
simply connected, which suffices for our purpose. (See [Art13, §4.8] for the anal-
ogous discussion without the assumption.) Two ordinary endoscopic triples
e1 = (GY, s§,nf) and ex = (GS, s§,n5) for G* are considered strictly equivalent
(resp. weakly equivalent, resp. equivalent) if s{ = zs§ for z = 1 (resp. some
2 € Z(G*)T, resp. some z € Z(G*)) and 75 (XGS) = n5(EGY) as subgroups
of LG*. The equivalence here is different from the isomorphism defined in
§1.1.1 in that there is no conjugation by an element of G*. For simplicity we
further assume that that weak equivalence is the same as equivalence and that
weak isomorphism is the same as isomorphism. While this may not be true in
general, in our special case this is true and can be checked explicitly. Hence-
forth we only distinguish between equivalence/isomorphism and strict equiv-
alence/isomorphism.

Define E(G*) (resp. E(G*)) to be the set of strict equivalence (resp. equiv-
alence) classes of endoscopic data for G*. Of course E(G*) is just the set of
all endoscopic data but our terminology is chosen in parallel with the defini-
tions of §1.1.1 as the set of G*-orbits on E(G*) (resp. E(G*)) is none other
than £(G*) (resp. £(G*)) there. Let F(G*) denote the set of A-parameters
Lr — LG*. (Here we literally mean the parameters, not the isomorphism
classes thereof.)For each ¢ € F(G*) write S, s for the set of semisimple ele-
ments in S,,. Define two sets

X(G*) = {(e=(Gsn%),9%): e€ E(GY), ¢v* € F(G°)},
Y(GY) = {(¥,s): ¢ € F(G"), s € Sy}
Similarly define X(G*), and Y (G*) with E(G*) and Sy, « replaced by E(G*)

and Sy ., respectively. Naturally X (G*) and Y (G*) are left G* x Z(G*)T-sets
by the following formulas: for g € G* and z € Z(G*)",

g-(G%,s5,0%),9°) (Gﬂgsg LgntgTh) W),
g-(W,s) = (g9 " 9597,

z-(G%s5,n°),¥°) = (G 25°,1°),¢°),
z-(Y,8) = (¥,zs).

The right hand side of the first formula is understood as the representative
in E(G) in its strict equivalence class fixed above. We see that X(G*), and
Y (G*) are none other than the quotient sets of X (G*) and Y (G*) by the action

of Z(G*)'. Put
X(G7) = G\X(G"), V(@) :=G\\Y(G),

standing for the sets of G*-orbits in X (G*) and Y (G*), respectively. Likewise
X(G*) = G\ X(G*), Y(G*) := G*\\Y(G*). Note that there is a canonical
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identification £(G*) = G*\\E(G*) and £(G*) = G*\\E(G*). It is easy to see
that

X(GY) = {(e=(Gs%n%),0%) : e € E(GY), ¥¢ € U(GY)}, (1.4.1)
VG = {(hs): ¥ € W(G), s € Tyss/ ~}

X(@) = {e=(G"s ), 0% e €E(GT), v* € W(G)},

V(G {(,5): ¥ € V(G™), s € Syss/ ~},

where Sy, s/ ~ and Sy ¢/ ~ is the set of semisimple conjugacy classes in Sy,

and S, respectively, and ¥(G*) is the quotient set of ¥(G*) modulo the action
of Outg(G*) (resp. Outg(G*)).

Lemma 1.4.1. Let G* be a connected reductive quasi-split group over a local field with
simply connected derived subgroup. Then the natural map

X(G") = Y(GY), (e,¥°)— (n°,s°). (1.4.2)

isa G* x Z(G* ) -equivariant bijection, thus induces a G*-equivariant bijection X (G*)
Y (G*), a Z(G*)"-equivariant bijection X (G*) ~ Y(G*), and a bijection X (G*) ~

YV(G*).

Remark 1.4.2. Two (weakly) equivalent pairs (e1,}) and (e2,5) do not have the
same image in Y (G*) under (1.4.2) in general. This is why we prefer to fix the set of
representatives for E(G*).

Proof. The equivariance is immediately verified. It suffices to show that (1.4.2)
is a bijection, which we do by constructing the inverse map. Let (¢, s) € Y/(G*).
Define G* := G* - Y(Lp x SL(2,C)), which is a subgroup of “G*. Then G* is a
split extension of Wr by G*, where a splitting Wr — G is given by w — 1 (w).
The induced (finite) Galois action on G*¢ determines a quasi-split group G over
F. Moreover we have an isomorphism between n° : L@ — G since Gyer iS
simply connected. (See [Lan79, Prop 1]; also see the second last paragraph
above [K599, Lem 2.2.A].) On the other hand, the image of ) is contained in G¢
by construction, so ¢ = n®y*¢ for some ¢* € F(G*). Replacing (G*, s*,n*) with
its (quasi-)equivalent representative in E(G*), we get a map Y (G*) to X (G*).
It is routine to verify that (1.4.2) is inverse to the latter map. O

As we already remarked, the above discussion applies to unitary groups as
the two assumptions at the start of this subsection are satisfied. For instance
we can take G* = Ug,p(N), where E is a quadratic algebra over a local field
F. Now we assume that F is a quadratic field extension over a global field F.
(Still G* = Ug,p(N).) The description of X'(G*) and )(G*) continues to make
sense, where the global parameter sets are understood as in §1.3.4. We take
it as the definition of the sets X(G*) and Y(G*). The global map X(G*) —
Y(G*) can be analogously defined as follows. Let (e,1¢) € X(G*), where we

write ¢ = (¥, 1}9) following the convention of §1.3.4. Then we associate the
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element of Y(G*) given by (N, n*°) € U(G*) and (the conjugacy class of)
s° € Sy ss. One checks that this map X (G*) — Y(G*) is well-defined and that
there is an inverse map as in the proof of Lemma 1.4.1. Since the arguments are
very similar we omit the details and just record the result.

Lemma 1.4.3. Let G* = Ug,r(N) be a global unitary group. Then the above map
X(G*) — Y(G*) is a bijection.

As Arthur remarks in [Art13, §1.4], the bijection X'(G*) <> Y(G*) and its
variants reduce many questions on the transfer of characters to a study of the
groups Sy. The two lemmas above will be used repeatedly without citing them
every time. For instance we will simply say that the pairs (e, ) and (¢, s)
correspond or are associated.

1.5 Results on quasi-split unitary groups

Here is the list of the main results in the quasi-split case that we import from
[Mok]. The numbering for the lemmas and theorems below is as in that paper.

e The two seed theorems (Theorems 2.4.2, 2.4.10);
e The main local theorems (Theorems 2.5.1, 3.2.1);
e The main global theorems (Theorems 2.5.2, 2.5.4);

o Well-definedness and multiplicativity of normalized intertwining opera-
tors (Proposition 3.3.1), c.f. our Lemma 2.2.3;

e The local intertwining relation (Theorem 3.4.3 and Corollary 7.4.7), cf.
our Theorem 2.6.2;

e The twisted local intertwining relation for the twisted group G (V)
(Corollary 3.5.2), c.f. our Proposition 2.7 4;

e The endoscopic expansion of the stable elliptic inner product (Proposi-
tion 7.5.3, c.f. [Art13, Proposition 6.5.1]).

o The stable multiplicity formula (Theorem 5.1.2)

o The spectral and endoscopic sign lemmas (Lemmas 5.5.1, 5.6.1, respec-
tively)

In addition we need the analogue of Ban’s results ([Ban02, Ban04]) for quasi-
split and non-quasi-split unitary groups. In the quasi-split case this enters the
proof of the main theorems and was stated as Proposition 8.2.5 in [Mok] but
without justification. In Appendix A we prove this in more generality than is
needed in [Mok] and our sequel paper on non-generic parameters.

In the discussion of global parameters we already cited the two seed theo-
rems and the theorem 2.5.4 above. In this subsection we focus on stating the
main local theorems. The theorem 2.5.2 above is not logically necessary but
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its statement is subsumed in Theorem 1.7.1. (Of course we are not reproving
the theorem 2.5.2 in that that theorem is intertwined with the other main re-
sults when it comes to proof.) It should be noted that our main results in §1.6
and §1.7 are in parallel with the main local theorem above and the theorem
2.5.2. The inner form case of the local intertwining relation will be stated later
in Theorem 2.6.2 after setting up some additional definition and notation. The
sign lemmas turn out to be pertinent only to the quasi-split groups and will be
utilized in the trace formula comparison in §3.6 below.

Before stating the main local theorem in the quasi-split case in full we single
out the statement on the existence of stable linear forms.

Proposition 1.5.1 (cf. Theorem 3.2.1.(a), [Mok]). There is a unique family of stable
linear forms f — f (¢) on G* = Ug,p(N) (as N and oy € U(G*) vary) satis-
fying a character identity [Mok, Thm 3.2.1.(a)] relative to twisted endoscopic data in
En(GE/rp(N)).

We informally explain the above character identity, leaving the details to
Mok’s paper as we will not need to use it explicitly in the arguments of our
paper. The transfer of orbital integrals from G(N) to U(N) leads to a transfer
of stable distributions from G(N) to U(N). The character identity says that

for every endoscopic triple (G¢, s%,7°) with G* = Ug /r(N), the linear form

f — f& (¢) is the transfer of the (twisted) stable linear form f~ — fN(n¢))
(evaluating the twisted character of the conjugate self-dual representation , <,
against fV). It is worth pointing out that the stable linear form f — f G (4) is
intrinsic to G*, namely that it is independent of how G* extends to a twisted
endoscopic datum. (There are two extensions up to isomorphism.) We will
abbreviate f¢ (1) as f(1) when there is no danger of confusion.

The proposition is used to make sense of stable linear forms on all endo-
scopic groups of Ug/r(N). Let H = Resp//pGL(N) with F' = For I’ = E.
For f € H(H(F)) = H(GL(N,F")) and v € ¥(H,F) = U(GL(N), F’), we
define f(v) := f(my), where 7y, € II(GL(N, F')) is as in (1.2.4). Hence for
any endoscopic triple (G¢, s¢,7°) for Ug,r(IN), the stable linear form f’(¢’) for
f € H(G®) and ¢’ € W(G*) is defined in the obvious manner since either G*
is a finite product of general linear groups (if £ = F' x F) or a finite product
of groups of the form Ug,r(N;) and Resg,pGL(N;) for E/F a quadratic field
extension and positive integers IV;’s and V;’s.

We are ready to state the rest of the main local theorem.

Proposition 1.5.2 (cf. Theorems 2.5.1,3.2.1, [Mok]). 1. Let € U(G*). There
exists a nonempty finite set 11,,(G*) with a map to Wyt (G*) as well as a map
to Irr(Sy).

2. For each m € Iynit(G*) in the image of IL,(G*), the central character w, :
Z(G*)(F) — C* has a Langlands parameter given by the composition

Lr-sta

, detxid

(CXXIWF.
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3. Let (G*,s%,n%) be an endoscopic triple with s¢ € Sy, and let ¢* € ¥(G*)
be a parameter such that n® o ¢ = 1. If f¢(¢°) is the stable distribution on
G*(F) associated to the parameter ¢, and f¢ € H(G*) and f € H(G*) are two
functions with A€, z]-matching orbital integrals, then we have

P =Y (mst-sy)f(),

welly, (G*)

where (mr, —) denotes the character of the irreducible representation of Sy, that w
corresponds to by 1.

4. If ¢y € Ppaa(G*), then the map 11, (G*) — Il (G*) is injective and its
image belongs to Miemp(G*). The map 1,(G*) — Irr(Sy) is also injective,
and bijective if F' is nonarchimedean.

5. Suppose that F is nonarchimedean, G* is unramified over F', and 1) is unrami-
fied. Then the preimage of the trivial character on Sy, is the unique unramified
representation in I1,(G*) (relative to the distinguished hyperspecial subgroup).

6. As 1 runs over ®pqq(G*) the sets IL, (G*) are disjoint and exhaust Iiepmp(G*).

In addition, for 7 in the L-packet for a bounded parameter, we know that
(-,m) = 1if and only if 7 has Whittaker model with respect to the given Whit-
taker datum. This is [Mok, Cor 9.2.4] (cf. [Art13, Prop 8.3.2]).

The theorem above corresponds to the case of the extended pure inner twist
(G*,id, 1) in Theorem 1.6.1 below. In that case x, = 1 so Irr(Sf/), Xz) = Irr(Sy)
in view of Lemma 0.4.13.

We remark that that the map I1,(G*) — Irr(S,) in part 1 depends on the
additive character r : F* — C*. This character, together with the fixed pin-
ning of G, gives rise to a Whittaker datum, which is used in the normalization
of the transfer factors. These in turn influence the transfer f¢ of f, and hence by
part 3 of the theorem also the pairing (7, —), which is just a different notation
for the map in part 1.

1.6 The main local theorem

We are about to state our main local theorem on the local endoscopic classifi-
cation for inner forms of the unitary group Ug,r(N). The results are novel
when N > 3, N is even, and E/F are non-archimedean local fields. (The
archimedean case is due to Langlands and Shelstad. In the non-archimedean
setting, the case NV < 3 is due to Rogawski. In the quasi-split and non-quasi-
split cases, Moeglin has obtained partial results in [Moeg07, Mceg11] and later
Mok completed the classification for quasi-split unitary groups (including the
global case) in [Mok] adapting Arthur’s strategy. Note that Ug,»(/N) admits a
non-quasi-split inner form exactly when N is even.) Nevertheless our theorem
includes the archimedean case as well as the split case (i.e. £ = F' x F) in the
statement. The point is to have a precise and consistent normalization for local
results in order to provide input for the global theorem.
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1.6.1 Statement of the main local theorem

Let F be a local field. Fix a non-trivial character ¢ : F — C*. If E/F is a
quadratic extension we have the quasi-split unitary group G* := Ug, (V) de-
fined in Section 0.2.2. It is endowed with a standard F-splitting which deter-
mines, together with ¢, a Whittaker datum as in [KS99, §5.3]. For ¢ € ¥(G*)
recall the algebraic groups Sy, = Cent(y, G*), Si** = [Sy N [G*]ae]® and Si =
S/ Sfpad. Consider an extended inner twist (¢, z) : G* — G. The datum (¢, z)
determines a character y. € X*(Z(G)') via (0.3.1). Write Irr(Sfb, X-) for the
set of characters on Si whose pullbacks via Z (@)F — Sy — Si} are x. Recall
from Lemma 1.2.2 that Irr(Sz}, X:) is nonempty when 1 is (G, §)-relevant. In
order to understand how the local classification depends on z, note that when
¢ is fixed z can only be replaced by zx for some x € Z,jlg(f ,Z(G*)), and that
x determines a character x, € X *([CA? / CA?SC]F). This character provides a char-
acter on Z(G)! by pull-back along Z(G)' — G — [G/Gs.]'. It furthermore
provides a character on Sfp as follows: If we twist the Wr-action on the exact
sequence
1= Gse > G— G/Gse — 1

by v, then the action on the third term remains unchanged, and taking Wpg-
invariants we obtain a map

Sy = HO(p(Wr), G) — [G/Gse]"

via which x, provides a character on S, that descends to S

The following local classification theorem is our main local result. In this
paper we establish it under the hypothesis that ) is generic. The theorem will
be proven in full in the next paper [KMSb].

Theorem* 1.6.1. 1. Let ) € U(G*). There exists a finite set I1,, (G, €) with a map
to unis (G). If 4 is a generic parameter (i.e. ) € Ppaa(G™*)) then this set is
empty if and only if ¢ is not (G, §)-relevant. In general the set is empty if 1 is
not (G, &)-relevant.

2. The set 11,(G, §) is independent of z. It is equipped with a map
My(G,6) = Ir(Sf,x), 7= (m—)es
whose dependence on z is expressed by
(m,=)eze = (T —)e.2 © Xa

forany xz € Zallg(S,G*). Both the set 11,(G,€) and the pairing (—, —)¢ -
depend only on the equivalence class = of (£, z) and can therefore be denoted by
II,(G,2) and (—, —)=.
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3. For each m € Iynit(G) in the image of 11, (G, &), the central character wy :
Z(G)(F) — C* has a Langlands parameter given by the composition

Ly i

, detxid

(CXX]WF.

4. Let (G, s*,n*) be an endoscopic triple with s¢ € Sy, and let ¢ € U(G*®) be a
parameter such that n® o ¢® = 1. If f¢ > f¢(¢%) is the stable distribution on
G*(F) associated to the parameter )¢, and f¢ € H(G*®) and f € H(G) are two
functions with Ale, §, z]-matching orbital integrals, then we have

F @W°) = e(G) Z (m, 8% - sy) f(m). (1.6.1)

7l‘€H1;;(G.,E)

5. Suppose that ¢ € ®pqa(G*), i.e. ¢ is generic. Then the map IL,(G,Z) —
Munit (G) is injective and its image belongs to Iiemp (G). If F' is nonarchimedean
the map 11, (G, E) — Irr(Sfp, Xz) is bijective. If F is archimedean, let (&;, z;) :
G — G, be pure inner twists such that {z;} is a set of representatives for the
image of H* (T, Gs.) — HY (', G). Then the maps I1,(G;, &;o€) — Irr(Si, Xz)
given by m; = (i, —)¢,0¢,6-1(z,)- lead to a bijection

| |T04(Gi, & 0 &) — Trx(S, x2).

6. As ¢ runs over ®pqq(G*) (resp. g paa(G*)) the sets 11, (G, =) are disjoint
and exhaust Iiemp (G) (resp. s temp (G)).

1.6.2 Initial reductions

As before suppose that £ is a quadratic algebra over a local field £ (allowing
E = F x F). Let (G, €) be an inner twist of G* = U/ p(NV).

Proposition 1.6.2. Let z, 2’ € Z! (€, G*) be such that (¢, z) and (€, ) are extended
pure inner twists G* — G. If Theorem 1.6.1 holds true for (&, z) then it does so for

(& 2).

Proof. As we already remarked prior to stating Theorem 1.6.1, 2’ = zx for some
x € Zy,(E,Z(G*)). Applying the Theorem to (£, z) we obtain the set Iy (G, )
and its map to IT,,i(G). These serve (,z’) as well. We also obtain the map
7+ (7, —)¢,, and define the map 7 — (m, —)¢ .- by the formula in part 2 of the
Theorem. Parts 3 and 6 are independent of z and thus remain valid, while part
5 depends on z in an obvious way and also remains valid. To treat part 4, recall
that according to Lemma 1.1.2 the transfer factors Ale, &, z] and Ale, &, zz] are

related by the equation

A[e7§7'zx](’77 5) = A[e7§v'z](775) 'X:L’(s)7
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for any strongly regular semi-simple related elements v € G*(F) and 6 € G(F).
It follows that if f and f¢ have Ale, £, z]-matching orbital integrals, then f and
f¢ - Xa2(s) have Ale, ¢, z']-matching orbital integrals. Noting that s, lifts to Gie
and thus belongs to the kernel of x,, we see that the two versions of equation
(1.6.1) for (&, z) and (¢, 2’) are equivalent. O

Corollary 1.6.3. Theorem 1.6.1 holds true if G = G* is quasi-split (which includes
thecase E = F x F).

Proof. Mok’s main local theorem (Proposition 1.5.2) tells us that the theorem is
true for the trivial extended pure inner twist (G*,id,1). (If E = F x F then
the theorem is no more than Theorem 1.2.4.) So the corollary is an immediate
consequence of Proposition 1.6.2. O

1.6.3 The local classification for linear groups

Let F be a local field and G* = GLy. We take YG = G = GLy(C) as the
dual group. Recall from Section 0.3.2 that an inner form G of G* is of the
form Resp,p(GL(M)) where D is a division algebra over F of degree d* and
N = Md. Every ¢ € ®(G*) can be written as ¢ = ki1 @ --- @ ki with
@i € P2(GL,,,) and kyng +- - -+kny = N. Then ¢ is relevant for G if d divides n;
forall 1 <i < t. The Kottwitz sign e(G) is explicitly given as e(G) = (—1)V M.

To each Arthur parameter ¢ € ¥(G*) we associate a Langlands parameter
¢y by (1.2.2) and to it, we can further associate a representation 7, of G* via
the local Langlands correspondence of Theorem 1.2.4.

Lety = k191 & - - - @ kypy € U(N) be a decomposition of an Arthur param-
eter into simple constituents. We would like to associate to ¢ a sign a, but to
do so we have to differentiate the real and p-adic cases.

Suppose first that F' is real. Then ; is of the form v; ® Symmi*1 where
v; € Oo(fi), fi € {1,2} and and Sym™i ! is the irreducible representation of
SU(2) of dimension m;. We set a,, = 1 if f; = 2 and ay, = (—=1)™/2if f; = 1.

We then define .
ki
aw = Ha¢i'
i=1

Suppose now that F'is p-adic. Then 1; is of the form v; ® Sym"” 1 @Sym™i~
with v; € ®,(f;). We set ay, = 1 unless d divides f;m;. In this case, let s be the
smallest positive integer such that d divides f;s (thus s|m;); we set ay, = 1if s

is odd and ay, = (=1)™5" if s is even. We then define
¢
ki
Ay = Ha¢i.
i=1

Finnaly, in the p-adic case denote, for any Arthur parameter ¢ € ¥(G*),

1

o~

Y(w,ur, uz) = Y(w, uz, uy), w € Wg,up,us € SU(2)
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for the dual parameter that interchanges the two SU(2)-factors in Wp x SU(2) x
SU(2). With this notation we can now recall the results of [DKV84], [Bad08] and
[BR10]. We remark that the “Langlands-Jacquet correpondence” LJ is normal-
ized in different ways in the two references [Bad08] and [BR10].

Theorem 1.6.4. Let ) = k1)1 @ - - - ® kuipy € U(N) be a decomposition of an Arthur
parameter into simple consituents.

1. Suppose that for each 1 < i < t we have that at least one of V|1, and $1|LF is

relevant (we disregard DilLp if F' is real). Then there exists a unique irreducible
unitary representation my, of G(F) such that

tr(my, (7)) = e(G)aytr(my (f)) (1.6.2)

forany f* € H(G*), f € H(G) such that Os-(f*) = Os(f) whenever §* €
G*(F) and § € G(F) are stably conjugate.

2. Suppose there exists 1 < i < t such that neither of ¥;|r,, and z@| Ly is rele-
vant (we disregard 1|1, if F is real). Then for any f* € H(G*), f € H(G)
such that Oz« (f*) = Os(f) whenever 6* € G*(F) and 6 € G(F') are stably
conjugate, we have

(3 () = 0.
3. As 1 runs over &(G*) the representations y, are different and exhaust Iliep,p (G).

Let ¢ € U(G) be an Arthur parameter. To deduce Theorem 1.6.1 from The-
orem 1.6.4, we will show that the group SE} is a complex torus of rank 1 and

we will assign to each p € X* (Si) an equivalence class of extended pure inner
twists = : G* — G, a representation 7 of G(F') (possibly empty) and use (1.6.2)
to prove that the character identities of Theorem 1.6.1 hold.

Decompose ¢ = ki1 @ --- @ ki into irreducible representations with
dlm(’(/h) = n,. The parameter w is then discrete for the Levi subgroup M* C G*
dual to M = GL,, (C)** x -+ x GLy, (C)¥*. We have S, = GLy, x --- x GlLy,,
with each entry ¢ of GLy, corresponding to an n; x n;-block of the form c- 1y,
inside of G. We have

Sy N Gaer = {(My, ..., M, |Hdet =1}
Letn' = (n1,...,n:) be the greatest common divisor, and let n; = n;/n’. Then
(Swﬂ@der) —{Ml,..., |Hdet }

It follows that we have the isomorphism

S5=C*, (M., M) e [[det(ds)m
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The inclusion Z(G) — Sy induces the surjective map
CX:Z(@)%SE&:(CX, z s 2V

Dual to this map is an inclusion X* (Si) C X*(Z(G)) and we use it to view any
peX *(Si) as an element of X*(Z (@)) This element gives rise to an equiv-
alence class of extended pure inner twists (§,z) : G* — G. One checks using
Lemma 0.4.9 that the inner forms G obtained in this way are precisely those to
which the Levi subgroup M* of G* transfers. This completes the construction.

Let s € Sy be a semi-simple element. Conjugating within S, we may as-
sume that it belongs to the standard diagonal torus of Sy, = GLg, x --- x GLy,,
hence also to the standard diagonal torus of G. The group L = G, is connected
and is a semi-standard Levi subgroup of @G and contains M, because Z (]\//.7 ) is
the standard maximal torus of S,. Let L* be the standard Levi subgroup of
G* dual to L. It contains M* and the parameter ¢ provides a representation o
of L*(F). We may take L x W as the L-group of L* and in this way (L*, s)
becomes an endoscopic datum for G*.

We now discuss A[E, z]. Let v € L*(F') and § € G(F') be semi-simple and
G*-regular. These elements are related if and only if they are stably conjugate,
with 7 viewed as an element of G*(F') via the inclusion L* C G*.

Lemma 1.6.5. We have

A[f,z}('y,é) = DG*/L* (’Y) p(s)

Proof. Let us adjust (&, z) within its equivalence class so that £(y) = J. Then
L = £(L*) is a Levi subgroup of G defined over F' and (§,z) : L* — L is an
extended pure inner twist. Let S* = Cent(y, G*). We have

A[E, 2](7,0) = A(v,7) - (inv(v, ), 8) 5+

The term A(v,7) is computed with respect to the Whittaker normalization of
the transfer factor for the endoscopic datum (L*, s) of G*. A routine calculation
shows that it equals D¢« 1+ (v) = [, |a(v) — 1|2, the product being taken over
all roots of S* in G* outside of L*. The term inv(y, §) belongs to H.,_,..(€,5*)

(and is equal to the class of z there), while the term s belongs to Z (L*) c [S*]T.
The pairing is a-priori that between HL_ (£, 5*) and [S*]", but since s € Z(L*)
we may also map inv(y,8) to HY_, (€, L*) and then pair it with s € Z(L*).
We have seen

A6, 21(7,0) = Dam(v) - (2, 8) L+

Recall that M* is contained in L* and transfers to G. Hence it also transfers
to L. Adjusting (§,z) : L* — L within its equivalence class we achieve that
M = &{(M*) is defined over F and (§,z) : M* — M is an extended pure
inner twist, in particular z € Z_,_ (€, M*). We are thus free to replace the

pairing (—, —) - with the pairing (—, —) - between H. (£, M*) and Z(Z/W\)
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Since z is G*-basic, Lemma 0.4.11 tells us that (z, —)/+ annihilates [Z (]\7 )N
@der]o/ the latter being contained in Ng/p(Z (]\//.7 )n @dcr) for any finite Galois
extension K/F. But Z(M) is a maximal torus of the connected reductive group
Sy, thus Z (1\7 )n Sffd is a maximal torus of S;fd (in particular, it is connected)

and equals [Z (]\//7 )N Gaer]°. We conclude that the inclusion Z (]/\4\ ) C Sy induces

an isomorphism Z(M)/[Z(M) N Gaer]® — Sf/). Using the surjection Z(G) — Sfp
we choose $ € Z(G) mapping to the image of s in Si. With this, we see

A[§7Z](’776) = DG/JVI(V) ’ <Zv S>M*

~

But since $ now resides in Z(G), we may finally replace (—, —) a7+ with (—, —)g~.
Recall however that (z, —)g~ is the character on Z (@) determining the equiv-
alence class of the extended pure inner twist ({,2) : G* — G and was by
construction equal to the restriction of p € X *(Si) to Z (@) Thus (z, 5)g- =
p(8) = p(s). We arrive at

Al6,2](7,0) = D= /- (7) - p(s)
and the proof is complete. O

Proof of Theorem 1.6.1 for G. Let ¢ € U(G*) and p € X*(Si). Let (&,2) : G* —
G be the equivalence class of extended pure inner twists constructed as above
from ¢ and p. Let 7}, be the representation of G*(F) associated to v via the
local Langlands correspondence.

Decompose as before ¢ = k1 @ - - @ ki), into irreducible representations.
If, for all 1 < i < ¢, either ;| or QZZ|LF is relevant, set I1,(G,¢) = {my}
where 7, is the representation associated to i) by Theorem 1.6.4. Otherwise,
set T, (G, &) = 0.

To prove Theorem 1.6.1 for G it is enough to show that, if f € #(G) and
f' € H(L*) have A[¢, z]-matching orbital integrals, then

L tr(o(f) = e(G)p(s)p(sy ) tr(my (f)), if Iy (G, ) = {my };
2. te(ws (1) = 0,if T,(G, €) = 0.

The discussion of A[¢, z] implies that we can take f' € H(L*) to be the
constant term along L* of p(s)f*. Then, by Theorem 1.6.4, we have

tr(o(f) = tr(m(p(s)f))
_ Jel@)p(s)aytr (my(f)) i Ty (G, €) = {my};
0 if Iy (G, €) = 0,

so Theorem 1.6.1 is reduced to show that in the first case

p(sy) = ay.

Suppose first 1 is a discrete parameter.
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If F is real then, by Corollary 1.6.3, we just need to consider the case where
N is even and G' = GLy/,(H), where H denotes the quaternion algebra. Then
1) is of the form v ® Symm*1 where v is a representation of Wy of dimension
fe{1,2} and fm = N, and sy = (—1)""'Idy. By 0.3.2, p(s) = s, with
k = N/2 mod N, so p(sy) = (1)~ Dk, This is equal to 1 unless m is even
and N/2 is odd, that is if and only if f = 1 and m/2 is odd. Thus p(sy) = ay.

If F is p-adic, then v is of the form v ® Sym™ ' ® Sym™ ! where v is a rep-
resentation of Wy of dimension f and fnm = N. Again, s, can be computed
explicitely and one has s, = (—1)™'Idy. Then p(sy) = (—1)~Y* with
k= r% mod N where 7 is the Hasse invariant of G' (see Paragraph 0.3.2).

Hence p(sy) = (—1)m=Dr"5"  If d divides nf then p(s,) = 1. If d divides
mf let s be the smallest integer such that d|sf. Let m’ € Z such that m = m/s.
Thus, if s is odd we have that p(sy) = (—1)("’/5*1)””1/175 = 1. If s is even,
then m and d are even, and % and r need ot be odd. We deduce that p(sy) =
(—1)"". Again we have p(sy) = ay.

Suppose now ¢ = k141 @ - - - @ ktp. Then the discussion above tells us that

t

(g, 59)G = [ (Mg, b0;) 6. - The multiplicativity definition of a, gives us
i=1 i
p(sy) = ay. O

Remark 1.6.6. For G* = GLn(F') we have a necessary and sufficient condition for
an Arthur packet to be non-empty. Namely if v = kiip1 @ --- & kyypy € U(N) is
a decomposition of an Arthur parameter i € U(G*) into simple consituents, then
I, (G, €) is non-empty if and only for all 1 < ¢ < t, either ¢y, or d)@ is (G, ¢)-
relevant. And all Arthur packets are either empty or singletons.

1.6.4 Local packets for parameters in V" (Ug,p(N))

In the above theorem we considered packets of an extended pure inner twist
(G,¢&, z) associated to parameters ¢ only in ¥(Ug,r(N)). As a preparation
for the global theorem in the next subsection we introduce I, = II,(G,¢)
when 1) belongs to the larger set ¥ (Ug,r(N)). The necessity comes from the
possibility that the generalized Ramanujan conjecture might fail, in which case
the localization of the global parameter may not be in ¥(Ug,r(N)) but only
in UT(Ug/p(N)). The construction is basically the same as in [Mok, 2.5], cf.
[Art13, 1.5]. The idea is to go down to a Levi subgroup M of G such that v lies
(not just in U (M*) but) in ¥(M*) up to a character twist, where the packet is
already defined, and then induce up from M to G. We will also define a pairing
between Sfp and IL,.

We need a preliminary discussion of characters on Levi subgroups. Sup-
pose that P* = M* Np- is a standard parabolic subgroup of Ug,r(N) and that
M* transfers to G. Lemmas 0.4.2 and 0.4.7 allow us to arrange that P* transfers
to a standard parabolic subgroup P = M Np and that £ : G* — G restricts to
an inner twist { : M* — M by disturbing (G, €, z) within its equivalence class
if necessary. In particular the isomorphism £ : Ay« — Ay, is defined over F.
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Consider a point A in the open chamber of P in
CL*M = X(M*)F ®z R = X(AM*)F ®z R = X(AM)F ®z R = X(M)F ®7 R.

The first and third identifications are induced by inclusions A+ — M* and
Apnr — M. Then X gives rise to an unramified quasi-character x5 : M*(F) —
C* and x) : M(F) — C*. Both x} and x» correspond to the same element
o € H*(Wp, Z (1\7 *)) (which may also be viewed as an L-parameter for M*),
cf. [Bor79, 10.2]. Every element, in particular ¢, acts on the set U(AM*) by
multiplication, cf. [Bor79, 8.5]. (Since ¢, has central image, there is no need to
distinguish left and right multiplications.)

Now we explain how to associate a packet to a given 1) € ¥ (Ug,p(N)).
There exist a standard parabolic subgroup P* = M*Np- of Ug,r(IN), a param-
eter ¢y € ¥(M™*), and a point A € a}; such that ¢pr x := s - 9y is carried to
¢ under “M* — LUg, p(N), where x) : Wg — ©M* is the parameter given by
A, cf. [Art13, 1.5]. (In particular the image of x is contained in Z (J/W\ ) x Wg.)
If 4 is not (G, £)-relevant, simply define II,(G, £) to be the empty set. Now
assume that ¢ is (G, £)-relevant so that M* transfers to G and the discussion in
the preceding paragraph applies. Using Lemma 0.4.18 we may replace (¢, z)
by an equivalent pair such that (¢, z) equips (not only G but also) M with
the structure of an extended pure inner twist. Let us write (M, &, zar) for
the latter. Theorem 1.6.1 attaches a packet I, = II;,, (M, &) and a pairing
(-, T )ens, 20 fOr €ach mpy € ILy,, . Now we are ready to define the packet

I, (G,&) :=={r=Tp(nm @ x») : ™m € Iy, },

which may consist of reducible or non-unitary representations, just like in the
quasi-split case, cf. [Mok, 2.5]. As usual we write II, for II, (G, §) if the inner
twist is clear from the context. It is easy to see that different choices of i,
lead to the same definition of II,, (G, §). Indeed it suffices to check that II,,
is invariant under the Weyl group of M in G. This is trivial when G is linear.
When G is unitary, with the decomposition M = M, x M_ as before, each
Weyl element acts trivially on M_ and permutes the linear factors of M, but
the packets of linear groups are singletons so we are done. It is also worth
pointing out that I, (G, §) depends only on (G, €) and not on the extended
pure inner twist by virtue of Theorem 1.6.1.
Our next task is to give the pairing between Sfp and I1, for ) € ¥ (Ug,p(N)),

which depends on the extended pure inner twist. Observe that the centralizer

group Sy is contained in M~ by the assumption on ¢ so that S, = Sy,, and
that Z(M*)I' C Sy. So

S9Z(G)F =89, Z(M*)". (1.6.3)
(The inclusion C is clear. For the other inclusion it is enough to see that 7y (Z (G —

mo(Z (Z/W\ “)I') is onto, which is verified explicitly for the list of Levi subgroups
in §0.4.5 and §0.4.6.) The assumption that A/* transfers to a Levi subgroup
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M C G shows that the character x, € X*(Z (@*)F) coming from z is trivial on
Spdnz (G*)F by Lemma 1.2.2. Hence x . extends uniquely to a character X, on
Sipdz (GH)F = S0Z (G*)T which is trivial on Si2d. Let x.,ar denote the restric-
tion of Y. to Z(M*)' via (1.6.3). Then Xz,M = Xz since xz,, coincides with
Xz on Z(G*)' and also extends uniquely to S),Z(G*)" by the same reasoning.
Lemma 0.4.13 and (1.6.3) imply that Sfde(@*)F = Spd Z(M*)', and also that

Tre(S5, x2) = Ire(S5, x=) (1.6.4)

since both sets parametrize characters on Sy, whose restriction to Sf;‘dZ (G is
X - Thanks to the above identification we can now define for each 7 = Zp (7, ®
xx) € IL, that

(8:M)e,z = (S, ™M )enronr S E SE/;?

which makes sense because (-, mas)¢,, 2., Canbe viewed as a character in Irr(S’fb7 Xz)
via (1.6.4) and the equality x. a»r = Xz,

1.7 Main global theorem

In this subsection we state our main global theorem describing a spectral de-
composition of the discrete automorphic spectrum for inner forms of unitary
groups via L-packets. So let (G, ) be an inner twist of G* = Ug,p(N) where
E is a quadratic extension of a number field F. We choose z such that (G, ¢, z)
is an extended pure inner twist; this is possible thanks to Lemma 0.4.19. The
role of z is auxiliary in that the final theorem turns out to be independent of the
choice of z.

To state the decomposition we would like to attach certain global packets
I, (G,€) top € ¥(G*,n,). As discussed in §1.3.5 there is a localization map
Y = 1, from U(G*,n,) to UL . (G?). Note that 1, is unramified at all but
finitely many places v (since we have 9} = 7, o1, from §1.3.5 and know that
ny and ¥ are unramified at almost all v). At the end of the last subsection we
attached a local packet I, (G, &,) equipped with a map

Iy, (Gy, &) = (S5, x2), o > (4 Tude, o

Define the global packet for ¢ by

I, (G,€) := {®7rv vy € Iy, (Go, &), (-5 Tw)e,,, = 1 for almost allv}.

When G is not quasi-split and ¢ is not generic, the packet I, (G, {) may be
empty because Il (G, &,) are possibly empty, for instance if 1 is not (G, &)-
relevant. To each 7 = @, 7, € II,(G, ) we attach a character on Sz, by

<S77T>£ = H<S77TU>£’U7ZU7 S SEZ)’

v
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where the latter s denotes the image of s under Si — Sfp IfseZ (CAT'*)F then
(s,m) =[1,(s,m) =11, xz,(s) = 1since[[, x¢, =, is the trivial character by the
product formula (0.3.3). Since the natural map Z (G)T - Si has cokernel Sy,
(Lemma 0.4.13), the global character (-, 7)¢ descends to a character on the finite
abelian group S. It can also be seen from the product formula that the global
character (-, )¢ is independent of the choice of z, explaining the omission of z
from the notation.

The final ingredient in the global theorem is the character €, : Sy — {£1}.
We refer the reader to [Mok, 2.5], cf. [Art13, 1.5], for the precise definition and
simply note that e, = 1 identically if ¢ is generic. In particular the definition of
€, is the same as in the quasi-split case and does not depend on (G, &). Finally
put

Ly (G, & €p) i={m € LIy(G,§) : (- m)e =€y}

Theorem* 1.7.1. Let E/F be a quadratic extension of global fields and x € {£1}.
Fix x. € Zg. Let (G,§) be an inner twist of G* = Ug,p(N). Then there is a
G(Ap)-module isomorphism

we‘l’z(G*,’l]XH) WEHw (G,g,ﬁw)

We could have stated the theorem with k = 1 and x,, = 1 but it seems
preferable not to do so since different choices of x and x, naturally appear
when studying parameters coming from endoscopic groups. A better state-
ment would be to take the first sum over v € Uy(G*), the canonical set of
discrete parameters defined in §1.3.8 by considering all choices of x and x, at
once. Note that the localizations v, of > are well defined according to Lemma
1.3.5, so I1, (G, €) is defined independently of x and x... One also checks that
the same independence holds for ¢, hence also for I, (G, &, €y).

Theorem 1.7.1 will be completely proved in [KMSb] if (G, §) is realized as
a pure inner twist and in [KMSa] in general. More precisely we prove the the-
orem in Chapter 5 under two hypotheses, which are resolved in [KMSb] and
[KMSa] in the corresponding cases. The unconditional result of this paper to-
wards the theorem, is a natural decomposition of L3, .(G(F)\G(Ar)) accord-
ing to the parameters ¢ € ¥(G*, 1, ) only when ¢ is generic and (G, ¢) comes
from a pure inner twist, in which case the two hypotheses are verified.

Remark 1.7.2. We cannot say that the 1)-part of the spectrum is everywhere tempered
for each generic parameter ) due to the possible failure of the Ramanujan conjecture
for general linear groups, but it does follow from the result of this paper (and the result
in the quasi-split case) that a discrete automorphic representation m of G(A ) which is
everywhere tempered does occur in the 1-part for some generic parameter 1. Indeed we
show in §3.3 that such a m should occur in the y-part for some ¢ € Uy(G*,ny,.). If
were non-generic then , are unramified and belong to the packet for the non-generic
parameter 1), at almost all finite places m,, so cannot be tempered.
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2 CHAPTER 2: THE LOCAL INTERTWINING RELATION

Here we define normalized local intertwining operators motivated by their
global analogues (cf. 3.4 below) and formulate the local intertwining relation
(Theorem 2.6.2 below), which plays an essential role in the interpretation of the
spectral side of the stabilized trace formula and lies at the heart of the proof of
the main theorems. Once the local intertwining relation is stated, we prove ini-
tial reduction steps by purely local methods based on the induction hypothesis
and a few special cases for the real unitary group U(3, 1). The latter is not only
an illustration but serves as a cornerstone for the inductive argument when
completing the proof of the local intertwining relation in Chapter 4.

2.1 The basic diagram

We introduce a diagram of complex algebraic groups that will be useful in both
the local and the global context. It can be stated in the general context where G
is a quasi-split connected reductive group defined over a local or global field
F, M C G is a proper Levi subgroup, and ¢y € U(M) is a parameter. Re-
call the possibly disconnected complex reductive group Sy = Cent(z, @) and
its connected subgroup Sffd = Cent (1, [@der})o which contains the derived
subgroup of S}). When F is global, one should be careful about the meaning
of Sy. We will assume that Sy, has been properly defined. This is the case
for the groups considered in this paper by virtue of Section 1.3. The quotient
Sfp = 8,/S1 is a complex diagonalizable group. We also have the analogs

Sy(M) = Cent(y), M) = Cent(Ag,Sy) and S% (M) relative to M. Note that

Si (M) is not a subgroup of Si, because Sy, (M) is not equal to S} NSy, (M).
We write Ny, (M, G) for the normalizer of A7 in Sy,.
Writing Z for centralizer and N for normalizer, we recall the three finite

groups

N(A<, S9) N(A<, Sy)
WM, G) = — M0 Wy (M,G) = A
w(M.G) Z(A7,S9) v(M,G) Z(Ag, Sy)
and
VT N(AG, SY)  Z(Ag Sy)

Define moreover

Z(Az, Sy) N(Azz, Sy)
Shh(M):$, s (M,G):$,

4 Z(AM\,Sffd) v N(AM\,Sffd)
and A 4
N(A=,S ) N(A, S
N (M,G) = WAsp. Su) WM, G) = (g7 5°)

Z(A]T[u Sq!;}ad) Z(A]/\/Ya Sqf[;dd) .
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Since Sf/f‘d contains the derived subgroup of SY,, we have the equality N(Ay, SY,) =

M
N(Ag, S5 - Z(Ag, S9).

We obtain the following commutative diagram with exact rows and columns.

1 1 @.1.1)

Wrd(M, @) —— WO(M, G)

1——= SH(M) —— N (M,G) —= Wy(M,G) —1

1— SS(M) —— S5 (M, G)

Ry(M,G) ——1

2.2 Local intertwining operator I

Let F be a local field of characteristic zero, E/F' a quadratic algebra, and G* =
Ug/r(N). Let M* C G* be a proper standard Levi subgroup. Let{ : G* — G
be an inner twist which restricts to an inner twist £ : M* — M. Let P C G
be a parabolic subgroup defined over F with Levi factor M. Let ¢ € ¥(M™*)
be a parameter. We assume the validity of Theorem 1.6.1 for M (as part of
the induction hypothesis) and obtain the packet IT; (M, £). We are concerned
with the case that this packet is non-empty, which we now assume. Let 7 €
1Ly (M, £).
For simplicity we often write Ni(M, G), Sfp (M, G), etc for the groups Ni(M*7 G*),

Si(M *,G*) etc introduced above (note that the group G was assumed to be

quasi-split in the preceding subsection) and similarly write M and @ for M*
and G* in Chapter 2, except in §2.6 and §2.8 where we have the generality that
M* may not transfer to G, in which case there is no M.

We will describe a normalization of the intertwining operator

Rpp(& ) : Hp(m) = Hp(m)

for two parabolic subgroups P and P’ of G with common Levi factor M. The
normalization will essentially be the standard one, as outlined for example in
[Art13, §2.3]. We must however use the inner twist £ in order to specify the
relevant Haar measures as well as the Galois representations on the dual side
that will provide the normalizing factors. In doing so, we must ensure that the
end result will transform well when we change £ within its M*-equivalence
class.
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We begin by considering the un-normalized intertwining operator. For this,
recall [Art89, §1] the spaces ay = Hom(X*(M)",R) and a}; - = X*(M)" @ C,
as well as the function Hy, : M(F) — ap defined by exp((Ha(m), x)) =
Ix(m)|F forall y € X*(M)' and m € M(F). For each \ € ajsc we have the
character

M(F) — C*, m — exp((Hpr(m), \)).

Let 7y denote the tensor product of = with this character. Consider the operator
Jpp(§,9r) - Hp(mx) — Hp(my) given by the integral formula

[Jpp(&Yr)fl(g) :/ f(ng)dn'.

N(F)NN'(F)\N'(F)
Here N and N’ are the unipotent radicals of P and P’ and ¢p : FF — C* isa
non-trivial additive character. This integral is absolutely convergent whenever
the real part of A € aj, . belongs to a certain cone. As a function of ), it has a
meromorphic continuation to all of aj, . It is important to specify the measure
dn’ precisely. The additive character ¢ : F' — C* specifies a Haar measure on
the additive group F' thatis self-dual with respect to ¢ . To specify dn’ it is thus
enough to give a top form on the vector space n(F)Nw'(F)\n'(F) = (nNn’)(F),
where we use Gothic letters for the Lie algebras of N and N’, and we denote
by N the unipotent radical of the parabolic subgroup of G that is M-opposite
to P.

By assumption £ : M* — M is an inner twist. Thus P* = ¢~1(P) and P"* =
£71(P') are parabolic subgroups of G* with Levi factor M* and defined over
F. Then ¢ restricts to an isomorphism of F-vector spaces £ : i* Nn'* — aNn.
The standard pinning of G* can be used to obtain a Chevalley basis of G*,i.e. a
choice of a non-zero vector X, € g} for each absolute root o € R(T*, G*). Each
vector X, is determined up to multiplication by +1. The vector space n* N n'*
is a direct sum of root spaces g}, and the corresponding X, form a basis for it.
Choose an arbitrary order of that basis and let n* be the top form with value
1 on that ordered basis. Let 1 be the transport of n* under £. It is a top form
on the F-vector space it N n’. Up to multiplication by +1, n is independent of
the choice of order as well as of the choice of X,,. Let a € F be such that an is
defined over F. We define dn’ to be the Haar measure on N (F) N N'(F) given
by |a|z" - |d(an)|r. It is independent of the choice of a. Having specified the
measure dn’, the definition of the un-normalized operator Jp/|p (&, ¢ r) is now
complete.

Recall the modulus character ép : M(F) — Rsg. It is the restriction to
M (F) of the character

M — Ry, m +— |det(Ad(m);n)|p

which we will also denote by §p. Here | — | is the unique extension to F of the
absolute value of F'. It then follows immediately that for m € M~ the following
equation holds

Tpiip(& 0 Ad(m), ) = 0p (§(m))20p(E(m) 2 Jpp(&,¥r).  (22.1)
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Next, we introduce the normalizing factor 7p/|p (¢, ¢¥F). Let M be the stan-
dard Levi subgroup of G corresponding to M and let P and P’ be the parabolic
subgroups with Levi factor M dual to P* and P’*. Let Ay = Z(J\//?)F’o. The
character exp((Hus(-),A)) has the parameter Wy — Ag; given by w +— [w|*.
The parameter of y is then ¢, (w) = ¥ (w)w|*. This is still an element of
U(M*). From it, we construct a Langlands parameter

1
by Lp = EM, wes gy (w, ol ).
lw|~2

Let pp/|p denote the adjoint representation of “M on w’ N7a \ w. Following
Arthur [Art13, §2.3] we set

L(Oap;"}? o ¢’¢1>\) 6(%51);/‘]9 o ¢1/)AawF)
L(lap;/‘p o (bw/\) 6(07/)%/“3 © ¢7,ZJA’7~/}F) ’

where we are using the Artin L- and e-factors of the given representation of L.
We define the normalized intertwining operator Rp/|p(§, 1) as the product

Rpp(&9x) = mpp(&Un, ¥r) " Tp p(&,¥r).

It follows from [Tat79, (3.6.6)] that the dependence on ¢ of the two factors
cancels out. It is known that the function A — Rp/|p(§, ) extends meromor-
phically to all A € aj, .. We will argue that it is defined and non-zero at A = 0
and will then set Rp/p(£, ) to be the value at A = 0.

The essential part of the argument involves the case where 1) = ¢ belongs
to ®(M*), i.e. it is a tempered Langlands parameter. In that case we have

Dy = Pa.

Lemma 2.2.1. Assume F' = Rand ¢ = ¢ € Ppqa(M™*). The function X —
Rp/p(§, ¢x) has neither a zero nor a pole at X = 0. If P, P', P" are parabolic sub-
groups of G defined over F with Levi factor M, then

Rpip(§,0) = Rprpi(§,9) o Rprp(§, ).

Proof. The essential work has already been done by Arthur in [Art89, §3]. In
fact, the first statement follows directly from his work, as our operator Rp/|p(, ¢x)
differs from the operator defined by Arthur only by multiplication by a posi-
tive real number coming from the different measures used in the definition
of Jp/ p. To obtain the second statement, we need to compare the measures
more carefully. First we notice that changing 1 does not influence the valid-
ity of the second statement. We take i r to be the standard additive character
Yr(z) = €*™*. Furthermore, notice that (2.2.1) allows us to replace ¢ with
an M*-equivalent inner twist. We thus arrange the following: The maximal
torus S = £(T™) of G is defined over F, invariant under a Cartan involution 6
of G, and for any choice of a Chevalley basis X, extending the standard pin-
ning of G*, we have 00é(X,) = —£(Y,), where Y, € g*, is chosen so that
(X, Ys] = H,.

TP’|P(£a1/})\a ¢F> =
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Let B be the symmetric bilinear form on g* = Mat(N, N; C) given by tr (X -
Y). Itis G* x I'-invariant. We use the same letter for the transport of B to g via
&, where it is again a G x I'-invariant symmetric bilinear form. One checks im-
mediately that each root & € R(S,G) C s* is identified with its coroot H, € s
under the form B. The constant ap/|p defined in [Art89, §3] is thus equal to
1. Moreover, the form —B(X,6X) is positive definite on g(R). To see this,
write g = 5 @ r, where ¢ is the sum of all non-trivial root spaces for S. Both
spaces s and ¢ are defined over R. Take first a non-zero X € s(R) and observe
—-B(X,0X) = —B(X,00X) = —B(X,-X) = tr(XX) > 0, where ~ denotes
complex conjugation of the entries of the matrix X. Next, focus on r. It de-
composes as direct sum of vector spaces r = ©,cpr(s,c)/rd. and each factor
0o = Pacafa is defined over R. Let a € R(S,G)/T and a € a. If a is a com-
plex root, i.e. ca # +a, then the R-vector space g,(R) is two-dimensional
and has basis X, X, where X = £(X,) + 0£(X,). Since foa = —a we con-
clude that o = —oa # +a and thus —B(X,0X) = 2. If a is a real root, i.e.
oo = a, the R-vector space g, (R) is one-dimensional and has basis X = £(X,,)
or X = i€(X,). In either case we have —B(X,6X) = 1. Finally, if a is an
imaginary root, i.e. oo = —q, then g,(R) is again one-dimensional and has
basis X = £(X,) + 0€(X,), but now ca = —a implies e = «, which again
leads to —B(X,6X) = 1. Besides showing that the form —B(X, §X) is positive
definite on g(RR), this argument also exhibits an orthonormal basis for the vec-
tor space n/(R) N a(R). It follows that the measure on N'(R) N N(R) defined
by Arthur in loc. cit. can be characterized as follows: Fix the basis X, X with
X = {(Xq) + 0&(X,) for g, when a consists of complex roots, and the basis
X =¢{(X,) or X = i€(X,) when a = {a} for a real root a. This gives a basis
of W'(R) N n(R). Note that imaginary roots do not appear in that subspace of
t. Then Arthur’s measure corresponds to a top form whose absolute value on
that basis is equal to 2%, where k is the number of summands g, with a con-
sisting of complex roots. It is now straightforward to check that the top form 7
used in our construction of Jp/| p satisfies this property, bearing in mind the ar-
rangement we have made for £. Thus, for this particular kind of £, our measure
coincides with Arthur’s and [Art89, Theorem 2.1] implies the claim. O

Lemma 2.2.2. Let F' be a global field, E/F a quadratic algebra, G* = U p(N) with
standard Levi subgroup M*, £ : G* — G an inner twist restricting to an inner twist
& M* — M, and 7 a discrete automorphic representation of M belonging to the
global packet I1,(M, €). Then

Rprp(&100) = Q) Rpr p(&us thr o),

where the left-hand side is the global intertwining operator (3.4.2).

Proof. Let iy : A/F — C* be a non-trivial additive character, and let ¢/, be its
restriction to F,, for all v. Henniart’s result [Hen10] implies that at each place v
the normalizing factor on the left-hand side, which involves quotients of auto-
morphic L- and e-factors, is equal to the normalizing factor on the right-hand
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side, which involves quotients of Artin L- and e-factors. It remains to prove
the analog of the claimed equation for the un-normalized operators Jp:|p and
this comes down to comparing the local measures dn’ used in the definition
of Jp/|p(&v, ¥r,) with the adelic measure dn’ used in the definition of Jp/|p of
equation (3.4.1). The top form n* of n'* N a* determined (up to {£1}) by the
distinguished pinning of G* is defined over F and hence 7 is defined over F,
which allows us to find a € F so that an is defined over F. The product of the
local measures |a 1—%1 |d(an)|F, is then equal to the adelic measure corresponding
to the top form an and the measure on A that is self-dual with respect to 4.
According to [Tat67, (3.3)], the latter assigns A/F' volume 1 and we conclude
that the product of the local measures involved in Jp/|p(§,, ¥, ) is equal to the
adelic measure involved in the global operator Jp|p. O

Lemma* 2.2.3. Let F be a p-adic field and v = ¢ € ®(M™*). Assume the va-
lidity of Theorem 1.6.1 and 1.7.1 for the proper Levi subgroups of G. The function
A = Rpi p(&, ) has neither a zero nor a pole at X = 0. If P, P, P" are parabolic
subgroups of G defined over F with Levi factor M, then

Rpip(§,¢) = Rpipr (&, ¢) o Rprp(§, @)

Proof. We assume that E/F' is an extension of fields. The case where E/F'is a
split algebra and hence G* is a linear group will be treated in [KMSa].

The case G = G* and £ = id is part of our assumptions listed in Section 1.5.
Equation (2.2.1) extends this to the case that G is quasi-split and § is arbitrary
(but necessarily cohomologically trivial).

We now consider the case when G is not quasi-split. By the reduction steps
described in [Art89, §2], we may assume that 7 is a discrete series represen-
tation. To handle this case, we pass to a global situation by applying Lemma
4.2.3. Tt provides a quadratic extension of global fields £/F and two places
u, v of F, both non-split in £, with v archimedean, such that with F, >~ F and
E, = E. Moreover, if G* = Up, (V) and M* C G* is the standard Levi sub-
group with M} = M*, then we obtain an inner twist £ : G* — G such that ¢
is quasi-split away from u and v and M = £(M*) is defined over F, and we
obtain an isomorphism ¢ : G, — G restricting to M, — M. Finally, we obtain
an irreducible discrete automorphic representation 7 of GG such that ¢ provides
an isomorphism 7, = 7.

According to Langlands’ theory of Eisenstein series, the operator on the left
side of the equality in Lemma 2.2.2 is defined and non-zero at A = 0, and its un-
normalized version Jp/|p satisfies the desired multiplicativity property. The
normalizing factor 7p| p(&vdru, ¥, ) at each place v also satisfies the required
multiplicativity, so it follows that the normalized global operator, i.e. the left-
hand side of the equality in Lemma 2.2.2, satisfies the required multiplicaitivity.

We now look at the right-hand side of Lemma 2.2.2. At all places away from
u and v, the local normalized intertwining operator is defined and satisfies the
required multiplicativity. This is due to the fact that G is quasi-split at these
places and so these properties are part of the assumptions listed in Section 1.5.
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The same is true at the real place v by Lemma 2.2.1. This forces the operator at
the place u to also be defined at A = 0 and multiplicative in P’, P. O

To treat non-tempered representations, we need the analog of Lemmas 2.2.1
and 2.2.3 for general parameters ¢ € ¥(M*). We formulate this lemma now,
but postpone the proof to [KMSb].

Lemma* 2.2.4. Let F' be a local field of characteristic zero. Assume the validity
of Theorem 1.6.1 and 1.7.1 for the proper Levi subgroups of G. The function A —
Rp/p(§, ¢x) has neither a zero nor a pole at X\ = 0. If P, P', P" are parabolic sub-
groups of G defined over F with Levi factor M, then

Rpip(&,1) = Rprip(§,9) o Rpr p(&, ).
Lemma 2.2.5. Let n € N(M,G)(F).

1. Given an isomorphism w(n) : (Vz,m o Ad(n)) — (V, ) we have an equality
I8 (r(n)) Lo Rpp(&,¢)oZE (n(n)) = Rp p(&,¥) of intertwining operators
Hp(moAd(n)) — Hp(mo Ad(n)).

2. For a function f defined on G(F), let [I(x)f](g) := f(z~1g). Then we have
an equality l(‘r)_l o RP’\P(£7/¢) o l((E) = Rz_lP’a:|z_1P;E(Ad(x_l) o 5##) Of
intertwining operators H,—1 p, (1) = Hy—1pr, (7).

3. Foranyw € W(M*,G*)(F') we have Rp/|p(Ad(0) 0 §,v) = Rp/|p(§, wip).

Proof. For all points we may assume that 7 is in general position, so that both
the un-normalized operator Jp/| p and the normalizing factor r /| p are defined,
as the general case follows from this by analytic continuation. The first point
is clear, as the operators Z§ ((n)) and Z§, (7(n)) act on the values of the func-
tions that comprise H p(7) and Hp/ (), while the operator Rp/|p acts on their
variables.

For the second point we note that while Jp/|p(§,9F) is given by integra-
tion over N(F) N N'(F) \ N'(F) with respect to a measure dn’, the operator
I(x)" o Jp/p(&, 1hr)ol(x) is given by integration over 2! Nz (F)Na ™' N'x(F)\
x~ !N’z (F) with respect to the measure Ad(z~!).dn’. This is the same as the
operator Jx—lplw‘x—lpw(Ad(x_l) 0 &,1r). On the other hand, by definition we
have TP’\P(fv ¥, '(/}F) = r:cflP’x\xflPx<Ad($_l) 0 &, v, wF)

For the last point, we have rp/p(§ o Ad(w), v, Yr) = rp/p(§, wih,Yr). At
the same time, the difference between Jp/|p( o Ad(w)~t, ¢yr) and Jpp(§,r)
comes from transporting the top form n* to n’ N n either via £ or via £ o Ad(w).
But Ad(w) preserves the pinning of G* so the top forms n* and Ad(w)*n* are
equal. O

2.3 Local intertwining operator II

We keep the assumptions made in the beginning of the previous section: F' is
alocal field, E/F is a quadratic algebra, G* = Ug,p(N), M* C G* is a proper
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standard Levi subgroup, and ¢ : G* — G is an inner twist that restricts to an
inner twist £ : M* — M. Let P be a parabolic subgroup of G defined over F'
with Levi factor M. Let ¢ € ¥(M*) and 7 € I, (M, §).

In addition, we now assume that P* = {~1(P) is a standard parabolic sub-
group of G*. For an element w € W(M*,G*)'' we let w € N(T*,G*)(F) be its
Langlands-Shelstad lift as described in Section 0.4.7. We assume that for o € I'
the inner automorphism £~1o(€) of G* fixes the w for any w € W(M*,G*)'.
This implies that @ := {(w) belongs to M (M, G)(F). The twist £ induces a I'-
equivariant isomorphism W (M*, G*) = W (M, G) and we use it to regard w as
an element of W (M, G). Then w is a lift of w.

We will describe a normalized intertwining operator

ZP(w7£7wa wF) : Hw_le(ﬂ-) — HP(TDW)a

where the representation wm of M(F) is defined by wr = m o Ad(w™!). We
begin with the un-normalized intertwining operator

1) : Hy-1p(m) = Hp(am),  [I(w)fl(g) = f(w"g),

where f € H,-1p(7) and g € G(F'). The map w — w is not multiplicative and
this failure is inherited by the map w + w. For w,w’ € W(T*, G*), Langlands
and Shelstad provide in [LS87, §2.1] a formula

~ o~ -

w-w = t(w,w) - ww,
for the failure of multiplicaitivity, with ¢t € Z*(W(T*,G*),T*). When w,w’
belong to W(M*, G*) the argument used in the proof of [Art13, Lemma 2.3.4],
which will also be recalled in the proof below, shows that we have t(vw', w) €
Ap+(F), where A+ is the maximal split central torus of M*. The failure of
multiplicativity of w +— w is then measured by £(¢(w’, w)) € Aps. This failure
necessitates a renormalization of the operator () in order to obtain an opera-
tor that has the desired multiplicative properties. For this we follow the strat-
egy outlined in [Art13, §2.3]. Let ]/\/_I'\7 ]3, P’ be dual to M*, P*,P* = w™'P*w
and let p,,-1p,,|p denote the adjoint representation of “M on the vector space
W Nn\ 1 =71 Nn, where #, W, and 1 denote the Lie algebras of the unipotent
radicals of P, P’ and the parabolic subgroup P that is M. -opposite to P. We
then have the Artin e-factor e(%, pz/v,l Puwlp © ¢y, Yr). Ideally, we would like to
use it for our normalization purposes, but for global reasons we need to use its
representation-theoretic analog instead. For this, recall the Levi subgroup M
of Resp,rGL(N) associated to M* as described in Section 3.4 and let 7y, be the

representation of M (F') associated to ¢,,. We let

1
GP(’IU,'(/J,'(!)F) = 6(5) 7le7p1\l/;*1pw|P7’l/)F)'

Henniart has shown in [Hen10] that this factor is equal to its Artin analog up
to multiplication by a root of unity. Work in progress of Cogdell-Shahidi-Tsai
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aims at showing that this root of unity is equal to 1. Until this has been proven,
we will need to use the representation theoretic e-factor instead of the Artin
factor.

Besides the e-factor, the work of Keys-Shahidi has shown that another nor-
malizing factor needs to be added, namely the constant A(w, v r) defined in
[KS88, (4.1)] with respect to the canonical lift of w € W(M*,G*)' to an ele-
ment of W(T*,G*)''.

Following Arthur, we define

ZP(wa 57 ¢7 d}F) = EP('IU, 1/}5 ¢F) ! )\(11.)7 ¢F)71 ' l(’lIJ) (231)
Lemma 2.3.1. For any w,w’ € W (M, G)(F') we have

lP(w/w7 57 ’(/}7 ’(/}F) = ZP(wla §7 w¢7 qu) o lP(w7 57 ¢7 wF)

Before beginning with the proof, we comment briefly on the statement,
which employs a slight abuse of notation. The operator Ip(w,&, v, ¥ r) was
defined as a linear map H.,-1p,, (7) = Hp(wn) for any 7 € I, (M, Epr). How-
ever, the same formula gives an operator H.,,—1,/—1 pyw (T) = Hypr—1 pyr (W),
and this is what we are using here. Moreover, the operator {p(w’, £, wi), ¥ r)
was defined as an operator H -1 p, (7') = Hp(W'n’) for any ' € I, (M, Enr)
and we are applying it here to 7’ = w.

Proof. We follow closely the proof of Lemma 2.3.4 in [Art13]. The right hand
side operator sends f € Hp(w) to the function

g+ ep(w',wi, Yp)ep(w,, Yp)Nw', Yr) T A (w, Yp) T @0 g),

while the left hand side operator sends f to the function

g+ ep(w'w, Y, vp)Xw'w, ¥p) " e (E((w'w) (W', w)w'w)) f(@ T ),
where 7, is the central character of the representation 7. Our goal is to show
e (E((w'w) Tt (w' w)w'w)) = Mw'w, vp)Mw,vr) " ANw',vp)™H (232)

ep(w',w, vp)ep(w, ¥, p)ep(w'w, v, br) .

We study first the left hand side and begin by recalling the argument that
t(w',w) € Apr+. According to [LS87, Lemma 2.1.A], we have

(w'w) "M (w', w)w'w = H aV(=1) = (=1)Za>0wa<ow/wa>o0 o’

a>0,wa<0,wwa>0

for a € R(T™, G*) and positivity taken with respect to B*. The set {ar > 0, war <
0,w'wa > 0} is preserved by I', because the elements w',w € W(T*,G*)
and the Borel subgroup B* are. This set is also preserved by any element
u € W(T*, M*). This is because both w’, w normalize W (T*, M*) and because
u preserves the positive roots in R(T™*, G*) \ R(T*, M*). It follows that

A= > oV € X.(An-).

a>0,wa<0,wwa>0

98



This proves t(w’,w) € Ap+ and also tells us that the left-hand side of (2.3.2) is
givenby n.(€((-1)Y). -

The dual torus to Z(M*) is M / Mg ger, and the dual torus to Ay« is [M / Mge ger)r-®
This gives a canonical isomorphism X, (Ay+) =2 X *(ﬁ )I'. According to Theo-

rem 1.6.1, 7, is the character of Z(M™*)(F') with parameter W RANG Wp —
M / ]\/4\5(:@3r x Wg. Composing this parameter with the projection M / ]\Zc,der X
Wp — []/\4\ / ]\//Tsc7der]p x W gives the parameter of the restriction of 7, to Aps«.
We conclude that if € W is any element with image —1 € F* under the
Artin reciprocity map and ¢, (z) = m(z) x z, then the left hand side of (2.3.2)
is equal to A(m(z)).

Turning to the right hand side of (2.3.2), we study first the product of the
three e-factors. Decompose g under the action of A7 as a direct sum of weight
spaces gs for 8 € R(Ag, @) and denote by 8 > 0 those weights for which
Us C 1. The adjoint representation of ©M on the space 0’ N n is then the direct
sum of g for f < 0 with wB < 0, and its contragredient is the direct sum over
B > 0with wf < 0. If we denote the adjoint action of LM on 9s by pgs, then the
factor ep(w, ¢, ¥ r) decomposes as the product

1
GP(U),ZZJ,ZZJF): H E(éaﬂvaﬁa’l/}F)'
B>0,wB<0

The product of the three e-factors on the right hand side of (2.3.2) is thus equal

to
- I - II e

wP>0,w' wB<0 B>0,wB<0 B>0,w'wB<0

with f(8) = e(3,my, pg, r). An elementary calculation shows that this triple
product equals

11 FB) - (=)

B>0,wB<0,w' wB>0

Applying Henniart’s result [Hen10], we conclude that if we replace f by the
function f(8) = e(%7 pp © ¢y, Yr) that uses the Artin e-factor instead of the
representation-theoretic one, the above product is unchanged. Letting « € Wg
is any element whose image under the reciprocity map Wr — F* is equal to
—1 and using [Tat79, (3.6.8)], the above product then equals to

det(pg o Py ().
B>0,wB<0,w wB>0

The indexing set of the last displayed product is a subset of X*(A;) and

-~

equals the restriction to A; of the subset of X*(T') givenby {a"|a € R(T*,G*), o >

6Recall that we are following Arthur’s convention that ]\ZC is the preimage of M in @SC, and
Mg der is the derived subgroup of Msc, which coincides with the simply-connected cover of the
derived subgroup of M.
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0, wa < 0,w'wa > 0}. Writing again ¢y (z) = m(z) x z € M x Wr we see that
the last displayed product equals

det (Ad(m(m) X ) @ ﬁav) .

a>0,wa<0,wwa>0

The determinant of the action of the maximal torus TcM on this direct sum
is the character of T" given by the restriction to 7" of A € X* (/). On the other
hand, the action of Z\Zc,der on this direct sum has trivial determinant. We con-
clude that

det (Ad(m(m) x 1) oy gav>

a>0,wa<0,wwa>0

is equal to A(m(z)), i.e. to the left-hand side of (2.3.2).
To complete the proof of (2.3.2) we must show that

det | Ad(1 x ) b Gov | = Mw'w, r) "I\ (w, Yr) AW, ¥r).
a>0,wa<0,wwa>0
(2.3.3)
The definition of A\(w, ¥r) given in [KS88, (4.1)] and specialized to our set-
ting is
)‘(wﬂ/}F): H )‘(E/F’@/]F) H A(E/FvwF)Qv

acAq(w) a€As(w)

where A;(w) and Ay (w) are the sets of reduced relative roots a € X*(Ap~)
with @ > 0 and wa < 0 for which the corresponding rank-1 semi-simple group
has simply connected cover isomorphic to Resp,SL(2) and SUg,r(3), respec-
tively. Here A(E/F, ) is the Langlands constant [Lanb, Thm 2.1]. It satisfies
ME/F,¢p)* = ng/p(—1), where ng/p : F*/Ng,p(E*) — {£1} is the non-
trivial sign character coming from local class field theory. We apply the argu-
ment that we used above to study the product of the three e-factors again, first
to the set A (w) and the function f(a) = A(E/F,¢r), and then to the set Ay (w)
and the function f(a) = ng,r(—1). Initially we obtain in both cases the product

I re II r@ JI @

a>0,w’a<0 a>0,wa<0 a>0,w' wa<0

but since w is defined over F' the function f is invariant under w and the first
product can be taken over the set wa > 0,w'wa < 0 instead. In this way we
obtain

Nw'w, ) Nw, pp)AWw', ¥r) = ng/p(-1)",

where ¢ is the number of reduced relative roots a € X*(Ap+) witha > 0, wa <
0,w'wa > 0 for which the corresponding rank-1 semi-simple subgroup of G*
has simply connected cover isomorphic to Resg,#SL(2). Now ng/p(—1) = 1

100



if and only if 2 € Wg. If this is the case, then both sides of (2.3.3) are equal
to 1. Assume thus that this is not the case and consider the left-hand side
of (2.3.3). We will distinguish four types of roots a € R(T*,G*) with a >
0,wa < 0,w'wa > 0. The first type are those o for which za # a and za +
a ¢ R(T*,G*). Those are precisely those roots whose restriction a = a|p- €
X*(Ar-) is a reduced relative root contributing a copy of Resg,»(SL(2)), and
hence a factor of g, p(—1) = —1 to right-hand side of (2.3.3). At the same time,
the subspace gov @ gzqv is z-invariant and the action of x on it has determinant
—1. The second type of roots @ € R(T*,G*) are those for which za # o but
ra + a € R(T*,G*). Those are precisely those roots whose restriction a €
X*(Ar-) is areduced relative root contributing a copy of SUg(3). They have
no contribution to the right-hand side of (2.3.3). At the same time, the subspace
Gav ® Gzav B Bavzav 1S z-invariant, with 2 swapping the first two factors and
acting by —1 on the third, hence having determinant +1. Thus, this subspace
also has no contribution to the left-hand side of (2.3.3). The third type of roots
a € R(T*, G*) are those of the form § + z0 for § € R(T*,G*). Their reduction
a € X*(Arp-+)isnot a reduced root, so has no contribution to the right-hand side
of (2.3.3). On the other hand, the corresponding subspace g, has already been
subsumed into the treatment of the second type of roots and thus need not be
considered again. The fourth type of roots are those o € R(T*, G*) witha = za
but not of type 3. They do not contribute to the right hand side of (2.3.3),
because the corresponding rank-1 simply connected group is isomorphic to
SL(2). The action of z preserves and in fact pointwise fixes the subspace gnv,
hence this space does not contribute to the left-hand side of (2.3.3) either. O

The following is immediate from the construction.

Fact 2.3.2. Given n € N(M,G)(F) and an isomorphism w(n) : (Vz, 7o Ad(n)) —
(Vr, ), we have an equality

7r(n)71 © lP(w7 ga 7% wF) © 7((”’) = lP(wa 67 W wF)
of intertwining operators H.,,-1 p,(m o Ad(n)) — Hp(m o Ad(n)).

2.4 Local intertwining operator III

We maintain the assumptions of the previous section: F'is a local field, E/F'is
a quadratic algebra, G* = Ug,p(N), (M*, P*) is a proper standard parabolic
pair of G* defined over F and its image (M, P) under ¢ is a parabolic pair of G
defined over F'. Let ¢y € ¥(M*) and 7 € I1, (M, €).

We now assume further that we are given z € ZL. , (£, M*) such that
(£, 2) is an extended pure inner twist. The element z is assumed to commute
with the Langlands-Shelstad lifts w € N(T*,G*) of all w € W (M*, G*)". Fur-
thermore, let u € N (f, CAT‘) be such that it commutes with ¢ and preserves the
E—positive roots in R(T, J/\/[\) Let u? € NE}(M7 G)and w € W(]/\/.I'\7 G)' be the
images of u. Via the I'-equivariant isomorphisms W(M,G) = W(M*,G*) =
W (M, G) we may regard w as an element in any of these groups.
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Recall the element

~

sy = (1, [_1 _J) eq.

It belongs to the center of the image of ¢ and hence also to the center of .S, (M).

We are going to define an intertwining operator 7(u®)¢ , : (wm, Vy) —
(m,Vx). We will first treat the cases of unitary groups and linear groups in-
dividually, where the definition can be made quite explicit under additional
assumptions. Afterwards, we will provide a uniform construction that works
under less assumptions and has better invariance properties, but is less explicit.
This will be needed in both the local and global applications ahead.

Before we continue, we recall a discussion from [Art13, §2.2] about using
Whittaker data to normalize intertwining operators. Let M be a product of
groups of the form G/rp(N) and let 6 be an automorphism of M} that pre-
serves the standard pinning of that group. Let ¢ : ' — C* be a non-trivial
character. Let 7 be an irreducible admissible representation of M (F) whose
isomorphism class is stable under . In this situation there exists a natural
choice for an isomorphism 7 0 6= — 7.

In the case when 7 is tempered, we choose a Whittaker functional p for the
representation 7 and the Whittaker datum corresponding to ¥ and the stan-
dard pinning of M} . Then p is also a Whittaker functional for the representa-
tion 7 0 671, since the pinning of M is stable under 6. We choose 70 §~! —
to be the unique isomorphism which preserves the Whittaker functional 4.

More generally, 7 is the Langlands quotient of a standard representation

M . .
p = Ind P6‘+ (o) for a tempered representation ¢ of a standard Levi subgroup

~

Mg of M7} and a positive A € aj,.. Then 7o 6~ = 7 implies that M is stable
under § and o 0 ! = 6. Since Py is generated by M; and the standard Borel
subgroup of M, itis also invariant under . We fix an isomorphism gof =1 — ¢
as above and this leads to an isomorphism po#~! — p. This isomorphism then
descends to an isomorphism 7o =1 — .

2.4.1 The case of unitary groups

We assume now that E/F' is a quadratic field extension, so that G* is a uni-
tary group. Moreover, we place the following assumption on the cocycle z €
ZL 1 (E,M*): If we decompose it as z = z; x z_ according to the de-
composition M* = M7} x M*, then the 1-cocycle z, takes the constant value
1 € M7. This can always be achieved by changing (&, z) within its equivalence
class. In this special case the operator 7(u?)¢ . can be defined as the product
(m,uf)e . - w(w)e, where 7 ()¢ : (wm, Vy) — (7, V) is an operator that depends
only on the image w € W, (M, G) of u* € N,i(M, G),and (m,u)¢ , € C.

The isomorphism 7 ()¢ is given as follows. Decompose M* = M} x M*,
M = M, xM_, and accordingly 7 = 7 ®7_. We will choose 7_ () and 7 ()
separately and define n(w): = 7y (w) ® m_(w). The automorphism Ad(w)
centralizes M*, hence wn_ = w_ and we choose 7_ (w) = id. The restriction of
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& to M} provides an isomorphism M} — M, defined over F. We treat 7 as
a representation of A/} via this isomorphism and take 7 () : wmy — 7y to
be the isomorphism discussed in Section 2.4 above. The map w +— 7 (w)¢ thus
defined is multiplicative.

Next we construct (r,u’)¢. € C. Consider the middle row of diagram
(2.1.1). In the setting of unitary groups, this middle row has the form

1 — 70 (Sy(M)) = mo(Ny(M, G)) 2 Wy (M, G) — 1. (2.4.1)

We will construct a splitting of this exact sequence. Notice that we have the
decomposition Ny (M,G) = Sy_(M_) x Ny, (My,G), which expresses u €
Ny (M, G) as the product u_ x uy, with u_ being the middle N_ x N_-block of
the matrix v, and u being obtained from u by replacing the middle N_ x N_-
block with the identity matrix. Since mo(Sy(M)) = mo(Sy_ (M_)), this decom-
position would provide a splitting of the sequence (2.4.1). This is however not
the splitting that we want. The splitting that we are going to construct will
have the property that an element u € Ny (M, G), whose image in W, (M, G)
belongs W) (M, G), may be mapped to a non-trivial element of (S, (M)). It
turns out that this more sophisticated splitting is needed in order to provide
the correct normalization of the compound intertwining operator, as well as
its invariance under equivalences of the extended pure inner twist (¢, z). We
refer the reader to Section 2.9 for an example of why the naive splitting does
not provide the right normalization, as well as to the proofs of Lemmas 2.5.1
and 2.6.4 for how the splitting we are about to define ensures the invariance of
the compound operator and of the Local Intertwining Relation.

To construct the correct splitting, we use the distinguished pinning of G.
For any element w € W, (M, G), the process described in Section 0.4.7 lifts w
first to an element of W (7', G)', and then to an element of N (T, G)" via the con-
struction of Langlands and Shelstad. We will call this element w. The element
w preserves the M. -conjugacy class of 1, but may not centralize ¢). However, it
follows from Lemma 0.4.16 that it does centralize “M_, hence v_. Thus there
exists an element m € M, such that mi € Ny(M,G). Since Sy, (M) is con-
nected, the image of mw in mo(Ny (M, G)) does not depend on the choice of m.
We will call it s’(w). We claim that the map s’ : Wy, (M, G) — mo(Ny (M, G))
thus obtained is multiplicative. For this, recall from Section 0.4.7 that for any
w € W(M,G)' wehave & = t,,@ with t,, = @@~ € Z(M) an element of order
2, as in Lemma 0.4.16. Recall that the map w +— @ is multiplicative by construc-

—

tion. We further write t,, = t,, — - t,, + according to Z(M) = Z(]/W\_) X Z(M\+)
and know that the map w — t,, _ is multiplicative by Lemma 0.4.17 and that
Z(M,) is preserved by W (M, G)". Thus, given wy,wy € W (M,G)", the dif-

ference between the elements N (A7, G) given by wiw; and w; - 0 is given by

an element of Z (]\//_7 +). This proves the multiplicativity of s’.

Recalling the decomposition Ny, (M, G) = Sy_(M_) x Ny, (M, G) we see
that 7y (S, (M)) is a central subgroup of mo(Ny (M, G)). Thus the splitting s :
Wy(M,G) — mo(Ny(M,G)) of the second map in (2.4.1) leads to a splitting
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s : mo(Ny(M,G)) — mo(Sy(M)) of the first map in (2.4.1) in the usual way; i.e.
s(u) = u- s'p(u)~!. Recall the character (m, —)¢ , of (S, (M)) associated to
the representation = by Theorem 1.6.1. We define

<7T, uh>»’§72 = <7T7 S(uh)_1>572’

Note that it is multiplicative in u* by construction.

2.4.2 The case of linear groups

Assume now that E/F is the split quadratic algebra F' @ F, so that G* =

N)/F. Decompose M* = M{ x --- x M. Conjugation by the element
w acts by permuting these factors. Let a be the permutation of {1,...,n} such
that Ad(w)M; = M. We assume that the element 2 € Vi bsc(é‘ M*) sat-
isfies the followmg assumption: if we decompose it as z = z; X - -+ X 2z, with
2 € ZLo(E, M), then z,(;y = z; for all 1 < i < n. This is equivalent to requir-
ing that z commute with w.

We will define the operator 7(uf)e . : (wm, Vi) — (7, V) under this as-
sumption. It will again be given as (w,u“)ii - () with (m,uf)¢ . € C and
m(W)e : (W, Vy) — (m,Vz) depending only on w. We decompose M = M; x

- X M, and fix an isomorphism ¢ : (7, V) — (71, V1) ® - - - @ (mp, V3,) whose
target we choose so that for all i, the vector space V; and V,(;) are the same, and
Ad(w) intertwines the representations 7; and 7,(;) on the vector space V; =
Vagi)- Letf € Aut(V1®@---®@V,) be given by (v1 @+ ®@vpn) = (Va(1), -+ + s Va(n))-
We define 7(w)¢ : (wm, V;) — (m, V) as the pullback of § under ¢. The resulting
operator ()¢ does not depend on the choice of « and its target. Furthermore,
the map w — 7(w)¢ is multiplicative.

We now define a complex number (,u%)¢ .. We have the decomposition
M =M x---x M, parallel to the decomposition of M. As in the previous
section, we let & € N(T,G) be the Langlands-Shelstad lift of the image of u
in Wy(M,G). Since G* is the general linear group, the actions of u and of u
on M coincide and are given by Ad(u )M M, a(i)- We conjugate ¢ within M
if necessary to arrange ¢ = ¢ x --- X ¢, with ¢,;) = Ad(u) o ¢;. Then u €
Ng(M,G) and the equation v = su defines an element s € Sy (M) = Sy, (M) X

- % Sg, (M,). We define (m,u)¢ . = pe .(s), where p¢ , € X*(Sih(M)) is the
character associated to 7 as in Section 1.6.3. The character p¢ . satisfies p¢ . o
Ad(u) = pe,.. Moreover, an explicit computation reveals that the difference
wwv'u~! € Ajg; is killed by any element of X *(SEF(M )). This implies the
multiplicativity of (7, —)¢ ..

2.4.3 Uniform treatment

In the previous two sections we defined an operator 7(u) . : (wm, Vy) —
(m, Vz) when G was either a unitary group or a linear group, by placing ad-
ditional assumptions. In principle, this allows us to construct the normalized
self-intertwining operator Rp(u®, (&, z), 7, 1,1 r) in those cases. However, in
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order to be able to prove the necessary invariance properties of this operator, as
well as to be able to prove its compatibility with the canonical global intertwin-
ing operator, we need a definition of the operator 7(uf)¢ . : (wm, Vi) — (7, Vi)
that works uniformly for unitary and linear groups and does not require spe-
cial assumptions on the extended pure inner twist (¢, z) beyond those which
can be satisfied globally. We will now give such a definition and check that it
specializes to the constructions of the previous two sections under the assump-
tions made there.

We consider the element v’ = u™! € Ny (M, G). We use the distinguished
pinning of G and the process described in Section 0.4.7 to lift the image w’ €
W(M,G)' of v first to an element of W(T,G)', and then to an element of
N(T, @) via the construction of Langlands and Shelstad. We will call this
element @'. We have u_! = s - @' for some s M In fact, since we have
chosen u to normalize 7' and preserve the B N M -positive roots in R(T M )
and since the same is true for @/, and since v’ and @’ lie in the same W(T , M )
coset, we conclude that s € T C M. The group M inherits a pinning from the
group G and the automorphism 0 = Ad(W) of M preserves that pinning. It
is moreover dual to the automorphism 6* := Ad(w) of M*. We now create a
twisted endoscopic datum for the group M* and its automorphism 6*, where
we take M as the dual group of M and f as the automorphism of M dual to 6*.
Let M’ be the group of fixed points of Ad(sys) o b= Ad(syu~"). This group is
connected and has a connected center and a simply connected derived group.
It is furthermore normalized by the image of . This allows us to form M’ =
M (Lr). The arguments in [KS99, §2.2] show that M’ is a split extension of
M by Wr. This extension leads to a homomorphism Wr — Out(M") which
induces a homomorphism I'y — Out(M’). Let M’ be the unique quasi-split
group defined over F' with dual group M’ and with rational structure given by
the homomorphism I'p — Out(]/\i\ ") = Out(M’). Since Z (]/\4\ ") is connected, the
arguments of loc. cit. show that there exists an isomorphism n : M" — “M’.
Then ey = (M, sy5,7) is a twisted endoscopic triple for (M*, 6*).

The inner twist £ : M* — M intertwines the operators 0* and § = Ad(w).
From Section 1.1.2 we have the normalized transfer factor Afeas . €, 2] for the
twisted group (M, 6) and the endoscopic triple ¢pr,,. We are now ready to
define the operator 7(uf) : (wm,V;) — (7, V,). We have the parameter 7 o 1) :
Lp — “M'. Composing the stable linear form associated to this parameter by
Proposition 1.5.1 with the transfer mapping (M) — SZ(M') provided by the
transfer factor Afeps,y, &, 2], we obtain a linear form f — f®:¢ (o 4)).

Lemma 2.4.1. For each 7 € 11, (M, &) there exists a unique isomorphism m(uf)¢ .
(wm, Vi) = (m, Vi) such that for all f € H(M) we have

fev(no) = e(M?) Z tr(ﬂ(uh)g,z om(f)).

w€ElLy (M,E)

Given € Sff(M), we have w(zu)e . = (m,x); im(u)e .. Moreover, in the settings
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of Sections 2.4.1 and 2.4.2, the isomorphisms 7(u®)¢ . constructed there have these
properties.

Proof. The isomorphism (u")¢ . is already unique up to a scalar, so the unique-
ness statement follows form the linear independence of twisted characters. Its
existence, together with the desired multiplicative property, will follow once
we prove that the specific constructions of 7(u")¢ . made in Sections 2.4.1 and
2.4.2 satisfy the displayed equation, because these specific situations discussed
there cover all possible cases up to isomorphism.

We consider first the situation treated in Section 2.4.1. Thus E/F is a field
extension and G* = Ug,p(N) is the quasi-split unitary group, P* C G* is a
standard parabolic subgroup, M* = M7} x M* is a standard Levi subgroup of
P*with M* = Ug,p(N_)and M} = M;{x---x M} with M = Resg,p(GL(N;)),
(&, 2) : G* — G is an extended pure inner twist such that P = £(P*) and M =
&(M*) are defined over F, thus z € Z},_, (€, M*), and such that z = 2| x z_

The automorphism 6* preserves the decomposition M* = M7 x M* and
acts trivially on M*. The endoscopic triple eys . is therefore the product of
a twisted endoscopic triple ens, 4.y = (M ,5p 454,14) for (M7,6%) and an
ordinary endoscopic triple eas, — = (M’ sy, _s_,n_) for M*. Here we have
written s = s, X s_ and s, = sy 4 X sy, _ according to the decomposition
M = ]/\/[\+ x M_. The linear form ferw (noy) breaks up as the product £ (1.0
Vi) fEY (- o). Noting that MY = M_ x MY, the right hand side of the
claimed equation also breaks up into a product

(M) 3 trlm (e oma(£1)) - e(M_) 3 tr(m_(u)e,s 0 - (f2).
71'.;.61‘[1/)Jr m_ €lly_

(24.2)
We consider first the left factor in this product. Note that II,,, consists of a
single element 7. The assumption z; = 1 implies that £ induces an isomor-
phism M7} — M, thus M, is a product M; x --- x M, of groups of the form
M; = Resg,p(GL(N;)), each endowed with its standard pinning. The auto-
morphism 6 preserves this product decomposition as well as the pinning of the
group M. In particular, M¢ is quasi-split, so e(M?) = 1. We may further as-
sume that the permutation that ¢ induces on the factors of M is transitive, oth-
erwise we study each orbit of this permutation separately and take the prod-
uct of the results. Assuming transitivity, we find ourselves in the situation dis-
cussed in Section 1.1.3. The results of that section reduce the problem to the set-
ting where there is only one factor in the product, i.e. M = Resg,p(GL(N,)).
Then there are two possibilities: Either 6 is the trivial automorphism or the
unique non-trivial pinned automorphism. In both cases, we obtain the charac-
ter identity

FE0 (g opy) = te(Ly oy (f)),

where I, : 70671 — 7 is the natural isomorphism discussed in Section 2.4.
In the case 6 = 1 this parabolic descent, while in the other case it follows from
Proposition 1.5.1.
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Consider now the right factor in the product (2.4.2). By Theorem 1.6.1 we
have the equation

fiM,z/z (n_ovp_)=e(M_) Z <8777T7>§,ztr (m—(f-))-

m_€lly

It follows that the equation in the statement of the lemma holds with 7(u%); .
defined as (m,s_)¢. - id,_ ® I;. But this is the construction of 7(u?)¢ . given
in Section 2.4.1, once we note that the element s_ is equal to the image of u~!
under the section s : wo(Ny (M, G)) — mo(Sy(M)) constructed there.

We now turn to the situation treated in Section 2.4.2. Thus G* = GL(N)/F,
P* C G* is a standard parabolic subgroup, M* = M{ x --- x M} is a standard
Levi subgroup of P* with M} = GL(;), ({,2) : G* — G is an extended
pure inner twist such that P = £(P*) and M = &(M*) are defined over F,
thus z € Z}_,..(,M*), and such that in fact = € Z}_, (€, M*?"). The Levi
subgroup M C G then breaks up accordingly as M = M; x --- x M, with
permuting the factors. We have e(M?%) = e(M;,) - --- - e(M;, ), where iy, ... ik
are representatives for the orbits of the permutation of {1,...,n} induces by 6.
Applying the simple descent for twisted endoscopy discussed in Section 1.1.3
reduces the problem to the setting where there is only one factor, i.e. M =
GL(N/d)/D, with D/F division algebra of degree d, and 6 acts trivially on M.
Then M’ = GL(N) and the discussion in Section 1.6.3 provides the character
identity

Feus (o) = e(M)(m, s)e otr(m(f)).

This completes the proof. O

2.5 Local intertwining operator — the compound operator

In this section we are going to define a normalized self-intertwining operator
on a parabolically induced representation by putting together the three opera-
tors defined in the previous sections.

We take F to be a local field, E'/F' a quadratic algebra, and G* = Ug,p(N).
We take Z : G* — G to be an equivalence class of extended pure inner twists.
Let (M, P) be a proper parabolic pair for G. There is a unique standard pa-
rabolic pair (M*, P*) of G* corresponding to (M, P), and this determines an
equivalence class Zj; : M* — M of extended pure inner twists: Zj; consists of
those pairs (¢, z) € = such that £(M*, P*) = (M, P).

Let ¢ € ¥(M*) and assume that IT,, (M, §) # (. Let € I, (M, §) and write
Vi for the underlying vector space. Let (]\//.7 , }3) be the standard parabolic pair
of G dual to (M*, P*). Up to equivalence 1 can be chosen so that the minimal
Levi subgroup of M through which it factors is of the form My x W for a
standard Levi subgroup of M, hence of G. This implies that ﬁzﬁd =Tn Sypd

is a maximal torus of Sj** and J/W\;f‘d = Mn Sipd = Z(Agp, Sipd) is a Levi

subgroup of Sf/j‘d containing fﬁd. We refer the reader to Section 2.1 for the
relevant notation.
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Let u? € Ni(M, G). For an arbitrary lift u € N(A7, Sy) of u¥, both fffd

and Ad(u)ﬁf‘d are maximal tori of J\//ijad, hence conjugate under J\//Zj}ad. Thus
we may choose the lift u so that it normalizes fffd. Then it also normalizes

the centralizer of fiﬂd in G, which equals to T.In particular, u is semi-simple.
We can say a bit more by exploiting the specificity of the group G*. Indeed,
one checks that u can be chosen so that its image in W(f, é) preserves the
BN M- -positive roots in R(T, M ).

We have I'-equivariant isomorphisms W(JT/[\, G) = W(M*,G*) = W(M,G),
the first one induced by the duality of G and G* and the second one by the
equivalence class =js. Let w denote the image of u in any of these isomorphic
groups.

Choose an arbitrary lift v € N (M, G)(F) of w and set wm(m) = 7(w~tmab),
acting on the vector space V. The isomorphism class of @ is independent of
the choice of w. We claim that wn = 7. Indeed, m decomposes as 7+ ® 7w_ ac-
cording to the decomposition M = M, x M_. The restriction of Ad(w) to M_
is an inner automorphism and we have wn_ = w_. On the other hand, w pre-
serves the M- -equivalence class of 1, hence also the L-packet of representations
of M (F') containing 7. But this L-packet is a singleton, so wry = .. This
shows that wm = 7 and hence the element w corresponds to a self-intertwining
operator on the representation # p(7), well-defined up to scalar. We will give
a specific normalization of this operator, called R p(ul, E, 7,9, ¢p).

Fix (¢, 2) € Ep as in Lemma 0.4.18. We will use this choice to give a nor-
malization Rp(u?, (£, 2), 7,1, 1 r) of the local self-intertwining operator for the
Weyl element w acting on the representation 7 p (7). We will then show that
this normalization does not depend on the choice of (£, z) and hence can be
referred to as Rp(uf,Z, 7, ¥r). It will however in general depend on the
element u’ € Ni(M, G), not just its image w in Wy, (M, G). As we saw in Sec-
tions 2.4.1 and 2.4.2, if we make a special choice of (£, z) then we can break this
dependency and define an operator Rp(w, (§,2), 7,9, ¥ r) with the property
that the map w — Rp(w, (&, 2), 7, 9¥,9¥r) is a homomorphism Wy (M,G) —
End(Hp(r)). The operator Rp(u?, (&, 2), 7,v,¢r) is then a product (m, u?)¢ , -
Rp(w, (&, 2), 7,1, ¥F), with <7r7u“>§,z € C. While the operator Rp(w, (&, z), 7,1, ¥r)
has the appeal of only depending on w and not on u%, the operator Rp(u?, Z, 7, %, ¢ r)
is the more invariant object and the one we ultimately use.

We now come to the definition of the normalized local self-intertwining
operator

Rp(u”, (6, Z),?T,’(/J,’t/)p) : HP(W) — Hp(ﬂ'),

as the composition

Rp(u?, (& 2), 7,0, ¢F) = Ip(n(u¥)e.) olp(w, &, 9,1 F) 0 Ry-1pp(€,). (2.5.1)

Lemma 2.5.1. The operator Rp(uf, (€, 2), 7,1, v r) does not depend on the choice of
(& 2) € E
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Proof. We had chosen (&, z) : G* — G to satisfy the conditions {(M*) = M,
E&(P*) = P,and z € ZL ,,.(E,M*7). An equivalent (¢',2) is of the form
¢ = €0 Ad(b) and 2'(0) = b '2(0)o(b) for some b € G*. If (¢',2') satisfies
the same conditions as (¢, z), then we see first that b € M*, and second that
0*(b=12(0)a(b)) = b=12(0)o(b), where 0% = Ad(w). If we set d := £(b0* (b7 1)),
then the latter equation implies d € M (F'). As before, we set @ := £(w) and we
have w € G(F'). We now also set & = ¢'(w) € G(F'). One checks immediately
that @ = dw. }

We claim that 7 (u")gs .+ = 7(d) o w(uf)¢ .. Indeed, set § = Ad(w) (this au-
tomorphism was denoted by 6 earlier), and 6 = Ad(w). A direct computation
shows that the map

M(F)— M(F), 6w—6b:=6-d7!

is a bijection which translates f-twisted conjugacy on its source to G-twisted
conjugacy on its target, and moreover

A[QM,’l/n fa Z]('Ya 5) = A[el\/fﬂlh £/7 Z/](’Yv S)a

where the transfer factors are the one constructed in Section 2.4.3. Given a
function f € H(M), let f € H(M) be defined by f(g) = f(gd). The equality
of transfer factors and the equivariance of § ~ § imply that for any v € M’(F)
strongly G-regular the unstable twisted orbital integral

X alew 310 | (g 50(9))dg

5o (F)\M(F)

is equal to

S Alearn€,2)0) [ F(g~166(g))dg,
5 M, (F)\M(F)
where the first sum runs over the §-twisted conjugacy classes of strongly 6-
regular é-semi—simple elements of M (F'), and the second sum is the analogous
sum with ” replaced by ". We conclude that, given a function f’ € H(M’),
the functions f’ and f are Alens.y, €, z]-matching if and only if the functions f’
and f are Aleys.y, &, 2/]-matching. A glance at the statement of Lemma 2.4.1
completes the proof of the claim that 7(uf)¢ ./ = 7(d) o m(u?)¢ ..

Turning to {p(w, &', ¥, ¢ r), we see directly from the definition that

-

lp(w, &, vr) =63(d™") - Ip(wr(d™)) o lp(w, &, 9, YF).

Recalling that d = £(b0*(b~!)) and using the intertwining property of m(uf); .,
we conclude that

Sp(E(b)?

7T'Uh ¢} w .
Suepale(E)F 7 T e el & v)

IP(TF(UH)E’,Z/) o l(’LU, 6/3 11[}3 ¢F) =

N
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Here we have used the extension to M (F) of the modulus characters for P
and w~! Pw that was already used in Section 2.2. A glance at Equation (2.2.1)
completes the proof.

O

Before stating the next lemma, recall that Kottwitz’s map (0.3.1) provides a
character of Z (@)F from any element of B(F, G*)psc, as well as a character of
[@ / éder]F from any element of B(F,Z(G*)). In particular, the class =, being
an element of B(F, G*)psc, provides a character of Z (@)F, which we denote by
(Z,-). Moreover, the element u® € N, i(M , G) can be mapped to the quotient

G/ G aer, Where it is T-fixed, and for any y € B(F, Z(G*)) we can evaluate the
corresponding character (y, —) of [G//Gqe]" at the point u?.

Lemma25.2.
1. Let x € Z(G)'. Then Rp(xu®,Z, 7,0, ¢r) = (Z,2) ' Rp(uf, Z, m, ¢, ¥r).

2. Letc € B(F, Z(G*))pse. Then Rp(uf, cZ, m,, r) = (¢, u®) ' Rp(u?, E, 7,9, ¢p).
3. Let Yy e thf (M) Then RP(yuhv Ev T, 7/}7 wF) = <7Ta y>;iRP(uh, E’a T, 7/% wF)

Proof. The first two points follow essentially from Lemma 1.1.2. Indeed, no-
tice that the right and middle terms in (2.5.1) depend only on the image of
u® in Wy (M, G) and only on the inner twist underlying =. Thus they do not
change when we pass from u? to zuf, or when we pass from = to ¢Z. Only
the term 7(uf)¢ . changes. The reason it does is because in the defining equa-
tion in Lemma 2.4.1, the linear form f**-%(n o ¢) depends on the transfer fac-
tor Aleasy, &, 2], Changing u® to zu” changes epr,y to 7 teps . According to
Lemma 1.1.2, we have

Alzerry, & 2) = (z,2)  Aleary, &, 2],

but (z,z) is just a different notation for (=, z). On the other hand, again by
Lemma 1.1.2, we have

Alenry, &, cz] = (c,545)Alenr,y, €, 2]

~!

Recall that s was constructed in Section 2.4.3 to be u’ - u -1 with v € /\@ an
arbitrary lift of 1% and @’ € G a specific lift of the image of v’ in W (M, G).
In the statement of Lemma 1.1.2, § is the image of s in [J\//_T / ]\/Zder]g_fm (recall
notation from Lemma 1.1.2). However, since c takes values in Z(G*) C Z(M*),
we may further map s down to G / éder before pairing it with c. By construction,
u e @der, so the images of v’ and s in G / @der are equal. Moreover, the image
5y of sy in G / éder is trivial.

For the third point, we use again the fact that the images of yu® and u? in
Wy (M, G) are equal, so the only factor in (2.5.1) that is affected is 7(u")¢ ., and
according to Lemma 2.4.1 we have m(yu?)e . = (m,y)¢ im(u)e .. O
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Lemma 2.5.3. The operator Rp(u®, =, 7,4, r) is multiplicative in uf.

Proof. Let (§,z) € E be chosen as in Section 2.4.1 or 2.4.2, so that we know
by construction that 7(uf)¢ , is multiplicative. The claim then follows from
Lemmas 2.2.4,2.2.5,2.3.1, and Fact 2.3.2. O

2.6 The local intertwining relation

Let F' be a local field, £/ a quadratic algebra, and G* = Ug,p(N). Let Z :
G* — G be an equivalence class of extended pure inner twists and (M*, P*) be
a proper standard parabolic pair of G*.

Given ¢ € ¥(M*) and u € Ny(M*,G*) we introduce a linear form f —
fa.=(1,u") where uf is the image of u in Nj}(M*,G*). If ¢ is not relevant
for = : G* — G then fg =(1,u?) is defined to be zero (since we think of the
underlying induced representation and the intertwining operator to be zero).
If ¢ is relevant for Z, then the Levi subgroup M* of G* transfers to G and
we let (M, P) be a parabolic pair for G corresponding to (M*, P*) and write
Em @ M* — M for the associated equivalence class of extended pure in-
ner twists. Let II,(M, =) be the packet of representations of M (F') corre-
sponding to 1 via Theorem 1.6.1. If I, (M, =) happens to be empty (which
may only happen when ¢ is non-generic), we define fg =(1,u") to be zero
again. Now assume II,(M,Zy,) # 0. Using the self-intertwining operators
Rp(uf, =, 7, 1,9 r) constructed in Section 2.5 for all members 7 € 1L, (M, Zyy),
we define a linear form f + fg = (1, u?) on H(G) as follows

fG,E(¢7uh) = Z tr(RP(uhagaﬂ—vwvwF)IP(ﬂ-)(f))'

m€My (M, 1)

We construct a second linear form f — f¢ = (¢, syu~') on H(G) in the fol-
lowing way. Fix f € H(G). For any semi-simple element s € Sy, let )¢ € ¥(G*)
and e € £(G*) be associated to ¢ and s as in 1.4. (There is no need to take v°
as an orbit under the strict outer automorphism group since the latter group
is trivial in our case.) From ¢* we obtain the stable linear form on H(G*®) in
part 4 of Theorem 1.6.1. The value of this stable linear form on all functions
f¢ € H(G*) whose orbital integrals match those of f with respect to the trans-
fer factor Ale, =] is the same. We call this value f(; =(¢, s).

Lemma 2.6.1. Forany s, sg € Sy ss(G*) such that their images in Si(G*) belong to
Sfp(M*, G*) and are equal we have f(, =(1, s) = f =(¢, s0)-

Proof. Observe that f(, (1, s) does not change when s is conjugated by an el-
ement of S, (G*)°. By conjugating s if necessary, we may assume that Int(s)
stabilizes Ty (and a Borel subgroup By O Ty). Define Ty ; := Zr,(s)". Argu-
ing as in the paragraphs below [Art13, (4.5.8)], it suffices to show that f¢ = (%, 5)
is unchanged if s is multiplied by any element of Ty, s N Sffd.
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One checks that M, := Zg.(Ty,s) is a I'-stable Levi subgroup of G* con-

taining that M*. Let M, ~ denote a Levi subgroup of G* which is dual to M,.
Observe that (1), s) is the image of a pair

(Y., sm.)

where 95, € W(M;) and sy, € Sy,,, ss- There exists an elliptic endoscopic
datum M¢ and vj, € ¥(M{) whose image is 157,. We have

foz(h,s) = fC (%) = fire (Yis,) (2.6.1)

where f},. is the constant term of /¢ along (a parabolic subgroup whose Levi
subgroup 1s) M;. If M does not transfer to G then f},.(¥},,) = 0 so in par-
ticular the lemma is verified. Indeed no stable strongly regular semisimple
conjugacy classes of My have matching conjugacy classes on G in that case, so
one deduces that f;,. defmes a trivial stable linear form from the fact that f},.
is a transfer of f. (For the latter fact, see the discussion in the preamble and
proof of [Art13, Prop 2.1.1] and the references therein. This can also be thought
of as the degenerate case of Lemma 1.1.4 where M* does not transfer to G, in
which case fjs should be thought of as zero, hence the stable linear form given
by f3 M should be identically zero.)

From now we assume that M} transfers to a Levi subgroup M, of G. Then
there is an extended pure inner twist (M, s, , 201, ) given by Lemma 0.4.18.
Lemma 1.1.4 tells us that f§ Me is a transfer of fjs, with respect to (M, Er,, 20, )-
Now if s is translated by ¢t € T, s, then s, is translated by ¢. The effect of the
translation, in light of Lemma 1.1.2 with M; in place of G, is that

f]/WS,£1\/1S7ZM5 (wM_«HS]Ws) = f]e\/[_f (d’]em)

is multiplied by (zas., t). According to Lemmas 0.4.11 and 0.4.15 (we apply the
latter lemma with ¢ = (z,-) and (y+ = (2, -), which are the images of z and
zyr under the Kottwitz maps; the former lemma ensures that ¢ is simply the
restriction of (3/+ to Z(G*)T) we have that (zpy,,t) = 1ift € Ty, N Siad. Hence
the translation of s by t € Ty, s N S{fd does not change f¢ = (%, s) as we wanted

to verify.
O

We can apply the construction of f(; =(1, s) in particular to the element s =
syu~ ' and obtain f{, =(¢, syu~"). Note that s, u~" is semi-simple, because both
sy and u~! are semi-simple and commute.

Theorem* 2.6.2 (Local intertwining relation). Let ¢ € U(M™*), u € Ny (M*,G*),
and f € H(G). Then

1. Suppose that T1,,(M, =) is nonempty (so v is relevant in particular). If u® be-
longs to Wy (M*, G*)", then Rp(u®, =, 7,9, r) = 1 for all representations
s Hw (M, EM)
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2. The complex number fc =(v,ut) depends only on the image of u in Si.

3. We have an equality
fo=2(, spu™") = e(G) fa z (v, ub). (2.6.2)

Note that the multiplicativity of Rp(u?, Z, 7,1, ¢ ) in u? formulated in Lemma
2.5.3 implies that the second point follows from the first. However, we will only
be able to deduce the first point once we have proved the second by different
means. Note also that the last point breaks up into two cases, namely

e If ¢ is relevant for = then [, (¢, syu™") = e(G) fa =(¥, uf).
e If 1 is not relevant for = then f5 (v, spyu™") = 0.

A further immediate consequence of the theorem is that the linear form
fe.=(1,u) depends only on the (A;*-equivalence class of the parameter ¢, and
not just on the M *-equivalence class. We will now formulate a lemma that
contains a weaker statement. This statement will be enough to conclude said
independence in the case where p € ¥5(M™*) and will also be used in the
global arguments that lead to the proof of Theorem 2.6.2. In the next section
we will show that the form fg = (1, u?) for an arbitrary ¢» € W(M*) is equal to
fc.=(tbo, ul) for a suitable vy € Wo(M{), so in principle we would then have
said independence for all i) € U (AL*), but we will not need this stronger result
in the proof of Theorem 2.6.2.

~

Lemma 2.6.3. Let ¢ € W(M*)and v € N(Az;.,G*). Given u € Ny(M*,G*) we
have fo =1, u*) = foz(vi, (vuv™")?).

Proof. We assume that ¢ is relevant, otherwise both sides are zero. Let (¢, z) €
En be as in Lemma 0.4.18. The left-hand side is a sum over 7 € I (M, Zy),
while the right-hand side is a sum over ' € II,,, (M, Z5s). Both index sets are
in bijection via 7’ = ¢w. To see this, decompose M = M, x M_ as usual and
observe that IT, (M, =) = {my} @ Iy (M_,Zpn_ ). Now v acts trivially on M_
and sends ¥ to vy, hence 7 to vm. The claim follows.

Thus the right hand side is the sum over = € II,(M, =) of the traces of
the operators

RP<’U’U/U_17 (57 2)7 vm, Uwa ¢F) o IP(UT(? f)a

each acting on the vector space Hp(vm). We conjugate each such operator by
lp(v,&,9¢,%r)oR,-1pp(§,v) and obtain an operator R on H p(7) with the same
trace. To compute that operator, we first expand Rp(vuv™, (¢, 2),vm, vip, )
according to its definition (2.5.1) and obtain

IP(((U’/T)(quil)E,Z) © lP(,quila ga U”é/% wF) ° R(vuvfl)*lP\P(€7 U¢)

Using Lemma 2.3.1 one checks that

ZP(’UUU717£a/U1/)71/)F) = lP(/U’€7w7wF) o lP(u?§7w7wF) o ZP(U7§aw7¢F)71'
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The intertwining property of I p (v, §, 9, Y r)oR,-1p|p (&, ¥) together with Lemma
2.2.5 and Fact 2.3.2 imply that the operator R we are computing is equal to

IP((’Uﬂ-)(’quil)f,z)valp\P(gv w)illp(ua €7 ZZ% wF)Ru*1U*1P|v*1P(€7 w)Rv*1P|P(£a ¢)ZP(W7 f)a
which by Lemmas 2.2.5 and 2.2.4 works out to

Zp((vm) (vuv ™ )e )lp(u, &, ¥, Yp) Ry—1p p (&, ) Ip(T, f).

Our final task is to show that the operators (vr)(vuv™!)¢ . and 7(u)e . on the
vector space V. are equal. This can be seen by considering the defining equa-
tionin Lemma 2.4.1. We view Ad(?) as an isomorphism from the twisted group
(M, Ad(1)) to the twisted group (M, Ad(vuv~1)). It allows us to compare the
right hand sides of Lemma 2.4.1 for the two cases 7(u) and (vm)(vuv™1) by
identifying the two index sets in the sum, as well as 7(f) with vw(f). This
isomorphism is further translated under the inner twist £ to the isomorphism
Ad(v) : (M*,Ad(q)) — (M*,Ad(vuv—1)), whose dual is the isomorphism
Ad(v) : (]/\4\, Ad@")) — (]\/4\7 Ad(vu'v~1)), where the ~are now taken on the
dual side. This isomorphism sends the element v’ to the element vu/v~! and
the parameter v to the parameter v, thereby identifying the two twisted en-
doscopic data used to define the left-hand side of Lemma 2.4.1 in the two cases
at hand. We conclude that the two left-hand sides are equal, hence the two
right-hand sides are equal. Since the summation sets are already identified
with each other and 7 (f) is identified with vr(f), the claim follows. O

Lemma 2.6.4. Let = and Z' be two equivalence classes of extended pure inner twists
that determine the same equivalence class of inner twists. If Theorem 2.6.2 holds for E,
then it also holds for ='.

Proof. By assumption we may choose (¢, z) € Zand (¢, 2') € Z' such that the
maps & and ¢ are equal. Then 2’ = ¢z withc € Z;lg(cf, Z(G*)). By Lemma 1.1.2
we have

Fé e ony (s sgu™) = (e;5pu™) - fG (e oy (0, u™ ).
Here we have paired ¢ with the image of s,u~! in [G*/G%_]'. Notice that

5y € ézer, because it belongs to the image of a homomorphism SLy — G. Thus
(¢, sypu™t) = (c,u™!). According to Lemma 2.5.2, we also have

fG,(§'7z)(w7uh) = <Ca uu>71 ' fG,(ﬁ,z)(wauu)'

This deals with part 3 of Theorem 2.6.2. To see that part 1 of the theorem prop-
agates from (¢, z) to (¢', z') we appeal to part 2 of Lemma 2.5.2. Then it suffices
to observe that (c,u") = 1 when uf € W, (M*,G*)", but this is clear since

Sffd - (A?(’;er by definition (see §2.1). Since part 2 of Theorem 2.6.2 follows from
part 1 as remarked below the theorem, we are done. O

Lemma 2.6.5. In the same setup as in the preceding theorem, for any y € Z (G*)T,

fa=(,syys) = (2,9) G =(¥, sys) and fo=(4,yu) = (2,9) " fa=(¥, u), where
the pairing is given Kottwitz's isomorphism (0.3.1) for the torus G* /G, and its dual

Z(G").
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Remark 2.6.6. We are assuming M* # G* as in the theorem but even when M* =
G*, the former assertion of the lemma remains true by the same argument. The lat-
ter also follows in the same way if the local classification theorem (Theorem 1.6.1) is
assumed.

Proof. The former follows from Lemma 1.1.2 and the latter from Lemma 2.5.2.
O

Corollary 2.6.7. Fix T € Sy (G*). Suppose that there exists a lift x € S,EJ(G*) of T
such that the local intertwining relation holds for all u mapping to x. Then for every
lift x € Si(G*) of T, it holds true for all v mapping to x.

Proof. This follows from Lemmas 0.4.13 and 2.6.5. O

As a first application of Theorem 2.6.2, we will now construct the L-packet
II,, of representations of G(F') under the assumption that ¢y € ¥o(M*) and
M* #£ G*. We assume that M* transfers to G, i.e. that v is relevant for =, oth-
erwise we simply set I1,,(G,Z) = (. We further assume inductively Theorem
1.6.1 for the Levi subgroup M C G. Finally, we assume Theorem 2.6.2 for the
group G and its Levi subgroup M.

Recall that ¢ € Wy (M*) implies that the map Ny, (M*,G*) — Si is surjec-
tive. For any 7 € II,(M), the map

Ni(M*vG*) X G(F) - Aut(HP(Tr))? (’U’a g) — RP(@EW»Z/J,Z/JF)IP(THQ)

is a representation of NEJ(M*, G*) x G(F). Let Iy (G, E) be the direct sum of
these representations, as 7 runs over IT,, (M, =y, ). The valueat @ € N, i (M*,G*)
and f € H(G) of the character of IT}, (G, =) is equal to f¢ =(%,%). According to
Theorem 2.6.2, the representation H%u (G, E) is inflated from Si x G(F). Accord-
ing to Lemma 2.6.5, this representation transforms under Z (CA} “)' x {1} by the

character xyz! = (Z,—)~!. Decomposing this representation into irreducible
constituents, we obtain

IL,(G,5) = P ((r. )" o )

where m now runs over representations of G(F') and (r, —)g are elements of
X *(Sf/)) whose restriction to Z (CA}'*)F is equal to x=. We define the packet
II,(G, E) to be the disjoint union of the occurring 7 and the map II,(G, =) —
Irr(wa Xxz) to be given by m — (7, —)=z. The character identity (1.6.1) of The-
orem 1.6.1 now follows directly from Theorem 2.6.2. It is now not hard to see
that the map II,(G,E) — Irr(Si, Xxz) is bijective when F is p-adic. We will
postpone this discussion until Section 4.7.
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2.7 A preliminary result on the local intertwining relation I

In this section we are going to prove some results on the relationship between
parabolic induction and the normalized intertwining operators as well as the
local intertwining relation. One consequence of these results will be the re-
duction of the proof of the local intertwining relation to the case of discrete
parameters. This essential case will be handled in later chapters using global
methods and finally completed in Section 4.6. As we said at the start of §2.2,
we simplify notation in this subsection by omitting * in the superscript when
referring to the objects on the dual group side if there is no danger of confusion.

The general situation we will discuss is that of two nested standard proper
Levi subgroups Mj C M* of G* and a parameter )y € W(My), as well as an

element u € Sy, N N(Ag; G)NN (A, G). In this situation we have the linear

forms fg =(to,u") and fe =(¢,u?) on H(G), where 1 is the image in W(M*) of
Yo. In the special case u € Sy (M*) N N (A , G) we also have the linear form
farzy (o, uf) on H(M). All these linear forms are zero unless ) is relevant
for G, so we assume now that M transfers to G and fix corresponding Levi
subgroups My C M C G. We further fix a parabolic subgroup Py € PY(My). It
givesrise to P € P%(M) and Q € P (My). The following two lemmas express
the relationships between these three linear forms.

~

Lemma* 2.7.1. For any u € Sy N N(Ag G)n N (A7, G) we have the equality
faz(o,ut) = faz(v,ub).

Lemma* 2.7.2. Foranyu € Sy(M)NN(Ag; , G) and w € Iy, (Mo, Enr, ) we have
the equality of intertwining operators

Rgo (uh’ =, '(/J()v 'l/)F) = Ig(RgI(uh: B, "/)Oa wF))
Moreover, we have the equality f =(1bo,u®) = farz,, (Yo, ub).

The proof of these two lemmas will occupy most of this section, but before
we get to it, we will first extract an important consequence of Lemma 2.7.1.

Proposition 2.7.3. Assume that parts 2 and 3 of Theorem 2.6.2 hold for all standard
parabolic pairs (M*, P*) of G* and all parameters 1» € Wo(M™*). Then they hold for
all standard parabolic pairs (M*, P*) of G* and all parameters p € U (M™*).

Proof. As in the beginning of Section 2.5 we choose 1 within its equivalence
class so that the minimal Levi subgroup of “M through which it factors is of
the form My x W for a standard Levi subgroup My of M, hence of G. Then
Agzy, is a maximal torus of Sy Let Mg be the standard Levi subgroup of G*

dual to M, and let Py be the standard parabolic subgroup of G* with Levi
factor M. We have Mj C M* and Py C P*. Moreover, ¢ € VU (M*) is the
image of 1y € Uy(M{) under the natural map V(M) — ¥(M*).

We have the linear forms fo =(¢,u) and f¢ (1, syu™") associated to the
parabolic pair (M*, P*) and the parameter ¢. They only depend on the image
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uf € NEJ(M7 G) of u. We have Az NS4 = TN Sppd = ﬁj}ad and the argument
used in the beginning of Section 2.5 allows us to assume that « normalizes Trad,
Then it also normalizes Ay; and thus belongs to Ny, (Mo, G) N Ny (M, G). This
allows us to consider the linear forms fc = (0, u) and fg =(v0, spu™ 1). We have
fo=2@o,spu™) = fG=(1, spu™"): Indeed, both forms depend only on the
images of ¥y and ¢ in ¥(G*) and these are equal. On the other hand, Lemma
2.7.1 asserts that fo =(vo, uh) = fa=(, u") and the proof is complete. O

The proof of Lemmas 2.7.1 and 2.7.2 will require the validity of the follow-
ing piece of the quasi-split theory: the twisted local intertwining relation for a
product of groups of the form G, (V) and an automorphism of this product
that permutes the factors transitively. We will now review its statement.

Let N; and k be positive integers and H = G, p(N1)*. The standard pin-
ning of G, r(N1) gives rise to a pinning of H, whose maximal torus and Borel
subgroup we call Ty and By. Let g be the automorphism of H given by
Ou(ha,...,hg) = (0(hg), h1,. .., hy—1), where 0 is either the identity automor-
phism of G'g,r(N1), or the automorphism 6 described in Section 0.2.3, whose
fixed subgroup is Ug,r(N1). The Borel pair (T, By) is invariant under 0.
Let (Mpy, Py ) be a standard parabolic pair for H. We are not assuming that it
is invariant under 6. Let ¢y € U(Mpy) be a parameter and let = be the unique
representation of My corresponding to . For our purposes we may assume
that ¢ is discrete. Let Sy, (H, 8) denote the subset of the coset H %0y cons1st-
ing of elements that centralize (the image of) ¢. Let u € N(Az; , Sy(H, 0y o))
and let w be its image in the Weyl set W(]\?HJ;T, @\;Il) = N(Az, 7H>40 )/MH,
as well as in the isomorphic Weyl set W(My, H,0p) = N(An,, H ¥ 05)/My.

Associated to the element w is a self-intertwining operator Rp,, (w, ¥, ¥ r)
of the induced representation ## (7). It is again a composition of three oper-
ators. The first operator is

RUJ*lPH‘PH (ﬂ-) : HgH (ﬂ-) - 7_[QIJ;)I_lp}LJ( (7T)

This operator is given again as the evaluation at A = 0 of the product of the
usual un-normalized intertwining operator J,,-1p,, |p, (74,1, ¥r) and the nor-
malizing factor

L(O’pX*1PH|PH © ¢¢/\) 6(%7p1\1/;71PH|PH o (bl[bwa)
L(lap,L\l/,—llepH © ¢1/)>\) E(prX—lpH‘pH © ¢’l/)>\7wF) .

rw_lPH\PH (2/]/\7¢F) =

The second operator is
Ww,m) : HY op, (m) = HP, (wr).

To define it, we firstlet w € N(Ty, H X0y )/TH be the unique element mapping
to w and preserving the Borel pair (Ty, By N My) of My. Since 6y already
preserves Ty we have w = wg x 0y for some wy € N(Ty,H) /Ty =W (T, H).
Let wy € N(Ty, H) be the Langlands-Shelstad lift of wy and put w = wy % .
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We set wmr = m o w~!, where we are using the notation w to denote both the
element w € H x 0y, as well as the automorphism Ad(wp) o 0y of H that it
induces. Define the operator I(w, ) by

100, )6 () = €57 P21y s 0N, )~ (05 (5 )

The third operator comes from an intertwining operator 7(w) : wr — .
Write w = (@1,...,@) XO0g, Mg = My X -~ XxMyandm=m @ - Q 7.
Then we have w160 M, = M7 and w; M;_1 = M; for ¢ > 1. Furthermore we have
o (w0)t 27 and m_y o{[}i_l = g, for i > 1. We fix arbitrary isomorphisms
Ly : (Vﬂ-k,’frk o (’&710)71) — (V17 7T1) and ¢; : (Vﬂ-i_l , Ti—1 O?l)vi_l) — (Vﬂ-i, 7'(‘1‘) fori >
1. The composition ¢ . . . 11 is an isomorphism (Vy, , mp o (W —_1 . .. w160) 1) —
(Vs Tk). The automorphism (wWxwy—_1 ... w16) preserves M, as well as the
pinning of it induced from the pinning of Gg,r(N1). As discussed in the
beginning of Section 2.4, there exists a canonical choice for the isomorphism
(Vi T © (WyW—1 ... w10) ') — (Vy,,mx) and we require that our choices of
t1,...,L are such that the composition ¢y, ... ¢; is equal to this canonical iso-
morphism. Then we obtain the isomorphism

7(@) : (Ve,mow™ 1) = (Vi, 1), (01 @vg) = (01(vr) @t2(v1)@- - Qg (vp_1))

and it is independent of the choices of ¢1, ..., t.

We now let Rp,, (w, ¢, ¢rp) = Zf, (w(w)) ol(w, ) 0 Ry=1p,|p, (). This is an
automorphism of the space %7 () and is furthermore an intertwining opera-
tor

I};IH (r) — IgH (m) o fy.

For any f € H(Mp) we also have the trace-class automorphism IgH (m, f) of
HP (). We define the linear form f — fx (4, w) on H(H) by

fH(?/i, ’LU) = tI‘(RPH (w7 ’(/}7 d)F) © III;IH (7T7 f))

On the other hand, the element u=! € N (Agz,,+ Sw(H,0m)), which gave rise to
w € W(Mp, H,0p), can also be used together with the parameter ¢ to produce
an endoscopic triple ¢ for the twisted group (H, 0y ). Just as in Section 2.6, this
endoscopic triple leads to a second linear form f — f};(1),u™') on H(H): We
let ¢ € H(H*) have orbital integrals matching those of f with respect to the
transfer factor normalized using Whittaker datum, this datum coming from
the fixed pinning of H and the additive character ¢)r. Then we evaluate at f*
the stable linear form on #(H*) associated to the parameter (1)~ o ).
The twisted intertwining relation we need is the following.

Proposition 2.7.4. We have

fH(u}aw) = fl/’{(wvu_l)'
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Note that we could have equivalently stated this equality as fr (¢, w) =
[ (¥, syput), since both u and s, u are elements of N, (M, G) that map to w.
This is a special feature of the group Gg/r(N).

Using the arguments of Section 1.1.3 one can reduce this proposition to the
case k = 1, which is part of our assumptions stated in 1.5. This reduction how-
ever requires a more flexible definition of the intertwining operators for the
group Gg,p(N) than we currently have at our disposal. We will first give the
new definition of the intertwining operator and then proceed to the reduction
of Proposition 2.7.4 to the case k = 1.

Consider two standard parabolic pairs (M1, Py ) and (M, P2) of G1 = G p(N1).
Let ¢y € U(M;) and let m; be the unique representation of M; (F") correspond-
ing to ¢;. We consider the set Transg, wo(M1, M2) = {g € G1|g0(M1)g~* =
M>}. This set may be empty. For any I'-fixed w € M \ Transg, xo (M1, Ma) we
are going to define a representation wm; of M, (F') and an intertwining operator

RP2|P1 (w7w17wF) : Hgll (7('1) — Hg; (’[17’/T1).

We begin by defining w;. Recall that GG; is equipped with a standard pinning,
whose Borel pair we will denote by (T4, B1). Let w; be the unique element of
N(Ty, G1x6)/T) which maps to w and which transports the Borel pair (77, B1N
M) of M; to the Borel pair (77, By N M) of Ms. Since 6 already preserves T,
we have w = wgf for some wy € N(T1,G1)/Ty. Let wy € N(T1,G1) be the
Langlands-Shelstad lift of w and let w = w6. The representation wm of M, (F)
acts on the vector space V,, underlying 7; and is defined by wr = mow ™!,
where we identify the element w € G; x 6 with the automorphism Ad(wg)6 of
Gi.

We define the intertwining operator Rp,p, (w, 1,9 r) as the composition
l(w,1,9F)o Ry—1p, p, (Y1), where R,,—1 p,| p, (¢1) is the usual intertwining op-
erator, as defined in Section 2.2, and I(w, 11, ¥ F) is an intertwining operator

G (M) = HE ()

that sends a function ¢ to the function

1 N1 g
9= €(5s Purpy ey T YR)AW) TG0 (W1 9)),

This completes the definition of Rp,|p, (w, %1, r). Note that when (M, P,) =
(M, Pr), we recover the definition of the usual intertwining operator, denoted
by Rp(w,, ) in [Artl3, (2.3.25)] in the untwisted case.

Lemma 2.7.5. Let (Ms, Ps) be a third standard parabolic pair for Gy and let w' €
Transg, wor (M2, M3)/Ms. Then we have

Rp, p, (w'w,1,¥p) = Rp,|p, (0, w1, ¥p) 0 Rp, p, (w, 11, VF).
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Proof. We have

Rp, p, (W', wip1,¥r)Rp, p, (w, 11, 9F)
— Z(U)/, ’lU’l/Jl, 1/1F) o Ru)/_1P3|P2 (U”/Jl) o l(w7 wh ¢F) o Rw_lpz‘P1 (/(/)1)
= l(w/a (U wF)l(wa 1, ’l/}F)R(w’w)_lP3|w_1P2 ('l/)l) o Rw_ng\Pl (1/)1)
= 1w, wipr, p)l(w, 1, YF)Riwwy-1py p (Y1)
It is thus enough to prove l(w’, w1, Yp)l(w,¢1,¢r) = l(w'w,¢1,¢r). The

proof is very similar to that of Lemma 2.3.1 so we will only give a sketch. The
equality we would like to prove is

— 1 N
(ZS((U)”UJ) 19)6(5,,Oz/w/w)—lp?"pl,7T1,’L/)F)>\('UJ/UJ) !
e 1 1 NI TN
= ¢((v'w) 19>€(§aPl/—lpﬂp?,U”Th1/)F)€(§7Plvu—lp2|p1,7T171/1F)/\(w) 1)\(10) !

for any ¢ € H%5! (1) and any g € G1(F). According to [LS87, Lemma 2.1.A],
which is stated in sufficient generality so as to apply to the “twisted” elements
w and W', we have

— -1
ww = H a’(=1) - (w w)_l
a>0,1ba<0,w ba>0

where the product is taken over the set of absolute roots of T} in G;. The set
{a > 0, < 0,w'wa > 0} is once again invariant under I, because w, v/,
and B are, as well as invariant under W (77, M;). For the latter, note that since
w sends By N M to By N My, the set under consideration contains only roots
a which lie outside of M;. But W (Ti, M;) preserves the set of positive roots
outside of M;, and furthermore W (T}, M;) is transported to W (T}, Mz) by w
and to W (T3, Ms) by @w'w. We conclude as before that

o((w'w) " g)((@'D) " g) = A(m(x))(@'D) ",
where A\(m(x)) € A, (F) is equal to theimage under A = >~ 4 0 <0 o>

X« (An,) = X*(J/M\l)r of the element m(x) determined by m(z) X = = ¢y (x)
for x € Wp any preimage of —1 € F'* under the Artin reciprocity map. The
equality we are proving thus becomes

6(%ap7\vlul—1p3‘p2a wﬂ_lvwF)E(%,pz—lpﬂpl,’/Tla ¢F) /\(w’w)

Am(z) = ,
() (L Pl s poiprs 71, 9F) A@AD)

which is the direct analog of (2.3.2). To study the e-factors, we again decompose
1, 1
€(§7pw—1P2|P177T151/}F): H 6(577T17p571/)F)~
£>0,wB<0

Since w does not preserve M;, but rather sends it to M;, we need to interpret
the index set of the product as going over those weights 3 € R(Az; , G1) which
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are positive, i.e. gsg C n,, and for which wg € R(AM27§1) is negative, i.e.
Juwp C M,. Since both 131 and 132 are standard, the notions of positivity can of
course be interpreted in both cases as gz C b and g3 C b1, with b; being the

Lie algebra of the Borel subgroup Bi. With this interpretation, the argument
given in the proof of Lemma 2.3.1 goes through and shows that

1 1
6(57 p,L\f)lflpig‘pZ;wﬁlawF)€(§7pX71P2|Pl77rla wF)

1
6(§7p2/w/w)—1p3|p177T17¢F)

=det | Ad(m(z) x x) @ Bav

a>0,wa<0,w wa>0

This again leaves us with having to show the analog of (2.3.3), i.e.

det [ Ad(1 x ) @ Gav | = MW", r) T A, Yp) AW, Pr).

a>0,wa<0,wwa>0
The argument in the proof of Lemma 2.3.1 applies verbatim in this case. O

Having established the more flexible notion of intertwining operators, we
are now ready to reduce Proposition 2.7.4 to the case k = 1.

Lemma 2.7.6. Assume that Proposition 2.7.4 holds in the case k = 1. Then it holds
for any k.

Proof. We begin with the discussion of fi (¢, w). As in the construction of this
linear form, we write My = My X --- X My, w = (wy,..., W) X 0y and 7 =
Ty ® - -+ ® . Write further Py = Py x --- x Py and G1 = Gg/p(N1). We have
the isomorphism

HE (1) ® -+ @ HE! (1) = Hip, (7) 2.7.1)

of H-representations, sending a simple tensor ¢; ® --- ® ¢, to the function
H — Ve = Q, Vr, whose value at (g1,...,9x) € H is given by ¢1(g1) ® --- ®
o1 (gx). The operator Rp,, (w, ), ) translates under this isomorphism to the
composition of the following operators. First, the operator

Hgl (7T1) &®--- ®H1§k (ﬂ—k) — HS;1P2 (71—1) Q- ®Hgk—1pk (ﬂ—kfl) ®H(Gw10)_1P1 (ﬂ—k)

givenby R —ip p (1)@ @R, 1pp,_, (Y1) ® R(w,6)-1 | P, (¥r). Second,
the operator from

He i, (1) @ @A, (Mho1) @ H )1 p, ()

to
’H]C:Y; (Wom ) ® -+ ® Hgk (WpTK—1) ® HIGal (w1 0my)

given by l(wa, ¥1,YF) @ « - @ l(wk, Y—1,YF) @ (w10, Y, Yr). And third, the
operator

HE, (@om1) @ -+ @ HE, (@mi—1) @ HE, (wibmy) = HE, (1) @ - - @ HE, (i)
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sending ¢1 ® -+ @ P t0 L1 0P D20 P @+ @ Lk © Pp—1.
Define for i = 1, ..., k the operators

A; 7—[%_1(7@71) — Hgi ()

by Ay = I§ (1) © Rp, p, (w10, ¢k, ) and A; = Ip,(1;) © Rp,|p,_, (i, hi—1, ¥F)
for ¢ > 1. Then we see that the operator Rp, (w, 9,1 r) translates under the
isomorphism (2.7.1) to the composition of Ay ® --- ® Ay ® Ay with the shift
operator 91 @ -+ @ Pp = O QP1 @ -+ ® Pp—1.

Consider now the isomorphism

HE, (1) = HE, (1) @ - - @ HE, (mx) (2.7.2)
given by
A ®@Az0M)®- @ (Ago---0Ag).

A direct computation shows that the operator Rp,, (w, 1, ¢r) translates under
the composition of (2.7.2) and (2.7.1) to the operator on Hgk (7))@ that sends a
simple tensor ¢ ® - - - @ ¢y, to the simple tensor (Ay ... A1) R P1 Q- - @ Pr_1.
At the same time, given f1 ® --- Q fi, = f € H(G)®* = H(H), the operator
Igj (T, 1) ® -+ @ ngl (7, fr) translates under the composition of (2.7.2) and

(2.7.1) to the operator I, (m, f1®---® fi). Applying Lemma 1.1.7 we conclude
that

Fu(h,w) = tr(TgH (me, fr# - fi) o (Ag o0 Ay)).

Recall now that w was the image of an element u € N(Ay; , Sy(H,0p)), thus
w = 1p. From this and Lemma 2.7.5 it follows that

Ak O---0 A1 = ngl (Lk: e Ll) o Rpk‘pk (’U)k e wle,z/)k,z/)F).
The right hand side is the canonical intertwining operator on Hgkl (7). Thus

fa(h,w) = (fr*-* fo)a(wg ... w10, 9).

We now turn to the linear form ff; (¢, u™!). Write u = (u1, ..., ug) ¥ 5,}1. Then
u™t = (uy ', .. upt,0(urt)) % 0. According to Proposition 1.1.5 we have

o~ ~

Sa(hu™) = (frs-x f)e, (W1, uy o ou 0(upt) x06).

From wy) = 1 we know uj 't = 0= (¢r), so conjugating by g uy! the right
hand side becomes

(1t 5 fi)la, (s (o 2 0)71).

According to the k£ = 1 case of Proposition 2.7.4, which is our assumption, this
equals the expression we obtained for fy (¢, w) above. O
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Combining Lemma 2.7.6 with the assumption made in Section 1.5 that Propo-
sition 2.7.4 holds in the case £ = 1, we can now assume Proposition 2.7.4 for
any k. We are now almost ready to commence with the proof of Lemmas 2.7.1
and 2.7.2. For this, we return to the notation used in their statements. Thus,
G* = Ug/r(N), E : G* — G is an equivalence class of extended pure inner
twists, Mg C M* are standard Levi subgroup which transfer to My C M C G,
o € VU(Mg) is a parameter whose image in U(M™*) we denote by ¢, and
u € Sy N N(Ag G)n N(Azz, @). In this paper, we will give the proof un-
der the additional assumption E/F is an extension of fields, leaving the case
of a split quadratic algebra for [KMSa].

By construction we have

faz(o,u) = Y tr(RE (u,Z, m, v, ¥r)IE (10)(f))-

mo€lly, (Mo, =)

We have inserted the superscript G to keep track which ground we are in-
ducing to. We view this as the character at (u?, f) of the representation of

Nfbo (Mo, G) x H(G) given by

@ Rg0(7757ﬂ'07w07w}7)Ollgo(ﬂ-()?*)'
mo€llyq (Mo,E)

We will compare this representation with the representation of N, fp(M ,G) x

H(G) whose character is fg =(1,u"). Setting Q@ = Py N M, we consider the
induction in stages isomorphism

HE, (m0) — HEHY (o)), = = v, 2(9) = y(g, 1), y(g,m) = 657 (m)a(mg)

and study how the operator RIGDO (=, 2, mo, %0, ¥ r) translates under this isomor-
phism and how this translated operator compares with Rg (=, E,m,1¢,¥F). Re-
call that Zis assumed to be an equivalence class of pure inner twists. We choose
(€,2) € E with the property that if we decompose My = Mg, x Mg _ with
Mg . a product of groups of the form G /¢ (N1) and Mg _ a group of the form
Ug/r(N2), then in the corresponding decomposition z = z, x z_ we have
zy = 1. In particular, z is fixed by the Langlands-Shelstad lifts of all elements
of W (Mg, G*)''. Furthermore, Py = £(Pg) is a parabolic subgroup of G defined
over F' with Levi factor My, and M = {(M*) and P = £(P*) form a parabolic
pair of G defined over F. Recall the definition (2.5.1)

Rlcio (uha Ea 0, wOa ¢F) = ZICDT:-) (Tro(uh)f,z) o llcio (wang()vwF) © Rg*1P0|PU(€7¢O)a

where we have again added the superscript G in order to keep track of the rele-
vant groups. We have furthermore written w for the image of u® in W (Mg, G*).
Note that the automorphism of A+ induced by w preserves the subgroup Ay
and hence gives rise to a well-defined element of W (M*, G*), which we will
also call w. It coincides with the element corresponding to u°.
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The construction of the operator R depends on lifting w € W (Mg, G*)
to an element of N(T*, G*)(F), while the construction of the operator R% also
depends on lifting w to an element of N (7%, G*)(F'), but with the important
difference that now w is seen as an element of W(M* , G*). The results of
these two lifting procedures are in general different. More precisely, let wg be
the unique element of W (7™, G*) which normalizes Ay, preserves the Borel
subgroup B* N Mg, and whose image in N(Apz:, W(T*,G*))/W(T*, Mg) =
W (Mg, G*) is equal to w. Let wy be the unique element of W(T™*, G*) which
normalizes Aj;-, preserves the Borel subgroup B* N M*, and whose image in
N(Ap=, W(T*,G*)) /W (T*, M*) = W(M*,G*) is equal to w. The elements wq
and wy of W(T™, G*) will in general be different. Indeed, wo normalizes both
Apr; and Apy+ and preserves the Borel subgroup B* N My of M{, while w;
normalizes only A/~ and preserves the Borel subgroup B* N M* of M*. The
images of wy and wy in N(Ap-, W(T*,G*))/W(T*, M*) = W(M*,G*) being
equal, we have wy = wpw; for some wo; € W(T*, M*). Since both elements
wy and wy are fixed by T', so is wo;.

While it may appear tempting to use the decomposition wy = weiw; in
combination with Lemma 2.5.3, which in turn rests in particular on Lemmas
2.2.4 and 2.3.1, to study Rgo (u?, 2, 10,1 r), we are not in a position to do so,
because these lemmas only apply to the product of two elements of N, b} (M, G)
or of W(M*,G*)'', while the equation wy = woiw; expresses a relationship be-
tween two different lifts to W (T, G*) of the same element w € W (M*, G*)!.
Instead, we need to go back to the individual constituents of the operator
Rgg (uf, Z, 0,1 r) and study how each of them behaves.

Consider the element w € W (Mg, G*) and view it as an element of W (M, G)
via the isomorphism determined by £. Since it preserves M we have well-
defined parabolic subgroups w=*Py € P%(My, w™ P € PY(M)and w'Q €
PM(Mo).

Lemma 2.7.7. Under the induction in stages isomorphism we have the identification
RS 1py1py (6:%0) = Ry—1 pp(€,0) 0 TE (R 1, (€: 00))-
Proof. We may assume that 1)y is in general position, so that
RS 1 pypy (6, 00)2(9) = 751y py (6 %0, Y1) T TGy oy (6500,

with the general case following by analytic continuation. Let Np, Np, and Ng
be the unipotent radicals of the parabolic subgroups P, Py, Q. Then we have a
direct product decomposition of affine varieties Np, = Np x Ng and this leads
to a decomposition of domain of integration in the definition of J&_, Po| P AS

wileow N Npo = (wilew N NP) X (wilNQw N NQ)

From this one sees directly that under the induction in stages isomorphism the
operator J_p  p is identified with the composition J . o p 0 Zp(J ) 1 g(0)-

w

The complex vector space w1 np,w N1 p, has a corresponding decomposition

’wilﬁpow N il{po = wilﬁpw N /ﬁp X wilﬁQw n iI‘IQ (2.7.3)
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and this decomposition is stable under the adjoint action of 1o(L ). This leads
to a decomposition

TS*IPO\PO (f, ¢07¢F) = TchflP\P(ngawF) : TS)/Ile\Q(vamwF)'
O

Next we study the operator z,%‘o (w, €, %0, ¥ r) and how it relates to the opera-
tors IS (w, &, ¥, ) and I} (w, €, vo, ¢r). The operators I, and I are those de-
fined in Section 2.3. Their definition involves the images w, and @, under £ of
the Langlands-Shelstad lifts wo and w, of the elements wq and w; respectively.
The operator [} will be described now. The automorphism 6} := Ad(w;)
of M* preserves the splitting of this group inherited from G*. The element
w € W(Mg,G*) preserves M* and provides an element of W (M, M*,07) =
N(Angz, M* % 0F)/Mg. Tts lift to W(T™*, M*,07) = N(T*, M* x 07)/T* is equal
to wp167 and its Langlands-Shelstad lift is equal to w1 67. Both 67 and wo; com-
mute with z_, hence with z, so Wy = &(wp1) € M(F) and 6; = £07¢71 is an
automorphism of M defined over F. Just as we did earlier in this section for
the group H, we define

1Y (w, &, o, 0r)B)(m) = (2

2 > Taho s plle‘Qa 'l,Z}F))\M* (w0191<7 1/’F)71¢(91_1(w0_11m))-

We have added the subscript M* to the Keys-Shahidi constant to emphasize
that the ambient group is now M* and not G*. The representation 7y, is the

same representation of My (F) that is used in the normalization of the operator
G
0

Lemma 2.7.8. Under the induction in stages isomorphism we have the identification

lg@ (w7§7w07'¢)F> = Igug(wangOawF)) o lg(w,f, ZZJ, 77Z]F)

Proof. We claim that wy = wp1w;. Indeed, according to [LS87, Lemma 2.1.A],
we have wy = A(—1)wp; w1, where ) is the sum of all elements of the set subset
of R(T*,G*)V given by {a > 0,wp'a < 0, (woyw1)"'a > 0}. But this set
is empty. Indeed, since wo; € W(T™, M*) we know that the two conditions
a > 0 and wy,'a < 0 imply that o € R(T*, M*)". But then w; "wg,'a > 0 is
impossible, because w; preserves the Borel subgroup M* N B* of M*.

Letx € ’HIC;'D (mo) and let y € ’HIC;'(Hg (mo)) correspond to x under the induc-
tion in stages isomorphism. Beginning with the defining equation (2.3.1) we
see

[lgo(w7§7¢07wF)z](g)
= ep,(w,%0,9r) - A+ (wo, ¥p) ™" - 2y 'g)
= ep,(w, %o, ¥p) - Mg+ (worwr, ¥r) ™" - z(We; w7 ' g)
(

A
= ep,(w, Y0, ¥p) - A+ (worwy, Yp) - y(w7 Lg, byt )
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Note that Ad(w;) = 6;. The decomposition (2.7.3) implies a corresponding
decomposition

ePg(wvw()wa) = GP(w7w7wF)6Q(wa wOa ¢F)

We claim that >\G* (wmwl, 1/)}7‘) = A+ (w01w1, 77ZJF))\G* (wl, 1/}F) Indeed, the left-
hand side is a product indexed by the subset of R(Ar-,G*) given by {a@ >
0,wprwicx < 0}. The factors corresponding to the intersection of this subset
with R(Arp+, M*) comprise A+ (worw1, ¥r). On the other hand,

{a € R(Ar+,G*)NR(Ap+, M")|a > 0,wprwiax < 0} = {a € R(Ap+, G¥)|a > 0, w10 < 0}.

The inclusion of the left side into the right side follows from the fact that wg;
preserves the positive elements of R(Ar-,G*) \ R(Ar-, M*), while the oppo-
site inclusion follows from the fact that w, preserves the positive elements of
R(Aqp+, M*). Now the right side is precisely the index set in the definition of
Ag= (w1, Yr). O

With the previous two lemmas at hand we conclude that the representation

@ R}Cjo(_aaaﬂ-07¢05wF)OI}CDYVO(TFO7_)
o€y (Mo,E)

of N, 5)0 (My, G) x H(G) is isomorphic to the representation sending (u%, f) to

D 1w & vr) 0 RS i pip(E, 70, Yo, Yr)

woeﬂ,wo(Mo,E)
© Ig(z%(ﬁo(uh)) o lg[(wa 67 ¢07 wF) o R34*1Q|Q(§7 ¢0) o Ig(ﬂ-()v f))

The first two operators in this composition are defined in terms independent of
the particular representation my and can be extended, using the same formulas,
to the direct sum of all my. This allows us to move the direct sum past them.
On the other hand, the first three of the four factors inside of Z§ comprise
the canonical twisted self-intertwining operator Rg(uh, (&, 2),m0,%0,¥r). The
above representation becomes

lg(wvfaqpaqu) ORS—1P|P(Ea7TO;¢O»¢F)
o Ig( @ RY (u¥, (&, ), m0, %0, ¥r) 0 I (mo, f)).-

o €1Ly (Mo,=)

We can now apply the twisted local intertwining relation to the argument
of Ig. Indeed, we have the decomposition M* = M} x M*, with M} being
a product of groups of the form G, (NN1) and M* being equal to Ug/r(N_).
Write £ = &4 x &_ accordingly. Our assumption z; = 1 made earlier en-
sures that £, : M} — M, is an isomorphism over F, while ({_,z_) : M* —
M_ is a pure inner twist. The automorphism Ad(w;) of M* preserves the
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splitting of this group inherited from G*. It acts trivially on M* and so the
twisted group (M*, Ad(w;)) decomposes as the product of the twisted group
(M7 ,Ad(w)) and the untwisted group M*. The automorphism Ad(w;) acts
on M} by permuting the individual factors of the form G g/ (N1 ). The twisted
group (M, Ad(wy)) thus decomposes as a product of twisted groups (M7 ;,0;),
where each twisted group (M} ;, ;) is of the form (H, 6) discussed earlier in
this section. The twisted intertwining relation for M thus follows from the
usual intertwining relation for M_ stated as Theorem 2.6.2, whose validity is
being assumed by induction, as well as the twisted local intertwining relation
for each of the twisted groups (M7 ;,0;), which is Proposition 2.7.4. This rela-
tion, coupled with Theorem 1.6.1 and Proposition 1.5.1 tell us that

@ Rg(uh7(§72)77T07¢0awF)O:z‘—é)w(ﬂ-()vf) = @ W(uh)’ﬂ'(f)
mo €My (Mo ,E) w€lly (M,En)

as representations of (Ny,, (Mo, G) N Ny (M, G)) x H(M). With this, the above
representation becomes

l%(w,f,¢,¢F>oR§_1PP<E,w,¢,¢F>oI§( . w(u“)w(f))-

TrEHw(M,EIW)

The trace at (u?, f) of the latter is by definition fg = (1, u?).

We have thus proved fg =(o,u") = fg=(1,u"), i.e. Lemma 2.7.1. In the
course of the proof we have also collected all the information we need for the
proof of Lemma 2.7.2. Indeed, assume now that u € Sy, (M) N N(Az; G). For
7 € Iy, (Mo, Ep,) we consider the intertwining operator

RS, (u*, B, mo, o, ¥r) = I§, (mo(u¥)e =) © IF, (w, €, %0, ¥F) © RS 1 py p, (€, o)

We apply Lemmas 2.7.7 and 2.7.8 and note that both operators RS _, P& ?)

and [ (w, &, v, ¥ ) are equal to the identity, because the image of uin W (M, G)
is trivial, and so w is the trivial element of W (M, G). Thus

RE, (uf, B, mo, o, ¢r) = IE(TY (mo(ufe,z) o I (w, €, 00, 9r) © Rylagio(é:40))
= TE(RY (u*,Ens, mo, 0, ¥r)).

This is the first statement of Lemma 2.7.2. The second statement follows im-
mediately from the first. Indeed, for f € H(G) we have

faz(ho,u?) = Z tr(RE, (uf, Z, 70, Yo, ¥r) 0 I5, (m0)(f))

mo€lly, (My,E)

- > t(ZERY (uh, Enr,mo, o, ¥r)) 0 IE (LY (m0))(f))
mo€lly, (Mo,Z)

= Z tr(Rey (u*,Ear, w0, %0, vr) © L (70) (far))

mo €Il (Mo,=)

= fu,za (o, u?),
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where f) is the constant term of f along P.

2.8 A preliminary result on the local intertwining relation II

In the setup of the local intertwining relation there are a proper Levi subgroup
M* of G* and a parameter ¢p;+ € U(M*). Throughout §2.8 we will write ¢
for the image of ¢j/+ in ¥(G*) and distinguish it from 157+ whenever it helps
to avoid confusion. We apologize for this change of convention. As a further
reduction step, we reduce the proof of LIR to the case when the parameter
Y € U(G*) is either elliptic or non-elliptic but belongs to one of the two very
special (“exceptional”) cases. Again the argument is based on the inductive
hypotheses and purely local arguments.

Throughout this subsection G* is assumed to be a unitary group over a
local field F.” Write a local parameter ¢ € ¥(G*) as a direct sum of simple
parameters:

¢:€1¢1@"'®€r¢r; TEI)EIZ"'ZKTZ:L

where v; are mutually inequivalent. The parameter ¢ is said to be elliptic if
there exists a semisimple element in S,, whose centralizer in S, is finite. The
set U5 (G*) (resp. Uen(G*), resp. U2, (G*), resp. U°'(G*)) denotes the subset of
U (G™*) consisting of discrete (resp. elliptic, resp. non-discrete and elliptic, resp.
non-elliptic) members. We have inclusions

\IIQ(G*) C ‘Ijell(G*) C \I/(G*)

Recall that the local intertwining relation is concerned with non-discrete pa-
rameters ¢ € V2(G*) = U(G*) ] ¥2,(G*). Elliptic non-discrete parameters
allow an explicit description. See [Art13, (6.4.1)] and also [Mok, (7.4.1)].

Lemma 2.8.1. The set ¥%,(G*) exactly consists of v of the form

V=21 @ D2 DYPg41 @ DYr, ¢21

such that Sy, ~ O(2,C)? x O(1,C)"~% and Wy reg # 0. (The latter condition is
equivalent to an even more explicit condition; see p.263, [Art13].) Moreover W9 =

{1} for every 1 € V%, (G*).

Remark 2.8.2. In case G* is a general linear group (which is excluded in this subsec-
tion), V%, (G*) is empty.

Proof. The characterization of U2 (G*) is easy from its definition and an explicit
description of Sy, for a general parameter 1. The triviality of W) is immediate
from the fact that S, is abelian. O

"The “linear case”, namely the case of GL(m, D), is treated separately when it comes to the
local intertwining relation; one problem is that not all Levis of GL(m, D) globalize to Levis of
global unitary groups.
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The following two cases are readily checked to be non-elliptic parameters
and turn out to be more difficult to treat than the other non-elliptic parameters.

(eXCl) ¢ = 2’(/}1 2] ¢2 G- D ’(/}7‘/ Sw =~ SL(Q? (C) X 0(17(C)r—1’
(exc2) ¥ =31 B B -+ Dy, Sy ~ O(3,C) x O(1,C) 1,

Define Uexc1(G*) (resp. Wexe2(G*)) to be the subset of U(G*) consisting of
non-elliptic parameters of type (excl) (resp. (exc2)) as above. Set Uy (G*) :=
Uexc1 (G*) T Yexc2 (G*). Loosely speaking, we will tackle the local intertwining
relation in the following order of increasing difficulty:

e when v is non-elliptic and not of form (excl) or (exc2),
e when v is non-discrete but elliptic, or of form (excl) or (exc2).

Here we are going to show that in the former case, the induction hypothesis
implies the local intertwining relation for ¢ by a local method. The local inter-
twining relation in the latter case will be handled in §4.6 only after developing
enough global machineries relying on the trace formula.

In view of Proposition 2.7.3 we are reduced to the case where the following
hypothesis holds true, which will remain in effect until the end of this subsec-
tion:

e 5+ belongs to Wo(M™) (rather than just W (M™)).
Then the torus Ty of Sy, := S, /Z(G*)" given by
Ty 1= Z(M)/2(G)" = A, [(Age. 0 2(G7)F)

is a maximal torus. Similarly T}, := Ag;, is a maximal torus of S;. Observe
that W) and W, may be thought of as the Weyl groups for T'y, in gz and Sy (as
well as the Weyl groups for Ty, in S, and Sy,), respectively. For 5 € Sy, denote
by T, s the centralizer of 5in T'.

Lemma 2.8.3. Under the assumption 1pp+ € Wo(M™*) we have canonical isomor-
phisms S5, _(M*,G*) = S5,(G*).

Proof. Consider the natural maps

N( M Slb)
N( Smd)

Sy 5,(GY) = Sy

S _Pv
Sw SOZ(G*)

¢M*

(M*,G*) = — S5(G") =

[*7

It is easy to see that N (A, ,5y) meets every connected component of .Sy, so
the composition map is onto. The second map is the quotient map by the image

of Z (@*), so surjective. Since Z (@*) C N(Agz.,Sy), we conclude that the first
map above is onto. O
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Following [Art13, (4.1.7)] we define Sy o (resp. Sy i) to be the set of s €
Sy.ss (resp. s € Sy s such that Z(Cent(s, SY)) (resp. Z(Cent(s,??p)) has finite
cardinality. (This may be different from the set of elliptic elements in Sy, or Sy,

in the usual sense even when the latter groups are connected.) It is easy to see
that the natural surjection Sy, — S, carries Sy o onto Sy on1. Considering the

natural surjections Sy, — S i and Sy — Sy, we define
Si),ell and §¢79H

to be the images of Sy o1 and §w,en, respectively. (Our gw,ell is the same as
Arthur’s defined on [Art13, p.331].) Since the two natural composition maps
Sy — Sy — Sy and Sy, — SE/) — Sy agree, we see that S’Z},cll has the same
image in Sy as Sy ci1, Namely Sy ci1.

Lemma 2.8.4. Suppose that ¢ € We(G*) does not fall into (exc1) or (exc2). Then

1. every simple reflection w € sz;“d centralizes a torus of positive dimension in
T, and

Remark 2.8.5. Note that condition 1 is satisfied dim Ty, > 2. If dim Z(S,,) > 1 then
both conditions 1 and 2 hold.

Proof. We are supposing that ¢/ is non-elliptic. It suffices to show that v is of
the form (excl) or (exc2) under the assumption that neither conditions 1 nor
2 is satisfied. As we closely follow the discussion in the middle of the proof
of [Artl3, Prop 4.5.1], some details will be omitted. The starting point is the
description

Se=| [] ow.o|x| J] SeC)|x Il crw.0

i€l (G*) i€l (G*) JET,(G*)

along with suitable integers N; for ¢ € IJ(G*) [11,(G*)and Nj for j € Jy,(G*)
such that Ziel:g(G*) N; + Ziel;(c*) Ni+23 e, Nj=Nand |I$(G*)| +
11 ()] +21Ju(G")| = 7.

We may assume that J,; (G*) is empty; otherwise S;, contains a central torus
of positive dimension, so clearly conditions 1 and 2 are satisfied. Likewise we
may assume that either (i) 7,/ (G*) = 0 or (i) |1,,(G*)| = 1 with Sp(¢,,C) =
Sp(2,C). Now we examine what happens over the parameter set I J (G*). In
case (i) an easy explicit computation shows that either ¢; < 2 for every i €
IJ(G*) or exactly one of the ¢;’s is 3 and all the others are 1 in I;“(G*). The
latter case is (exc2). In the former case a direct computation shows that either
¢ is elliptic or dim Z(S,) > 1, but these are excluded by our assumption. In
the remaining case (ii), the assumption on ¢ forces that O(¢;,C) = O(1,C) for
every i € I,j (G*), resulting in (excl).

O
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Lemma 2.8.6. Let ¢y € ¥(G*).

1. The natural map Si — Sy carries 5517611 onto Sy en-

2. If ) € Weyo(G¥) then S%,

=S5 and Syn = Sy

Proof. The first part was already proved in the paragraph above Lemma 2.8.4.
For part 2 we only need to check that Szj}e“ = Si by part 1. This amounts to the
assertion that the natural map Sy en — Sfp is onto. To see this recall that when
1 is exceptional, S, is isomorphic to either Sp(2) x O(1)"~! or SO(3) x O(1)"
for some r > 1. In either case the surjection Sy, — S,i is just the projection onto
O(1)"=! or O(1)". Since every element of O(1)"~! or O(1)" (with trivial entry
in Sp(2) or SO(3)) belongs to Sy, 11, we get the desired surjectivity.

O

Let (G, E) be an equivalence class of extended pure inner twists of G* as
before. The lemma below is proved by the same argument as on page 204 of
[Art13].

Lemma 2.8.7. Assume that either
1. 4 is elliptic, or
2. every simple reflection w € W:fd centralizes a torus of positive dimension in
Ty.
Then parts 1 and 2 of Theorem 2.6.2 hold for o) (and for all v and f).

Proof. We assume that M* transfers to a Levi subgroup M of G since f (¢, u?) =
0 otherwise. If ¢ is elliptic then W,*? is trivial by Lemma 2.8.1. So there exists
a unique u” mapping to a given z. The desired assertion is obvious. From now
we may work under the hypotheses that ¢ is non-elliptic and that condition 2
holds. In view of Lemma 2.5.3 it is enough to show that

RP(Uh757Wa¢a¢F) = 17 uh S Wiad

when u* corresponds to a simple reflection w € W} via Wjd ~ Wird, We
adopt the notation of the proof of Lemma 2.6.1 for any lift s of z, and apply
Lemma 2.7.2 with My = M, o = ¢, and M = M, noticing that the assump-
tion of the current lemma shows M, C G. Thus it is enough to verify that
Rpnn, (uf,Zpr, 7,9, 1pr) = 1, which holds true since favag =0 (U, uf?) is known
to depend only on u* modulo W4 by the induction hypothesis.

O

Lemma 2.8.8. Let x € SE)(M*, G*). Assume that either

1. v is elliptic and = ¢ S’Lh[),cll’ or
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2. 4 is non-elliptic, every simple reflection w € W{fd centralizes a torus of positive
dimension in Ty, (e.g. dim Ty, > 2), and dim Ty 5 > 1 forall 5 € Sy .

Then ff =(1, sys™') = e(G) fa,z(1, u?) whenever u? belongs to Ni(M*, G*) and
5 € Sy s maps to x.

Proof. Lemmas 2.6.1 and 2.8.7 tell us that fg = (1, u") = fg =(¢,z) and foz(,sys™) =
fe =, 271). Weneed to show f(, =(¢, syz™") = fo =(4, z). We argue as in the
proof of Lemma 2.6.1 up to (2.6.1), adopting the same notation. In particular
M} is a Levi subgroup of G* corresponding to M, :=2Z &+« (Ty,s) and that there
are ¢y, € W(M) and sps, € Sy, ss Whose image is (1, 5). The condition that
dim Ty 5 > 1 implies that M; is a proper Levi subgroup of G* (since then T}, ,
is not contained in the center of Zg, so M is smaller than G) If we instead

have the condition that z ¢ Sw,e 11 then every lift of x in £, lies outside &£y e11, 5O
we deduce that M; is again a proper Levi subgroup. If M does not transfer
to G then 1) is irrelevant so fg = (1, u?) = 0 while the argument of Lemma 2.6.1
shows that f¢; = (1, sy s71) =0, so we are done.

Now we assume that M does transfer to a Levi subgroup M; of G, equipped
with an extended pure inner twist (M, &, , zar,) given by =. When s is re-
placed with sy s, there is no change in M, and we get (again as in the proof of
Lemma 2.6.1)

—1 —1
fé;,E(l/}a Sy ) = lews,ng,zMs (¢M578¢M5 mMS)'

On the other hand, by taking M = M, My = M in Lemma 2.7.2, noticing that
x can be lifted to u? as in that lemma, we obtain

faz(,x) = far, enn, onr, (Y01, ). (2.8.1)

It follows from the induction hypothesis that

fz/ws,ng EM (wfws y Stharg x]T/Ils) = e(MS)fI\/Is,éMS yZMg ("/J]\/Is ) 'rMs)'

Hence we conclude that f{, =(¢, syz™") = e(G) fa,=(¢¥, z) since e(G) = e(M,)
by [Kot83, Cor (6)].
O

Corollary 2.8.9. Let 1) be as above and x € Si(M *,G*). Then Theorem 2.6.2 holds
forall u* € Nﬂj(M*, G*) mapping to x unless either

e s ellipticand x € S’i),el](M*7 G*), or

o ) € U o(G*) (then automatically x € Si)eu(M*, G*) by Lemma 2.8.6).
Proof. Immediate from Lemmas 2.8.4,2.8.7, and 2.8.8. O
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Define Wy reg(M™*, G*) to be the subset of w € Wy, (M*,G*) such that w
has finitely many fixed points on T'y. (This is consistent with the definition of
Wieg(S) in §3.3 below.) We write N, G

\ P,reg
in N} (M*,G¥).

Lemma 2.8.10. Assume that 1) € VUeyo(G*) and u ¢ Niﬁreg(MﬂG*) (ie. u €
NE)(M*, G*) has the property that w, ¢ Wy reg(M*,G*)). Then f{ =(¢, sps™") =
e(G) fa,=(1, u) provided that wand s € Sy, s have the same image in Sfp(M’Z G*).

Proof. For each v it is enough to prove for any one s which has the same image
in Sf/) (M*,G*) by Lemma 2.6.1. It is seen from the explicit form of the parame-
ter in (excl) and (exc2) that [W})| = [Wy| = 2and dim Ty, = 1 in either case, and
exactly one element of W, is regular. So the hypothesis implies that w, = 1,
which in turn tells us in view of (2.1.1) that u is the image of some element
s € Zg,(Ty) in Ni. Then obviously dim 7Ty, s = dimT,, = 1. In this case the
descent argument exactly as in the proof of Lemma 2.8.8 applies to show that
oz, sps™h) = e(G) faz(h, u). -

Unless we are in case (excl) or (exc2), Lemmas 2.8.4 and 2.8.7 tell us that
fe=(¥, u) depends only on the image of w in Sfb(M*, G*) so that fg =(¢,z) is

well-defined for = € Si(M *,G*). If ¢ € Ueyo(G*) then we may only consider

e uc Ni such that w, € Wy veg(M*, G*)

thanks to Lemma 2.8.10. Then one checks from the explicit form of (excl) and
(exc2) that there is a unique element v € Ni_’mg in the fiber over = such that
Wy € Wy reg(M*,G*). (In either case |W$| = 2 so there are two elements in
the fiber over z. One of them maps to a regular element in W,,(M*, G*) but
the other has trivial image, which is thus not regular.) Hence we may and will
choose the convention that whenever ¢ € Uy (G*) and = € Si(M * G*), we
set faz(¢, x) tobe fo =(¢, u) for the unique u just mentioned.

The harder cases of the local intertwining relation, left over from Corollary
2.8.9 and Lemma 2.8.10, will be treated in §4 after the method of comparing
the trace formula is developed. The discussion in this subsection has a close
analogue in the global situation (see §3.5).

2.9 A proof of the local intertwining relation in a special case

In this section we are going to prove a special case of Theorem 2.6.2 by a direct
computation. This special case will serve as a basis for the inductive proof of
the general case of Theorem 2.6.2, which will use global techniques and will be
interwoven with the proofs of the main local and global theorems. This section
will also provide a good illustration of the objects involved in Theorem 2.6.2
and their interplay.
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The special case we are concerned with here is the following. We take
E/F = C/Rand N = 4 and thus the quasi-split group is G* = Ug/r(4). Fix the
standard additive character g : R — C* given by ¢r(z) = exp(2miz). The in-
ner form we are interested in is the real reductive group G with G(C) = GL4(C)
and Galois action given by o(g) = Ad(d3,1J4)g*, where o € I'¢/g is the non-
trivial element, ~ denotes complex conjugation of complex numbers, as well as
complex conjugation of the entries of a complex matrix, and 43 ; is the matrix

1

031 =

The group G is isomorphic to the unitary group U(3,1) and (id, d31) : G* — G
is a pure inner twist. We are using the short-hand notation here and throughout
this section which identifies a 1-cocycle of I'c/r with its value at 0. We write
(& 2) = (id, d3,1).

We consider the group M* = Resc/r(G,n) x Ug/r(2). If we represent
Resc/r(Gn) by viewing its C-points as C* x C* with o(a,b) = (b,a), then
M* embeds as a standard Levi subgroup of G* by the map

a
m*: M* — G*, (a,b,B)H[ B ]
b71

We take P* to be the unique standard parabolic subgroup of G* with Levi
factor M*. It is clear that (, ) restricts to a pure inner twist M* — M, where
M is the group Resc/gr(G,) x U(2,0) and is embedded as a Levi subgroup of G
by the map m : M — G given by the same formula as for m*. Welet P = {(P*).

Now consider the standard parabolic pair (M, P) of G dual to (M*, P*).
The Weil-group W is a non-split extension of C* by I'c . We fix a lift j € Wg
of 0 € I'c/r that satisfies j2 = —1 and denote elements of C* C Wg by z.
We then take, for z € %Z, the Langlands parameter ¢ : Wg — L@ given by
d(w) = ¢°(w) x w with

It is clear that the image of ¢ belongs to © M.

Consider the restriction of ¢ to W¢. On the one hand, according to [GGP12,
Thm. 8.1], this is a conjugate-symplectic representation of W¢. On the other
hand, it decomposes as a product of characters



where we have denoted by (a, b) the character of W¢ = C* given by z +— 2%2°.
Since the character (a, b) is conjugate-symplectic if a—b € Z~\ 2Z and conjugate-
orthogonal if a — b € 27Z, we infer from [GGP12, §4] that Si = mo(Sy) is given
by the following table

T Si

Z Sp(2) x O(1) x O(1)

z 0(3) x O(1)

- 0(1) x O(3)
3Z~ZU{—3,%} | O(2) x O(1) x O(1)

On the other hand, Sy(M) = O(1) x O(1) for all z. We see that for z € Z U
{4, 3} the endoscopic R-group Ry(M,G) is trivial. We see furthermore that
for x € Z the parameter ¢ is of type (excl), while for € {—1,1} it is of
type (exc2), where (excl) and (exc2) where the exceptional parameter types

discussed in Section 2.8.

Proposition 2.9.1. Theorem 2.6.2 is valid for the parabolic pair (M, P) of G and the
parameter ¢ whenever x € {—2,—1,—1,0,3,1,2}.

The rest of this section is devoted to the proof of this proposition. We begin
by making explicit Diagram (2.1.1). Since we are working with unitary groups,
Sipd = 89, Furthermore, S NSy(M) = Sy(M)°. Diagram (2.1.1) specialized to
this case has the form (with Cy = Z/27)

0

{0} X {0} X CQ 7{0} X {0} X CQ

OHOQXOQX{O}HCQXCQXOQH{O}X{O}XCQH'O

OHOQXOQX{O}:OQXOQX{O}

0

For any value of xz, the non-trivial elements in the first two copies of C can
be represented by the diagonal matrices with diagonal entries (1, —1,1,1) and
(1,1,—1,1). These matrices belong to Sy (M) C Sy (G) and we will call them a4
and ap. A matrix representing the non-trivial element in the third copy of Cs
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however depends on the value of z. We have the three cases

er 5 .’L':i: s xr=——"_:
-1 1 1

This matrix belongs to S9 S¢( ) and normalizes Ag;. We will call it a3.

We now take u = a1 cay’ - a5t € Ny(M,QG) for ¢; € {0,1} and consider
the linear form f(¢,u) that is the essential ingredient of the right-hand side
of Theorem 2.6.2. The L-packet II4(M, &) contains a single element 7. It is
the representation of M(R) = C* x U(2,0)(R) which is the tensor product
of the character z — z”z~" of C* and the trivial representation of U (2, 0)(R).
The equality of the representation-theoretic and endoscopic R-groups is known
for real groups [KZ79, §3] and implies that # p() is irreducible and thus that
Rp(u, (&, 2),m, ¢, ¥r) is a scalar. Using the multiplicativity of Rp(u, (£, z), 7, ¢, ¥r)
in u guaranteed by Lemma 2.5.3, we can write the right-hand side of equation
(2.6.2) as

e(G)Rp(ag’, (& 2), ™, ¢, Yr) Rp(at' a3, (€, 2), 7, ¢, Yr)tr(Zp(T)(f))-

Consider the scalar operator Rp(af‘as?, (§,2), 7, ¢, ¥r). Since aj*a5? has trivial
image in Wy(M, G), the right and middle factors in (2.5.1) are easily seen to be
trivial. For the construction of m(a{'a5?)¢,. we can use Section 2.4.1, because
the 1-cocycle z satisfies the assumption z = 1 under which the constructions
of that section are valid. We then see that 7(aj'a5*)¢. = (aj'as’, m) !, where
the pairing (—, =), is the pairing between the L-packet II,(M) and the cen-
tralizer Sy (M) associated to the pure inner twist (¢, z) : M* — M by Theorem
1.6.1. For this we just need to note that a1,a2 € S4(M) and thus the section
s : mo(Ny(M, G)) = mo(Se(M)) employed in the construction of 7(@)¢ , fixes
them. It follows that the right-hand side of equation (2.6.2) has the form

e(G)Rp(az’, (€ 2), 7, ¢, ¥r){af ay’, m)g tr(Zp(m)(f))-

We now turn to the left-hand side of Theorem 2.6.2. The triviality of the endo-
scopic R-group implies that the pairing (—, —)¢ . between the L-packet II, on
G and S is compatible with the pairing (—, —)¢ . between the L-packet I, (M)
and S4(M) in the sense that (Zp(7), s)e., = (m,8)¢. forany s € mo(Sy(M)) =
m0(Sy). An exposition of this can be found in [Kall3, §5.6]. Noting that the
images of a{" - a5’ - a5® and a{' - a5? in my(Sy) coincide, the endoscopic character
identities for real groups [She82], [Shel0], [She08], (see also [Kall3, §5.6] for
an exposition in the case of pure inner forms) imply that the left-hand side of
equation (2.6.2), given by f'(¢,a; “* - a3 - a3 ), is equal to

e(G)(Zp(m) a1 -ay a5 )¢ tr(Tp(m)(f)) = e(G){m,af - a5’)¢ Ltr(Zp(m)(f)).

Comparing this with the expression we obtained for f(¢, a}' - a5? - a5*) above,
we see that equation (2.6.2) will be proved once we show

Rp(ag®, (& 2),m, ¢, ¢Yr) = 1. (2.9.1)

136



The remaining parts of Theorem 2.6.2 follow as well from this. We may of
course assume €3 = 1, for otherwise the statement is trivial. Denote by w
the image of a3 in any of the groups W(]\/I, G) = W(M*,G*) =~ W(M,G),
where the isomorphisms are given by the parabolic pairs (]/\4\ ,P), (M*,P*),
and (M, P). The element w belongs to the subgroup Wy(M,G) of W(]\/Z, @)
and is thus I'-fixed. According to (2.5.1) we are to show

7T(a/?;)ﬁ,z ° l(’LU, 57 ¢7 ’(/}F) o Rw*IP’w|P(£7 Qb) =1

For this we may choose an arbitrary y € G(R) and an arbitrary smooth function
f € Hp(m) normalized so that f(y) = 1. The above operator preserves the
smooth vectors in this representation and sends f to another smooth function.
We must then show that

[7‘_(043)5,2 o ZP(wv 57 ¢, /(/}F) ° Rw_le|P(£a ¢)f](y) =1

We focus first on 7(a3)¢,.. The representation 7 acts on the 1-dimensional
vector space C, with z € C* = Res¢/r(R) acting by the character :”z~*, and
B € U(2,0)(R) acting trivially. The operator m(w) constructed in Section 2.4.1
is equal to the identity. On the other hand, the scalar (7, az)¢ . € C* could be
non-trivial. Indeed, it is constructed as the value (7, s(a3))¢, ., where (7, —)¢ ,
is the character of m(S4(M)) corresponding to 7 1.6.1 and s(ag) is an element
of my(Sy(M)) whose construction we now review. Let s'(w) € N (T, G)T be the
Langlands-Shelstad lift of w, which in our case is

-1

We choose m € ]\//L such that m - ag - s'(w) € Sy(M) and then let s(u) be the
image of this element in my(S,(M)). We have argued in Section 2.4.1 that s(u)
is independent of the choice of m. Comparing with the possible values of a3
above we see that s(as3) is equal to the following

1 1 1
rE€EL: , T ==
1 1 1

and we have chosen m to be the identity matrix in the first case and the diag-
onal matrix with entries (1,1, 1, —1) in the latter two cases. Working through
the parameterization of discrete series L-packets of real groups described in
[Kall3, §5.6], one sees that the character (7, —)¢ , : mo(S4(M)) — {1} is given

€1 €2

by aj*as? — (—1)'. We arrive at the following table

T Y/
W(ag)g,z -1

— ol

T
2
-1
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We note at this point, in reference to the remarks made in Section 2.4.1, that if
we had used the naive splitting of the exact sequence (2.4.1), then the value of
m(as)e,» would always be equal to 1. As we shall see below, this would lead to
a violation of (2.9.1).

We turn now to the scalar [[(w, §, ¢, r) © Ry—1pw|p(§, ) f1(y). It is defined
by analytic continuation at v = 0 of the family of scalars obtained by replac-
ing ¢ by its twist ¢, for v € aj, . We will evaluate it as follows. We have
X*(M)I' = Z, with n € Z acting as the character (a,b, B)" = (ab)". Hence
ajrc = Cand for v € C the representation m, acts on the 1-dimensional
vector space C by the character which sends (a,a, B) € M(R) to the scalar
my(a,a, B) = a*a~*(aa)’. The representation Zp(7,) acts on the space of func-
tions .

{fu: G(R) = Clf,(n - m(a.a, B) - g) = a*a~ (aa) 1" (g)}
whose restriction to a maximal compact subgroup K C G(R) is square-inte-
grable. Choosing a continuous in v family of smooth functions f, € H(m,)
with f,(y) = 1, we seek to compute
})E%[l(wv & b, wF) o R’uﬁle\P(fv ¢v)fv](y)

For v € Ry the above scalar is equal to

fo(n'w ™ y)dn’,

L(l,p\f o ¢y)
)‘(wv '(/)]R)_1€(O, p%‘P © ¢Ua ?ﬂR)L /

L(0, p%u: o ¢y) N(R)

where we have written P for w™! Pw, because it happens to be the parabolic
subgroup that is M-opposite to P.

Let us first evaluate all constants in front of the integral. The relative roots
of Ar- are all reduced, and the positive ones which w maps to negative are
precisely the one occurring in n*. There are three such, one contributing a
1-parameter group with simply connected cover SLj, and the other two con-
tributing a 1-parameter group with simply connected cover Resc/rSL2. Thus
Mw, Yr) = A(C/R,¥r)* = —1. Next, the representation p1v3| p © ¢, decomposes
as the direct sum

1 1 L gipl
IndEVXR(ZOHU 2z "tvte) @ Indgﬁ"Z (z5TvF2z77Hv72) @ ggnl?®!

and according to [Lana] we have the following table:

L(O¢pﬁ|po¢v)

z || Aw, ¥r) " e(0, pfp 0 Pu, Ur) A

-2 +1 4737 ()L (v + )T (v + 1)~ T(w+ 1)t
-1 +1 Ar3T(v)T (v + 3)~!

-1 —i Ar3T(0)D(v+ DT (v + 1) T (v +2)7 !
0 ~1 r 473 T (v)D(v + T (v + 3) 72

3 —i 4W5F(U)F(vr+ )L+ 1)"'T(w+2)"!
1 +1 Ar2T(v)(v + 2)~}

2 +1 473T(0)T (v + )T (v + 1)~ 'T(w+ I)~*
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We now turn to the integral itself. One checks that we have isomorphisms
of R-vector spaces

i Y2 Y3
i,

n:C*®R — n(R), (Y1,Y5,Y3) ‘
ZYQ

and

X3
Xs - -
X3 —iX; —iXs

n:C*aR — a(R), (X1, X5, X3)

Let n* be the top form on n* whose value on the basis given by elementary
matrices (all entries 0 except a single entry equal to 1) is equal to 1. This form is
defined over R. The action of Ad(ds,1) on n* has determinant 1, so if  denotes
the transport of n* from n* to n via £ = id, then 7 is still defined over R. Its pull-
back via 7 sends the standard basis ((1,0, 0), (¢,0,0), (0, 1,0), (0,4, 0), (0,0,1))
of C? & R to —4. We conclude that the measure dn’ is given by

/ qﬁ(n’)dn' = 4/ gb(exp(ﬁ(Xl, XQ,X3)))dX1dX2dX3.
N’(R) CxCxR

In order to fix a good function f,, we use the relative Bruhat decomposition
G(R) = N(R) U N(R)M (R)wN (R).
We have

-1

We will define a function f,, on G(R) which will be supported on the open set
NR)M(R)wN (R) and will vanish rapidly towards its complement in G(R). To

integrate this function over N (R), we need to know how the element exp(7i(X1, X2, X3)) €
N (R) decomposes as a product

exp(n(Vi, Vo, V3))m(a, a, B)wexp(n(Y1, Yz, Y3)).

A direct computation reveals the following relations

1 _ _
a = —(X3+ 5z’(X1X1 + X X))t (2.9.2)
Y, = iaX;
Y, = iaX,
YE), = a&Xg

The following Lemma sheds some light on these formulas.
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Lemma 2.9.2. For X;, X, € C, X3 € R, define
1 > >
C(Xl,XQ,Xg) = X5 — Z§(X1X1 + XQXQ).
Then then the map

C@C@R*{O}%C@C@R*{O}, (Xl,XQ,Xg)’—)(Yl,YQ,}/g)

defined by B B
Y, = —in/C, Y = —iXQ/C, Y; = Xg/(CE),

is a well-defined involution. Furthermore

—_——1
C(Yla YQ; }/3) = C(XlﬂXQ,X:i)

The proof of this lemma is elementary and is left to the reader.

We can now define a good test function f, € Hp(m,) as follows. It will be
supported on the open set N(R)M (R)wN (R) of G(R) and will be given there
by the formula

exp(n(Vi, Va, V3))m(a, @, B)w exp(n(Yi, Ya, Y3))) = a®a *(aa)? t¥-e €1 Y2.Y5)l
folexp(n(Vi, V2, Va))m(a, @, B)w exp(n(Y1, Y2, Y3))) (aa)

The uniqueness of the decomposition implies that the formula on the right pro-
vides a well-defined function on the given open set. It is smooth and satisfies
fo(w) = 1. The argument of the function approaches N(R) precisely when
le(Y1, Ya, Ys)| approaches oo, and then the value of the function approaches 0
very fast. This allows us to extend f, smoothly to G(R) by setting it to be equal
to 0 on N(R). Upon restriction to K this function attains a maximum which
depends continuously on the parameter v, so we obtain a continuous family
fvlk. This family is in particular continuous at v = 0.
We can now evaluate the integral

/ fo(n/ @~ y)dn' (2.9.3)

N(R)
aty = . It is given by
/ fu(n')dn’ = 4/ fv(eXp(T_L(Xl,XQ,Xg)))XmdXQng.
N(R) CxCxR

An elementary manipulation involving (2.9.2) and Lemma 2.9.2 shows that it
is equal to

1 1
2z 2z —Te
4(71) /CXCXRC 7|c|3+27;+2ve [ ‘Xmngng,

where we have abbreviated ¢ = ¢(X1, X2, X3). We write X; = 1 + ixg, Xo =

x5 + ixg, X3 = x5, with (z1,...,25) € R, and then we have ¢ = x5 — Ji(2} +
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x3 + 23 + 23). We replace (z1, . . ., z4) with hyperspherical coordinates

x1 = rcos(d),

xo = rsin(@1) cos(da),

x3 = rsin(¢1)sin(¢2) cos(¢s),
x4 = rsin(¢q)sin(pe)sin(gs),

and rename x5 = a, thereby obtaining ¢ = a — 3ir®. The integral now has the
form

a=+o0 r=00 a— 17:7“2 2x 1 _
/ 3 ( 12 3) exp(—(a® + 77“4)Tl)dadr,
a2 + Z7a4)§+:70+v 4

=—00

where 7* comes from the Jacobian of the hypershperical transformation and C
is the positive constant

C = 271'/0 /O sin2 (¢1) Sil’l((bg)d(bld(bg = 27‘(2.

We substitute r by v/2r, split the domain of integration along a into (—o0,0)
and (0, c0) and obtain

/_ fo()dn' = I(z,v) + (—=1)**I(x,v)
N(®)

where
a=-+o0 r=00 _ 2\2x 1
I(z,v) = 16C(— / / _lazir)™ xp(—(a® +r*) 2 )dadr.
a2+r4) +x+v

To evaluate I(z,v), we make the substitutions r — 74,

av/1+ r. This gives

2

r — a‘r and a —

I(x,v) :40(—1)2IF(2U)/ 7(#
0
We arrive at the formula
/ Fo(n)dn' = 879(—1)2@(2@)/ (
N(R) 0

whose evaluation leads to the following table

x fN(R) fo(n
-2 [[ 87%T'(20) - ( 1})
-1 || 87°T(20) - (—3)
—L 1 87T (2v) - ()
8m2I'(2v) - 4
8m3T(20) - i
8m2I'(2v) - (—%)
8m°T'(20) - (—15)

9

N~ O
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Combining these values with those for the normalizing factors and taking the
limit as v is a positive real number approaching 0, we obtain the following table

T 2| -1\ - 0

1

I
2
1

— o

—1

hmv—)O[l(wa§>¢vvwF) Owale|P(£a¢v)fv](’J]> -1 -1 —

—1

This matches the table of values for 7(as3)¢,. and the proof is complete.

3 CHAPTER 3: THE TRACE FORMULA

3.1 The discrete part of the untwisted trace formula

Our first task is to recall the definition of the discrete part of the Arthur-Selberg
trace formula in the untwisted case, given in (3.1.1) below. Only in this subsec-
tion we will treat arbitrary reductive groups, and then return to unitary groups.
Let us start by setting up some notation. Our explanation will be brief; the
reader is referred to section 3.1 of [Art13] for complete details.

Let G be a connected reductive group over a number field F'. Fix a maximal
compact subgroup K C G(A) and a minimal Levi subgroup M, C G in a good
position relative to K. Write £ = L(M)) for the finite set of Levi subgroups of
G containing Mj. Define ag := Homyz (X (G)r,R) where X (G)r is the group
of F-rational characters on G, and similarly a,s for M € £(My). Put a% to be
the canonical complement of a in aj;. The maximal F-split torus in Z(M) is
denoted Ajs. In the relative Weyl group WY (M) := Ng(An)/M, introduce
the subset of regular elements

WE(M)yeg = {w € W (M) : det(w — 1)aa # 0}

We agree to write WM and W for W (M) and W (M), respectively.

We write A = Ap for the adele ring over F. The subgroup G(A)! C
G(A) is defined as usual. Let X be a closed subgroup of Z(G(A)) such that
XeZ(G(F)) is closed and cocompact in Z(G(A)), and fix a character x : Xg —
C* trivial on Z(G(F)) N X¢. The pair (X, x) is called a central character da-
tum for G. Let P = NpM be an F-rational parabolic subgroup of G with
Levi component M € L(My) and unipotent radical Np. The datum (X¢, x)
gives rise to a central character datum (X, x) for M, where x in the latter
designates by abuse of notation a pullback of x in the former via X5, — Xg.
Let L3, (M(F)\M(A), x) denote the space of functions on M (A) which are x-
equivariant under X, and square-integrable modulo X ;. Its parabolic induc-
tion from P to G is written as Zp(x) = Z§(x) with underlying Hilbert space
Hp(x). Let us fix a Weyl-invariant Hermitian metric || - || on the dual of the
Cartan subalgebra b in the Lie algebra of (Resy/gG)(C). Given an irreducible
representation m of G(A), the infinitesimal character of its archimedean com-
ponent gives a linear form p, : h — C with imaginary part Im(, ). This leads
to a decomposition

Ir(x) = P Zrix), Hr(x) =P Hri(x)

t>0 t>0
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where Zp(x) is the direct summand whose irreducible constituents 7 satisfy
IIm ()| = ¢. Let H(G, x) be the Hecke algebra of smooth K-finite complex-
valued functions on G(A) which are y~!-equivariant under X and compactly
supported modulo X¢. For f € H(G, x) we define Zp,(x, f) : Hps — Hp, by

hﬂﬁ:/ F(@)Tpo(x, 2)d.

G(A)/Xa

The intertwining operator Mp(w,x) : Hp(x) = Hp(x) for w € W (M),eq is
defined via meromorphic continuation of the standard intertwining integral.
It stabilizes (Zp(x), Hp, (X)) for each ¢t > 0, and the induced operator on the
subspace is denoted Mp(w, x).

The discrete part of the trace formula I, ,(f) for f € (G, x) is defined as

LS det(w - 1)gg M (Mo, )Tl £)).
WEW G (M) reg

Wy

I gsc t(f ) =
= 2 g
(3.1.1)
The convergence of this linear form for every f is a result of Miiller ([M{il89]).

Now we describe the stabilization of the expression (3.1.1) as envisioned by
Langlands, Shelstad and Kottwitz and established by Arthur ([Art02], [Art01],
[Art03]). At the time Arthur’s result had relied on the validity of the ordi-
nary and weighted fundamental lemmas, which were verified recently by Ngo,
Waldspurger and Chaudouard-Laumon ([Ng610], [Wal06], [Wal09], [CL10],
[CL12]).* We remark that the fundamental lemma for unitary groups was
proven earlier by Laumon and Ng6 ([LNO8]).

Let us introduce some notation. Write Ei(G) (resp. £(G)) for the set of
isomorphism classes of elliptic (resp. all) endoscopic data (G¢, G¢, s°,n°) over
F.? In general €.(G) can be infinite.

We may and will assume for simplicity that G' has simply connected de-
rived subgroup for the rest of this chapter. There is no loss of generality for our
purpose since unitary groups (quasi-split or not) do have this property. Under
the assumption, we may find a representative ¢ = (G¢,G*, s%,7°) in each iso-
morphism class of endoscopic data such that G¢ = LG* and an L-embedding
n° : LG* < LG, of. [Lan79]. (In general G° is a split extension of Wy by G*
which may not be isomorphic to “G*.) By abuse of notation we often write G*
rather than ¢ to denote a member of £.1(G).

To each G* € E£.1(G) is associated a nonzero rational number (cf. [Art13,
(3.2.4)] but note that |m9(k¢c)| = 1 in the untwisted trace formula)

UG, GY) == k(G, G)|Z(G)T |~ Oute (G4)| 7L, (3.1.2)

8 At the time of writing, Chaudouard and Laumon have not completed their series of papers on
the proof of the weighted fundamental lemma in positive characteristic.

9 Arthur restricts the definition to those elliptic endoscopic data such that for every place v of
F, G*(Fy) contains an element that is a norm from G(F% ) in the sense of [KS99, p.29] but we need
not do it.
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where k(G, G*) := | ker' (F, Z(G))|~!| ker! (F, Z(G*))| but we will see that k(G, G*) =
1 for the groups this paper is mainly concerned with. As explained in section

3.2 of [Art13] (our case is simpler since Gt = G*), the central character datum

(%@, x) for G gives rise to the analogous datum (Xg-, x*) for G*. Moreover

there is a transfer mapping

H(G, x) = S(G*.x*), [ f =%,

characterized by an identity of orbital integrals and conjectured to exist by
Langlands and Shelstad. The existence is now a consequence of Ngo's proof
of the fundamental lemma for Lie algebras in positive characteristic via Wald-
spurger’s results ([Wal97], [Wal06]) on the change of characteristic, the reduc-
tion of the (original) fundamental lemma to the Lie algebra version, and the
assertion that the fundamental lemma implies the transfer conjecture. More
generally Arthur conjectured that the weighted fundamental lemma as he for-
mulated is true. This is now a theorem by Chaudouard-Laumon’s proof in
positive characteristic combined with another result of Waldspurger ([Wal09])
on going from positive characteristic to characteristic zero. As long as we ac-
cept Arthur’s stabilization of the trace formula, we need not and will not recall
here the precise statements of the fundamental lemma, transfer mapping, and
their weighted variants.
The stabilization is a decomposition

Igsc,t(f) = Z L(G, Ge)gceiisc,t(fe)a f € H(Gv X) (313)

Ge EESH (G)

where §(elisc,t = :S’\g;(:,t : H(G*, x*) — Cis a stable linear form (i.e. linear form
factoring through S(G*, x¢)) depending only on G* and not on G. Note that for
any given f, the sum has finitely many nonzero summands (even if E.i(G) is
infinite). When G is quasi-split, the main point of the stabilization is that

Igsc,t - Z L(G? Ge)gceiisc,t(fe) (314)
G"EEGH(G)\{G}

is a stable linear form on # (G, x), which is then taken as the definition of the
stable linear form §disc,t( f). In the non quasi-split case, which is of main in-
terest in this paper, the two sides of (3.1.3) are defined independently. The
assertion of (3.1.3) is that the two are equal.

Let (X, x) be a central character datum for G as above. Let S be a finite
set of places of F outside of which G is unramified. Let C5 (G) be the set con-
sisting of families of semisimple conjugacy classes {c, : v ¢ S} in “G such
that the image of each ¢, under the natural projections 'G — Wg, — Wg, /IF,
is the Frobenius element. Recall that X is a subgroup of Z(G(4)). Each ¢,
corresponds via the Satake transform to an irreducible unramified represen-
tation of G(F,). Let (, denote the restriction to Z(G(F,)) of the central char-
acter of the latter representation. By definition the subset C{ (G, x) comprises
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{cy : v ¢ S} with the property that there exists an extension of x to Z(G(A))
whose v-component is ¢, at v ¢ S. Define

Ca(G,x) = lmC} (G, ).

lim
—
5
Then we have a decomposition of the automorphic spectrum

L?hsc(G(F)\G(A)a X) = @ LdlSC t, c )\G( ) )

ceCy(G,x)
t>0

such that L3, , .(G(F)\G(A), x) is the direct sum of m, where the central char-

acter of 7 on X is ¥, Im(gr)|| = ¢, and ¢, corresponds to , via the Satake

transform away from a sufficiently large finite set S. Hence the regular rep-

resentation Rgjsc acting on the left hand side also decomposes as the sum of

Risc,y- In particular

tr Raisc(f) = Z tr Raisc,t,e(f), feH(G).
c€Cy (G,x)
t>0

For an endoscopic datum G*® € £(G), let (Xg-, x*) be as above. Then the L-
morphism 7° : “G* — G induces a transfer mapping Cs (G, x*) — Ca(G, X).
For a quasi- spht group G and ¢ € Cu(G,x) we define a stable linear form
Sg;c,t,c exactly as in Lemma 3.3.1 of [Art13]. (The basic idea is to make sense of
the c-part of (3.1.4) and take it as the definition.) Now let ¢ € C4(G, x) and al-
low G to be any connected reductive group. In the same lemma Arthur shows
the decomposition

Idle t c(f) = Z L(Gv Ge)géisc,t,c(fe)v f € %(Gv X) (315)
GCEECH(G)

3.2 The vanishing of coefficients

We continue to be in the general setup of §3.1. We prove an analogue of the
corollary 3.5.3 of [Art13] on the vanishing of coefficients in a certain linear re-
lation involving G (and its Levi subgroups). Later the result will be applied to
G which is an inner form of a unitary group. Our case is simpler than Arthur’s
in that in his situation there may appear several groups which are twisted en-
doscopic groups of a general linear group simultaneously.

So far our consideration has been global but let us introduce some local
definitions and notation following [Art13]. Temporarily let /" be a local field
and G be a connected reductive group over F' with a minimal Levi subgroup
My. We define £ = L% (M) and W as in the global case. For M € £, denote
by IIy(M) the set of isomorphism classes of square-integrable representations
of M(F). The R-group of o € II3(M) in G is written as R(o). It is convenient
to choose a finite central extension

1= Zy = R(c) = R(o) — 1
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Then it is possible to define a homomorphism r — Rp(r,o) from R(0) to
Endg(Zp (o)) such that Rp(zr,0) = xo(2)"'Rp(r,o) where x, : Z, — C*
is a fixed character. Define T'(G) (resp. T(G)) to be the set of W -orbits of
triples

T=1.=(M,o,1)

where M € £, 0 € TI;(M), and r € R(0) (resp. r € R(c)). For 7 € T(G) as
above, put

fo(r) = fa(r) i=tr (Rp(r,0)Zp(o, f)), [ €H(G). (3.2.1)

If M = G then R(o) is trivial and 7 is identified with an element of II5(G).
So the notation of (3.2.1) is consistent with our convention to write fg(7) :=
tr 7( fe) for any irreducible admissible representation 7 of G(F). For = € II(G),
one has a “change of basis”

fG(ﬂ-) = Z H(W,T)fg(T), fEH(G),

T€T(G)

cf. [Artl3, (3.5.6)]. Even though n(m, 1) and fe(7) depend on the choice of a
lift of 7 to T(@), their product depends only on 7 since n(7, 27) = x,(z)n(r7, T)
(following from the definition in §3.5 of [Art13]) and fc(27) = x5 ' (2) fa(7).

In this paragraph and the following lemma we recall some notation and
fact from the section 3.5 of [Art13], omitting details. Let ag = aps, be as in §3.1,
and write (af) ™ for the closed dual chamber equipped with partial ordering <.
Let 7 € II(G) and 7 € T (M) for a Levi subgroup M of G. Arthur defines
linear forms A, and A, which belong to (aj)™ and whose deviation from 0
measures the non-temperedness of the representation, loosely speaking. To
7 is associated a standard representation which is induced from a character
twist of a discrete series o, on a Levi subgroup M, of G. (This data is well
defined up to conjugacy.) Let 7, denote the element in T'(G) or ZN“(G) given
by (Mr,0x,1). The following result serves as a key ingredient in the desired
vanishing result. See the discussion between the statements of the proposition
3.5.1 and the lemma 3.5.2 in [Art13].

Lemma 3.2.1. Use the local notation as above.
1. Ar, = Apand n(m, 1) > 0.

2. Let m and T be as above and satisfy that n(mw,7) # 0. Then A, < A. If
A, = A then M., contains (a suitable WOG—tmnslate of) Mp. If A, = A and
M, = M then 7 = 7. and n(7,7) > 0.

Now revert back to the global case. The notation in the preceding para-
graph over F, will be written with subscript v suitably inserted.

Lemma 3.2.2. Let cq(m) € Ry for each m € II(G). Suppose that

S cemfem = Y dr f) o). f=ff, € H(G)

Tell(G) Tv€T(Gy)
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where the coefficient d(r,, f) € C, as a function of T, is supported on a finite set that
depends only on a choice of Hecke type for f,, and equal to 0 for any T, of the form
(My,00,1). Then forall m € II(Q), 7, € T(Gy), and f¥ € H(G(A")),

cg(m) =0, d(r, f")=0.

Proof. Assume that cg(w) are all zero. Arthur’s version of the trace Paley-
Wiener theorem ([Art96, §4]) then allows us to find an f, such that f, ¢ is
nonzero at one 7, and zero at all the other elements of T'(G,). So all d(r,, f*)
must vanish.

So it suffices to show that c(7) are all zero. The argument proceeds as in
the proof of [Art13, Cor 3.5.3], with simplifications thanks to the fact that there
are no groups other than G involved. Fix a finite set of places S containing
v and all infinite places of F'. Fix a Hecke type (S, {(7oc,x*)}) for f in the
sense of Arthur. This means that f = f*° f,,, ™ is an open compact subgroup
of G(A*°) which is hyperspecial away from S, 7 is a finite set of irreducible
representations of a maximal compact subgroup K., of G(A) such that >
is bi-invariant under « and f., transforms under K, on the left and right ac-
cording to representations in 7.,. Define

cas(ms) = cal(r),

where 7’ runs over the finite set of irreducible representations of G(A) which
satisfy that 7y ~ mg and have nonzero trace against some function of the given
Hecke type (in particular 7 are unramified outside S). Clearly it is enough to
check that

CGg (7‘(‘5) =0. (3.2.2)

Following the procedure in the proof of the proposition 3.5.1 (or the corollary
3.5.3) in [Art13], we can rewrite the left hand side as

> > > M%‘s (ms)n(ms, 7s) fars (Ts)s

(Wl
Ms 15€Ten(Mg) ms€II(Gs)

where the first sum runs over the Levi subgroups of Gs = G(Fys) contain-
ing the minimal Levi subgroup. By writing subscript S in the notation, as
usual, we have naturally extended the definition of a local object at a single
place to an analogous object at the set S of finitely many places. Recall that
I(Gs) = Dy, Leusp(Mg)VMs), cf. [Art96, §6]. Combining this with Arthur’s
trace Paley-Wiener theorem, as used earlier, we may find an element fs = f, f§
such that the summand above does not vanish for exactly one Mg and exactly
one 7s € To(Mg) for any given Mg and 7g. If 7g has v-component of the
form (M,,o,,1) then the initial assumption implies that the right hand side
vanishes. Hence

Z cgg(ms)n(mg, 7¢) =0, if 7, has form (M, 0, 1). (3.2.3)
ms€Il(Gs)
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Our plan is to prove (3.2.2) by contradicting (3.2.3). To this end, assume the
existence of 7 such that cq(mg) # 0. Introduce a 7-equivalence relation ~ on
II(Gg) such that g ~ 7y if and only if there exists a pair (Mg, 7g) such that
n(ms,7s) # 0 and n(ng,7s) # 0. By assumption there exists a T-equivalence
class %5 such that

(fé- = {7TS € Cs : CGS(WS') 75 0}
is non-empty. Equip R>¢ x Z>( with a partial ordering < such that (A1, 1) =
(A2, p2) if and only if either A; < Ay or Ay = Az and p; > po. There is a map

%é — Rzo X Zzo, TS > (HA.,TSH,dimMﬂ-S),

where || - || is the Hermitian norm on a as in §3.1. Choose a maximal element
(X, p) in the image of €% and also a 7 € %% in the preimage of (X, u'). For
every g € II(Gg) such that cgg (ws)n(wS,Tﬂ/S) # 0, we have mg € %% by
definition, so

1Ar < WAnsll, Mo, D My

by Lemma 3.2.1. But the maximality of 7% implies that ||A_, || = ||Axs| and
s
that M, , = M,,. Again by Lemma 3.2.1, we see that Trly = Trg and that

n(rs, Tﬂss) > 0. Finally let us apply (3.2.3) to 7., which has the required form
by definition. We have just seen that every nonzero summand has to be posi-
tive, and clearly 7 provides a nonzero summand (by the same lemma). Thus
we are led to contradiction, proving that every cq,(7s) must vanish for each
fixed Hecke type.

O

3.3 Stable multiplicity formula for unitary groups

From here on we restrict ourselves to unitary groups. Our goal is to state the
stable multiplicity formula for them after discussing the decomposition of the
trace formula according to parameters and introducing the yet undefined play-
ers in the formula.

Let G* = Ug,p(N) be the quasi-split unitary group in N variables associ-
ated with a quadratic extension E/F of number fields. Fix a character x € Zg
once and for all. Denote by 7, : “G* — FGL(N) the associated L-morphism so
that (G*, 1) constitutes a twisted endoscopic datum for G/ (N) = Resg/ pGL(N)
with respect to a unitary involution.

Let (G, ¢, z) be an extended pure inner twist data for G*. We would like to
have the analogue (3.1.5) with parameters in place of (t,c). Let vV € U(N)
and G* € £(G). To the former is associated ¢(¢"V) and c(¢"V). For L-group
embeddings 1, : “G — “GL(N) and 7§, : “G* — “GL(N), define

G R G
Idisc,wN,nX = Z Idisc,t(d)”),c
c—c(yPplV)
G* — G*
Sdisc,wN,n;< i Z SdiSC7t(¢N)7C
c—c(yphN)
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where the first (resp. second) sum runs over ¢ € Cx(G) which maps to c(¢?)
via 7y, (resp. 75).

We are ready to refine or regroup the two expansions (3.1.1) and (3.1.5)
according to ¢V and n,. We are taking X¢ = {1} and x = 1 in §3.1. The same
procedure as above produces a direct summand Zp 4~ , (1) of the induced
representation Zp,(1) and accordingly Mp~ , (w,1) acting on Zp g~ , (1).
From now on we omit 1 from the notation in favor of simplicity. We arrive at
the following refinement of (3.1.1):

o _
FpewrmF)= 3 e D0 et Lug |7 lr (Mpgo ()T, (1)
MeL "0 pWeW S (M)eg
(3.3.1)
Taking the sum of (3.1.5) over (¢, ¢) such that ¢ maps to c¢(¥"V), we obtain

Igsc,wN,nX = Z [’(Gv Ge) Afiisc,wN,nX (fe) (332)
(G®,¢*)EEen(G)
Analogously we define L3, WN (G(F)\G(AF)) and the regular representa-
tion Ryjse yn 5, onit. When ¢ = (d)N,{/;) € ¥(G*,ny), the above objects are
going to be denoted simply

I(ﬁsc,wv S(?':sc,w? L(Qlisc,w(G(F)\G(AF))a and Rdiscﬂﬂ'

The stable multiplicity formula computes each §fhsc’ wce (f), thereby pro-
vides a crucial input for I§ b, To explain it we need more notation. Let us

introduce a global stable linear form £ (v) for f € H(G*) and v € U(G*,ny).
It is enough to consider f = [[, f,. The local theorem in the quasi-split case,
cf. Proposition 1.5.1, provides a stable linear form f& (¢,). We simply take the
product

FE@) =TT £8 @o).

Recall that Sy, eg* (-) and sy, were defined in Chapter 1. To introduce a few
more invariants attached to v in desired generality, consider a possibly non-
connected complex reductive group St over F, whose neutral component is
denoted S = (ST)°. Let S be a union of some connected components of S+.
When s € § is semisimple, write S, for the centralizer of s in S0, Choose a
maximal torus T of S°. Write W (S) and W (SY) respectively for the Weyl sets
Ng(T)/T and Ngo(T)/T. Denote by W;es(S) the set of w € W(S) which has
only finitely many fixed points in T". The sign sgn’(w) € {£1} is defined to be
the parity of the number of positive roots of (S, T") mapped by w to negative
roots. Finally det(w — 1) for w € Wieg(S) will designate the determinant of
w — 1 on Hom(X*(7T'),R) as a real vector space. In our specific setup where a
parameter ¢ € ¥(G*,n, ) is given, we may take for example ST = S, in which
case W (S%) = Wy,
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Arthur defined real numbers i(.5), e(S) and o(S). The first one is explicitly
defined?
i(8) = [W(sh|! Z s%(w)|det(w — 1)|71, (3.3.3)
WEWreg (S)
Let Sss denote the set of semisimple elements in .S. Given a subset of S invari-
ant under S%-conjugation, define £(X) to be the set of equivalence classes on
¥ N Sss, where o7 and o, are considered equivalent if there exist s € SY9 and
z € Z(8°)Y such that oo = szo1s~!. Then he showed ([Art90, §8], cf. [Art13,
Prop 4.1.1]) that there is a unique way to assign real numbers to o(S) for all
such S in order that i(S) = e(.5), where

e(S):= > |mo(S:)| a(S?). (3.3.4)

s€€en(S)

Let z € Sy. We define iy (z) = i§ (z) and ey (z) = €5 (2) to be i(S) and e(5),
respectively, in the special case when S is the union of connected components
of Sy which map to z, cf. (3.6.5) and (3.6.2) below. We have

iy(x) = ey(x), z € Sy. (3.3.5)

One of the most important results in the classification for quasi-split unitary
groups is the following. As explained in §1.5 we take this for granted. Note
that on the right hand side the dependence on 7, is in the transfer f — f G for
the twisted endoscopic data arising from (G*, 7).

Proposition 3.3.1. (Stable multiplicity formula, [Mok, Thm 5.1.2]) Let G* and n,, be
as above and 1) € ¥(G*,n,). Then

S (1) = 1851715 (s0)0(Sy) £ (0),  f € H(G). (3.3.6)
If ¢ € U(N) does not belong to 1, ¥ (G*,n,) then
e (F) =0, fEMHG). (337)

Corollary 3.3.2. Let f € H(G), t > 0, and ¢ € Cu(G). Then IS, () =
0 and L%, (G(F)\G(Ar)) = 0 unless (t,c) = (t(¢),c(y)) for some PN €

U(N). IfpN € W(N) does not lie in 1, U (G*,ny) then IS wme(f) = 0 and

L(ziisc,i/)N,nX (G(F)\G(AF)) =0.

Proof. The vanishing of I, .(f) and I§ .~ , (f) is immediate from (3.1.5)

and the stable multiplicity formula. The assertions on the L?-spaces are de-
duced from the vanishing of I, .(f), resp. I§_. ,~ , (f), and the inductive
hypotheses, by arguing exactly as in the proof of [Art13, Cor 3.4.3]. O

10Tn [Art13, (4.1.5)] he writes |W(S)|~! in place of |[W (S°)|~1. We believe the latter is correct as
in (8.1) of [Art90].
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As a consequence (using the fact that ¢ = (¥, zZ) + ¥ is an injection) we
obtain decompositions

Lgle(G(F)\G(AF)) = @ L(Qiisgw(G(F)\G(AF))’
¢€‘I’(G*mx)

tr Raisc(f) = Z tr RdiSC,w(f>v feH(G).

YeT(G*,ny)

3.4 The global intertwining operator

Let E//F be a quadratic extension of number fields and let G* = Ug, (V) be
the quasi-split unitary group in N variables. Let Z : G* — G be an equivalence
class of inner twists. Let (M, P) be a parabolic pair for G, i.e. a pair consisting
of a parabolic subgroup P of G and a Levi subgroup M of a P, both defined
over F. There exists a unique standard parabolic pair (M*, P*) of G* with the
property that for some £ € = we have £(M*, P*) = (M, P). The set of such ¢
forms an equivalence class of inner twists Z;; : M* — M. Let (M, P) be the
standard parabolic pair of @ dual to (M*, P*).

We assume that M # G. Let 7, be an irreducible constituent of L2, (A (R)° M (F)\
M(AR)). Let ¢pr- € Wo(M*,n,) be the corresponding global parameter given
by the induction hypothesis. Here we should really have written Wy (A *, ipz-1)y)
in place Wo(M*,n,), where iy : “M* — LG* is a Levi embedding, but
we will continue this abuse of language as there is no danger of confusion.
Let u € Ny,,.(M,G) = Cent(¢as-, G) N Norm(A7,G) and write w = w, €
W (G, M )!" for the image of u. There are canonical I'-equivariant isomorphisms
W(]TZ7 G) = W(M*,G*) = W(M,G) via which we view w as an element of
W(M,G)'.

Consider the induced representation Zp(mas) acting by the right regular
representation on the Hilbert space of measurable functions

He(rar) = {f : G(Ar) = Vi, |f(nmg) = 62(m)m(m) f(9)}

whose restriction to an open compact subgroup K C G(Ap) is square-integrable.
Here V;,, is the Hilbert space on which 7, acts and is a subspace of L2, (M (F)\

M (Ap)). Given a second parabolic subgroup P’ with Levi factor M, Lang-
lands’ theory of Eisenstein series provides an intertwining operator

JP’\P : HP(T(']M) — HP/(’]TM).

If we replace s by a twist may,\ for A € aj; ¢, the operator Jp/|p is defined by
the integral formula

pipf1(g) = / F(n'g)dn’ (3.4.1)

N(Ap)NN’'(Ap)\N’(AF)
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which converges absolutely whenever the real part of A lies in a certain open
cone. The measure dn' is taken with respect to an arbitrary top form on the
vector space n N 1’ \ n’ defined over F, as well as the Haar measure on Ap
which assigns the quotient A /F volume 1. Here n denotes the Lie-algebra of
N, and the measure is independent of the choice of top form by the product
formula. Langlands has shown that, as a function of ), the operator Jp/|p has
meromorphic continuation and is defined and unitary at A = 0. This defines
Jpr|p for the representation 7y, = 7z 0.

We will be particularly interested in the case P’ = w~!Pw. There are two
more intertwining operators, defined in elementary terms as follows. Let w €
N (M, G)(F) be a lift of w. Define the representation wm,; on the Hilbert space
View by wmas(m) = mp (W~ tmab). The two intertwining operators are given by

l(w) : Hyy-1pu(mar) = Hp(Wmar), [L(®) f1(g) = f(w~"g)

and
Cy: (lf)ﬂ'A{,Vﬂ-M) — (ﬂ'M, VWM), [qu,f](m) = f(lf}ilmﬁ))

The last operator extends pointwise to an intertwining operator Cy : H p(wWmar)
Hp(mar). The composition

Mp(w,mrr) = Cy o (W) © Jy=1pyp

is then a self-intertwining operator of the representation Zp () on the space
Hp(mar). A simple calculation, using the automorphy of the functions com-
prising V;,,, shows that Mp(w, 7)) does not depend on the choice of .

The un-normalized operators Jp/|p and Mp(w,7ys) can be normalized to
obtain operators Rp:|p(mar, ¢¥ar+) and Rp(w, s, ar-) by setting

Rpp(nar, o) = rpyp(ar) ™ - Jpryp, (34.2)

and
Rp(w,mar, Yar-) = rp(w, ¢are) ™" - Mp(w, 7ar), (3.4.3)
where rp/p(n+) and rp(w,vp-) are the global normalizing factors deter-
mined as follows. The Levi subgroup M* of G* = Ug / (V) is of the form
G r(N1) X ---Gg/p(Ng) x Ug/p(N-). This determines a Levi subgroup M
of Gg,r(N) by the formula M = Hle GE/r(N;i) X Gg/p(N-). The parameter
Yar~ of myy is by definition an automorphic representation of M. Let pp:|p be
the adjoint representation of “M on the vector space n N1’ \ 7/, where n and
" are the Lie algebras of the unipotent radicals of Pand P'. Associated to the

automorphic representation 5+ of M and the contragredient representation
p;,‘ pr We have automorphic L- and e-factors, and we set

L(Oallbe*ap;I‘P) 6(%7¢M*,p\}/pzlp)
L(lawl\l*ap;l‘p) E(OawM*yp\}/p/IP)

T’P'|P(¢M*) =

152



and
TP(w7wM*) = r;llp“:- : E(ﬁv"bk[*vpfz/uflPuﬁP)_l'

The importance of the global intertwining operator is clear from the discrete
part of the trace formula. In the next subsection we will see that the normal-
ized operator Rp(w, Tar, ¥ar+) admits a product decomposition and enters the
global intertwining relation.

It is sometimes necessary to discuss a part of this normalized global inter-
twining operator.

3.5 The global intertwining relation

In this subsection we introduce the two global linear forms fg (¢, u) and
f&(nr+, s), whose local versions were introduced in §2.6. Note the change of
notation from the local setting that we are now denoting a global parameter in
W(M*,ny) by ¥y~ rather than 1, where M* is a Levi subgroup of G*. The def-
inition requires the localization of the parameter 5+, which we recall relies
on a highly nontrivial result (Proposition 1.3.3) established in the quasi-split
case. The global linear forms will appear in the spectral and endoscopic ex-
pansions after we go through the first step (“standard model”) in comparing
formulas (3.1.1) and (3.3.2), and as such play a key role in later arguments. The
two linear forms are closely related via the global intertwining relation to be
stated below. It will follow as a corollary of the local intertwining relation to be
proved later in Section 4.

Let - € Wo(M*, ). We may write ¢¥p- = (Y., ¢p-) as in (1.3.8)
(taking M* to be the endoscopic group) and define ¢ = (¢, ) by ¢V :=
Y. and Y = ip-tpre), where ippe 1 EM* < EG* In particular the image
of ¢ is centralized by the image of A5, = (Z (M “)T)0 under iy/-. Since the
latter property is destroyed if b is replaced by an arbitrary @*—Conjugate (as
the image of ¢ ¢ is centralized not by ipr- (A7) but by the image of Az, under
gir-9g~ 1), we do not consider ¢ as an equivalence class in ¥(G*,7,) for the
moment. So when we want to be precise we use 1y« rather than v in the
definition of various groups below. Put Sy := Sy (G*) and Sy = Syu(G").
Recall from §1.3.4 the definition of Sy := Sy,/Z(G*), Sy := mo(Sy), Sy =
mo(Sy), S = (Sh N Gs.,)°, and Sfb = Sy/S4 in the global setting. In
addition, write Zs,, Zsy, and Zgra for the centralizers of Az = (2 (M*))0
in Sy, Sy, and Sfpad, respectively, and Ng,, and N, 59 for the normalizers of A+,
in Sy and S}, respectively.

We need two global diagrams, where the first is the same as in §2.1 (but
recalled here for the reader’s convenience). For simplicity we omitted (M*, G*)
from the notation in the second and third columns. For instance NiM* and

Ny,,. should be NiM* (M*,G*)and N y,,. (M*, G*) to be more precise.
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rad stad 0 Nsg
ad _ _“v — Y
Wi = 7 Wi = 7, (3.5.1)
il ¥) . Sy Nt sy N Nsy
S"/JZM* (M) = stad N¢w1* T Zszad Wospe 1= sy,
it . B . Nsy = NSy
SIZJM* (M) S"/JZM* T st)ad Ry 1= ng)st
N o Ngo
0 _ S w0 _ 5%
Wﬂ’M* T Zgo me T Zgo
P ¥
— ZS) —_— Ns NS‘
S¢N1* (M*) = Zngi(/@)r N¢M* = Zngzp(;)r W‘/)M* = ZSZ
< -~ S . _ Nsy 5 _ _Nsy
S (M~) Sy = Nao Z(G)T Rype = NS,‘},ZSw
¥
(35.2)

Now if ¢ = (N, ) is conjugated by an element g € G* then both diagrams
are conjugated by g. So 1) represents an element of ¥(G*,7,), which is a G*-
conjugacy orbit, then not elements but only conjugacy classes in the groups
WgM* , NE}M* , etc are well defined. However various quantities are still well
defined. For instance the cardinality |Wy,,. | is well defined, and a sum over a
subset of N, is well defined as long as the sum is seen to be invariant under
the G*-conjugation.

The diagram (3.5.1) is the global version of the local diagram in §2.1. The
localization maps in §1.3.5 induce functorial localization maps from (3.5.1) to
the local diagram at each place v (i.e. the diagram in §2.1 with ¢, in place of v
there) in the sense that the induced maps commute with all maps in the global
and local diagrams.

The second diagram above is exactly the same as in the quasi-split case,
cf. [Artl3, (4.2.3)]. Our notation is slightly different from theirs in that we in-
sert the bar notation to emphasize that the construction of the groups involves
dividing out by Z(G*)L. For instance Sy, := S;/Z(G*)F and Sy := mo(Sy)
whereas Sy, := my(Sy). This is to be consistent with our notation in the local
setting, where it is essential not to divide out by a central subgroup. However
when it comes to global inner forms, it turns out that one can still work with the
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groups as in (3.5.2). Indeed a typical observation is going to be that a global lin-
ear form defined in terms of an element of NfbM* or SE)M* descends to a linear
form in NVy,,. or Sy,,.. For this it is useful to know that the second diagram is

the first diagram modulo (the image of) Z (@ “)I"in the lower left square, cf. the
lemma below.

Lemma 3.5.1. The following are true.
1. Zg«w == ZSS,'
2. Zsf;dZ(@*)F = Zso Z(G*)T and NSTdZ(CA?*)F = Ng Z(G*)L.
3. The quotient ofofM* (M*) (resp. /\/'iM* , resp. Spr*) by the image of Z(G*)T

is canonically isomorphic to Sy,,. (M*) (resp. Ny, ,., resp. Sy,,.). The maps
in (3.5.2) are induced by those in (3.5.1) by passing to quotients.

Proof. Since Zg,, /ng) — Sy/S%, we have [Zg, : ng)] < 00. As the centralizer
of a torus in a connected reductive group, Z 59 is connected. Hence Z 59 isa
finite index subgroup of Z Ow, and they are equal since the latter is connected.
This verifies part 1. Recall from Lemma 0.4.13 that Sfde(CA?*)F = SS,Z(@*)F.
Since Z (@ “)I' is in the center of Sy, we have

ZS;)adZ(G*)F = Zsfpadz(a*)r‘ (Af\j*) = ZSEJ’)Z((A}*)F (A]/\/T*) = ZSS)Z(G*)F'

In the same manner one proves N, sz Z(G")T = Nng (G, completing the
proof of part 2. Part 3 follows from the earlier parts and the definition of the

groups.
O

Recalling that 95+ € Wo(M™*), we have the following.

Lemma 3.5.2. We have canonical isomorphisms Si)M* (M*,G*) = Si(G*) and
S#’M* (M*,G") = Sw(G*)

Proof. The first assertion is proved in the same way as Lemma 2.8.3. The second
follows from the first by taking quotients by Z(G*). O

In order to introduce the first global linear form we need some preparation
regarding intertwining operators. Now assume that the Levi subgroup M* of
G* is proper. Choose any equivalence class Z of extended pure inner twists
G* — G. Let (M, P) and (M*, P*) be parabolic pairs for G and G* exactly as
at the start of §3.4. In particular we have a representative (G, ¢, z) € = such
that £(M™*, P*) = (M, P). Consider a parameter ¢y« € Uo(M*, 7, ). Letu €
pope (M*,G"), and ¢ : Ap/F — C* be a nontrivial additive character. De-
note the localization of Z, y+, u, and v at each place v by =, ¥ar+ o, Uy, and
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YF,v, respectively. Write w,, for the image of uwin Wy,,. (M*, G*). We have con-
structed the local normalized intertwining operators Rp(u, 2y, Tar,u, Yar+ v, VF, )
atall places v of F'. We would like to compare the canonical global intertwining
operator Rp(w, Tar, Yar~) of section 3.4 with

RP(uvavﬂMvz/}M*a’L/}F) = ®RP(ua E’U77TM7’U7’(/}M*,’U7va)'
v

Proposition* 3.5.3. Let G* = Ug/p(N), (§,2) : G* — G, Y~ € Wo(M*) be
as above. Assume that wyy € ILy,,. (M, &) is automorphic in that (Tyr,-)e = €y, -
(See §1.7 for the definition of IL,,. (M, €). Note that 7y may not be irreducible.)
Let Cy be as in section 3.4. For each u € prM* (M*,G*), we have an equality of
isomorphisms (W, Vz,, ) = (Tar, Vo, ):

® ﬂ-M’U(u)gv’Zu = Cprx (u) Cp.
v

Proof. We postpone the general proof of this proposition to [KMSa]. Presently,
we will give the proof in the special case of global pure inner twists of unitary
groups. More precisely, let M* = M7} x M* and decompose z = z4 X z_
accordingly. We assume that z, = 1 and z_ € Z*(I', M*). This is the global
analog of the setting of Section 2.4.1. Moreover we temporarily assume that
Y.+, namely the M7 -part of ¥y, is a generic parameter so that my;  admits
a nonzero global Whittaker functional.

In that case, we can use the description of mas.,(u)e, -, given in that sec-
tion. Namely, write 7as ., = Tar,0,4+ @ Tar,o,—. Then m, (uf)e, -, = (Tar,0, We, 2, -
TM w4+ (W)e, ® idy,, , _. Since 7 is automorphic, we have [[ (Tar0, u)e, 2, =
€y, (u). Furthermore, @, mar,v,+(W)e, is the unique intertwining operator
Wmar,+ — T+ that preserves a global Whittaker functional.

On the other hand, we can also decompose Cy as Cyp + ® Cy, — according
to Ty = T4+ ® mar,—. As Ad(w) acts trivially on M_, we see Cy,— = idy,, _.
To complete the proof, it is enough to show that C | is the unique intertwin-
ing operator W, + — mar,+ that preserves a global Whittaker functional. The
proof is quickly reduced to the case where M} = GL(r) x --- GL(r) (k times)
and w acts as a (transitive) permutation of the & factors. Write NV for the unipo-
tent radical of P. By slight abuse of notation, the nondegenerate additive char-
acter of N(Ar) induced by #r is again denoted . Then we have to check
that for f € V,

/ (tm (1))} (o) = [ (o)) () ).
NIN\N(AR)

N(F)\N(Ar)

The equality holds since the left hand side is computed as

/ f(mw™ ) p(n)dn
N(F)\N(AFr)

:/ f(mn)qﬁp(w*lmb)dn:/ f(mn)yp(n)dn,
N(F)\N(AF)

N(F)\N(AF)
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using the fact that the transformation n +— w~1nw preserves the measure on
N(F)\N(Ar).

Now we drop the assumption that 5 4 is generic. Then 7 is a discrete
automorphic representation of M (Ar) so appears as an irreducible quotient
of an induced representation from a cuspidal automorphic representation on a
Levi subgroup of M. Then the above argument still goes through if we replace
7 by the induced representation and use a nonzero Whittaker functional on the
induced representation. (Then we obtain that &), mas,v,+(10)¢, = Cy, 4+ by ob-
serving that they are the unique intertwining operator preserving the nonzero
Whittaker functional.)

O

Proposition 3.5.4. Let ¢y« € o(M*) and u € NE)M*
My, (M, ¢€).

1. Rp(yw, E,mp, ¥u, ¥r) = (T, Y)e Rp(w, B, T, Y-, Yr), where y € Sih(M*),
its image in Sy, ,. (M*) is denoted , and (-, mr)¢ is the character of Sy, ,. in-
troduced in §1.7.

(M*,G*). Let my €

2. Rp(u,Z1, 71, Y0+, ¥F) = Rp(w, g, mar, Y-, ¥r) if 21 and 2y give rise to
the same inner twist.

3. Suppose that 7y is automorphic. Then
RP(’U}U, TM 5 ¢M*) = €ihprx (U)RP(ua Ea T M s 11[}1\/[7 1/’F)

Proof. Part 1 follows from part 3 of Proposition 2.5.2 and the fact that (7, )¢ =
[L(7aw, )¢, 2, is trivial on Z(G*)T, cf. §1.7. (The dependence only on 7 is also
implied by part 1 of the same proposition.) Part 2 is proved similarly using
part 2 of Proposition 2.5.2. (Compare with the proof of Lemma 2.6.4.) To prove
part 3, choose a global extended pure inner twist (¢, z) as in Lemma 0.4.19. Use
the localizations (&, z,) to construct the operators Rp (U, (&, 20), TM vy WM~ vy YF)-
The claim now follows from Lemma 2.2.2 and Proposition 3.5.3, noting that w
belongs to N (M, G)(F) and the product of all A\, (w, ¥ r) is equal to 1. O

We are ready to define the first global linear form
feHt@) = foz(umu)
It suffices to consider the case f =[], f.. By slight abuse we still write u for its

image in NhM*.U (M*,G*). Define

fozWreu) =[] focz, (Wn- v, u)

3.5.3
= Z tr (Rp(u, 2, mar, U Ur) I (a0, fo))- ( )

mar €10y
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(The global packet II;,,. is defined as in §1.7 via induction hypothesis.) There
may be several choices of ¢ps+ but fo =(¢¥a-, u) is well defined independently
of the choice thanks to Lemma 2.6.3. Since M* transfers to G over F' if and
only if M* transfers to G over F, for all places v of F' (Lemma 0.4.6), we see
that fo =(¥ar+, u) = 0 for all f unless M* transfers to G globally in view of the
definition of f, ¢.=(¢¥ar+ v, u) in §2.6.

Lemma 3.5.5. The linear form fc =(nr+,u) is independent of the choice of = and
depends only on the image of win N y,(M*, G*).

In light of the lemma we have a well-defined linear form f — fg(¢ar+, )
foru € Ny,,.(M*,G*) without reference to =. Compare this with the para-
graph following Lemma 3.5.6 below.

Proof. This is clear from parts 1 and 2 of Proposition 3.5.4.
O

Next we define the second global linear form. Let ¢ € ¥(G*,n,) and s €
Syp.ss- To (1, s) corresponds a pair (¢, 1) (see §1.4), where ¢ € £(G*) and ©° is
an Outg(G*®)-orbit in ¥(G*,n,n®). Write s, € Sy, s for the image of s at each
place v. Define a linear form

fenG) = faz(9)

given, whenever f =[], f,, by formula
foz(,s) =) = [T F5@) =[] fr.c.2(@os 50)-

Unlike in the local setting ¢ is an isomorphism class, not a strict isomorphism
class, but f¢ and f¢(¢°) are well-defined. This is due to Proposition 1.1.3 and
the fact that the adelic Kottwitz-Shelstad transfer factor depends only on the
isomorphism class. Notice that the definition does not involve any choice of
M* or 1pr-, as already observed in Lemma 2.6.3 in the local setup. However
we also write f¢ = (Y=, s) for fi = (¢, 5) if ¢ is the image of Yar+ € Wa(M™, 7y ).

Lemma 3.5.6. For ¢ € W(G*,1y), fG =(%, s) is independent of the choice of = and
dependent only on the image s of s in Sy

As a consequence, the linear form f — f/, (¢, z) is unambiguously defined
on H(G) for every ¢ € U(G*,n,) and = € S, regardless of the choice of =. The
analogue for fg =(v, x) is more complicated; a version of it is stated at the end
of this subsection.

Proof. The independence results from the fact that the adelic transfer factor is
independent of the choice of =, cf. Proposition 1.1.3, implying that the global
transfer f — f¢ is independent of the choice of =. To see the latter asser-

tion, let sy € Sffd. Since (sgs), and s, have the same image in St _» Lemma
26.1gives us f, o =(¥, (508)v) = f, g.=(1, su), hence f (¥, s05) = fo =(¥, 5).
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On the other hand for each y € Z(@*)F, we have f; =(¥,ys) = fG=(¢,5)
by Lemma 2.6.5 and the exact sequence (0.3.3). This completes the proof as
Sy = S5y/S4Z(G*)" by Lemma 0.4.13.

O

Once the local intertwining relation (Theorem 2.6.2) is established for local-
izations of G, the following should be an immediate corollary by taking prod-
uct over all places.

Theorem 3.5.7. (Global intertwining relation) Let M* be a proper Levi subgroup of
G* and Ypr- € VoM™, n,). Write 1 for the image of Yar+ in W(G*). Assume that
the local intertwining relation holds for the pair (M*,G*) and 1+ ., for each place
v of F. Then for every pair of u € N y,,. (M*,G*) and s € Sy,,. ss(G) having the
same image in Sy,,. (G*),

fe(W,sps™) = fa(¥u,T), [ €H(G). (3.5.4)

In particular fo (-, w) depends only on ) rather than - itself, and if M* does
not transfer to a Levi subgroup of G then f(, (v, sys) = 0.

Remark 3.5.8. Eventually (3.5.4) will be valid even when M* = G* and thus i) €
Uy (G*,ny ), but can be stated only after the local classification theorem is known for the
definition of fa (v, ) is conditional on it; see the next subsection. The case M* # G*
is treated before the local classification theorem and indeed serves as an input for the

proof.

Proof. The last assertion follows from Lemma 1.3.4 and (the paragraph below)
Theorem 2.6.2. It remains to verify (3.5.4). Since passing from diagram (3.5.1)
to diagram (3.5.2) is functorial, we have a commutative diagram where both
rows are short exact sequences.

T

0 __ _
ij)M* HN"[’M* 4>S¢M*

0
W

A simple diagram chase enables us to choose a lift u € NV EJM* (M*,G*) of usuch

that the image of v in SiM* (M*,G*) is equal to that of s. Then the localization

Uy € NiM* _(M~,G") of u has the same image as s, in SE)M* (M*,G7). So
the local intertwining relation is applicable and yields f,  =(¥ar+ v, Sy p0 S0) =
fv.c.2(War+ v, uy). We conclude by taking the product over all v. O

We have a preliminary result on the global intertwining relation analogous
to §2.8. As in the local case we define elliptic parameters by the existence of
a semisimple element 5 € S,,,. whose centralizer in Sy,,. is finite. There is
again a chain of inclusions for the sets of discrete, elliptic, and all parameters:

\IJQ(G*anX) - \I/ell(G*anX) - \II(G*7"7X)
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Decompose 1)+ as a formal sum of simple parameters:
Vv =0 B BhYy, 721622421

In parallel with the analogous local setup, our basic strategy is to study ¢ in the
increasing order of difficulty: non-elliptic parameters, elliptic non-discrete pa-
rameters, and then discrete parameters. Elliptic non-discrete parameters have
the form

W = 2y B B2 Bipg sy B - By, Sy~ O(2,C)7x0(1,C)" 9, ¢ >1. (3.5.5)

Among non-elliptic parameters the following two exceptional cases, cf. (5.7.12)
and (5.7.13) of [Mok] (also see (4.5.11) and (4.5.12) of [Art13]), turn out to be the
most difficult.

(excl) ¢ = 20 By B - B, Sy =~ Sp(2,C) x O(1)",
(exc2) ¢ =3y By B - By, Sy ~ O(3,C) x O(1)" L.

Define Weye1(G*, 7y ) and Wexe2(G*, 7y ) to be the subsets of non-elliptic pa-
rameters of ¥(G*,n,) which have the form (excl) and (exc2), respectively.
Write Uexc(G*,1y) = Wexe1 (G, 0y ) [ 1 Pexc2(G*,1y). We record some basic
lemmas on exceptional and non-exceptional parameters.

Lemma 3.5.9. Suppose that 1 is a non-elliptic non-exceptional parameter, i.e. ¢ €
\Ijell(G*7 nx)\wexc(G*, nX)' Then

1. every simple reflection w € W) centralizes a torus of positive dimension in T,
and

2. dimTy5 > 1, Vs € Sy.

Proof. Except that the local setup is replaced with the global one, the proof of
Lemma 2.8.4 carries over word by word. O

Let us define a subset 31/,&11 C 37/, exactly as in the local case, i.e. as in the
paragraph below Lemma 2.8.4.

Lemma 3.5.10. If ¢ € ey (G*, 1) then Sy con = Sy.
Proof. The proof is identical to that of Lemma 2.8.6. O

In the non-elliptic non-exceptional case the global intertwining relation fol-
lows essentially from the induction hypothesis. More precisely we have the
following results analogous to those in the local case, cf. §2.8. The proofs
are omitted as the arguments in that subsection carry over with no essential
change. (Also the reader may compare with the details in the global setup as in
[Art13, §4.5].) We keep the same notation as in the global intertwining relation.

Lemma 3.5.11. Let M be a proper Levi subgroup of G. Let p~ € W(M*, 1), and
Y € U(G*,ny) be the image of Yps-. Let © € Sy, (M*, G*). Assume that either
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1. 4 is elliptic, or

2. every simple reflection w € W), centralizes a torus of positive dimension in

T’d)]\/]* :
Then fe(Yar-, w) is the same for every u € Ny, (M*, G*) mapping to x.
Proof. The same proof for Lemma 2.8.7 works globally. O

Lemma 3.5.12. Let M, 1p;+, 1/)£ﬂd x be as in the preceding lemma. Then f¢ =(Ypr-,u) =
fo=(, sys™") whenever u € Ny, (M*,G*) and s € Sy, s map to x unless

e Y isellipticand x € Sy,,. en, OF

LIRVRS \IICXC(G*vnx)'

Proof. Just like Corollary 2.8.9, the lemma follows from Lemmas 3.5.11 and
3.5.12 as well as the global analogue of Lemma 2.8.8, the latter being verified
by the same argument as in the local case. O

We define the subsets Wy, req (M*, G*) C Wy (M*,G*) and Ni reg(M™, G™) C

NEJ(M *,G*) as in the local case, cf. the paragraph below Corollary 2.8.9. So
Wy reg(M*, G*) is the subset of w with finitely many fixed points on Ty, and
Ni reg (M, G”) is the preimage of Wy, reg (M*, G*).

Unless ¢ € Ueyo(G*, 1), the above lemmas imply that fo(ar+, u) depends
only on the image of u in Sy,,. (M*, G*) so that f¢(¢a+,z) is well-defined for
z € Sy,,. (M*,G*). In the situation that ¢ € e (G*, 1), there is no harm in
restricting our attention to u € Nj . such that wy, € Wy, . reg(M*,G*), since
only elementsin Wy, . ree(M*, G*) (rather than the larger Wy, . (M*,G*)) con-
tribute to the trace formula. (So the global analogue of Lemma 2.8.10 is not
needed.) Similarly to the local setting, one checks the uniqueness of u € N, EJM*
in the fiber over x such that w,, € Wy,,. reg(M*, G*). (As in the local case, the
fiber over x has two elements, only one of which lands in Wy, . veg(M*, G*)
inside Wy,,,. (M*, G*).) This allows us to take fg(¢r-,x) to be fa(¥a-,u) for
the unique u just mentioned, when analyzing the spectral side of the standard
model below. The upshot is that the linear form

fa(¥ar-, ) has unequivocal meaning

in all cases appearing in the trace formula.

We remarked that the global intertwining relation follows from a complete
proof of the local intertwining relation. The strategy to obtain the latter is to
embed the local problem in some simple global situation where the global in-
tertwining relation is already known (as in Lemma 3.5.12) or where a good
approximation to the global intertwining relation can be derived from a com-
parison of the trace formulas, cf. §3.8 and §4.5 below.
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3.6 The standard model

Here we initiate the comparison of the trace formulas by a procedure named
the standard model by Arthur. This major global input constitutes the back-
bone of our argument. Recall that we have the spectral expansion (3.1.1) and
the endoscopic decomposition (3.3.2) for Iyisc,y (f) with f € H(G). To compare
the two we need to decompose each of them further and reorganize the terms
into a more amenable form. Let us start the investigation of (3.3.2). Thanks to
the stable multiplicity formula (3.3.6), we may write (3.3.2) as

¢ _ e —0 e
Iy (F) = > UG, G)|Sy| €S (s4)a(Sy)f ().  (3.6.1)
(G .¢0)egen(G)
PEMC)x¥(GE,nCT)

Recall from Lemma 3.5.6 that the linear form f¢ = (¢, x) is well-defined for

all ) € W(G*,1y) and z € Sy. Set Ey cnl := Ean(Sy) and write £y cn(x) for the
fiber in En(Sy) over x € Sy,. The definition of ey () in §3.3 may be rephrased

as
G (@)= > |m(Sp.)lo(S,,). (3.6.2)

SGEQ/,YeH (I)

Proposition 3.6.1. For ¢y € U(G*,n,),
IS (1) =186l Y €f (@)ef] (@) 62, 592",

Eegd,

Proof. This follows exactly as in the case of quasi-split classical groups [Art13,
Cor 4.4.3], noting that f, z(¢,7) depends only on x as explained in §3.5 and
that the linear form sgsc ~ in loc. cit. vanishes by the stable multiplicity
formula thanks to Proposition 3.3.1. The reason for the inverse on z in the
summand is explained by the fact that f¢, =(, syz~") is equal to what Arthur
wrote f( (1, syx) in his book in general. This traces back to the difference in the
normalization of the transfer factors: [Art13] adopts the Langlands-Shelstad
definition [LS87] but we specialize the definition in [KS12] to untwisted en-
doscopy. Finally we remark that the endoscopic sign lemma for quasi-split
unitary groups, cf. §1.5, is used in the proof.

O

The next step in the standard model proceeds in parallel with the endo-
scopic expansion above and aims to turn the spectral expansion (3.1.1) into an
expression amenable for comparison. We begin by relating tr (Mp yZp (7, f))
to the global linear forms fg (1, z). As usual ¥(M™*, 1, w) denotes the set of
Y+ € W(M*,n,) such that 15/~ maps to . Define W(M™*, v, w) to be the sub-
set of U(M™*, 1, w) given by the condition that wipr« = ¥as+.

Lemma 3.6.2. We have an equality tr (Mp (w)Zp.y(f))

= Z ‘gwM* ! Z Tp(wv'(/)lﬂ*)elbzu* (mu)fG(w]W*au)'

Yo €T (M* b, w) UEN g, (w)
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Proof. We will only sketch the argument as it is essentially the same as that of
[Art13, Cor 4.2.4]. Following [Artl13, pp.180-181], we expand tr (Mp .y, (w)Zp,y(f))
as a sum

> rp(w,dn=) Y My (Tan)tr (Rp(w, 7, ¥ ) Zp (7, f)),
P+ €U (M* 2h,w) g €10y,
where my,,. (Ta) € Z>o denotes the multiplicity of 7y in thmww (M(F)\M(AFr))
(defined as on p.180 of loc. cit). Theorem 1.7.1 for M, available as part of the in-
duction hypothesis, tells us that (mas, )¢ = €y,,. as the character of the group
Sy, (M*) if and only if 7y is automorphic, in which case my,,. (Ta) = 1.
Note that there is a canonical isomorphism Sy,,. (M*) ~ S,(M*), the lat-
ter defined as in §3.5. (It suffices to observe that Zg, = S,,.(M*) and that

SEZJM*(M*)Z(@*)F =53 . (M*)Z(M*)F. The latter follows from Z(M*)' =

(Z(M*)')°Z(G*), which is in turn deduced from the second display in the
proof of Lemma 0.4.15, for instance.) In view of the definition of f¢ (¢, u), the
proof boils down to the claim that

M- (Tar)tr (Rp(w, mar, Yar=)Ip(mar, f)) (3.6.3)

=[Sy (M) Z g (W (Rp(u, Z, 7ar, Yare, Yr)Ip(mar, f))-

ueﬁwM* (w)

This is immediate from Part 2 of Proposition 3.5.4 if 7, is automorphic. Other-
wise the left hand side vanishes, so we need to show that the right hand side is
also zero. Fixing ug € Ny,,. (w) and writing u = yu, for elements of Ny, .. (w),
we can rewrite the right hand side as |S;,,. (M*)|~tey,,. (uo) times

tr (Rp(vo, Z, mars Yars Yr)Ip(mu, f)) Z g (W) (AL, Y)e
YESy 1w (M)

by part 1 of Proposition 3.5.4. Since the bracketed term vanishes, we are done.
O

Let ¢ € ¥(G*,n,). It is convenient to introduce a linear form

Org;isc,w(f)v d) € \I/(G*vnx)v f € H(G)v

which will be shown to be zero eventually. If ¢ ¢ Uy(G*, 7, ) then set

Orgisc,w(f) =tr Rcci;isc,m/)(f)'

In this case recall from §3.5 (especially the last paragraph there) that the linear
form f — fo(¢,z) on H(G) is well-defined for all z € S;. Now consider
Y € Wy(G*,ny). Let us introduce a hypothesis on ¢ which will be verified
before a complete proof of global theorems:

163



Hypothesis 3.6.3. The local classification theorem for 1), is proven for every v (so
that 11y, = 11, (G, ) is defined, cf. §1.7, and also that (x, ) is defined for all x € S,
and 7 € IL).

Choose an extended pure inner twist = giving rise to (G,&). Under the

above hypothesis one makes sense of the definition (which is the M = G case
of (3.5.3))

Je2) = Y (@mfom) = Y <H<x,m>fa<m>).

melly melly v

Even though we assumed ¢ ¢ ¥9(G*,n,) and M* # G* in §3.5, the argument
for Lemma 3.5.5 still shows (appealing to Lemma 2.6.5 in view of Remark 2.6.5
and noting that 'y, = S, when M* = G*) that fg (¢, z) is well-defined inde-
pendently of the choice of Z. Put!!

Or§es(f) = tr RGe o () = [Sul™" D €F () fa (i, 2). (3.6.4)

x ng

Write Wy (z) for the image in Wy, of the subset of A/ which is the fiber over
z € Sy. Set Wy reg = Wy N Wieg (M) and Wi reg () 1= Wy (x) N Wi reg. Then
the definition of i, (x) in §3.3 was that

iy(x) = \W12|71 Z sgn?z,(w)| det(w — 1)|7%. (3.6.5)

WEWoy rog (T)

The spectral expansion in the non quasi-split case below looks identical to
[Art13, Cor 4.3.3] in the quasi-split case. The difference is that our fg (¢, x)
is zero by definition if ¢ is not a relevant parameter for G. (In contrast, every
parameter is relevant for G*.)

Proposition 3.6.4. Let v € W(G*,n,). Assume Hypothesis 3.6.3 on ¢ if ¢ €
Uy (G*,ny ) (but no hypothesis if 1 ¢ Uo(G*,ny)). Then

Igsc,i/)(f) = Orgsc,w(f) + |§1P|_1 Z Z@C/f* (x)eg* (f)fGWyw),
xegw

Proof. We argue as on [Artl3, pp.186-188], appealing to our Lemma 3.6.2 in
place of his Corollary 4.2.4. Then we have an equality of Iqisc,y (f)—tr Raisc,u (f)
with (see the top paragraph on page 187, loc. cit.)

Yo Iw@nTt Y Jdet(w —1)gg |7

M#G WEWieg (M)

x > > Sppe T e (w,ar ey, (u) fo (Ve ).

Y= €W (M* 1h,w) ueN y (w)

11Compare with [Mok, (5.5.16)] and [Art13, (4.3.7)]. In their notation we always have kg =
my, = 1and Cy, there is equal to our |S,, | ~1.
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Of course M* in the inner sum denotes a (standard) Levi subgroup of G* which
is a quasi-split inner form of M. We may replace the first sum with the sum
over proper Levi subgroups M* of G*. Indeed if M* does not transfer to G
locally everywhere then fo(¢am+,u) = 0 by definition so the sum does not
change.

To proceed we argue as on page 187 of [Art13]. Recall that his set V;, is the
set of pairs (w, ¥ar+) € Wieg(M) x W(M*,4)) such that wippr+ = ¢pr+. The first
projection induces a map from Vy, to {Wy, res }, the set of conjugacy classes in
Wy veg- The key point in his argument is to see that the last summand in the
display above is constant on each fiber of the map Vi, — {Wy 1es }. This point
is rather easy to check from the definitions except for the factor fo(¢¥ar-,u),
where we appeal to Lemma 2.6.3. The rest of Arthur’s argument on that page
remains the same and shows that the display above is equal to

)

-1 TP(w7w]\/f*)67/1M* (U)fG(1/’J\4*aU)
LODEEDD [det(w — 1)yg [[Sunr.

WEWy s reg ueﬁwM* (w)

which is the same as [Art13, (4.3.2)] (except that we keep 1+ in our notation),
as an intermediate result.!?> From here on Arthur’s argument applies without
change. Thereby we arrive at the equality in the proposition. We merely re-
mark that the spectral sign lemma for quasi-split unitary groups, cf. §1.5, is
used in the proof.

O

Now the comparison of the endoscopic and spectral expansions leads to the
following formulas.

Corollary 3.6.5. For a non-discrete parameter 1 € W2(G*,n, ) and f € H(G),

o RGee () = ISl ™ D i (@)ef] (@) (fa(w, spa™h) = fo (¥, 2)).

xegw
When ) € Wo(G*,ny), assuming Hypothesis 3.6.3 we have for f € H(G) that
Orfsen(F) = 18uI7H Y i (@) (@)(f6(0, sp2™") = fa(v,2)).
x’ng

Proof. The corollary is an immediate consequence of (3.3.5) as well as Proposi-
tions 3.6.1 and 3.6.4. O
3.7 On global non-elliptic exceptional parameters

The global intertwining relation for a non-elliptic parameter ¢y € U°!(G*,n,)
was essentially deduced from the induction hypothesis in Lemma 3.5.12 except

12We remind the reader that we cannot write fg(¢ps+,u) as fg(t,u) until we know that
fa(¥ar+, uw) has the same value for every ¢+ € W(M™*, ), which would only follow from the
intertwining relation.
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when ¢ € Voo (G*, 1) and & € Sy.en1- In the exceptional case we will prove a
weaker identity by the comparison of the trace formulas. This will provide a
global input for the later proof of the local intertwining relation in (excl) and
(exc2).

Lemma 3.7.1. Let ¢ € Weyo(G*, 1y ), i.e. it is a non-elliptic parameter of form (exc1)
or (exc2). Suppose that 1) comes from a discrete parameter on a proper Levi subgroup
M* of G*. Let x € Sy. If M™ does not transfer locally everywhere to G* then

faW,spa™") = fa(¥,2) =0, feH(G).
If M* does transfer to a Levi subgroup M of G then

> G @) (oW, spa™h) = fali,x) =0, f € H(G)

Iegw
and Rp(w, mpr, Uar<) = 1.

Proof. Our proof proceeds as in the proof of [Art13, Cor 4.5.2] but is simpler in
that no groups other than G need to be considered. So we outline the argument
with small details omitted.

Using the explicit form of (excl) and (exc2), we find that Ry, is trivial, that
W2l = [Wy| = 2, and that Wy, ;e has a unique element w. For the latter w
we have sgnj) (w) = —1 and | det(w — 1)| = 2. Hence iy (z) = —1/4 in the first
identity of Corollary 3.6.5. The identity reads

r R, (f) = fﬁ > & @ e spa™) — fo(w,2), fEH@E).
Syl =

(3.7.1)
Fix an element ¢p» € Uy(M*,n,) which maps to . We argue as in the
proof of Lemma 2.6.1, noting that M; = M™ in our special case. The argu-
ment there shows that if M* does not transfer to G locally everywhere then
fL(Y, spx™) = 0,and if M* does transfer then f(, (¢, syz™ ') = fi,(Yar=, sps™1).
In the former case fe(1,z) = 0 by definition, so the proof is finished. From
now on we assume that M* transfers to a Levi subgroup M of G by Lemma
0.4.6. Then a unique inner twist (M, &) is determined on M. Arguing as at
the top of [Art13, p.210], we obtain

Sul™ D G @@ spr ™) = > myy. (man)te (Zp(mar, f)).

z€S, g €Ly

Wehave [Sy| = |Sy,,. | from the diagram (3.5.2) and the fact that Sy, = Sy (M*, G*),
Sy = Sy (cf. proof of Lemma 3.6.2), and [W})| = [Wy| = 2. The surjection

Ny — Sy restricts to a bijection Ny, (w) — Sy, and we have

Yo G @ fewa)y= > Y G (it (Rp(u, B mar, ar-, vr)Ip(mar, f)).

TESy UEN y (w) Tm €Ly
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Via (3.6.3), this equals

Z TN pp« (WNI)U‘ (RP (w’ M, wJW* )IP (7TM7 f))

€Ly,

Therefore

Z tr (1 — Rp(w, mar, ¥r- ) Ip (7o, f)) = 0.

=

G
tr RdiSC,’L/) (f) +
l‘ESd,

Since w is an element of the group Wy, of order 2, the square of Rp(w, Tar, Yar+)
is the identity map. This implies that tr (1 — Rp(w, 7ar, ¥ar+))Zp(mar, f)) is a
nonnegative linear combination of the traces of irreducible representations (as
a linear form in f), therefore that the whole left hand side is such a nonnegative
linear combination. Hence we find that R, » = 0 and that the summand for
each z is zero. The lemma results from this vanishing and (3.7.1).

O

3.8 On global elliptic parameters I

For global elliptic parameters we have made little progress toward the global
intertwining relation due to the fact that the induction hypothesis was not of
any immediate help. As in the previous section 3.7, our plan is to settle for
a weaker identity for now, which is still good enough for deriving the local
intertwining relation for local elliptic parameters later.

Any elliptic non-discrete parameter ¢ € U (G*, n,,) has the following form,
where 1; are mutually non-isomorphic simple parameters, cf. [Artl3, (5.2.4)],
[Mok, (6.2.1)]:

Y=2y 8- - B2, B 1 B--- By,
Sy ~0(2,C)Tx0(1,C)"" 1, ¢g>1.

Lemma 3.8.1. Let ¢ € ¥%,(G*,ny). Forevery f € H(G),

tr Riep(f) =278yl ™" Y e (@) (fa(¥,spa™") = fa(, ).

xegw,en

Proof. An easy observation from the definition of i, is that iy (x) = 0if = ¢
Ed,,on. In case z € Ew,cll it is easily computed again from the definition that
iy(x) = 277 as appearing in the proof of Lemmas 5.2.1 and 5.2.2 of [Art13].
Now the lemma is just a special case of Corollary 3.6.5.

O

4 CHAPTER 4: GLOBALIZATIONS AND THE LOCAL CLASSIFICATION
The aim of this chapter is to establish the local intertwining relation (Theorem

2.6.2) and the local classification theorem (Theorem 1.6.1) for generic parame-
ters. In both proofs we utilize the powerful global method based on the trace
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formula. To this end we embed the local setup of each theorem in amenable
global situations by exploiting a large degree of freedom in choosing the global
data. After constructing globalizations up to §4.4 we prove the local intertwin-
ing relation in §4.5 and §4.6 and the local classification theorem in the last three
subsections.

We could have constructed global extended pure inner twists in the global-
izations but the reader will notice that we work with pure inner twists instead.
The main reason is to keep the results in this paper as unconditional as possible,
since certain facts about the transfer factors needed in our work are available
for pure inner twists but not for extended pure inner twists at the moment (see
the discussion of §1.1.2).

4.1 Globalization of the group

When F is a totally real number field and F is a totally imaginary quadratic
extension of F, we say that E / F is a CM extension (of number fields) for sim-
plicity.

Lemma 4.1.1. Let E/F be a quadratic extension of local fields of characteristic 0. Let
ro € N. Then there exists a CM extension of number fields E/F and a place w of F'
such that

e [ has at least ro real places, and
o £,/F,=E/F.
Proof. This is standard and easily deduced from [Art13, Lem 6.2.1]. O

Lemma 4.1.2. Let E/F, E/F and u be as in Lemma 4.1.1. Let vy # u be a non-split
place of ' in E. Let (G, &) be an inner twist of Ug (N ). Then there exists (G,§) an
inner twist of G* = Ug,p(IN) such that

L (Gu, &) = (G,€), and
G, is quasi-split for all v & {u,vs}.

if N is odd, we can also assume that G.,, is quasi-split, and

LN

if N is even and vy is an archimedean place, then we can assume that G, is
isomorphic to either Uy, (N/2,N/2) or Ug, JEy, (N/2—-1,N/2+1).

Moreover if (G,¢&, z) is a pure inner twist of Ugp(N) (in fact every (G, §) can be
promoted to a pure inner twist since the top horizontal arrow is onto in the diagram of
§0.3.3) then there exists a pure inner twist (G, ¢, 2) of Up,, (V) such that

1. (Gu,fu,zu) = (G,f,Z)/

2. (G, &y, 24) is the trivial pure inner twist (in particular G, is quasi-split) for all
v & {u,v2}, and
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3. condition 3 above holds true verbatim.

Proof. It suffices to check the assertion about pure inner twists. From [Kot86,
Cor 2.5, Prop 2.6] we get an exact sequence

o~k

H'(F,G*) - @ H'(F,,G") R m0(Z(G )")P =0,

~*

where D denotes the Pontryagin dual. Note that m(Z(G )')P ~ Z/27Z and

the map «, : H'(F,,G*) — mo(Z(G )F)P is identified with the left vertical
map in the diagram of §0.3.3). Since u and v, do not split in £ we see that
the map H'(F,,G*) — Z/2Z is onto for v € {u,v,}. Now choose an element
(Gy, &y, 2y) at each place v such that (G, &y, zu) = (G, &, 2), au(Gu, &y, 2u) =
oy (Gopyy Evys 20, ), and (G, &y, 2y) is trivial for v € {u,ve}. If N is even and v is
archimedean then we can impose condition 4 because the real unitary groups
U(N/2,N/2) and U(N/2 — 1, N/2 + 1) have different images under «,,. By
the exact sequence there exists (G, &, 2) € H(F, G*) localising to (G, &,, z,) at
every v, thus satisfying all the conditions of the lemma. O

We shall also occasionally have need of the following globalization, which
is easily obtained via the same process.

Lemma 4.1.3. Let E/F be a quadratic extension of local fields of characteristic 0. Let
ro € N. Let x € Z§. Let (G,§) be an inner twist of Ug,p(N). Then there exists

a CM extension E/F, two places w1, ug of F, x € 2%, and (G, é) an inner twist of
UE/F‘(N) such that

e [E has at least rq real places,

° E.u/Fu = E/F foru = uy, us,

® Xu = X foru=uy,us,

. (Gu,éu) = G for u = uy, ug, and

o G, is quasi-split for all v & {u1,us}.

Moreover we can promote (G, €) to a pure inner twist (G, €, 2).

4.2 Globalization of the representation

In order to be able to globalize a parameter, we must first globalize individual
representations. The globalization is carried out on quasi-split unitary groups.

Lemma 4.2.1. Let E/F be a CM extension of number fields such that F has at least
two archimedean places. Let G* = Uy, () denote the associated quasi-split unitary

group. Let V be a finite set of places of F' that do not split in E and assume that
at least one archimedean place v, of F' is not contained in V. For all v € V, let
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Tw € Ty temp (G) be a square integrable representation. Then there exists a cuspidal
automorphic representation 7 of G*(A ) such that forallv € V, 7, = m, and 7,
has sufficiently reqular infinitesimal character.

Proof. The result will follow from an application of Theorem 4.8 of [Shil2].
Choose a discrete series representation m,_ € Il temp(G* ) whose infinites-
imal character is suff1c1ently regular In the notation of [Shil2], we take S =
V U {vs} and fs = Ques fv @Ee fv is taken to be the characteristic function

on the singleton set {7, } C G*(F,) (which has positive Plancherel measure i.e.
( fs) > 0, since the center of each G*(F,) is compact). Theorem 4.8 of [Shi12]
1mp11es that

lim fin(fs) = 1% (fs) >

n—

This shows that for some n € Z>1, fin( fs) # 0. Unwinding the definition gives
the existence of 7 such that f, () # 0foreach v € S, so the lemma follows. [

We shall often have need of the following strengthening of Lemma 4.2.1.

Lemma 4.2.2. Let E/F, G*, V be as i(l Lemma 4.2.1. Forallv € V, let M} be a
Levi subgroup of G, such that My = G} if v is archimedean. For each v € V let
man: € o temp(M)). Then there exists a cuspzdal automorphic representation of

G*(A ) such that for all v € V, if M} = G then 7, = T and if My # G* then

70, 15 an irreducible subquotient of the induced representation I]CV:’J (ma: ® X) for some
unramified unitary character x € V(M) (cf. [Shi12, §2.3]).

Proof. The result follows from an application of [Shil2, Thm 4.8] in the same
way as Lemma 4.2.1 if we take f, to be the characteristic function on the set of

irreducible subquotients of the induced representations If” (mar+ » @ x) where

x runs through the unramified unitary characters x € ¥, (M) (cf. Example 5.6
of [Shil2]). O

Lemma 4.2.3. Let E/F be a quadratic extension of local fields, & : Ug,p(N) — G
an inner twist, M* C Ug,p(N) a standard Levi subgroup such that M := {(M*) is
defined over F', and w € I1o(M) a discrete series representation.

Then there exists a CM-extension E/ F' and two places u, v of F that do not split in
E, with v archimedean, and E,,/F, = E/F. There exists furthermore an inner twist
£: U, sp(N) = G with G quasi-split away from u and v, as well as an isomorphism
v: Gy — G such that € = 1 o &,. Moreover, if M* C Ugp(N) is the standard Levi
subgroup with M} = M?*, then M := £(M*) is defined over F and v provides an
isomorphism M, — M.

Finally, there exists a discrete automorphic representation 7 of M such that v iden-
tifies 7, with .
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4.3 Globalization of a simple parameter

We shall globalize a simple parameter. It is worth remembering that a global
parameter can be localized thanks to Proposition 1.3.3. We shall perform two
different globalizations both of which shall later be required.

For every CM extension E / F we fix characters x4 € Zg and x_ € Z . once
and for all. As usual )y : “Up p(N) < “Gp . denote the L-morphism 7},
for each N > 1 and each A € {+1}. Fix a sign x € {£1} once and for all. For
simplicity we often write just 7 for 7),..

Lemma 4.3.1. Let E/F be a CM extension such that I has at least two archimedean
places. Let G* := Uy, -(N) and 1) = 1), as above. Let V be a finite set of places of
F that do not split in E. Forallv e V, let ¢, € <I>2,bdd(G:) be a square integrable
parameter. Furthermore, assume that for at least one v € V, ¢, € @sim(GT,). Then
there exists a simple generic global parameter ¢ € B (G*, 7)) such that forallv € V,

bv = Pu.
Proof. For each v € V, we choose 7, € II,,, a square integrable representation
of the quasi-split unitary group G*(F,) in the L-packet associated to ¢,. Ap-
plying Lemma 4.2.1, we obtain a cuspidal automorphic representation 7 of the
quasi-split unitary group G*(A ) such that 7, = m, and 7, _ has sufficiently
regular infinitesimal character. Let ¢ be the global parameter such that 7 € TI e
The condition on 7, implies that ¢ is a generic parameter. By construction,
we know that ¢, = ¢, for all v € V.13 It remains to verify that ¢ is simple. This
follows from the fact that for some v € V, ¢5U € @Sim(Gj). O

Lemma 4.3.2. Let N > 2. Let E/F F,G*, n, V, {bw }vev be as in Lemma 4.3.1.
Assume that for at least one v € V, ¢y, € @siny (G5). Let vo & V be a finite place that
does not split in E. Then there exists a simple generic global parameter ¢ = (¢, $) €

O (G*, 1) such that
° ¢, = ¢y forallv € V, and

o the parameter (bf]\i has the decomposition

= oY P @ ¢} @ (1)
where ¢V 72 € B (N — 2), and ¢ € ®(1) is a character which is not conju-
gate self-dual.

Proof. The proof follows the same lines as the proof of Lemma 4.3.1. The dif-
ference is that we shall apply Lemma 4.2.2 to the set V' = V' U {v,} instead of
Lemma 4.2.1 to the set V.

13Here we use the fact thatif 7, € II2 temp (G* (Fv)) belongs to Iy, , and I14, , for two generic
parameters ¢,,,1 and ¢, 2 then ¢, 1 = ¢, 2. However this may fail if either is non-generic.
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For each v € V, we choose 7, € I, , a square integrable representation of
the quasi-split unitary group G*(F,) in the L-packet associated to ¢,.
Let M, be a maximal proper Levi subgroup of G, of the form
M;Q = M?* XGE1y2/F1 (1),

V2, o

where M7, =Up p (N —2). We fix a representation my, = m_ X 71 €
? ) v v
2, temp (M) such that (m4)em; " is not an unramified character (viewing 7
as a character of GL(1, E,,); here ¢ € Gal(E,,/F,,) is the nontrivial element).
Write 7,,. for the composition of 7 with the Levi embedding “M* — LG*.
Denote by ¢,,. the generic parameter associated to = My, - Then we have
v v

77]”*71’2(25”1%*,2 = ¢Jj_2 SN+ B AL

where ¢V 72 € (N — 2), A4 € ®(1), and the character /\_T_l/\:_ is not un-
ramified. This implies that the character ¢Y - x is not conjugate self-dual for
all unramified unitary characters y. We observe that if o is an irreducible con-

. . . G -
stituent of the induced representation Z,,’? (7TM;2 ® x) for some unramified
vg
unitary character x € ¥, (M,;,), then the associated parameter ¢, satisfies

ﬁvz(ba = iViQ S (lﬁr S3) (¢1+)*

where ¢} € ®(1) is an unramified twist of A}, which is therefore not conjugate
self-dual.

The result follows by arguing as in the proof of Lemma 4.3.1 and appealing
to Lemma 4.2.2 with the set VU {v;} instead of Lemma 4.2.1 with theset V. O

44 Globalization of a parameter

As before let E/F be a quadratic extension of local fields of characteristic 0. Let
M~ be a Levi subgroup of G* := Ug,r(N). This subsection consists of various
globalizations of groups and parameters to be needed for later proofs in the
generic case. To explain this we introduce new terminology: a Levi subgroup
M* of G* is called linear if it is isomorphic to a product of Weil restriction of
scalars of linear groups. The propositions are then organized according to the
following cases.

1. N is odd. (Proposition 4.4.2)
2. N iseven.
(a) M* = G*. (Proposition 4.4.3)
(b) M* # G*, M* is not linear, N > 6. (Proposition 4.4.4)
(c) M* # G*, M* is not linear, N = 4. (Propositions 4.4.5, 4.4.6)
(d) M* # G*, M* is linear. (Proposition 4.4.7)
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The complication in the even case is caused by the parity obstruction that an
inner twist (G, £) of G* does not always admit a global inner twist (G, £) which
localizes to (G, £) at one place and is quasi-split at all the other places. The most
subtle case of all turns out to be the case 2(c), in which case we had to check the
local intertwining relation explicitly at archimedean places for enough cases.
In fact it is fair to say that the case 2(c) is at the basis of the whole induction
argument to prove LIR.

Let £/ F' be a quadratic extension of local fields and G* := Ug/p(N). Tem-
porarily choose a sign x € {£1} and a character x, € Z5. (Soon x and x,. will
be determined by global choices.)!* Let ¢ € ®,qq(G*) be a generic bounded
parameter. As usual 7,,¢ admits a decomposition into simple parameters

Nep = B_ L), N € D (N;), i € Loy,

Suppose that ¢ € P1(G*) U Pexc(G*) (namely it is not simultaneously non-
elliptic and non-exceptional). Such a parameter can be coarsely classified up to
areordering of factors as follows. Observe that the classification is independent
of the choice of k and x.

q)g(G*)Z

(I)gn (G¥):

excl:

exc2:

Mg = ¢ @+ @ ¢, where Sy ~ O(1,C)".

Ned = 20N @ 2000 @ ¢51\E1 ® - @ ¢Nr, where S, ~ O(2,C)? x
0(1,C)""9,¢ > 1.

Nep = 200" ® ¢Y? @ --- @ ¢Nr, where Sy ~ Sp(2,C) x O(1,C)" .
Net = 3¢ @ @22 @ - - @ ¢, where S, ~ O(3,C) x O(1,C)" 1.

There exists a Levi subgroup M* of G* unique up to conjugation such that
Oy (M*, ¢) is non-empty, that is, there exists a parameter ¢« € ®o(M*) which
maps to ¢ via (any) Levi embedding iy« : “M* — LG*. Explicitly M* has the

form

M* = M* x GE/F(Nl)le X e X GE/F(NT‘)Z;7

where 0} = [(;/2], N- = >, 44 Ni, and M* = Ug,p(N-). By restricting
the L-embedding na« = 7.ipn+ we obtain n_ : “M* — LG(N_) and 7} :
LG(N;) < LG(2N;) for each 1 < i < r. In particular this allows us to view
(M*,n_) € Eqm(N_). The parameter ¢p- = ¢ x [[}_,(¢})% is determined by
the condition that n_¢_ = @y, qﬁﬁv P and nj¢; = 2¢£V ‘. Moreover ¢_ is bounded
since ¢ is.

Let us set up some common notation from here throughout the end of §4.4.
As in the previous subsection we fix a sign £ € {£1} and x\ € Zg for all
CM extensions E/F and all A € {#+1}. By G* we always denote the global
unitary group U, (), and often write 1) = 7, for the L-embedding LG 1
Gy p(N). Typically we will have a place u of F such that £, /F, = E/F and

14When E/F globalizes to a CM extension E / F, we can globalize x, to xx € Zg as in [Mok,
Lem 7.2.2] but we do not need such a result.
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G, = G. In this case we write 7 for 7,, the restriction of 7) to the embedding
of L-groups relative to the local field F;,. In every lemma or proposition below
we aim to construct global data with certain properties starting from (a subset
of) the following local data. (We already discussed G*, ¢, M*, and ¢~ above.)

e E/F is a quadratic extension of local fields,
e G* =Ug/p(N)and M* is a Levi subgroup of G*,
e (G,¢) is an inner twist of G*,
o ¢ € Ppgq(G*) is the image of dpr- € Do(M*).
Lemma 4.4.1. Given (E/F,G*, ¢, M*, ¢+ ) as above, we can find the global data

(E/F7U7UI7G*7QS7M*7¢M*)

p where E/F is a CM extension, u is a place of F that does not split in E, v isa
finite place of F' that does not split in E, G* = Up/p(N), ¢ € O(G*,n), M* isa Levi
subgroup of G*, and ¢ ;. € ®o(M*, ), such that

1' EU/F’U« = E/F and (G:a(buaM;a(éM*,u) = (G*?¢7M*a¢M*)/

2. if ¢ € 9(G™) (resp. 2,(G*), resp. Pexc1(G*), resp. Pexc2(G)) then b e

<I>2(G*) (resp. (I)ell( *), resp. Pexc1(G™), resp. Pexea(G*)),
3. val € q)bdd(Gzl) and ¢M*,v1 € (I)Z,bdd(M:l) and

4. the canonical maps

Sd’]\/[* - S¢>M*

S, = S,
are isomorphisms for v € {u, v1 }.

Proof. By Lemma 4.1.1, we obtain (E/F,u) which globalizes the local extension
E/F. We fix a non-archimedean place v; of F' that does not split in . We can
associate to each ¢!'' a pair

with unique sign x; € {£1}. We also fix some simple parameters ¢,, ; €
@sim(G;m) such that ¢, ; # ¢, ,; foralli # j (hence also 1; v, Guy i 7 7,01 Pos 5)-
We apply Lemma 4.3.1 to obtain a simple global parameter ¢; € @y (G, ;)
such that ¢; ,, = ¢; and ¢; 4, = ¢y, -

We define the global parameter

N =l @ B LGN € B(N).
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By construction, we observe that qﬁff = 1.¢. We must check that ¢ is in the
image of ®(G*,7,). If this were not true, Proposition 1.3.1 tells us that ¢~
comes from a parameter ¢ of ®(G*,7_,). Hence ¢~ has sign —(—1)¥ "'« in
view of Proposition 1.3.3. However 7,,¢ has s1gr1 (=1)N-1k, of. Lemma 1.2.5,

so thisis a contrad1ct10n So ¢V comes from ¢ € B(G*,17,.).
Set M* £/#(N-) and define

M* = M % Gy p(N1)S oo x Gy (V)
as a Levi-subgroup of G*. By restricting 7 to “/*, we obtain an L-embedding
Mype X M* % G(N). We define a parameter in ®o(M*,1),;.)

Srpe = b X (S xx (@), b€ B(MZ,0), ¢ € B(G(N)),

by requiring that gbf\\; = (Dop, N @ (©7_,20:6N7) in the way that ¢_ maps to
(Daye, ¢Ni) and each @, to 20,62

We have constructed the globalized data (E/F,u, vy, G*, 1), b, M*, ng) It
remains to verify that conditions 1 through 4 are satisfied. Conditions 1 and 3
are clearly satisfied. Our construction is an adaptation of Arthur’s construction
in [Art13, Prop 6.3.1]. It follows form the construction and the definition of the
local and global groups that condition 4 is satisfied. (To see this one utilizes
the explicit description of S, S; , etc in §1.2.4 and §1.3.4 and argues as on the
last paragraph on page 324 of [Art13].) Finally, it follows from the construction
and the isomorphism S ~ S that condition 2 is satisfied. O

We would like to adapt the preceding lemma, which concerns the quasi-
split case, to the setting of inner twists. The following globalization shall act as
our analogue of [Art13, Prop 6.3.1] when N is odd.

Proposition 4.4.2. Let (E/F,G*,(G,§),p, M*, dpr+) be as above. Assume that N
is odd. There exists the global data

(E/F,U,Ul, G*a (Gvé7 Z)v Q.Sv M*a ¢M*)
where E/F is a CM extension, u is a place of F not split in E, vy isa finite place of F
not split in E, G* = Ug/e(N), (G, €, 2) is a pure inner twist of G*, ¢ € ®(G*,7),
M* is a Levi subgroup of G*, and ¢, € ®o(M*, $), such that
1. Ey/F, = E/F and (Gu,&u, du, M, y1.,) = (G, €, 6, M*, p+),
2. G, is quasi-split for all v # u,

3. if g € Do(G") (resp. ¢ € 02,(G"), resp. ¢ € Pexe1 (G*), resp. ¢ € Pexe2(G™))
then ¢ € ®o(G*) (resp. ¢ € D2 (G*), resp. ¢ € Pexe1(G*), resp. ¢ €
(I)eXCZ(G*))/

4. ¢y, € Poaa(Gy,) and ¢yy. € Do paa(My),
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5. the canonical maps

S S

¢Z\{* ¢JVI*,U

v

are isomorphisms for v € {u, v1 }.

Proof. By applying Lemma 4.4.1, we globalize the data (E/F, G, ¢, M*, ¢r+)
to (E/F7 w, vy, G*, ¢, M*, ®y+)- We apply Lemma 4.1.2 to obtain a pure inner
twist (G, €, 2) of G* such that (Gy,&,) = (G,€) and G, is quasi-split for all

v # u.
O

We are left to deal with the case that N is even. In this case, the globalized
group G, will be quasi-split at all places v ¢ {u,vs} for some auxiliary place
vy, however the group G, need not be quasi-split. This causes additional com-
plications as we wish that the globalized parameter ¢ be both relevant and of
a type for which the main local theorems are known outside of the place w.

We begin by dealing with the case that M* = G* below. Then we shall be
left to deal with the case that N is even and M* # G*. When G,, is indeed not
quasi-split, we have only complete results at vy, via the induction hypothesis,
when the local parameter is neither elliptic nor exceptional. In this case we
carry out further case-by-case analysis as explained at the start of this subsec-
tion.

Proposition 4.4.3. Given (E/F,G*,(G,¢), ¢) as above, assume that N is even and
M* = G*. Then we can find the global data

(E/Fauavlvv%é*a (Gaévé)ad))v

where E/F is a CM extension, u is a place of F that does not split in E, vy is a finite
place of F' that does not split in E, vy is an archimedean place of F, G* = Uy, ,x(N),

(G, £, %) is a pure inner twist ofG*, b e <I>2(G*, 1) is relevant for G, such that
1. E,/F, = E/F and (G, &u. 6u) = (G, €, ),

2. G, is quasi-split and the character (,,—) of Z((A?)Fv is trivial for all v ¢
{uva}/
3. bu, € B2(GE),

4. ¢y, € Do(GL),

5. the canonical map

is an isomorphism for v € {u, vy }.
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Proof. This is proved in the same way as Proposition 4.4.2 is deduced from
Lemmas 4.1.2 and 4.4.1 except the following modifications in the statement
and proof of Lemma 4.4.1: Firstly fix any archimedean place v, of the totally
real field . Secondly impose the conditions that G is quasi-split at all places
v ¢ {u,vy} and that ¢,, € <I>2(C1‘jj?). The latter condition at vy is achieved in the
same way as at vy.

To obtain #, we argue as follows. We have for each place v of F

1, v splits in £
{£1}, else.

b

2(Grc)l = 2" = {

as well as

Z(G*so)" = Z(G*)" = {+£1}.
By assumption £, € H'(T,, G%,) is trivial for all v ¢ {u,v2}. By [Kot86, Prop
2.6] we have an equality (£,,—) = (£,,,—)~" of characters of Z(G.)". Us-
ing the surjectivity of H \r,,G*) — HYT,,G*,) we choose a collection of
elements h, € H'(T,, G*) satisfying h, = 1 forv ¢ {u,v2} and llftlng the col-
lection SU Then we must have an equality (f,, —) = (f,,,—) " of characters
of Z (G*) v ={x1} = Z( G )2, According to [Kot86, Prop 2.6], there exists
h € H'(T, G*) whose localization at v is equal to ,, for all v. Both elements
and ¢ are uniquely determined by their localizations, from which we see that h

lifts £. Hence there exists # € h such that (f ,2) is a pure inner twist.
O

Proposition4.4.4. Let (E/F,G*, (G, &), ¢, M*, ¢rr+) be as above (right before Lemma
4.4.1). Assume that N is even, N > 6, and M™* # G* is not linear. We can find the
global data _ . _

(E/Fa u, v, v2, G*7 (Gagv Z)v ¢7 M*7 d)M*),

where ) F is a CM extension, u is a place of F' that does not split in E, v, and vy are
finite places of F' that do not split in E, G* = Ug (N, (G, €, 2) is a pure inner twist
ofG*, qS € <I>(G*, 7n), M* is a Levi subgroup ofG‘*, and (;.SM* S <I>2(M*, ¢E), such that

1. Ey/F, = E/F and (Gu,&u, bu, My, yp. ) = (G, &6, M*, dr-),
2. G, is quasi-split for all v & {u, vy},

3. if p € 02y (G¥) (resp. ¢ € Pexe1(G*), resp. ¢ € Pexea(G*)) then b € 2 (G¥)
(resp. b e Doxc1 (GF), resp. ¢ € Pexea(G*)),

4. ¢y, € Poaa(Gy,) and QaM*ﬂ)l € ®opaa( M),

5. the parameter ¢,, € Ppaa(G,) is relevant for (Gy,,&y,), and it is neither
elliptic nor exceptional,
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6. the canonical maps

S S

Par= v

S¢ — Sd;v

P+

are isomorphisms for v € {u, v }.

Proof. The proposition is proved in the same way as Proposition 4.4.2 except
we appeal here to a modification of Lemma 4.4.1 as follows. We choose any
place vy of I different from u and v; as in the proposition. Now we construct
a globalization as in Lemma 4.4.1 satisfying conditions 1-4 there but with the
extra condition that

5. the parameter ¢,, € @bdd(GZQ) is bounded and it is neither elliptic nor

exceptional, furthermore ®,(M; , $v,) # 0 for some non-linear Levi sub-
group M .

Suppose for now that this is constructed. Then it only remains to check that
the parameter by, is relevant for (G, &, ). Let M, be as in condition 5 above.
Since M;; is a non-linear Levi subgroup (as M* = M} is non-linear), we
see that M:2 transfers to G’v2. Indeed, Gv2 is a unitary group over a non-
archimedean field as v, is finite and non-split in F, so any non-linear Levi
subgroup of G:2 transfers to G,,,. Hence ¢,, is relevant and the proof will be
complete.

The rest of the proof is devoted to the construction of the desired globaliza-
tion, based upon a slight adaptation of the construction appearing in Lemma
4.4.1. Given the construction, conditions 1-4 of Lemma 4.4.1 will be satisfied in
the same way, so the main issue will be to verify the new condition 5 above.
We shall divide the proof into the following two cases, which we shall consider
separately.

1. There exists 1 < s < r such that either N, > 3 or N, = 2 and ¥, is odd for
some s # t.

2. Either N; = 1 foralli = 1,...,r, or there exists 1 < s < r such that
Ny =2and N; € {1,2} and ¢; even for all i # s.

We shall begin by considering the first case. We follow the construction
appearing in Lemma 4.4.1 with the following two changes. Firstly, we begin
by globalising the parameter ¢, however we appeal to Lemma 4.3.2 instead of
Lemma 4.3.1. The localization of the parameter ¢, can be written as

INg _ ; Ng—2 1 1,
S, v2 T ¢S,U27— 8 ¢57U27+ & ¢s,:27+7

where ¢V:72 ¢ &)Sim(NS —2) and ¢§)v27+ € ®(1) is a character which is not

Conjugaté self-dual. Secondly, when globalising the parameters ¢; for i # s, we
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fix some simple parameters ¢; ,, € <I>Slm(G* ) so that 7; v, i v, # qbs UQ “ and

i,V2
'flz v2¢z vy 7& 7;]j v2¢g Vg for all ¢ 75 ]
Proceeding as in Lemma 4.4.1, we obtain the data (F/F, u, vy, va, G*, 1, b, M* ngM* ).
The first four conditions are satisfied, and it remains to check the fifth condi-
tion. By construction, we have that

ngz = Es (¢é\jf,;2_ 5] QS;'UZ,J,- @ (bi::%_t,-) S @ eiﬁi,m ¢1’,1)2 .
iF£s
Such a parameter is bounded, and it is also neither elliptic nor exceptional due
to the appearance of the character qbs s+ Which is not conjugate self-dual. The
Levi subgroup M;;, for which @5 (M}, ¢,,) # ) can be seen to be

* * Ly Vi 0
My, =M, <G p (V% x Gy p (No=2)% < [[Gp,_p, (N)"

V2, —
i#£s

where ¢; = |{;/2] and M, _ is the quasi-split unitary group in N — 2/, —
20,(Ns —2) =232, liN; variables. It follows that the Levi M, is not linear.
This completes the proof of the result for the first case.

Consider now the second case. Let us deal firstly with the parameters of
type (excl). In this case,

Mo = 207" ® ¢8> @ -+ D PN

and Sy ~ Sp(2,C) x O(1,C)"~'. As N > 6 by considering the possible pa-
rameters, we see that Ny = Ny = --- = N,. = 1 and » > 5. We follow the
construction appearing in Lemma 4.4.1 but impose the following additional
conditions at the ve-place.

qSl by = X1 for some character y; € @bdd(Glm).
. ¢>2 '+, = X2 for some character x» € @bdd(Ggﬂ,z) such that x5 # x1.

e Fori=3,...,r, ¢z o = x for some character x € q)bdd(GQ,v2) = (IDbdd(GZ-M)
such that x 7é X2 and X # X1-

Under this globalization, we observe that the group S oy Sp(2,C)x0(1,C) x
O(N—=3,C). As N > 6, such a parameter is neither elliptic nor exceptional. The
Levi subgroup M, such that ®5(M, U2,¢U2) is nonempty has the form M;, =

Ug,, /b, (2) x G By /o, (1)"=" so the last condition of the lemma is satisfied.

Hence the proof is complete in this case.
Let us now deal with the parameters of type (exc2). In this case,

e = 361" BB B DG

and S; ~ O(3,C) x O(1,C)"~1. As N > 6 by considering the possible parame-
ters, we see that either
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(i) NN=Ny=---=N,=1landr >4or
(i) N =6and ¢ = 3¢;.

Consider case (i). We shall globalize in a similar fashion to the case of pa-
rameters of type (excl). However, here we impose the following conditions at
the vy-place.

. gz}ff;& = x1 for some character x; € @bdd(Glﬂ,Q).

e Fori=2,...,r, qﬁf\f;Q = x1 for some character xy € @bdd(Glm) = @bdd(G’i,vz)
such that x # x1.

Under this globalization, we observe that the group S by = 0(3,C) x O(N —
3,C). As N > 6, such a parameter is neither elliptic nor exceptional. The
Levi subgroup M} as in the last condition of the lemma is not linear as it is
isomorphic to U, /s (2)xG oy /Fo (1)"=". It follows that our globalization
is as required.

Consider case (ii). We shall globalize in a similar fashion to the case of
parameters of type (excl). However, here we impose the following conditions
at the vp-place: firstly nl,mgz')l,m = X1 @ x2 for some pair of characters x; and
X2, and secondly (;51,@2 € <I>2’bdd(G1’U2) (so x1 and x2 are conjugate self-dual
characters which are mutually distinct). Under this globalization, we observe
that the group S, by = 0(3,C) x O(3,C). Such a parameter is neither elliptic
nor exceptional. One can see that the Levi subgroup M, in the last condition is
isomorphic to Uy, - (2)xG oy /Py (1)2, which is again not linear. It follows
that our globalization is as required.

Let us deal with the remaining case of elliptic non-square-integrable param-
eters. In this case

o =200" & @2 e o @@, g1,
and S, >~ O(2,C)? x O(1,C)" 9. We see that either
(i) Ny=Ny=...=N,.=1,o0r
(i) Ny=Nyg=--=N,_1=1,N,=2and g =7 — 1.

Consider case (i). We have that ¢ # r as M* is a non-linear Levi of G*.
We shall globalize in a similar fashion to the case of parameters of type (excl).
However, here we impose the following conditions at the v-place.

e Fori=1,...,r—1, d.)zm = 1 for some character y; € @bdd(G’Lw) =
Dpad(Gi v, )-

. (Z.Sr,vz = x for some character y € @bdd(Gr,vz) such that x # x1.
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Under this globalization, we observe that the group S oy = O(N —1,C) x

O(1,C). As N > 6, such a parameter is neither elliptic nor exceptional. One
verifies the last condition of the lemma as M, there is isomorphic to Uy, 1 (2)x
’Uz ’U2

Gg,,/p, (1)"=". It follows that our globalization is as required.

Consider case (ii). We shall globalize in a similar fashion to the case of
parameters of type (excl). However, here we impose the following conditions
at the v,-place.

° q-Sm,z = o for some simple parameter o € <I>Sim(Gr7m).

eFori:=1,...,r—1, éi,vz = x for some character y € q’bdd(Gva) =

Phaa(Givy)-
Under this globalization, we observe that the group S oy = 0(1,C) x O(N —
2,C). As N > 6, such a parameter is neither elliptic nor exceptional. The last
condition of the lemma is satisfied as M, is non-linear and rather isomorphic
to UE'U2 /F, 2)x G oy /By (1)¥ We conclude the proof in this final case. -

We shall now deal with the case that N = 4 and M* # G* is the unique
non-linear Levi subgroup. This case is more difficult than the previous cases.
The problem is that we can no longer ensure that the globalized parameter is
relevant and neither elliptic nor exceptional at the place v,. We shall reduce the
problem to some examples of exceptional parameters at an archimedean place.

Proposition 4.4.5. Let (E/F,G*,(G,§), ¢, M*, ¢pr+) be as above. Assume that
N = 4, that M* # G* is not linear, and that the parameter ¢ € ®%,(G*) is elliptic.
We can find the global data

(E/Fvuavlav27é*7 (Gvév’é)aéaM*vd)I\}I)v

where E/F is a CM extension, u is a place of F that does not split in E, vy and vy
are finite places of I that do not split in E, G* = Uy, (N), (G, &, 2) is a pure inner
twist ofG*, ¢ c @(G*, 7), M* is a Levi subgroup ofG*, and éz\'/[ IS QJQ(M*, (;5), such
that

~

. Eu/Fu = E/F and (Guagua¢uaMJ7¢M’u) = (G7£a¢7M*7¢M*)/

N

. G\ is quasi-split for all v & {u, v2},

[S¥)

g€ ‘bgu(é*)f

HN

. b € (bbdd(GZI) and dage o, € <I’2,bdd(M51),

9]

. q'SW belongs to @bdd,excg((}%) and is (G;27£v2)—relevant,
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6. the canonical maps

are isomorphisms for v € {u,v1}.

Proof. The proposition is proved in the same way as Proposition 4.4.4 except
we appeal here to the following variant of Lemma 4.4.1. When globalising, we
will choose a place v, of F which does not splitin F such that vy ¢ {u,v1},and
impose not only conditions 1-4 of the lemma but also the extra condition at v,
that

5. ¢, belongs to (I>bdd7eXC2(G;§2) and is (G‘;j2 , &, )-relevant; furthermore Do (M, bo,) #
0 for some non-linear Levi M, .

Note that condition 2 simply says that ¢ € ®2,(G*,7) as we are assuming
¢ € ®2,(G*). To complete the proof it is enough to construct this variant glob-
alization.

As the parameter ¢ is elliptic and M™* # G* is not linear, it must be of the
form

oY = 201" @ 63 ® 93"

where either Ny = Ny = N3 = 1 and Sy ~ O(2,C) x O(1,C)% or Ny = 1,
Ny =2,N3 =0and Sy ~ O(2,C) x O(1,C).

We follow the construction appearing in Lemma 4.4.1 but impose the fol-
lowing additional conditions at the vo-place. If N; = Ny = N3 = 1, then

° ¢51,v2 = x1 for some character y; € @bdd(Gl,m),

* $2., = x1,and

° (]'53’1)2 = x» for some character y; € @bdd(Gg’vz) such that 2 # x1.
Otherwise if Ny = 1, N, = 2 and N3 = 0, then

° <Z.51,v2 = x; for some character y; € @bdd(Gl’w), and

° (;52,1,2 = x1 @ X2 for some character x, € @bdd(Gva) such that yo # x1.

Under this globalization, we observe that the group S by = 0(3,C)x0(1,C).
Such a parameter is of the type (exc2). One can see that the Levi subgroup
M, = ]\/.{:2,7 X GEU?/F% (1) w.here Mg, - =Ug, i, (2). It follows that the
data (E/F,u,vi,v2, G*, ¢, M*, ¢,,.) meets all the requirements.

O
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When N = 4 and M* is a non-linear proper Levi subgroup, the proof of LIR
for elliptic parameters will be reduced to the case for exceptional parameter by
the previous proposition. In order to address the problem for exceptional pa-
rameters, we construct a globalization which will allow us to further reduce to
some special instances of exceptional parameters at archimedean places, where
we already verified LIR in §2.9 by an explicit computation.

Proposition 4.4.6. Let (E/F,G*, (G, &), ¢, M*, ppr+) be as above. Let O € {excl, exc2}.
Assume that N = 4, that G is not quasi-split, and that M* # G* is not linear, and
that ¢ € Praa,0(G*). There exists the data

(E/F7U,’Ul,’l)2,(';*, (Gvgaz)vd)aM*vqu)

where E/ F is a CM extension, u is a place of F that does not split in E, vy is a finite
places of F that does not split in E, vy is an archimedean place of F that does not split
in B, G* = 5/e(N), (G, €, %) is a pure inner twist of G*, ¢ € ®(G*,7), M* is a
Levi subgroup of G*, and ¢, € ®o(M*, §), such that

1. Ey/F, = E/F and (G, &, du, My, dy7.,) = (G, €6, M*, dr-),

2. G, is quasi-split for all v & {u,va},

3. ¢ € Do (G¥),

4. ¢y, € Dpqa(Gy,) and bare oy € Popaa(M),

5

V1

. the parameter q'bvz € @bdd,@(G,’jZ) is (GW, éUZ)—relewmt and satisfies Theorem
2.6.2 relative to the Levi subgroup M:Q.

6. the canonical maps

S — S;

b o3V

v

are isomorphisms for v € {u, v1 }.

Proof. The proposition is proved in a similar way to Proposition 4.4.4 but in-
stead of Lemma 4.4.1, we appeal to the following variant. When globalising
we consider a real place v, of the totally real field F different from v and vy,
and impose not only conditions 1-4 of that lemma but also that

5. the parameter (/'51,2 € <I>bdd(ij ) is equal to the parameter ¢ of §2.9 with
x € {0,%1,£2} (resp. x € {£3}) if Vis excl (resp. exc2).

Note that condition 2 just amounts to ¢ € @ (G*) here. Condition 5 just stated
implies condition 5 of the proposition by Proposition 2.9.1. (The relevance is
clear from the construction and Proposition 2.9.1 is not needed.) So we will be
done once we establish this variant of Lemma 4.4.1.

We remind the reader that the subgroup M* = Ug,r(2) x Gg/r(1) and the
parameter ¢ is of the following form.
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e if ¢ is (excl), then either n¢ = 2¢fr1 @ qSéVQ and Sy = Sp(2,C) x O(1,C),
or ng = 201 @ ¢l @ ¢+ and S = Sp(2,C) x O(1,C)?, and

o If ¢ is (exc2), then ¢V = 34" @ ¢5* and S, = O(3,C) x O(1,C).

The result is proved in the same way as Lemma 4.4.1. The only difference is
that when globalising each ¢\ to obtain ¢;, we impose an appropriate extra
local condition at v, such that <l'5v2 satisfies condition 5 above. To see that this
is possible, it is enough to remark that the archimedean parameter of §2.9 is of
type (excl) if z € {0, £1, £2} and of type (exc2) if v € {+1}. O

We are left to deal with the case that N is even and M* # G* is a linear Levi
subgroup. In our applications to the proof of the local intertwining relation,
the group G will not be quasi-split (the quasi-split case having already been
treated by Mok). In this case, the Levi M* will not transfer to G, that is the
parameters in question will not be relevant and the desired local intertwining
relation reduces to a vanishing statement. The following globalization shall
suffice. Although it will be applied only when M* is linear, the proposition is
true without such an assumption.

Proposition 4.4.7. Let (E/F,G*,(G,€&), ¢, M*, par~) be as above. Assume that N
is even and that M* # G*. There exists the global data

(E/F7u17u27vlvé*a(G7é>é)ad.)7M*7¢5M)a

where E/F is a CM extension, uy,uz are places of F that do not split in E, v isa
finite place of F that does not split in E, G* = Ug,p(N), (G,§, ) is a pure inner
twist of G*, ¢ € ®(G*, 1), M* is a Levi subgroup of G*, and ‘Z.SM € ®y(M*, ), such
that
1. Eu/Fu = E/F and (Gu,éuvfi)u7Mzad)N[7u) = (G7£7¢,M*7¢M*) fOT u €
{uh uQ}/

2. G, is quasi-split for all v ¢ {u,us},

3. if ¢ € D(G™) (resp. P2,(GY), resp. Pexc1(G™), resp. Pexc2(G)) then b e
Do (G*) (resp. D%, (G*), resp. Pexc1 (G*), resp. Pexea(G*)),

4. by, € Praa(GE)) and dare v, € Popaa( M),

5. the canonical maps

S - S

dm b v
S¢'> — S<i>v

] 1 v UL, U, V1t
are isomorphisms for v € , U3,
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Proof. This is proved in the same way as Proposition 4.4.2 is deduced from
Lemmas 4.1.2 and 4.4.1 except that we use Lemma 4.1.3 in place of Lemma
4.1.2 and that Lemma 4.4.1 is modified as follows: Instead of the place u, we
consider two places u; and uy of F' which do not split in £, and impose the
same condition at u; and us as we did at v in Lemma 4.4.1 when globalising
the data (so that condition 1 of that lemma holds for u € {u1,u2} and condition
4 for v € {uy,ug,v1}). O

4.5 On global elliptic parameters, II

The following result shall act as our analogue of Lemmas 5.4.3 and 5.4.4 of
[Art13].

Lemma4.5.1. Let E/F bea quadratic extension of number fields. Let G* = Ugp(N)

and let (G, €) be an inner twist of G*. Let M* be a proper Levi subgroup of G*. Let
b € ®2,(G*, 1) and suppose that ¢, € Bo(M*, d). Assume that there exists a place
vy of F that does not split in E such that the following conditions hold.

e G, is quasi-split,
° d.)m € (I)bdd(Gzl) and d)NI*,vl S @2( U17¢U1) and
e the canonical maps

S.

b= Doy
S(ii — S<25u1
are isomorphisms.
Then for all f € H(G),
trR(?lSC¢ ‘ Z fG ¢’ fG(QS?f)) =0
zTES,,

Proof. Fix an equivalence class of pure inner twists = as in Lemma 4.1.2 giving
rise to (G', f) Let f = @, fs € ’H(G) be a decomposable function. Let 1z € Ni
be an element that maps to Z. Then we have that

fe(6.2) = fe2(0,0m) = fe 20, (Durs iz ) [3 (675"

Letsz € S b s be an element that has the same image as 7z in Si, and conse-
quently maps to T. We have that

fé;(¢7f) = fé;73(¢a sf) = fé,éﬂn ((7{57)1 ) ‘éiﬂ)l )(f/)875(¢vl ) 5%1 )
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Since ¢ is generic, we have that s 4 =1land eg (Z) = 1. We also know the

local intertwining relation on le , which implies that
fé;,gﬂ,l (Pvys $7,01) = €(Go, )fG‘E,m (Goys Uz v )

The expression in Section 3.8 reduces to

terisc,qé(f.) =c Z fGE,m (évl’il’f,vl) ((f/)g’é(qgv17$%1) _ fgl,E(Qs'Ul’u%l))

TES, o
(4.5.1)
for some constant ¢ > 0.
We recall the definition
fG,E,vl (¢v1,uf7v1) = Z tr(RP(uE,vwvaWv1v¢vu(bM*’vl))IP(Wm)(fvl)-
Ty EHGBM* o (M;jl )

As in the proof of [Artl3, Lem 5.4.3], the local intertwining relation and the
local classification theorem for the quasi-split group G, imply that there are
natural isomorphisms from the R-group I, ~onto the representation theoretic

R-groups R(m,, ) for each 7,,. This enables a Wg »,“conjugacy class

(M’Ul 9 Tr’ul 9 wi,vl)

to be identified with an element in the basis T'(G,,) where wgz ,, denotes the

image of uz,., in W~ (see §3.2 for the appropriate definitions). It follows that
vl

we can write

vy v

<7Tv1 ) kM el (xfﬂn ))g'MUl tr(RP(wf,Ul ) éle » Ty s ¢v1 )IP (71—1)1 ) fv1 ))
- a(7rv1 ) ’[I’T,’Ul )fé,éﬂn (M’U1 ) ’/T’Ul ) wE,vl)

for complex coefficients a(m,, , iz, ). Consequently, we can write

Jé(;,g,vl (s Uz, ) = Z ATy, Uz ) [ 20, (Mo Toy s Wi 0, )-

Toy GH&M*.’Ul (]Wvl)

(4.5.2)
The expression (4.5.1) can now be rearranged to the sum

Z d(Tquvl)fG‘E,vl (To1),

Tuq GT(G”)

where d(,,, f**) equals to the sum

3D almima) (F)22(052) = fo. (6 02))

T Ty
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over elements T € S enandmy, €11, (le) such that the triplet (M, , 7y, , Wz v, )
belongs in the VV0 -con]ugacy class represented by 7,,. We are now in a po-

sition to apply Lemma 3.2.2. Thereby the proof is reduced to showing that
d(7y,, f) = 0if 7,, is represented by a triple of the form (M,,, 7y, ,1).
We have the following commutative diagram

S Ry

(i)]\}[* ¢7 ¢
é]\.l* ,U] (7‘5'1!1 Rd;vl

where the two rows are short exact sequences and the vertical maps are the
canonical morphisms. By the third condition of the lemma (and the fact that
v; does not split in E so that Z(G*)T = 2(G*)" and Z(M*) = Z(M* M*)Fv), all
vertical maps are isomorphisms. Since ¢ € ®2,(G*,7), any element 7 € S el
maps to a non-trivial element in the global R-group R;. (If ¢ is written in the
form (3.5.5) then gq&,en consists of (3;) € {£1}" such thats; #1forl <i<g
whereas R; ~ {£1}7. The map S 4 — Rj is the projection onto the first ¢
components.) By the previous diagram, we see that T must also map to a non-
trivial element in the local R-group R boy It follows that wz,, # 1. Hence
wz,»; = 1 never occurs in the expansion (4.5.2). This forces the coefficients
d(7y,, f*1) to vanish if 7,,, has the form (M,,,m,,,1).

O

4.6 Proof of the local intertwining relation

Our main task in this section is to prove Theorem 2.6.2, i.e. the local inter-
twining relation, for unitary groups. The case of inner forms of linear groups,
corresponding to &/ = F' x F', will be treated in [KMSa]. The main case to treat
is that of a discrete parameter of a Levi subgroup. More precisely, let E/F be
a quadratic extension of local fields. Let G* = Ug,p(NN) and let (M*, P*) be a
standard parabolic pair for G*. Let ¢ps+ € Pa paa(M™*) and denote its image in
D1,44(G*) by ¢. Let (G, €) be an inner twist of G*. Our convention for 7 and n
will be the same as in §4.4.

Lemma 4.6.1. Assume that either
o ¢ € @2 (G*) is elliptic non-square integrable, or
o ¢ is of the form (excl) or (exc2).

Then there exists an equivalence class of pure inner twists & : G* — G extending §
such that for every T € S en, there exists a lift x € Si of T for which

foz(d,.2) = e(G) fez(¢, ) forall f € H(G).
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Proof. Case N odd: We begin by applying Proposition 4.4.2 to globalize the
data (E/F,G*, ¢, M*, ¢pr-) to (E/F,u,v1,G* E = (G, €, 2), 6, M*, by ).

If ¢ € ©2,(G*) (resp. ¢ € Pexc(G*)) then we can apply Lemma 4.5.1 (resp.
Lemma 3.7.1 and use the fact that S el = =38, 4 by Lemma 3.5.10) to deduce that

for allf = ®Ufu € H(G)/

Y (fez(,7) — fo2(6,7) =0 (4.6.1)

wESd) oll

Letuz € N ; be a lift of T which is

e the unique element whose image lies in W ___ if ¢ is exceptional,

¢,reg
e arbitrary if ¢ is elliptic.

Then by definition, fG (¢, T) = fG (d), uz). We can find a $z € S, and

Uz € Ni such that sz and iz have the same image ¢ € Sj.) and 4z lies over uz.

Then ) . .
f62(6.7) = fi. (b, 57) chwm,sm)

and

fG,E(qb»f):fG (bvu:r HfG_v (bvvuzv)

The local intertwining relation for ¢, where v # u is known as the group G,
is quasi-split. This implies that for all v # w, f& = U(d)v, Szp) = G(Gu)f(‘;,gyv(%, Uzw)-
(Of course e(G,) = 1 for v # u.) Consequently, Equation (4.6.1) becomes

Z (H f.GE’v(Q'Sv; ax,v)) (fé;,_f’7u(q.§’u7 éf,u) - e(Gu)f(;E,u(quv ui,u)) = 0.

:1:68¢ oll vFEU

' (4.6.2)
As G, is quasi-split, both the local intertwining relation and the local clas-
sification theorem for ¢,,, are known. It follows that

fG,Eml ((Z‘Svuaf,m) = Z <7TU1a'ivl>f-G7E$U1 (71'1,1).

Touq EH(MI

The place v; is finite and ¢,, is a generic bounded parameter. Consequently
<7 > :Hd')u1 XS¢1)1 — C

is a perfect pairing in the sense that it induces a bijection from II; ~onto
. . V1
Irr(Sy ). It follows that the linear forms f; = , (¢u,, Uz, ) are linearly inde-
vy 3=

pendent as 7 runs over the set S; ;. We may identify S; ., with S $uy scll- USING
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linear independence, we deduce that

H fG’EV'L}(¢U1 uf,v)(févygyu(¢u; Sf,u) - e(Gu)fG7E’u(¢uy ’U/E,u)) =0.
vFEU

As the parameter ¢, is relevant for all v # u, the linear form [],, Zu f(;,é,v (Pos Uz )
does not vanish identically. It follows that

f.év_s’u((lsuv éf,u) = e(Gu)fG7E’u(¢u> ui,u)-

By definition féEu(d)u, Sg.u) = fé;zu((’b“’ iy). If ¢ is exceptional, then the
image of Uz ,, in W«im liesin de reg* Consequently by definition, fG,E,u(¢ua Uzn) =
fe z.u(u; @) Thus, wehave shown that f/, . (du, u) = e(Gu)fe 2 (Pus Tu).
Our globalization allows to identify S; withS $..onand Si with §" _,andalso
to rewrite the above identity as

f&,E(¢7 xu) = e(G>fG,E(¢7 i'u)v
where #,, lifts T by construction.

Case IV even: The method of proof is much the same as the odd case except
we must appeal to the more complicated globalizations. Let us begin with
the case that M™* is not linear. If N # 4, then the proof is the same as for
the case N odd. The only difference is that we appeal to Proposition 4.4.4
instead of Proposition 4.4.2, and we note that via the induction hypothesis,
we know the local intertwining relation for the non elliptic non exceptional
relevant parameter (;%.

Assume now that N = 4. We firstly obtain the result for exceptional pa-
rameters by arguing as above and appealing to Proposition 4.4.6 using the fact
that by Proposition 2.9.1 the local intertwining relation is already known for
a specific choice of exceptional parameter of both type (excl) and (exc2) at
archimedean places for N = 4. We then obtain the results for elliptic parame-
ters by arguing as above and appealing to Proposition 4.4.5 and using the fact
that the local intertwining relation is now known for all exceptional parameters
for N = 4.

We are left to consider the case that M* is linear. If the group is G is
quasi-split, then we know the local intertwining relation and hence the result
is known. We may now assume that G is not quasi-split. For such a group the
Levi M* will not transfer to a Levi of G. By definition, the form fg =(¢,z) =0
vanishes and we must show that the form f(; =(¢, ) = 0 also vanishes for some

lift x € Si of Z. By arguing as in the proof of the case NV odd, but appealing to
Proposition 4.4.7, we deduce using the obvious notation that

fé',é,ul (¢u1 9 uf,ul )fé,Euz (¢u2 ) uf,z@) — O
That is either fé:a “ (Guys Uz, ) = 0 OF fé = uz(q.ﬁug,z'@w) = 0. The result fol-

lows. O
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We remind the reader that our convention here is to write ¢« for ¢ of
Theorem 2.6.2 when the parameter is generic. The image of ¢as+ in P1,qq4(G™)
is denoted by ¢ as before. Now we are ready to complete the proof of LIR for
all generic parameters.

Lemma 4.6.2. Parts 2 and 3 of Theorem 2.6.2 hold for generic parameters.

Proof. Clearly part 2 is implied by part 3, so we will concentrate on the latter.
Given the results of Sections 2.7 and 2.8 we can assume that ¢« € @2 a4 (M™)
and ¢ € @2 (G*) [] Pexc(G).

If p € ®%,(G*) is elliptic non-square integrable, then by the induction hy-
pothesis we know the following.

i) fc=(¢,u)is the same for every u € Ni mapping to the same = € Si.
ii) f;=(¢,s) is the same for every s € S, s mapping to the same = € Si.

iii) G =(,s) = e(G)faz(d,u) forall u € N:; and s € Sy s mapping to the
same x ¢ Si.

We shall now deduce

iv) fa=(0,5) = e(G)faz(,u) forall u € Ni and s € S, ¢ mapping to the
same x € SE).

after possibly changing =, but not the underlying inner twist. Fix any « € Si,ell

and let T € S, denote the image of z, which belongs to S .1 by Lemma 2.8.6.
Lemma 4.6.1 implies that f; =(¢,s) = e(G) fg,=(¢,u) whenever u and s map

to some 2’ € S" .cn Which lifts 7. Then we conclude that iv) holds true for the
given z thanks to Lemma 2.6.5. Now that i)-iv) above give us the desired result
for elliptic parameters for a particular class of (extended) pure inner twists, we
extend the same result to all extended pure inner twists with the same under-
lying inner twist by Lemma 2.6.4.

We shall now consider exceptional parameters and argue in a similar way.
If ¢ is an exceptional parameter, then by the induction hypothesis we know the
following.

i) fc=(¢,u)is the same for every u € N, ¢ reg (T€SP. u & Ny 1rcg) mapping to
the same z € Si.

ii) f&=(¢,s) is the same for every s € S, o« mapping to the same = € Si.

iii) fo =(¢,s) = e(G)fcz(¢p,u) forall u ¢ N, ¢reg and s € Sy mapping to
the same = € Si,elr

Now we are about to prove
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iv) f&=(6,5) = e(G)faz(¢,u) forall u € N

breg ANd s € Sy o mapping to

b
the same z € S¢,ell'

Again fix z € Si,ell and let T € Sy n denote its image. We deduce from Lem-
mas 4.6.1 and 2.6.5 that fi, =(¢,s) = e(G)fcz(¢,u) whenever u and s as in

iv) map to the particular z € Siﬁu, after possibly changing =, but not the un-
derlying inner twist. (Recall that f¢ =(¢, ) is defined to be fo =(¢, u) for the
unique u € Nime lifting « in this case.) It follows from i)-iv) that the theorem
holds for ¢ € ®cx.(G*) and a particular equivalence class of extended pure in-
ner twists with the underlying inner twist given by the original =. Then the
theorem holds for all extended pure inner twists by Lemma 2.6.4.

O

Lemma 4.6.3. Let = : G* — G be an equivalence class of extended pure inner twist
and let ¢pr- € Po paa(M™*). Then for all ul e W;ad(M, G)and wp € Ily,,. we have

Rp(u®, Z, mar, pare, Yr) = 1

Proof. 1f ¢ is either elliptic, or non-elliptic and non-exceptional, then the lemma
is already known by Lemma 2.8.7 (and Lemma 2.8.4). So we are reduced to the
case that ¢ is of the form (excl) or (exc2). For each inner twist (G, £), we remark
that the operator Rp (uf, 2, 7ar, dor-, ) is the same for every = whose under-
lying inner twist is (G, ) in view of part 2 of Lemma 2.5.2 and the fact that the

pairing (c, uf) there is trivial if u® € W;*!(M, G) (since N(Ag7.,554) C Gaer)-

We recall that [W)| = 2 when ¢ € ®exc(G*). Let u € W (resp. w € W)
denote the trivial (resp. non-trivial) element. By construction, the intertwining
operator is trivial for the identity element w.

We globalize as in the proof of Lemma 4.6.1 if N is odd and as in Proposition
4.47 if N is even, and then apply the last part of Lemma 3.7.1. Since Lemma
4.6.3 is known at quasi-split places (which we take on faith; see the discussion
of §1.5), we deduce that Rp(w®, Z, war, das+, ¥r) is the identity operator if IV is
odd, and Rp(w', =, mar, dar+, r)®? is the identity on Hp(mar)®? and thus

Rp(wh, Z, mar, dare,0r) = +1lor —1

if N is even. To be precise we may have changed = without disturbing the
underlying inner twist in the globalization, but we keep the same notation =
as this does not affect the intertwining operator by the remark above.

We may focus on the even case from now. Lemma 4.6.2 implies that f¢ =(¢, wu) =
fc.=(¢,u) so we obtain by unraveling the definition that

Z tr ((1—RP(whyaa7TM)¢M*7¢F))IP(7TM)(JC)) =0.
ma €y (ME)

Since the left hand side is the trace of a linear combination of (nonzero) repre-
sentations with nonnegative integer coefficients, it follows that Rp(w®, Z, 7ar, dare, r) =
1 as desired.

O
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We have now completed the proof of Theorem 2.6.2 for all parameters ¢/« €
D9 paa (M*). We will now argue that Theorem 2.6.2 holds in the more general
case ¢+ € Ppaa(M™). Most of the work for this has already been done in Sec-
tion 2.7. Namely, Proposition 2.7.3 tells us that parts 2 and 3 of Theorem 2.6.2
are valid for any ¢« € Ppqq(M*). We will now treat part 1. At the same time,
we will show the closely related statement that the representation-theoretic and
endoscopic R-groups coincide.

We recall that the R-group R,,,(M,G) of a s € Il,,. is a priori different
from the R-group Ry(M,G) of ¢. We have seen that the stabilizer W of ¢ar-
is identified with a subgroup of W (M, G)(F'), the Weyl group that contains the
stabilizer Wy, (M, G) of mys. Itis a consequence of the disjointness of tempered
L-packets for M that W, contains W,,(M,G). Conversely, it follows from
the form of M and the induction hypothesis that any element in W, (M, G)
stabilizes 7. Therefore Wy (M, G) = Wr,, (M, G).

If we assume that Wg(]\/[ ,G) acts trivially on the induced representation
Zp(mar), then W2(M,G) ¢ W2, (M, G) and we obtain a surjection
Ry(M,G) = Wy(M,G)/W(M,G) = Ry (M, G) = Wry, (M, G) /W7, (M,G).

(4.6.3)
We will now see that this W7 (M, G) indeed acts trivially on the induced repre-
sentation Zp () and that moreover (4.6.3) is a bijection.

M

Lemma 4.6.4. Let E : G* — G be an equivalence class of extended pure inner twist
and let ¢pr+ € Ppaa(M*). Then for all u € Wi (M, G) and my € Ty, . we have

RP(uhaEaﬂ-Made*7wF) =1

Proof. The case of ¢y« € ®g paa(M*) was already treated in Lemma 4.6.3. So
we may assume that ¢~ is the image of ¢ Mg € @9 baa (M) for a proper stan-
dard Levi subgroup Mg C M*. As in the proof of Proposition 2.7.3 we choose

aliftu € Ny, (Mo, G)N Ny, (M, G) of uf. The image of u in NiM* (Mo, G) be-
0
longs to W”;fg (Mo, G). Lemma 4.6.3 then implies that for all my, € Iy Mg (Mo, =)
we have
RP(’U/h, Ea T Mo (bMO* 3 ,(/JF) =1

By definition then

faz(uf, dug) = > tr(Zp, (a1, f))-

T M GH(;)MJ (Mo,E)

We now consider the homomorphism (4.6.3) for the Levi subgroup M, and the
parameter ¢,s:. This homomorphism is well-defined according to 4.6.3 and
tells us that the representation-theoretic R-group Ry, (Mo, G) is abelian. As a
result, the representation Zp,(my,) decomposes as a direct sum of irreducible
representations of G(F'), each occurring with multiplicity 1. The linear form
fa (u”, P ) is then the sum of the traces of all these constituents, as 7y, varies
over H¢M€ (My, =).
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Now let 7 € II4(M, Z). By induction in stages we know that Zp (mys) must
also be multiplicity-free. This forces the intertwining operator R p (b, 2, 7Tar, dare, Ur)
to act as the multiplication by scalar on each constituent of Zp(mys). A-priori
the scalars for different constituents could be different, but we will see mo-
mentarily that this is not the case. At any rate, this tells us that the linear
form fa = (uh, ¢nm+) is a linear combination of the traces of the constituents
of Zp(mpr), as mpy varies over Il . (M, Z). But recalling the construction of
IIy,,.(M,Z) given in Section 2.6 and using induction in stages we see that
fa(uf, ¢ps+) is in fact a linear combination of the traces of the constituents of
Zp, (7T, ), as mpg, varies over Hdwg (Mo, 2).

We now apply Lemma 2.7.1 and see foz(uf, dr+) = faz(u?, ¢arz). This
tells us that all the scalars in the linear combination of the constituents of
Zp(mar) that make out fg =(u?, dr-) are equal to 1. O

With this lemma, the proof of Theorem 2.6.2 is finally complete for all ¢as- €
D44 (M*). Furthermore, we now know that the homomorphism (4.6.3) is well-
defined for all ¢y« € Praa(M™*). We will now show that it is in fact an isomor-
phism. For this, recall that the definition of regular implies that the set Ry ;eq
is the pre-image of Ryes(mar) under this map. Recall also that the set Ry e is
empty if ¢ is not elliptic, and it has cardinality 1 if ¢ is elliptic.

Lemma 4.6.5. For any relevant ¢pr € Ppaa(M™*) the homomorphism (4.6.3) is an
isomorphism.

Proof. If ¢ is elliptic, then the set Ry req has cardinality 1. As the set R ;e is the
pre-image of R,c, (7)) under the morphism (4.6.3), it follows that the kernel of
this morphism has cardinality 1. That is the surjective morphism (4.6.3) is an
isomorphism.

Let us now show that this holds even without the additional hypothesis
that ¢ be elliptic. The set Ry is equal to the disjoint union of Ry, ,c; where L
ranges over all the Levi subgroups L of G containing M such that ¢ is the image
of an elliptic ¢, € ®eii(L). By arguing as above for each ¢, we deduce that the
surjective morphism Ry, — R(mys) is bijective and hence an isomorphism. [

4.7 Local packets for non-discrete parameters

Let G* = Ug/p(N) and let = : G* — G be an equivalence class of extended
pure inner twists. Having proved the local intertwining relation in Section
4.6 we can now complete the proof of the local classification theorem 1.6.1 for
parameters ¢ € @pqq(G*)\P2(G*). We remind the reader that the archimedean
case is already known by the work of Langlands [Lan89], and Shelstad [She82],
[Shel0], [She08]. The reader may also consult [Kall3, §5.6] for an exposition
that parallels closely the statement of Theorem 1.6.1. Thus, we assume from
now on until the rest of the chapter that E/F is a quadratic extension of non-
archimedean local fields.

Let (¢, %) € = be as in Section 2.4.1. Recall that the L-packet II,(G, E) and

the map Iy (G, E) — Irr(Si, X=) was already defined at the end of Section 2.6.
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Moreover, the character identities expressed in part 4 of Theorem 1.6.1 were
also deduced there. Both the construction as well as the proof of the character
identities were conditional on the validity of Theorem 2.6.2, which has now
been established.

Thus parts 1, 2, and 4 of Theorem 1.6.1 have now been proved for ¢ €
D1,q4(G*)\P2(G*). What remains to be shown is the bijectivity of the map
II4(G, =) — Irr(Si, Xxz) and the fact that the packets II4(G, E) are disjoint and
exhaust e p (G).

Recall the general classification of Iliemp(G) by harmonic analysis from
[Art93, §1] (cf. [Artl3, p.154]). It characterizes Iliemp(G) as the image of a
bijection

{(M,o,p)} - {mut, M € L,0 € Uz temp(M), p € (R (M, G)).

The left hand side is comprised of G(F')-orbits of triples consisting of a Levi
subgroup M, a discrete series representation o of M (F), and an irreducible rep-
resentation x of the representation-theoretic R-group R, (M, G). While in gen-
eral one needs to use an extension of R, (M, G), in the case of unitary groups
this extension is not necessary, as we have shown in Section 2.4.1 that ¢ has a
canonical extension to the group M (F) x W, (M, G). The right hand side is the
set of irreducible constituents of Z§ (), where P is any parabolic subgroup of
G with Levi factor M.

This discussion immediately implies that the packets I14(G, =) exhaust the
set Iliemp (G). Italso implies that two packets I1y, (G, E) for inequivalent ¢+, ¢2 €
Ppaa(G*)\P2(G*) are disjoint. Indeed, the packet II,, (G, Z) is constructed to
consist of the irreducible constituents of Zp (o) for all o € IIy, ,, (M, Z), where
o1.m € Do paa(M™) is any parameter with image ¢;. An non-trivial intersec-
tion between Ily, (G, Z) and II,, (G, E) would imply by the above discussion
that both ¢; and ¢, are images of two discrete parameters ¢1 ar, , $2, a1, for the
W& -conjugate Levi subgroups M, M» of G. We may assume M; = My = M
after replacing ¢, by an equivalent parameter. Furthermore, we must have
o1 € Iy, ,,(M,E) and oy € Iy, ,,(M,E) with Zp(c1) N Zp(o2) # 0, but by
[Art93, Prop 1.1] this implies 01 = o2, which by the disjointness of tempered L-
packets for M, assumed by induction, implies ¢y = ¢2 1 and thus ¢1 = ¢o.

What remains to be shown is the bijectivity of the map Il (G, =) — Irr(Si, Xz=)-
For this we recall that the map (M, o, ;) — 7, discussed above can be explic-
itly described. It depends on a choice of normalization of the self-intertwining
operator Rp(r,0) € Autg(Z§ (o)) for each r € R, (M, G) so that the map

R, (M,G) = Autg(Z8(0)), r+— Rp(r,o)

is a homomorphism. Given this choice, the bijection is determined by decom-
posing the representation R of R, (M,G) x G(F) on the space H% (o) given by
R(r, f) = Rp(r,0) o IS (o, f). This decomposition takes the form

R:®Mv®ﬂ-u7
m
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where p runs over the set of characters of the (in our case abelian) group
R, (M, G). This decomposition has the character-theoretic form

tr(Rp(r,0) o IS (o, f)) Zu r)tr(m,(f)), re€ R,(M,G), f € H(G).

According to Lemma 4.6.5 we have R4(M,G) = R,(M,G). This allows us
to inflate the homomorphism R, (M, G) — Autg(Zp(o)) to a homomorphism

Si — Autg(Zp(o)). On the other hand, we have a second homomorphism
with the same source and target, namely

S5 = Aute(Zp(0)), s+ Rp(uf,E,0,0,9p),

where u? € Ni(M ,G) is any lift of s, and where the operator on the right is the
normalization of the self-intertwining operator introduced in Section 2.5. We
have implicitly identified ¢ with an element of ®3 1,qq4 (M *) here. The right hand
side is independent of the choice of lift due to part 1 of Theorem 2.6.2. If r €
R,(M,G) is the image of s € S 1 then up to a scalar multiple the two operators
Rp(u®,Z,0,¢,7%r) and Rp(r,o) are equal. Thus there exists a character x :
Si — C* such that Rp(u®, 0, ¢,%r) = x(s)Rp(r,o). Of course, x depends on
the (arbitrary) choice of Rp(r, o) we are using here. It follows that

tr(Rp(uf, E,0,6,9r) 0 L3 (0, f)) Zx s)tr(mu(f)), s €Sk feHG),

again with the understanding that u® € Ni(M ,G) is an arbitrary lift of s.
The summation index is the set of characters p of Si that are inflated from
R4(M,G). Since Si is abelian, this set is in bijection with the set of charac-

ters whose restriction to Sih (M) is equal to the restriction of x ! to that group.
Thus, after reindexing, we arrive at

tr(Rp(u,0,6,0r) 0 IE (0, ) = Y (1) (tr(mu (1), s €85, 1 € H(G),
o

where now ' runs over the set of characters of Si whose restriction to Sih(M )
is equal to the restriction of x~'. But the restriction of x can be easily deter-
mined. Indeed, for s € Sih(M) we have x(s) = Rp(s,0,¢,vr) = (o, s>£_i by
Lemma 2.5.2. It thus follows that i/ runs over the set of characters of S’i that ex-
tend the character (o, —)¢ . of Sih (M). Taking the sum over all o € I1,(M, =)
on the left is equivalent to taking the sum on the right over all characters y of

Si whose restriction to Z(G)T is equal to the character (z, —). We then arrive
at the equation that defines the map p — 7, in Section 2.6. Thus we conclude
that the map p’ +— 7,/ defined there is a bijection, as claimed. We summarize
the results of this discussion.

Proposition 4.7.1. The local classification Theorem 1.6.1 holds for = : G* — G and
generic parameters ¢ in the complement of @3 paa(G*) in Ppaa(G*).

195



4.8 Elliptic orthogonality relations

In this section we will discuss the orthogonality relations for elliptic tempered
characters, originally derived in [Art93], from the point of view of the nor-
malized intertwining operators introduced in Section 2.5. This discussion will
serve as a technical input for the proof of the local classification theorem for
generic discrete parameters in the next section. As before E/F' is a quadratic
extension of non-archimedean local fields, G* = Ug/p(N), and E : G* = G
denotes an equivalence class of extended pure inner twists.

In [Art93], Arthur introduces the set T, (G) of G(F)-orbits of triples 7 =
(M,o,r), where M is a Levi subgroup of G, ¢ is a unitary discrete series rep-
resentation of M (F'), and r € R,(M,G) is a regular element. As recalled in
the previous section, given such a triple 7 and a parabolic subgroup P of G
with Levi factor M, there is a normalized intertwining operator Rp(r, o) of the
induced representation Zp (o), well-defined up to a scalar multiple. Note that
the set Il temp (G) of equivalence classes of unitary discrete series representa-
tions of G is naturally a subset of Tci1(G) by interpreting 7 € Il temp(G) as the
triple (G, m,1) € Ten(G). In this case we take Rp(1,0) = id. We will denote the
complement of II5 temp (@) in Ton(G) by T2,(G).

The elliptic tempered character of 7 is the distribution

[ fa(r) =tr(Rp(r,0) o Ip(o, f)),

itself well-defined up to a scalar multiple, unless 7 € Il temp(G). This distribu-
tion can be restricted to the space Hcusp(G) of cuspidal functions. In this way,
each fg € Zcusp(G) gives a function

Ten(G) — (C, T = f(;(T).

A central result of [Art93], tracing back to work of Kazhdan, is that the map
fe — fa(r) is an isomorphism of C-vector spaces between Z.,s,(G) and the
space of complex valued functions on T, (G) of finite support.

We will now formulate a version of this result involving the specific nor-
malization of the intertwining operators introduced in Section 2.5. For this, we
consider the set Tfl’lh(G) of G(F')-conjugacy classes of triples (M, o, s), where
M is a proper Levi subgroup of G, o is a unitary discrete series representation
of M, and s € Sig is an element whose image in Ry (M,G) = R,(M,G) is
regular. We have used here the isomorphism given by Lemma 4.6.5, as well
as the validity of Theorem 1.6.1 for M, which assigns to ¢ a discrete generic
parameter ¢, € Pgpaa(M*) whose image in ®pqq(G*) we also denote by ¢,.
To an element 7% = (M, 0, s) € Tj’lh (G) we assign the distribution

fG(Th) = tT(RP(’U,h,E7O‘, (bow'(/JF) OIP(Ua f))a

where uf € N i”(M ,G) is any preimage of s. According to Theorem 2.6.2,
which we have now proved, the choice of u" doesn’t matter. We set T, (G) =
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Tfﬁ” (G) UII2 temp (G). To an element o € Iz temp (G) we assign the distribution

fa(o) = tr(o, f).
For an element 7 = (M, 0,7) € T3,(G) we write ¢, = ¢, € P2 paa(M*) for
the unique parameter with o € 11y (M, Zy,) as well as

<7-7 y> = <Ja y>EJVI7 yE Si{ (M)

where on the right the character (o, —)=,, is the one associated to the represen-
tation o by Theorem 1.6.1.

There is an obvious surjective map Tehn(G) — Tan(G). 1If Tlh, T2h € T;’IU(G)
belong to the same fiber of this map, then we have 7/ = (M, 0,s) and 75 =

(M,o,ys) withy € Sgi (M). We will write 75 = yTlh for short. Lemma 2.5.2
then asserts that

fa(m) = (ry) ™" falm). (4.8.1)
The trace Paley-Wiener theorem in this setting asserts that the map fg —
fc(7%) is an isomorphism of C-vector spaces between Z.,s,(G) and the space
of complex valued functions on Teh11 (G) of finite support (recall that the groups

fgﬂ(l\)/[ ) are finite for unitary groups) and satisfy the equivariance property
4.8.1).

To a pair (¢, z) where ¢ € ®.i(G*) and = € Si’en, we can associate the
endoscopic pair (e, ¢°) by §1.4 and thus obtain the functional

H(G) — C
[ ().

We shall consider the restriction of this functional to the space Hcusp(G). The
trace Paley-Wiener theorem then implies that for f € Hcusp(G) the following
identity holds,

foz(d@) =1 (6) =eG) D coultfal(r), (482)

T€Ten(G)

where 7 € T%,(G) is any lift of 7 and ¢, .(7!) € C are uniquely determined
scalar coefficients having the equivariance property

Cow(y®) = (1,9) Coal(rh),  y€ ST (M), 7% € TH(G). (4.8.3)

The coefficients c4 .. (77) depend only upon ¢, z, and 7. Furthermore, the de-

pendence on z has an equivariance property under translations by Z (@r par-
allel to that of f; = (¢, ¥), namely

Coyz = (E,9) " Cos ye Z(G)". (4.8.4)

When ¢ € ®2(G*), the local intertwining relation provides a formula for
the coefficients c4 (7). Indeed, let M* be the minimal standard Levi subgroup
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of G* through which ¢ factors. We have the L-packet IT,(M) and can form the
subset of T, (G) given by

T¢7611(G) = {7‘ = (M, g, 7")|0 S H¢(M),’f‘ S RG(M7 G)reg}
as well as its preimage thﬁ,ell(G) in T, (G).

Proposition 4.8.1. Let ¢ € ®2,(G*), z € S«i,ell’ and let 7% € Tfu(G). Then

(r,zs8), i 7= (M,0,s) € T" a(G)

Proof. Given the equivariance property (4.8.3) it is enough to assume z = s 1,

in which case the statement follows from applying the local intertwining rela-
tion to the definition of ¢y , coming from our chosen normalization. O

We can now state the orthogonality relations. Given 7 = (M, o,r) € Ton(G)
we define

d(r) = det(r — 1)gg, R(1) = Ro.(M,G), b(r) = |d(7)] - |R(T)|

Let 7 € T,EH(G) be a lift of 7. Then for any two pairs (¢;,z;), ¢ = 1,2, the
product

Copr,m1 (Th)ctﬁz,ﬂm (Tu)
depends only on 7 and not on the choice of lift 7%, as one sees from the equiv-
ariance property (4.8.3). Furthermore, for a single pair (¢, =), the product

Cpa(T7)Co .0 (TH)

depends on z only through its image in S, as one sees from the equivariance
property (4.8.4).

Proposition 4.8.2. Suppose that (¢;,xz;) for i = 1,2 are two pairs where ¢; €
O (G*) and x; € Siﬁeu. If either 1 # P2, Or 1 = P2 = ¢ but the images of
x1 and xo in 3¢ are not equal, we have

D b(T)Cor s (TH)Cp s (T5) = 0.

TETen(G)

On the other hand,

Y b(r)eoa(Tesn(rh) = |Sl.

T€Ten(G)
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Proof. This result is analogous to [Art13, Cor 6.5.2] and [Art13, Prop 6.5.1], and
is obtained in the same way. We will limit ourselves to a brief sketch. One
begins by considering the elliptic inner product I(f¢, g¢) on the space Zeysp (G)
defined in [Art96, §1] by

(o 96) = / fe(gat,

Ten(G)

where I';1(G) is the space of regular semi-simple elliptic conjugacy classes in
G(F) and dvy is a certain natural measure on this set. There are two spectral
expressions for this scalar product. The first one is furnished by the local trace
formula and takes the form

I(fa,96) =Y |d@)| R fa(r)ga(r).

TGTen(G)

This is a specialization of [Art93, Cor. 3.2], see also [Art13, (6.5.6)]. This for-
mula is valid with an arbitrary normalization of the distributions fg(7), since
the effect of changing normalization cancels in the product f(7)gg (7). In par-
ticular, we are free to use the normalization f¢(7%) that is encoded in the cover
Tfu(G) of T (G) introduced above and in the normalization of the intertwin-

ing operators introduced in Chapter 2. Thus

I(fa,9¢) =Y 1) R fa(m)ga(r), (4.8.5)

TETen (G)

where 77 is an arbitrary lift of 7, and the independence of the lift follows from
the equivariance property (4.8.3).
The second spectral expansion of I( f¢, gc) is of endoscopic nature. It takes
the form
I(fa.96) =Y ISsI7" Y f(5.0)9(s.9), (4.8.6)

PEDn(G) €Sy el

where s € S, is any lift of z, and the product f(s, ¢)g'(s, ¢) is independent of
the choice of s. To obtain this expression, we follow the argument of [Art13,
Prop 6.5.1], and consider the stabilization identity [Art13, (6.5.8)]

I(fa.9¢)= Y, uG.G)S(f¢°)

e€€en(G)

This identity is proved for general reductive groups in [Art96, Prop 3.5]. The
terms S(f¢, g°) on the right hand side are the stable analogs of the elliptic inner
product I(fg, gc). They have a spectral expansion similar to that of I(f,g),
namely

S(fa) = Y ISelF(@)g(9°).

¢ €D baa(GF)
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This expansion, stated as [Art13, (6.5.12)], applies to the quasi-split groups G*
and is part of our assumptions stated in 1.5. Combining the last two identities

leads to (4.8.6).
With the two identities (4.8.5) and (4.8.6) at hand, the statement follows
from elementary linear algebra, as explained in the proof of [Art13, Cor. 6.5.2].
O

Proposition 4.8.3. i) Given a pair (¢, x) where ¢ € P2 1p4a(G*) and = € Si,ell’
we have that cy . (7%) = 0 for all 7% € Tj’lh(G).

ii) Suppose that
yi = (¢i, i), 1=1,2

are two pairs where ¢; € ®g paa(G*) and z; € Si,cll' Then the expression

Z Cor,21 (W)C¢2,m2 (W)

WEHZ.temp(G)

is equal to zero, unless ¢ = ¢o and the images of x1 and x5 in §¢1 are equal.

Moreover, o
DT cpa(m)coa(n) =[Syl

€I temp (G)

Proof. Part (ii) follows at once from part (i) and Proposition 4.8.2 whilst noting
that b(7) = 1 for 7 = 7 € I3 temp(G). It is thus enough to show part (i).

Let 7y = (My,01,7m1) € T3(G) and let Tlh = (My,01, s1) be alift. Then ¢ :=
¢r, € D 44(G). The isomorphism of R-groups Ry, (M, G) = R(oy) provided
by Lemma 4.6.5 implies that Ry, vz # 0, thatis ¢; € ®2,(G).

For any 7% = (M, 0,s) € T7(G), the formula for ¢y, ., (%) appearing in
Proposition 4.8.1 and the fact that the subset of elliptic elements Sil,cll C Sgl
isa Sihl (M)-torsor imply

1 _— 7,511 ifr =1,
o D <T17$181>'C¢1,z1(7“)={(<) 157) '

St otherwise.
| ¢17ell| ‘Tlesil,ell

Hence, for any ¢ € ®91,q4(G*) and z € Sil,ell’ we have

1 -
G Y (maisi) - oy (7).

al o
P1.e 1E€Sy, e

b(r)eoa(ri) = D b(r)cpa(r)

T€Ten(G)

Here 77 is an arbitrary lift of 7, and the summand is independent of the choice
of lift. Interchanging the two sums and applying Proposition 4.8.2 we see that
the entire expression is equal to zero, since ¢; € @gu(G*) and ¢ € ®g paa(G*)
preclude ¢, = ¢. But b(1) # 0, forcing CWC(TE) =0. O
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4.9 Local packets for square-integrable parameters

Let E/F be a quadratic extension of non-archimedean local fields and let G* =
Ug/p(N). Let £ : G* — G be an equivalence class of extended pure inner
twists. In this section we are going to complete the proof of the local classifi-
cation theorem 1.6.1 in the generic case by treating generic discrete parameters
¢ € Ppaa2(G*). Unlike the treatment of non-discrete parameters in Section 4.7,
which was purely local, the treatment of discrete parameters here will have to
be global.

We first make the following reduction. According to Proposition 1.6.2, it
is enough to prove the local classification theorem for any equivalence class
' : G* — G of extended pure inner twists which gives rise to the same equiv-
alence class of inner twists as =. If N is odd, then = necessarily gives rise to
the trivial equivalence class of inner twists and we may thus take =’ to be the
trivial equivalence class of extended pure inner twists. The local classification
theorem then follows by assumption from the quasi-split case.

The case that IV is even is our main concern here. We use Proposition 4.4.3
to obtain the datum (E/F7u,v1,v2, G*nZ:G" = G, ¢) We will prove the
local classification theorem for the equivalence class of pure inner twists =, :
G* = G
Lemma 4.9.1. For every f € H(G) the following equality holds

S ng(0)fst) = = 32 (7).
1S4l

7 EES(P

where 7 runs over the irreducible representations of G(A) and n () denotes the mul-
tiplicity of 7 in Rdisc,<i>‘

Proof. The globalization propositions ensure that ¢ € ®5(G, 7). We claim that
¢ cannot contribute to the discrete spectrum of any proper Levi subgroup
M of G. Indeed, if ¢ = ((bN ,¢) did contribute then it should come from

by € ®2(M,7) by the induction hypothesis applied to M. Consider the de-
composition into simple parameters

éN = 53?:1&455“-

Write ¢, = ¢y X ¢ a1, according to the decomposition M = M_ x M, into
linear and hermitian parts. A simple factor of ¢, will contribute a factor with
even multiplicity if it is conjugate self-dual, and a factor which is not conjugate
self-dual otherwise. However ¢ is a discrete parameter so all ¢ are conjugate
self-dual with multiplicity one by Lemma 1.3.2. The resulting contradiction
proves the claim.

Equation (3.3.1) thus reduces to

15, o) = 0 RS (D) =3 ng(®)fa(#),
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On the other hand, Proposition 3.6.1 gives the expansion

16 ()= |8ch S s e(b.T)

TGSd')

where we have used the fact that s; = 1 and €4(7) = 1 as ¢ is generic and that
e;(T) =1las ¢ is square-integrable. The result follows. O

We shall now apply Lemma 4.9.1 with a decomposable function f = ®, f,,
whose u-component f,, belongs to Hcusp(G). To interpret the right-hand side
of the equation of the lemma, we use the character identities, which are part 4
of Theorem 1.6.1, i.e.

fé; = ((i)vaiv) = e(Gv) Z <7:‘-vaj3v>éva,(}v(7.7v)a T € st (491)

vy
Ty €H¢v

These character identities are known for v ¢ {u, v, }, because then the group G,
is quasi-split and these identities are part of our list of assumptions in Section
1.5. At the place v = v, the group G, is an archimedean unitary group. The
character identities are thus known by the work of Shelstad. We refer the reader
to [Kall3, §5.6] for an exposition in the language of pure inner forms.

At the place v = u we do not have the character identities yet. Instead,
we have the following weaker statement, coming from (4.8.2) together with
Proposition 4.8.3, part i,

fo oz, Gudd)=eG) D o (Mfucn), deSi (492

7€ temp (G)

Lemma 4.9.1 thus leads to the equation

Ynife == X Y Y con @) folr o ).
s ol Fu WGHQ,tcmp(G)fggqs
(4.9.3)
Here on the left 7 runs over the irreducible unitary representations of G(A),
while on the right 7" runs over the elements in the packet

Mo = Bozally,

= {7’r = Quyputry 1 Ty € Iy Ty, '>EU = 1 for almost all v} )

As before, & € Sj.) denotes a lift of 7 € gé. The pairing (7%, &").. is given by

the product over v # u of the local pairings (7, &)
Recall that our particular globalization satisfies

f=t)

b_ooh o _ of
Sy=5,, =5, =5
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as well as (2, —) = 1 for v ¢ {u, vy} and (Z,,, —) = (Z,, —) !, the latter being
an equality of characters of

This allows us to fix the representation #***"*2 € Il ;. ., .., given by the re-

stricted tensor product ®;,_, ,, ,,m», Where m, € II; is the unique element

with (m,, =)= = 1. Fix furthermore 7, € II . arbltrarlly Then the character
E, vy

(7w =Y, restricts to (Z,,, —) on Z(G)T.

Let p € X*(Si) be a character restricting to (Z,, —) on Z(G)". Then -
(701 Yz, restricts trivially to Z(G)" and we may choose 7, € I, to
be the element for which (7%, —)z, = p~! holds. We then define for all 7 €
HQ,tcmp(G)/

no (i) 1=y (m @ )

which is a non-negative integer
Proposition 4.9.2. We have the equality

1

ng(p, ) = 5 b () ()~

where x € Si runs through a set of representatives for the quotient S. In particular
the non-negative integer ng(u, ) depends only upon p, ¢ and .

Note that each summand depends only on the image of = in Sy, as its two

factors have a cancelling equivarance behavior under translations by Z (G)L.
Hence the choice of set of representatives is irrelevant.

Proof. Applying our choice of 7* to Equation (4.9.3) and using linear indepen-
dence of characters of G(A"), we see that for each f € Hcysp(G) we have the

equality
. 1
S ongmm)fe, (M == Y. > css &) fer, (7).
: ||
€2 tomp(Gu) TEIL2 temp (G) ZES,,

The result follows by using the linear independence of the representations in
II5 temp (G) as characters of Heysp(G). O

Proposition 4.9.3. For all discrete parameters ¢, ¢’ € ®opqa(G) and all characters
e X*(S’i) and p' € X*(Si,) whose restriction to Z(G)' is equal to (Z,, —), we
have that

Z ng(p, Mng (1, ) = {1 if(¢,u? = (¢, 1),

0 otherwise.
TEI2 temp (G)
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Proof. By Proposition 4.9.2, we obtain that

Z n¢(ru’7 W)”W(l/a 7T)

TFGHQYtemp (G)

= S ng(pmng (i)

w€Il2 temp (G)

- WZZumlu'(z') > coulmegw(n)

Trenz,temp(G)

According to Proposition 4.8.3, part ii, the inner sum is zero unless ¢ = ¢’ and
the image of z and 2’ in S, is equal. Thus the double sum over z, 2’ collapses
to a single sum over z and another look at Proposition 4.8.3 shows that the
above expression is equal to

|31<M S )~ (@).

The sum over z still runs over a set of representatives in S ? for the quotient S;.
However, the summand now descends to this quotient and the result follows.
O

Proposition 4.9.3 and the fact that n, (¢, 7) is a non-negative integer imply
that for every p € X* (5’3)) lying above (Z,,, —) there exists a unique 7 = 7(u) €
5 temp(G) such that ng (p, ) # 0, in which case in fact ng(u, 7) = 1. Moreover,
the assignment

p= ()
is injective. We define the packet

My = {m(w) : 5 € X*(S5), il ypr = (B )}
as well as the character
<7T(/L), '>Eu = M()

Proposition 4.9.3 implies that these packets are disjoint from each other. More-
over, the map 7 ~ (7, —)= is by construction a bijection from I1 to the set of

characters of Si lying above (=,,, —). The following proposition shows that the
desired character identity holds.

Proposition 4.9.4. For z € Si and f € H(G) the following equality holds

fe(p,2) =e(G) Y (m,2)z fa(m).

melly
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Proof. Firstly consider the case where f € Hcusp(G). Propositions 4.9.2 and
4.9.3 imply that

1 ifr=n(p),
0 otherwise.

kawmm*:%mﬂ:{

1
S| —
[Sol < =
Inverting this equation, we have that

ooy = [p@) = s, = (),
z\T) = “
¢ 0 otherwise.

Applying this to Equation (4.9.2), we obtain the desired result.
It remains to show that the character identity holds for non-cuspidal f €
H(G). This can be done by arguing as in the proof of [Art13, Cor 6.7.4].
O

The proposition implies that the packet I, depends only on ¢ and not on
the globalization ¢. It follows from our construction that these packets are
disjoint. To show that they exhaust the set I3 (emp(G), it is enough to show
that for each m € Il temp(G) there exist ¢ € ®3 pqa(G) and p € Si lying above

(2, ) such that ny(u, ) # 0. For this it suffices to find 7 and ¢ such that
T = m, 7" € Il;, and ny(7) # 0. This is further reduced to just finding 7
with 7, = 7, as ¢ is then determined by weak base change of 7, an argument
implicit in the display below Corollary 3.3.2, and then descend via Proposition
3.3.1. But the existence of & with 7, = 7 is immediate from Lemma 4.2.1.

This completes the proof of Theorem 1.6.1 for discrete generic parameters,
which was also an inductive assumption in the proof of this theorem for gen-
eral generic parameters. In other words, Theorem 1.6.1 has now been estab-
lished for all generic parameters and all pure inner twists of unitary groups.

5 PROOF OF THE MAIN GLOBAL THEOREM

This last chapter is devoted to the proof of Theorem 1.7.1. It turns out that the
argument is much simpler than the analogue in the quasi-split case. For one
thing the twisted trace formula for general linear groups plays no more direct
roles.

We adopt the global notation so that G* = Ug,p (V) is a global quasi-split
unitary group. Fix k € {£1} as well as x = x. € Zj. Let (G, &) be an inner
twist of G*. Recall from §3.3 that L3, .(G(F)\G(Ar)) = ©y L., (G(F)\G(AF))
as ¢ runs over ¥(G*,n,) and that there is a corresponding decomposition
tr Raisc(f) = >, tr Raisc,y:(f) for f € H(G). For the proof it suffices to identify

Liices (G(F)\G(AF)) for each ¢ € W(G*, 1, ). We assume the following on 1)

e Hypothesis 3.6.3 (i.e. the local classification theorem holds for v, at every
v) and
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e Theorem 2.6.2 (the local intertwining relation) for ¢, at every place v.

These have been established if ¢ = ¢ is generic and if (G, €) is realized as a
pure inner twist of G*. (The latter condition implies that G, is a split group
at every place v of F split in E since general linear groups do not have any
nontrivial pure inner twists.) In the remaining cases the above assumptions
will be resolved in [KMSb] and [KMSa].

Theorem 5.0.5. Let o) € U(G*,n,). Under the two assumptions above,
L L (GIEN\G(AFR)) = 0 if v ¢ Wa(G*,1y).
2 Lo y(CIENG(AR) = @, ey ™ i € Ua(C. ).

Proof. If ¢ ¢ Wy(G*,1ny) then Corollary 3.6.5 and the local intertwining rela-
tion imply (via Theorem 3.5.7) that tr Rgisc,(f) = 0 identically, so 1 does not
contribute to the discrete spectrum. It remains to check that for ¢ € o (G*,7,),

tr Raises(f) = D f(m),  feEH)
w€lly (G,€,€ey)

As usual our notation is that f(7) = tr7(f). Fourier transform on the finite
group Sy, allows us to rewrite the right hand side as

LY Y G @medm = = 3 & (@) o).

|S,¢Y| WGHW(Gvf) .’L'ng ‘Sw| l'egw

In view of the definition (3.6.4) it is enough to show that Orgsc’w( f) = 0. This
results from Corollary 3.6.5 since the local intertwining relation and the local
classification theorem imply that fo(v, z) = f5 (1, spz™1).

O

A THE AUBERT INVOLUTION AND R-GROUPS

In [Ban02, Ban04], Ban shows that the Knapp-Stein R-group of a connected
reductive group G is invariant under the Aubert involution = — 7. More pre-
cisely she proves:

Theorem A.0.6. Let M be any Levi subgroup of G and let 7 be a square integrable
irreducible representation of M. Denote by R the Knapp-Stein R-group for w. Then
the set of normalized self-intertwining operators

{Rp(r,7),r € R}
is a basis for the commuting algebra Endg (i§;(7)).
In [Ban02, Ban04] the following three hypothesis are needed:
1. G is a split group.
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2. One can normalize the self-intertwining operators Rp(w, ) to be multi-
plicative on w.

3. The Aubert involution of a (square integrable) unitary representation of
M is still unitary.

In this appendix we get rid of the two first hypothesis. However Hypothe-
sis (3) will be still needed to grant that the normalized intertwining operator
Rp/ p(7y) is well defined at x = 1 (see below for more details on notation).

For our purposes, Hypothesis (3) will not be a problem since all represen-
tations we will care about appear as local components of automorphic repre-
sentations and are thus unitary. By induction hypothesis and Theorem 1.6.1(1)
they will be automatically unitary.

A.1 Notation

Let F ba a local non-archimedean field. Denote by ||z the normalized absolute
value of F'. Let G be any connected reductive group defined over F. Write Ag
for the maximal split torus in the center of G. By a representation of G(F') we
will always mean a smooth representation.

Define X (G) = Hom(G,G,,) and ag = Hom(X(G),R). The dual of this
space is denoted by af; and we set ag; - = ag; ® C. For every Levi subgroup M
there is a canonically split short exact sequence:

0= ag — ay — a§; — 0.

Let U(G) be the complex torus of unramified characters of G. It is endowed
with a structure of complex algebraic variety coming from the surjection

aGe — U(G) (A.1.1)
X®s = (g |x(9)|F)

For any x € ¥(G) and any representation 7 of G(F') we will write m, for
™R X.

Fix a minimal parabolic subgroup P, = MyUj of G. We set A to be the set
of simple roots. For any © C Ay, let Pg be the associated standard parabolic.

Denote by L€ the set of standard Levi subgroups of G. For any Levi sub-
group M in L%, denote by P (M) the set of parabolic subgroups of G with Levi
component M and by W (M) the Weyl group relative to M. For any w € W (M)
with representative w € G(F’) and any representation 7 of M (F'), we define wm
to be the representation on the same underlying vector space as m with action
(wr)(m) = w(w'mw) (observe that the equivalence class depends only on w
and if no confusion arises we will write wr for wm.) We also define

We={weW(M) : wr~m}.

For any Levi subgroup M in £%, and any parabolic P containing M, de-
note by i% the normalized parabolic induction (so that i% () is unitary if r is)
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and by r§ its left adjoint functor, the Jacquet functor. If P is the standard pa-
rabolic subgroup of G containing M we will simply write i§; and r§;. For any
parabolic subgroup P denote by P~ the parabolic subgroup opposite to P.

Write K(G) for the Grothendieck group of finite length representations of
G(F), that is, the set of finite integral linear combinations of isomorphism
classes of irreducible representations of G(F'). For any smooth representation
7 of G(F) write 7V for its contragredient and, if we suppose moreover that 7 is
of finite length, denote by [r] its image in IC(G).

We also use the notation Alg(G) for the category of smooth representations
of G, II(G) for the set of isomorphism classes of irreducible representations
of G and II3(G) (resp. Iluit(G)) for its subset consisting of square integrable
(resp. unitary) representations.

A.2 The Aubert involution
A.2.1 The Aubert involution at the level of Grothendieck groups

The functors i§, and 7§, induce, by linearity, homomorphisms between Gro-
thendieck groups that, by a little abuse of notation, we will still write i§; :
K(M) — K(G) and 7§, : K(G) — K(M) respectively. The Aubert involution
[Aub95, Aub96] is the homomorphism of Z-modules D¢ : K£(G) — K(G) de-
fined by
Do = Y (-1)tmthu/dnigh o,
MecL<

A key property of the Aubert involution is that it preserves irreducibility up
a sign. Namely for any irreducible representation = of G(F'), there exists 3(r) €
{£1} such that 8(7)D¢/([n]) is represented by an irreducible representation of
G(F), to be denoted by [7].

A.22 The Aubert involution on the level of representations

Let 7 be a smooth representation of G and let P C P’ C G be two standard
parabolic subgroups of G. Denote by 7p p/ the canonical projection 7% (7) —
7S, (7) and define the map

dpp :iGor8(n) — % or (n)
foe feen (A2.1)

where fpp(9) = mpp f(9)-

Let ©g C Ag. We denote by Alg(0y) the full abelian subcategory of Alg(G)
consisting of = such that every subquotient of 7 is a subquotient of a represen-
tation of the form i%(p) where P is a standard parabolic subgroup with Levi
component conjugate to Mg,, and p is a cuspidal representation of the Levi

quotient of P(F).
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Aubert defined a map

T = T

in the following way. She proved in [Aub95, Théoréme 3.6] that the following
sequence of representations of G(F') is exact:

djaq ) djagl—1 )
e I B A I <> I L A CR
O] = |A0| —1 0] = |80
Oy C O Oy C O

(A22)

where

di = @ dpe, Py €0,07
O] =1,|0| =i-1,
©CO CO
and eg o is a sign defined in [Aub95, page 2187]. Then she set 7 the cokernel
of d|@0‘+1.

Let x be a character of the center of G(F) and {2 be a Bernstein block of
Alg(G). Denote by Algi(Q) the full subcategory of Alg(G) of finite length rep-
resentations whose irreducible subquotients have central character x and are
all of type Q.

Schneider-Stuhler in [SS97, I11.3.1] and Bernstein-Bezrukavnikov in [Ber,
IV.5.1] and [Bez, §4] have defined, in terms of cohomology, an involution

€ Algh(Q) — Alg? ()

that coincides, by [SS597, p. 184], with the contragredient of the Aubert involu-
tion. That is, for every = € Algi(ﬂ) we have that £(7Y) = 7.
The Aubert involution has the following properties:

Irreducibility. The representation 7 is irreducible if and only if 7 is irre-
ducible [Aub95, Corollaire 3.9].

Induction. If P is a parabolic subgroup of G with Levi component M then
[Ber, Theorem 31(3)]

iG() =i5- (). (A.2.3)
Conjugation. Let P be a parabolic subgroup of G and let h € G(F). Let
m € Alg(0y) and denote by hr the representation of G(F') with same under-
lying vector space as 7 and action given by hr(g) = m(h~'gh). The canonical
isomorphism
RGErE(m) — iSprGn(hm)

fom fTn)
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gives rise to a canonical identification h7 = hx.

Functoriality. The involution
fl fl
Alg, () — Alg, (Q)
T o= 7
is an exact covariant involutive functor [SS97, II1.3]. If w, 7’ € Algi(ﬂ), we
deduce that there is a canonical involutive isomorphism

Homg (7,7') — Homg (%,7?’)
p = @ (A.2.4)

—

such that ¢(7) = @(7). Indeed this isomorphism can be constructed as follows:
Let ¢ € Homg (7, 7). For any parabolic subgroup P of G the map ¢ induces,
by functoriality,

¢p € Homg (i% o r&(m),i% orG(n")) . (A.2.5)
For any two parabolic subgroups P C F’, by definition (A.2.1), these maps

make the following diagram commutative:

d
i%orf(m) —=i¢, o1 (m)

d
iGord(n) —5 i, orf(n')

We deduce from (A.2.2) a commutative diagram:

0—s71—> @ % or%@(w)%...ﬂ- @D ¢ or%@(w)%—ﬁHO
|©]=|Ao|-1 |©]=|©0|
® \L“"Pmoq \Lw@ol
0——s7n—— igeorgg(ﬂ’)ﬂ...ﬂ &) ig@org@(ﬁ’)H%HO
[©]=[Ao|-1 |©]=|O0|

(to simplify notation we drop the fact that the sum is taken over parabolic
subgroups Pg such that ©g C ©). Thus there exists a unique morphism ¢ €

Homg (%, w ) making the diagram

G G G G =~
0——7m—> &P z@orpe(ﬂ)4>,_,4> z(_jorp(_)(ﬂ')4>7r4>0
[©]=]Ao0| -1 1©]=|0|
® \L‘Fpmol \LW(—)M 7]
0—s7—> @ Cord(7)—>...—> P & oré (n)—=7 —>0
Po Pg tte P, Pg
[©]=[A0|-1 |©]=(60|

(A.2.6)
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commute. The commutativity of the diagram implies that go/(;) = @(7).

Rationality. Here we follow [Wal03, §IV.1] and [Ber84]. Let M € £ and
(m, V) a smooth admissible representation of M (F'). Let B be the polynomial
algebra on the variety ¥(M) and, for m € M(F'), denote b,,, € B the polyno-
mial defined by b,,(x) = x(m).

Define the algebraic B-family (75, V) of admissible representations (in the
sense of [Ber84, 1.16], [Wal03, §1.5]) of M (F") by

Ve =V &c B, mp(m)(v ®b) = 7(Mm)v ® byb

for everym € M(F),ve Vandb e B.

For x € ¥(M) set sp, Ve = Vg ®pB (B/By), the specialization map, where
B, is the maximal ideal in B made of functions that are zero on x. As a repre-
sentation of M, sp, Vs is isomorphic to 7.

As the functors i% and 7§ of parabolic induction and restriction are exact,
they commute with ® gV for any B-module N ([Ber84, 2.5]). We deduce that
sp,i%; (V) is isomorphic to i (my ).

Let now P, P’ € P(M) and 7,7’ admissible representations of M (F'). Sup-
pose that we have a family of intertwining operators

A(X) B (my) — 15 (7))

for every x € ¥(M). We say that A(x) is rational if there exists a homomor-
phism of G — B-modules

Ap :i8(rp) — i (n5)

and b € B such that b(x)A(x)sp, = sp, Ap-
The Aubert involution preserves rationality in the following sense.

Proposition A.2.1. Let w, 7" be smooth finite length representations of M (F') in the
same Bernstein block. With notation as above, suppose that the family of intertwining
operators

A(x) : ig(wx) — ig, (’R’;()
is rational. Then the family of intertwining operators

—

A(x) : ig(wx) — ig, (’R’;()
is also rational.

Proof. Let @ be a parabolic subgroup of G. Then the intertwining operator

A(X)q +i§ 01§ (iG(my)) = i§ 0§ (1S (nl)),

induced by functoriality, is rational. Indeed, let

Apq 1igorg(iB(np)) = ig ord(i%(ry)),
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be the intertwining deduced by functoriality from Ag. Then, for every x €
U (M), we have

spyAB)Q ('sp, commutes to 7’8 0i)
bOOACOSP)e  (A() is rational)

b(x)A(x)@sPy ('sp, commutes to rg 0i%).

SpXAB,Q

|
—_

We deduce from our construction (A.2.6) that the operator

—

A(x) 1 iG(my) — 38, (77;()

is also rational. O

A.3 Intertwining operators and R-groups
A.3.1 Definition and properties

The main references here are [Art89] [Wal03]. Let G be a connected reductive
group. Fix M € L, P, P’ € P(M), m a smooth representation of M (F) of finite
length and x € W (M). Write Up and Up: for the unipotent radicals of P and
P’, respectively. Let

Jpp(my) : iG(my) = 1% (my)

be the standard intertwining operator defined by the absolutely convergent
integral

(Tprip(m) ) () = / our)du, 1z € G(F),

Up (F)NUps (F\Up: (F)

when the real part of x lies in a certain chamber (see [Wal03, IV.1] for a precise
meaning of this convergence). This intertwining operator satisfies a series of
properties (properties J; — J;5 in [Art89, pag. 26]). In particular, the family of
intertwining operators is rational in the sense explained before.

A.3.2 Normalized self-intertwining operators and the Knapp-Stein R-group

Let rp/ p(my) be the normalizing factor, that is a rational function on W(),
such that the normalized intertwining operator

RPI‘P(T‘—X) = TP/‘P(’]TX)_lJP/lp(ﬂ'X)

satisfies properties R — Rg in [Art89, pag. 28]. The family of such normalizing

factors exists by [Art89, Theorem 2.1] and Rp/|p(my) is a rational family (in x)

of intertwining operators i%(my) — i9_, ,(my). If Rp p(my) is well defined at

=1, we set Rp/|p(m) = Rp/p(m1) (for example if 7 unitary [Art89, pag. 28,
Ry]).

Now let 7 € ITyy,i (M), w € W, and fix P € P(M). Choose a representative

w € G(F) of w and an isomorphism n(w) : wr — 7. Define the normalized
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self-intertwining operator Rp(w, ) by composition of the following intertwin-
ing operators:

R, (m) w): ot ~ (W
ifm) G ST i) T i ()

Remark A.3.1. The class of Rp(w, ) mod C* is independent of the choices of w
and w(w) and for any w,w' € W, Rp(w,m)Rp(w',7) = Rp(ww’,7) mod C*.

However it depends on the choice of P. For another parabolic subgroup Q € P (M)
one has

Ro(w,m) = Rpjq(m) " Rp(@,7)Rpj(T).
So in particular, Rp(w,n) = Rp- (w,n) mod C*.

Suppose now that 7 € II;(M). The Knapp-Stein R-group R(w) can be de-
fined as a subgroup of W satisfying the following properties (this is a theorem
of Harish-Chandra and Silberger [Sil78]):

1. We ={w e W, : Rp(w,n) € C*} x R(n).
2. The set {Rp(w, ), r € R} is a basis for End¢ (i§;(7)).

A.3.3 Intertwining operators and the Aubert involution

Let M be a Levi subgroup of G and let 7 € I, (M). Let P be a parabolic
subgroup with Levi component M. Let w € W(M) and for any x € (M), put

Rp(w,my) = l(w) o Ry-1p|p(my) : iJGg(WX) — ig(fwa).
As 7 is unitary, the operator Rp(w, 7, ) is well defined at x = 1 so we define
Rp(w,m) = Rp(w,m).
Proposition A.3.2. Suppose moreover that T is unitary (so that the operator R p(w, T, )

is well defined at x = 1). Then Rp(w,7) = Rp- (w,7) mod C*.
Proof. The intertwining operator
Rp(@,my) 5 (Ty) —: i (WT)
is by construction rational and bijective whenever Rp(w, 7y ) is (in particular it
is well defined at xy = 1).
If we compose it with Rp- (w™!, wr,), which equals Rp- (0!, w7, ) by

the conjugation property, we get a self-intertwining operator of i§_(7,). For
regular o this latter representation is irreducible so we deduce

1

Rp- (@7, @7,) o Re(i,m) = a(x) sz,
P— X
where a(x) is a rational function on ¥(M). By hypothesis and construction

both intertwining operators Rp- (w~!, w7, ) and Rp(w,T,) are well defined
at x = 1 and bijective. Hence

L —

Rp- (0", w7) o Rp(w,7) =a-Idic_(z
G_
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with a € C*. The intertwining operator Rp(w, 7) is the inverse of Rp- (w ™!, w7)
up to a constant so it must be equal to Rp- (w, 7) up to a constant. O

Corollary A.3.3. Let M be a Levi subgroup of G and let m € I3 (M). Suppose ®
is unitary. Let P be a parabolic subgroup with Levi component M and let w € W,.

Then Rp— (@,7) = Rp(w, ) mod CX.

Proof. Recall that the normalized self-intertwining operator Rp(w, ) is de-
fined by composition of the following intertwining operators:

iG () P 6 () T G ().

By functoriality of (A.2.4) and Proposition A.3.2, it is enough to prove that we
have commutative diagram

iG () =2 G () (A3.1)
o iw A@) i ~
i%_ (wm) —=i%_(7)
up to isomorphism. But
m(w)

is an isomorphism between w7 and 7. By Schur’s Lemma it is equal to 7(w)
up to a nonzero constant. We deduce the commutativity of the diagram by
(A.2.3). a

Remark A.3.4. In the article we will be in the following setting. Let M be a Levi
subgroup of G and let m € Iynit (M). Suppose we have a group N, endowed with a
surjective morphism p : N — Wr. Suppose moreover that 7 is unitary and that we
have normalizations Rp(u, ), uw € Ny, of the intertwining operators such that:

1. Rp(u,m) = Rp(p(u), ) mod C*, for every m € Ilypni (M) and every u €
N,.

2. The intertwining operators Rp(u, ) are mutiplicative on N i.e. they are such
that for any u, v’ € N, Rp(u, m)Rp(v',m) = Rp(uu/, m).
Then there exists a multiplicative character e, : N — C* such that for every u € N
and every f in the Hecke algebra of G(F') we have

—

fo(@mu) = eﬂ(u)tr(RP(u,ﬂ)iIGD(ﬂ), -

We finish this appendix proving the corollary announced in the introduc-
tion.
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Corollary A.3.5. Let M be any Levi subgroup of G and let 7 € IIo(M ). Suppose 7 is
unitary. Let P be a parabolic subgroup with Levi component M. Denote by R(w) the
Knapp-Stein R-group for w. Then the set of normalized self-intertwining operators

{Rp(r,7),r € R(m)}
is a basis for the commuting algebra Endg (i§;(7)).

Proof. The set {Rp-(w,n),r € R,} is a basis for Endg (i§_(7)). Thus by
(A.2.4), the set {Rp- (w,),r € R.} is a basis for Endg (i%(7)), so by Corol-
lary A.3.3 we deduce that the set {Rp(r,7),r € R(w),r € R,} is a basis for
Endg (i%(7)).

O
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