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ABSTRACT. The local intertwining relation is an identity that gives precise informa-
tion about the action of normalized intertwining operators on parabolically induced
representations. We prove several instances of the local intertwining relation for quasi-
split classical groups and the twisted general linear group, as they are required in the
inductive proof of the endoscopic classification for quasi-split classical groups due to
Arthur and Mok. In addition, we construct the co-tempered local A-packets by Aubert
duality and verify their key properties by purely local means, which provide the seed
cases needed as an input to the inductive proof. Together with further technical re-
sults that we establish, this makes the endoscopic classification conditional only on
the validity of the twisted weighted fundamental lemma.
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INTRODUCTION

The theory of automorphic forms is a profound topic in number theory with broad
applications to other areas of mathematics and theoretical physics. A fundamental
problem, which is central in the Langlands program, is to classify automorphic repre-
sentations of connected reductive groups G over global fields and to obtain the analo-
gous classification over local fields in terms of parameters pertaining to the Langlands
L-group TG. Such a classification should be consistent with the Langlands functoriality
conjecture, whose rough form posits that a morphism of L-groups “H — *G should
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induce a functorial lifting of representations from H to G, provided that G is quasi-
split. The functoriality conjecture is beyond our current technology in general, but
some special cases fit in the framework of endoscopy a la Langlands further developed
by Arthur, Clozel, Kottwitz, Labesse, Shelstad, and others.

When G is a quasi-split classical group, one can hope to study the classification prob-
lem for G' by relating it to the general linear groups and to quasi-split classical groups
of smaller rank, via (ordinary and twisted) endoscopy. This was achieved in Arthur’s
book [Ar3], which represents a crowning achievement in the endoscopic approach to
functoriality, and builds on tremendous foundational work on the trace formula and
related matters spanning multiple decades. The results of [Ar3] were later extended to
quasi-split unitary groups by Mok [Moak], following the same arguments. These results
were partially extended to non-quasi-split classical groups in [KMSW] and [Ish]. Since
classical groups are ubiquitous, the endoscopic classification for them has played an
indispensable role in a number of arithmetic applications such as:

e new instances of the global Langlands reciprocity, see [Sc2, Section 5.1}, [BCGP,
Section 1.4.1], [KrST, KrS2];

e the p-adic Gross-Zagier formula and the Beilinson—-Bloch-Kato conjecture, see
DD, [CO], [ETX7Z7);

e Euler systems, see [GS], [LSK], [LTXI];

e the Gan—-Gross—Prasad conjecture, the Ichino-Ikeda conjecture and their local
analogues, see [W6|, [BP1, BP2, BP3], [BPLZZ, Remark 1.7], [BPCZ], [BPC];

e the Sarnak—Xue density conjecture, see [DGG|, [EGGG;

e an extension of the Shimura—Waldspurger correspondence, see [GI3], [Li;

e classification/counting of irreducible algebraic cuspidal automorphic represen-
tations of GLx or classical groups over Q of level one, see [CR], [Tai], [CIJ,
[CT];

e Harder’s conjecture, see [CLJ], [ACIKYT, AC

KYY].

The main theorems of [AT3] and [Mok] depend on several results which were unproven
but expected at the time. Some of the results have become available over the past ten
years. The most notable is the stabilization of the twisted trace formula by Moeeglin—
Waldspurger [MW4, MW35], assuming the validity of the twisted weighted fundamental
lemma; the latter is as yet not available and is discussed further in Section 04 below.
Meeglin—Waldspurger also established the local twisted trace formula in [MWS], which
is one of the vital ingredients in [Ar3, Chapter 6]. The remaining issues were to be
resolved in the projected papers by Arthur, which are named as [A24, A25, A26, A27]
in [Ax3], at least in the symplectic and orthogonal cases. The problem to be addressed
by [A24] has been solved in [MW4], whereas the other three references [A2A, A28, A27]
have not been treated yet. For [A24], see also Section 03 below. The problems to be
covered by [A25] appear to be particularly challenging, and the Hecke algebra method
mentioned below [Ar3, Lemma 7.1.2] leads to rather complicated calculations that are
delicate even in the (supposedly simplest) case pertaining to the Iwahori Hecke algebras.
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The goal of this paper is to prove all unproven assertions that [Ar3] and [MokK] rely
on, apart from the twisted weighted fundamental lemma, uniformly for quasi-split sym-
plectic, special orthogonal, and unitary groups. Our three main theorems correspond
to what should be expected from [A27], [A26], and [A25], respectively, including their
analogues for unitary groups. In addition we justify a few other technical results that
are used in [Ar3] and [MokK| without explicit reference. It is worth noting that we de-
velop a novel method for [A25] and [A26] based on a careful study of local intertwining
operators, that is quite different from the approaches suggested by Arthur in [Ar3]. As
a consequence of this paper, the main endoscopic classification for quasi-split classical
groups will become unconditional as soon as the twisted weighted fundamental lemma
is fully verified. Also unconditional will be the wide range of applications resting on it.

We remark that a weak global Langlands functoriality from split classical groups
(as well as split general spin groups) to general linear groups was established by Cai-
Friedberg-Kaplan [CEK?] via doubling constructions and the converse theorem, ex-
tending the work by Cogdell-Kim—Piatetski-Shapiro—Shahidi et al. (see [CPSS] and the
references therein) in the globally generic case. Even though the trace formula method
leads to more precise results that are suitable for broader applications, their theorem
is unconditional and less demanding in terms of prerequisites as they avoid the trace
formula. On the other hand, it is possible to deduce a weak global Langlands functori-
ality from (not necessarily quasi-split) classical groups to general linear groups by the
trace formula in a way much softer than [Ar3] and [Mok], and conditional only on the
twisted weighted fundamental lemma; see [Shi|, cf. [Ar3, Proposition 9.5.2].

0.1. Context. Now we partially review the outline of Arthur’s inductive argument in
[AT3] to put our work in context. (The same applies to [Mok| regarding unitary groups.
Since the structure of [Moki closely follows that of [ATr3], our review focuses on [Ar3].)
We may organize the main theorems in [Ar3] as follows using the numbering from there.

e Local classification theorems: Theorems 1.5.1, 2.2.1, 2.2.4.
e Local intertwining relations (LIR): Theorems 2.4.1, 2.4.4.
e Global seed theorems: Theorems 1.4.1, 1.4.2.

e Global classification theorems: Theorems 1.5.2, 1.5.3.

e Global stable multiplicity formulas: Theorems 4.1.2, 4.2.2.

The local classification includes the local Langlands correspondence, construction and
internal parametrization of A-packets, and the endoscopic character relations. The
global seed theorems support the formalism of Arthur’s global parameters for classical
groups; the global classification includes Arthur’s multiplicity formula as well as the
dichotomy for self-dual cuspidal automorphic representations of GLy, with N even,
into symplectic and orthogonal types. The above theorems are proven all together
by induction on a positive integer N for quasi-split symplectic and special orthogonal
groups which are twisted endoscopic groups for GLy.

The most crucial ingredient of the proof is the stabilization of the trace formulas for
quasi-split classical groups and twisted general linear groups. Essential for its use is
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a precise understanding of the intertwining operators appearing in the trace formulas.
This is the role of our main theorems corresponding to [A26] and [A27] (announced in
[AT3, Section 2.5)) clarifying the relationship between normalized intertwining operators
and Whittaker models, as well as the part of [A25] pertaining to LIR for A-parameters.

In addition, the theorems on [A25] serve as the cornerstone for Chapter 7 of [Ar3].
Let us provide more details. Arthur obtains the local theorems for tempered repre-
sentations and bounded Langlands parameters, a.k.a., tempered L-parameters, by the
end of Chapter 6 of [Ar3]. Chapter 7 is devoted to the local classification and LIR for
non-tempered A-parameters. Building on the local results of Chapters 6 and 7, Arthur
finishes the proof of the global theorems, thereby completes the inductive argument, in
Chapter 8.

Arthur’s strategy in Chapter 7 broadly consists of two steps:

Step 1: Handle a certain class of A-parameters over p-adic fields by a local method.
Step 2: Prove the general case via globalization.

Step 2 propagates the results from Step 1 by carefully globalizing a given local A-
parameter such that the local A-parameters at all the other places, apart from the place
of interest, are essentially understood. With that said, we concentrate on Step 1 as this
is what our main theorem is about.

A key input in Step 1 is Aubert duality, which is defined on local A-parameters as
well as on irreducible representations of p-adic reductive groups. On A-parameters, it is
induced by simply permuting the two SLy-factors in the source group. On representa-
tions, Aubert duality is defined in terms of parabolic inductions composed with Jacquet
modules; for example, the trivial representation and the Steinberg representation are
Aubert-dual to each other, and each supercuspidal representation is its own Aubert
dual. Aubert duality on the two sides should be compatible with each other through
the local classification. This is indeed shown to be so by the end of Chapter 7 in [Ar3].

Arthur’s strategy for Step 1 is to turn the tables around. Since the local theorems
are known for tempered L-parameters, we can hope to construct A-packets and prove
the local theorems via Aubert duality when the A-parameters are co-tempered, i.e.,
when they are Aubert-dual to tempered L-parameters, provided that we understand
how Aubert duality interacts with the local classification and LIR. This is exactly what
our third main theorem achieves.

In [Ax3] the counterpart of this theorem is stated as Lemma 7.1.2 and the penultimate
paragraph on p. 428, whose proof was deferred to [A25]. In fact Arthur asserted only
a weaker statement for certain co-tempered A-parameters, which nevertheless suffices
for Step 2 above. On the other hand, our method seems robust and optimal in that it
allows us to deal with all co-tempered A-parameters.

0.2. Results, proofs and organization. Let us describe our results. Let F' be a
local field of characteristic zero with the local Langlands group Lpg, and let either G =
GLy(F) equipped with a non-trivial pinned outer automorphism 6 (which coincides
with g — ‘g! up to an inner automorphism), or let G' be a symplectic group Sp,, (F)
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over F'; for simplicity, in this introduction, we will not discuss orthogonal or unitary
groups, which require more notations. See also Section O, where we review Arthur’s
results and state our three main theorems in the general setting.

Fix a proper standard parabolic subgroup P = M Np of G, and an A-parameter

@/JMI LF X SLQ(C) — LM

for the Levi component M. As an induction hypothesis, we assume that we have the
A-packet II,,, which is a multi-set of irreducible unitary representations of M. Let w
be a (twisted) Weyl element of G that preserves M, i.e., an element of Ng(M)/M when
G is the symplectic group, or an element of Ngyg(M)/M when G is the general linear
group. After fixing some auxiliary data, for my, € IL;,,, Arthur defines a normalized
intertwining operator

Rp(w, 7y, Yar): Ip(ma) = Ip(wmay),

where Ip (7)) is the normalized parabolic induction of 7y, and (wmyy)(m) = my (W 'mw)
with a carefully chosen representative w of w (see Section [ for more details). Our
three main theorems concern these normalized intertwining operators.

1

0.2.1. Main Theorem 1. In the first main theorem (Theorem IT8T), we consider the
tempered and generic case. Let ¥y, = ¢y be a tempered L-parameter, which means
that ¢M|{1LF}xSLz(C) = 1, and let 757 be the generic representation lying in II,,,. In
this case, from a fixed Whittaker functional on 7, one can get a Whittaker functional
Q(mar) of Ip(mpr) by the Jacquet integral (see Section IR). Then Theorem I claims
that
Q(wmar) o Rp(w, mar, oar) = Q)

if wmy = mp. This is [Ar3, Theorem 2.5.1 (b)], whose proof was deferred to [A27].
Note that a similar result is proven by Shahidi [ShaZ], but Shahidi’s definition of
Rp(w, s, ¢ar) is not the same as Arthur’s because it uses different normalizing factors.
As suggested in the proof of [Ar3, (2.5.5)], Theorem & will be proven by comparing
Arthur’s normalization factors with Shahidi’s local coefficients. This is done in Section
B. In particular, if G is a classical group, we need the coincidence of Shahidi’s gamma
factors (constructed in terms of representations of reductive groups) with those defined
by Artin, Deligne, and Langlands (constructed in terms of Galois representations). This
is well-known to experts, but for completeness, we give a proof of this fact in Section
A7

Another result whose proof was deferred to [A27] is [Ar3, Lemma 2.5.5]. This lemma
claims that the local intertwining relation (see Section below for more details) for
the tempered case can be reduced to a slightly weaker statement. We will show this
lemma in Appendix 0. Theorems &1 and DT together with the twisted endoscopic
character relations for the archimedean case, which are explained in Appendix E, make
the discussion of [Ar3, Chapter 6], and hence the local classification in the tempered case
(under the inductive hypotheses), conditional only on the twisted weighted fundamental
lemma.
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0.2.2. Main Theorem 2. The second main theorem concerns G = GLy(F) and its
automorphism 6. In this case, IL,,, = {ma} is a singleton, and Ip(m)) is an irreducible
unitary representation. Let w be a 6-twisted Weyl element such that wmy, = myy.
Then we have a normalized isomorphism 7y (w): wmy — 7, whose composition
with the normalized intertwining operator Rp(w, s, 1¥ys) discussed above produces
the intertwining operator

ﬁp(w, %M) : Ip(ﬂ'M) — Ip(ﬂ'M) o 97
see Section Y. On the other hand, the assumption wmy = m, implies that Ip(myy)
is self-dual, i.e., Ip(my) = Ip(mpr) 0 0. Using a Whittaker functional on the standard
module of Ip(7my;), one can define a normalized isomorphism 4: Ip(myy) 5 Ip(mpr) 00
(see Section T4). Our second main theorem (Theorem ITI) asserts that

Ep(w, %M) = HA-

This is [Ar3, Theorem 2.5.3], whose proof was deferred to [A26].

The proof of Theorem I is given in Section B. When 7, is tempered (and hence
generic), the assertion immediately follows from the first main theorem (Theorem [CRT).
In the non-tempered case, Arthur notes below [Ar3, Theorem 2.5.3] that it requires fur-
ther techniques, based on some version of minimal K-types. While trying to follow
this argument we were led to heavy calculations. Therefore, in this paper we will prove
Theorem I in the non-tempered case with a completely different approach. One of
the challenges is that the isomorphism 6, is inexplicit, since it is defined through the
Langlands quotient map from the standard module of Ip (7)), which is a priori known
to exist only abstractly. Our novelty is to construct the standard module carefully
and to realize the Langlands quotient map as a composition of normalized intertwin-
ing operators (Lemma BZ3T). This together with Theorem =8 describes 64 using
intertwining operators, and Theorem "I is reduced to the commutativity of a certain
diagram in Theorem B2, which we call the main diagram. However, since Ip(my) is a
non-tempered unitary induction, this commutativity does not follow directly from the

previous results, and requires further arguments. A simple but non-trivial example for
Theorem B4 is given in Example B273.

0.2.3. Main Theorem 3. Let F be a non-archimedean base field so that Ly = Wr X
SLy(C) with Wg the Weil group of F. We now discuss the results whose proofs were
deferred to [A23]. They pertain to a classical group G over F' (in this introduction we
are taking the example of G = Sp,,(F')), and are formulated as [Ar3, Lemma 7.1.2].
This lemma builds on the inductive assumptions that the local theorems have been
proved for

e all tempered L-parameters for G; and
e all A-parameters for G’ any classical group with dim(Stz) < dim(Stg),

where dim(Stg) is the dimension of the standard representation of the Langlands dual

group G of G. These inductive assumptions hold at the start of [Ar3, Chapter 7]. The
statements of this lemma concern (certain) co-tempered parameters. More precisely, for
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an A-parameter 10: Wr x SLy(C) x SLy(C) — LG, we define its Aubert dual parameter

~

@: Wr x SLy(C) x SLy(C) — LG by (w, g1, 92) = ¥(w, g2, g1). We say that ¢ is co-
tempered if its restriction to the first copy of SLy(C) is trivial. In other words, ¢ = 12
is a tempered L-parameter.

Under the above inductive hypotheses, our third main theorem (Theorem [CIUH)

asserts that for every co-tempered A-parameter ¢ = 3 for G,

(1) we can construct an A-packet 11, together with a character (-, ), of the compo-
nent group S, assigned to each 7 € Il which satisfies the ordinary endoscopic
character relations, as well as the twisted endoscopic character relations with
respect to GLy (F) (where N = 2n + 1 if G = Sp,,,(F)); and

(2) it also satisfies the local intertwining relation, explained further below.

Note that this is a stronger statement than what is claimed in [Ar3, Lemma 7.1.2],
because it covers all co-tempered parameters, rather than the special class of tamely
ramified quadratic co-tempered parameters.

Let us be a bit more precise about the statement of our theorem. The construction
of the A-packet II, in (1) is actually very simple. We define

Hi/) = {ﬁ‘WEI_Lb}v
where ¢ = 1//1\ is the tempered L-parameter that is the Aubert dual of ¢, 11, is the
L-packet constructed in [Ar3, Chapter 6], and 7 is the Aubert dual of 7 (see [Au]). The
problem is to prove that this definition satisfies the twisted and ordinary endoscopic
character identities.

For the twisted character identities, we need to show that an alternating sum of the
characters of the members of the packet II, defined above is the twisted transfer of the
twisted character of the representation of GLy(F') associated to 1 (now viewed as a
parameter for GLy(F) via the standard embedding of “G into GLy(C)). For this we
need to relate Aubert duality for the classical group G to twisted Aubert duality for
GLy(F). Building on the work of Hiraga [Hi], this comes down to verifying that certain
signs defined in terms of Aubert duality for representations agree with corresponding
signs defined in terms of Aubert duality for parameters.

For standard character identities, we need to establish a map = — (-, 7), between I,
and the set of characters on S, in such a way that, for each s € S, the virtual character
ZWEH,/)<S - Sy, M) O, matches its endoscopic counterpart. By construction there is an
obvious bijection © + @ between II, and II,, while at the same time we have the
identity S, = Sy. However, it is not true that (-, m), = (-, T)4, in the sense that, if we
took the above identity as a definition, then the endoscopic character identities would
not hold™.

1t was also pointed out by Liu-Lo-Shahidi [CLS] recently. Their “anti-tempered” is synonymous
to “co-tempered” in this paper.
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To see what the correct definition would be, we assume that the desired character
relations hold for an arbitrary A-parameter ¢ and its dual @/Z)\, and investigate the im-
plication of this assumption on the relationship between (-, 7), and (-, 7); in Lemma
A7 (2), where we show that the quotient of these characters can be described by cer-
tain signs B(¢y), B(v_), and B(v); here S(v) is the sign that occurs in twisted Aubert
duality on GLy for the representation corresponding to 1 (see Section El) and B(vy ),
B(1_) are the analogous signs for certain supplementary parameters ¢, and ¥_ defined
in terms of ¢ and the element s (see Section [B). While we cannot compute these signs
in full generality, we do compute them for tempered representations in Proposition
A T3, and for a certain class of representations in Proposition BZ572, respectively. Hence
we obtain an explicit relation between (-, 7); and (-, ), in Corollaries I-473 and E573
Note that Proposition B52 is an application of the second main theorem (Theorem
[91), and Corollary E53 will be applied in the final step of the proof of Theorem
1 (2).

Turning the tables around (see Remark B248), we now drop the assumption that the
desired character identities hold (after all, these are the identities we want to prove)
and for a co-tempered A-parameter ¢ = &5, we define the character (-, ), such that the
formula obtained in Corollary B=273 holds. In order to see that this is well-defined, one
has to check a certain equality (=) in Proposition BT2. As a consequence, we can see
that the A-packet I, satisfies the endoscopic character identities (Theorem BZT).

Finally, we shall explain the proof of Theorem I (2), the local intertwining
relation for co-tempered A-parameters. Our approach is entirely different from the one
suggested below the statement of [Ar3, Lemma 7.1.2]. While the suggestion there was
based on the theory of Hecke algebras and an expected extension of results by Morris,
our initial attempts in this direction quickly led to very difficult calculations. Therefore,
we develop a new approach that is based on the study of certain special representations,
motivated by a result of Tadi¢ [Tad?], as well as the study [Af] of Jacquet modules for
tempered L-packets by one of the authors, to treat the case of maximal parabolic
subgroups and parameters 1, whose linear part is irreducible and self-dual, and then
we use an induction procedure to generalize this to arbitrary parabolic subgroups and
arbitrary co-tempered parameters.

Let P = MNp be a proper standard parabolic subgroup of G = Sp,,(F). If ¥y,
is an A-parameter for M, we denote by 1 the A-parameter for G given by 1, and
the embedding “M < LG. Then the A-packet Il is the multi-set of the irreducible
components of Ip(my) for my € IL,,. Moreover, if a Weyl element w of G preserves M
and 17, we can normalize an 1som0rphlsm Wy — Ty This allows us to define for an

element u € Sy = Cent(Im(7)), G) that normalizes M a normalized self-intertwining
operator

(, Tar) Rp(wo, Tars ) s Ip(mar) = Ip(mu),
where the Weyl element w,, is determined by w. If we knew that Ip(my,) is multiplicity-
free, then this operator, being G-equivariant, would act on each irreducible summand
7 C Ip(mar) by a scalar. The local intertwining relation (ILIR]) asserts that this scalar
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is equal to (s,, )y, where s, € Sy = mo(Sy) is the image of u € Sy,. For a more precise
statement, see Section I0. When ¢y, = &S\M is co-tempered, the multiplicity-free state-
ment follows from the corresponding statement for ¢,;, which has been established in
[Ar3, Chapter 6], and Theorem [IOA (2) claims that (IETRI) holds. We prove Theorem
I3 (2) in Sections B and [.

As mentioned above, the proof can be reduced by an inductive argument (Lemma
B21) to the case where P = M Np is a maximal parabolic subgroup, so that M =
GLi(F) x G with Gy = Spy,,,(F), and the GL-part ¥qr, of 5 = ¥aL @y is irreducible
and self-dual. After that, our approach to attack (LIRI) is to extend our method for
Theorem I from the case of GLy(F") to the case of classical groups. The reason why
our method works well for GLy (F') is that the unitary induction /p(my/) is irreducible,
which implies that its Langlands data are easily described from the ones of m,;,. When G
is a classical group, Ip(mys) need not be irreducible. In Section B4, we isolate a certain
irreducible summand of Ip(mys) for which our method would work, which we call a
highly non-tempered summand. The relevance of this notion is that one can infer the
Langlands data of a highly non-tempered summand of Ip(my;) from that of 7, while
the Langlands data for general subquotients of parabolically induced representations are
mysterious. It follows from the definition that for any my, € Il,,,, there exists a highly
non-tempered summand of Ip(my), and in many cases it is unique. Our method would
work only for highly non-tempered summands of Ip(mys). Since we are assuming that
P is maximal and that gy, is irreducible, the unitary induction Ip(my) for mp € Iy,
is a direct sum of at most two irreducible representations. In this sense, our method
has a chance to prove (LIR) only for “half” of the cases.

The good news is that Corollary B33 tells us that “half” is enough! More precisely,
if Ip(my) = m @ my is reducible, then this result, which says that Aubert duality
commutes with the normalizing intertwining operator up to a nonzero scalar, implies
that (ILIRI) for m is equivalent to (ILIRI) for 7y (see Lemma 6=32). Note that Corollary
[B=373 was established in an appendix in an arXiv version of [KMSW], but because it is
a key input to our argument, we move this appendix to Appendix B in this paper.

This allows us to focus on (EIRI) for a highly non-tempered summand 7 C Ip(myy).
By the definition of this summand, we have at our disposal the analogue of the main
diagram from the GLx(F) case. However, since the intertwining operator on Ip(mys)
is normalized using the A-parameter 1,;, whereas the other operators appearing in the
main diagram use L-parameters, the main diagram is commutative only up to an explicit
scalar, which is a special value of the quotient of the normalizing factors defined using
the A-parameter 1y, and the L-parameter ¢,,, of my;. See Theorem 651, By (ILIRI)
in the tempered case, we can relate this scalar with the eigenvalue of the normalized
intertwining operator on 7. In conclusion, (ILIRI) for the highly non-tempered summand
7w C Ip(myr) is equivalent to a certain scalar equation (®) presented in Corollary B52.

The proof is therefore reduced to establishing this scalar equation (®). Note that
the left-hand side of this equation involves the L-parameter of my,;. In general, it is
very difficult to completely list the L-parameters of representations in a given A-packet
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II,,. Circumventing this problem, we give an inductive argument to show (=). The
initial step is where the classical part my of my = warL X my is almost supercuspidal
(see Definition [Z1). In this case, we will compute everything by hand in Section
[[3. For the inductive steps (Sections [[4, [C3 and [A), we use [Afl, Theorem 4.2] that
computes the Jacquet modules of tempered representations. According to this theorem,
we need to consider three cases separately. The first and second cases are amenable,
whereas in the last case in Section [[G, we have to treat an A-parameter which is beyond
co-tempered, but it fits the artificial assumption in Corollary E-573.

In our proof of Theorem I[IOAH, Moeglin’s work on the explicit construction of A-
packets (see [X2] and its references) plays a fundamental role. In particular, her results
on the computation of the cuspidal support of discrete series representations and their
reinterpretation in terms of enhanced L-parameters by Xu (see [XT]), as well as the
extension [Af] of these results to the tempered case by one of the authors, are an
essential tool in our argument.

However one has to be quite careful at this point. As explained in [X%, Section §],
the original arguments presented in [X2] and [Af], follow a strategy that requires the
validity of Arthur’s results not only for the group G itself, but also for groups of higher
rank. Therefore, such approach cannot be taken in the middle of a proof by induction
on the rank of GG, which is the situation of [Ar3, Chapter 7]. This requires us to give new
proofs of some of these results, in particular [Af, Theorem 4.2], which avoid appealing
to groups of larger rank. We do this in Appendix 0, and also extend the results to
cover the case of unitary groups.

Note also that, if we could use the full extent of these results, that would easily lead
to a generalization of Corollary EZ573 that does not use Theorem "I, But because of
the inductive constraints, we are forced to prove the stated version of Corollary E=5=3
and appeal to Theorem "I in that proof.

0.2.4. Supplementary results. In addition to the main theorems, we prove a number
of supplementary results in the appendices, most of which are also required for the
inductive argument in [Ar3], and some of which may be of independent interest.

In Appendix [A, we prove that the local Langlands correspondence for classical groups,
that is established by the inductive argument of [Ar3] and [Mok], matches the Galois-
theoretic local factors defined by Artin, Deligne and Langlands with the automorphic
local factors defined by Shahidi. This result is used in the proof of our first main
theorem (Theorem [CRT) and it is also of independent interest: for example, it is used
in [GIT] and [GI2], where it was taken as an assumption.

In general, the matching of such local factors is a basic expectation for the local
Langlands correspondence, at least in the setting in which automorphic local factors
have been defined. In some constructions of the correspondence (such as those based
on converse theorems), this matching is built into the construction. In the approach via
endoscopy that is the subject of [Ar3] and [Mok], this matching does not follow directly
from the construction. In Appendix @A, we verify it for groups of the form GL; x Gy,
where G is a classical group. In this setting, the automorphic local factors were defined
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by Shahidi, and we verify that they match the Galois factors defined by Artin, Deligne
and Langlands.

In Appendix B, we review the Aubert involution for connected reductive groups and
prove that it is compatible with intertwining operators up to a scalar. This result is
used in an essential way in the proof of our third main theorem (Theorem [IOH). This
theorem, roughly speaking, explicitly determines the scalar.

We also review a forthcoming work on the Aubert involution for disconnected reduc-
tive groups, which is also necessary in the proof of the third main theorem (Theorem
[T0F). In order to keep this note complete and self-contained, we have included in
this appendix those definitions and proofs that are required for our purposes.

In Appendix 0, we extend and reprove some results of [Mcd], [XT], and [Af], to all
classical groups. These results are essential in the proof of our third main theorem
(Theorem IIOH). On the one hand, some of these results were originally formulated
only for symplectic and orthogonal groups, and we take the opportunity here to formu-
late and prove them also for unitary groups. As already mentioned, the earlier proofs
of some of these results relied on some arguments that presuppose that the endoscopic
classification of representations has been established for all groups, in particular for
groups whose rank is higher than the group one is interested in. Since such an assump-
tion is problematic in the midst of a proof by induction on the rank, we present in this
appendix alternative proofs that avoid this assumption.

Appendix O is devoted to the proofs of two results which are based on the same
argument. The first result is the strong form of Shahidi’s tempered L-packet conjecture
(a strengthening of [Sha7, Conjecture 9.4]), which states that every tempered L-packet
contains exactly one member that is generic with respect to a given fixed Whittaker
datum to, and moreover that the pairing of this L-packet with the centralizer group of
its parameter matches the generic constituent with the trivial character. For classical
groups, the existence and uniqueness of the generic constituent was proven by Varma
[V2]. We prove this for general connected reductive groups under relevant assumptions,
which the construction of the local Langlands correspondence in [Ar3] and [IMok| does
indeed satisfy.

The second result is of a more technical nature. It is formulated in [Ar3] as Lemma
2.5.5 and is used in the inductive proof. This lemma states that a weaker version of
the local intertwining relation, where a certain unknown scalar is inserted, implies the
stronger version, in which this scalar equals 1. In [Ax3], this statement is formulated
for classical groups and for odd residual characteristic. Building on results of Kottwitz

groups and arbitrary residual characteristic.

In Appendix E, we prove certain twisted character identities over the real numbers
that are assumed at various places in the inductive argument of [Ar3]. Such identities
are now available in the literature, so we simply collect the required references and
supply the necessary additional arguments to adapt them to the form needed in [AT3].
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Finally, in Appendix E, we shall review two conventions for normalizing class field
theory depending on whether arithmetic or geometric Frobenius elements correspond
to uniformizers under the local non-archimedean reciprocity map, and discuss how they
influence Arthur’s endoscopic classification. It is an expanded version of the discussion
of [KaSh2, Section 4]. This appendix is independent of the other sections in this paper.

0.2.5. A roadmap. The following is a roadmap of our paper and Arthur’s results:

[Aopeni ] — [secion]

‘ Local classification for tempered L-parameters

Appendlx o}

/)gmnn

Sectlon 3] Sect ion @

Secti

Appendix B ” Local classification for co-tempered A-parameters “

globalization

” Local classification for general A-parameters H

0.3. On [A24]. As alluded to above, the problem associated with [A24] has been re-
solved. The main role of [A24] is to justify [Ar3, Proposition 2.1.1], which asserts
that choosing a test function on the twisted general linear group essentially amounts
to choosing a family of test functions on (not necessarily elliptic) twisted endoscopic
groups satisfying a certain compatibility condition. The proposition “represents part
of the stabilization of the twisted trace formula” (see [Ar3, p. 57, line -8]), and in-
deed, it has been proved in general (not only for twisted general linear groups) by
Meeglin—Waldspurger [MW4, 1.4.11]. Note that [A24] is used again in the proof of [AT3,
Corollary 8.4.5] to back up an implicit fact in one of Arthur’s papers; this fact is covered
by [MW4, 1.4.11] as well.

0.4. On the twisted weighted fundamental lemma. As mentioned above, the
stabilization of the twisted trace formula depends on the twisted weighted fundamental
lemma stated as a theorem in [MW4, 11.4.4], which remains conditional to the best of
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our knowledge; cf. the third last paragraph in the preface of [MWH]. As explained in
[MW4, I1.4.4], this theorem is reduced via [W4, Theorem 3.8] to

(i) the weighted fundamental lemma for Lie algebras; and
(ii) the non-standard version thereof; see [W4, Conjectures 3.6, 3.7] for the precise
statements.

We should point out that (i) is already needed to stabilize the untwisted trace formula.
The proof of (i) was completed for split groups by Chaudouard-Laumon [CLI, CL2].
Even though their methods are expected to generalize beyond the split case, no written
account has appeared on the proof of (i) for non-split groups, or on the proof of (ii).
Such a generalization is necessary for the stabilized trace formulas considered in [AT3]
and [MoK].

It is worth noting that all versions of the unweighted fundamental lemma are theorems
thanks to Ngo, Waldspurger, and others; see the introduction of [N] and [LMW] for the
explanation and further references, and [GWZ] and [Wal] for other proofs.
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1. ARTHUR’S THEORY OF THE ENDOSCOPIC CLASSIFICATION

In this section, we review Arthur’s theory and state our main theorems in their
appropriate generality.

1.1. Basic notation. Fix a local field F' of characteristic zero. Let E be either F or a
quadratic field extension of F.. We denote by x +— T the generator of Gal(E/F'). Fix a
non-trivial unitary character ¢ p: F' — C*, and put ¢ = ¢r o trg/p. The normalized
absolute value of F is denoted by | - |g. In particular, if F is non-archimedean, and if
wg is a uniformizer of E, then |wg|p = q5', where g is the cardinality of the residue
field of E.

Fix an algebraic closure F of F', which contains E. The absolute Galois group of F
is denoted by I' = ' = Gal(F/F). Let Wy be the Weil group of £, and let

. Wg if F is archimedean,
B {WE x SLo(C) if E is non-archimedean

be the local Langlands group of E. Finally, let |- |z be the norm map of Lg, i.e.,

|l Lp - L 2 B 15 Ry,

where L3> = E* is the isomorphism given by the local class field theory. Here, we
normalize this isomorphism such that an arithmetic Frobenius map corresponds to a
uniformizer in £*.

1.2. Groups. In this paper, we often identify a connected reductive group over F' with
the group of its F-points.

Let G° be a general linear group GLx(E) or one of the following quasi-split classical
groups

SOQn+1 (F), San(F), SOQn(F), Un
Here, when G° = U, it is an outer form of GL, with respect to a specified quadratic
extension F of F', whereas when G° = SOn/(F'), Sp,, (F') we simply set £ = F'. On the
other hand, when G° = SOy, (F'), we denote by K the splitting field of G°, which is
equal to F' or a quadratic extension of F'. Letting n be the (possibly trivial) quadratic
character of F* associated to K/F, we sometimes write SOs,(F) = SO, (F).

Fix an F-splitting spl = (B°,T°,{X,}a) of G°. Namely, B° = T°U is an F-rational
Borel subgroup, 7° is a maximal torus, U is the unipotent radical of B°, and {X,},
is a ['-invariant set of root vectors, where o runs over simple roots of 7° with respect
to B°. Then spl and 1p give rise to a Whittaker datum w = (B°, x), where x is a
non-degenerate character of U. For any Levi subgroup M° of G° containing T°, we
take the F-splitting of M° induced by spl, so that the associated Whittaker datum is
given by roy, = (B° N M°, x|unne)-
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For any subgroup N of U stable under the adjoint action of 7°, we take the Haar
measure on N determined by {X,}, and the self-dual Haar measure on I’ with respect
to Qﬂp.

If G° = SOJ, (F), we also consider the full orthogonal group G = O3 (F) such that
G° is the connected component of 1 € G. We also abbreviate O3, (F) as O, (F). Let
T be the normalizer of (7°,B°) in G. Then T/T° = G/G°. Fix e € T \ T° with
€2 = 1 such that e preserves the splitting spl. (See cf., Section B3 below.) It gives an
identification of Os,(F') with a twisted group SOa,(F') % (€). If G° # SO,,(F'), we set
G=G°and T'=1T".

Let P° = M°N be a parabolic subgroup of G°, where M° is a Levi component of
P° and N = Np is the unipotent radical of P°. We say that P° (resp. M°) is standard
(resp. semi-standard) if it contains B° (resp. 7°). If P° is stable under the adjoint
action of T, we set P = P°-T and M = M° -T. Otherwise, we put P = P° and
M = M°. We call the subgroup of the form P = M N (resp. M) a (standard) parabolic
subgroup (resp. a (semi-standard) Levi subgroup) of G.

1.3. Representations. Let G be one of the groups GLy(E), SOgpui1(F), Spy,(F),
O, (F) or U, as in the previous subsection. We denote by Rep(G) the category of
smooth (Fréchet) admissible complex representations of G (of moderate growth) of finite
length. Here, the notions of Fréchet and moderate growth are meaningful only when
F' is archimedean. Let Irr(G) be the set of equivalence classes of irreducible objects
of Rep(G). The subset of Irr(G) consisting of irreducible unitary (resp. tempered)
representations is denoted by Ity (G) (resp. Irtiemp(G)).

Let P = M N be a standard parabolic subgroup of G with semi-standard Levi com-
ponent M. Put ap; = Hom(Rat(M),R) and a}, = Rat(M) ® R, where Rat(M) is the
group of algebraic characters of M defined over F. Let aj, - = Rat(M) ® C be the
complexification of aj,. Define a homomorphism Hy,: M — ap; by

Ix(m)|p = e!Hrm)x)

for all x € Rat(M) and m € M, where (-,-): ap x a}; — R is the natural pairing. For
an irreducible representation 7 of M and A € a}; ¢, we define a representation 7 of M

Har(m)A) 7 (m) realized on the space V, of m. We denote by

[p(7r)\) = Indg(m\)

by m\(m) = el

the associated normalized parabolically induced representation of GG. As a C-vector
space, Ip(my) is the space of smooth functions fy: G — V; such that

fr(nmg) = 53(m)ms(m) f(g)

forn e N, m € M and g € G. When F is archimedean, this space is a Fréchet space
with some natural semi-norms. For more precision, see [Cas, Section 4].

On the other hand, if F' is non-archimedean and if (7, V) is a smooth representation
of G, set V;(IV) to be the subspace of V, generated by vectors of the form v — 7(n)v
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for v € V; and n € N. Define an action 7 of M on V,/V.(N) by

7(m) (v mod Vy(N)) = 852 (m)w(m)v mod Vi (N).

The representation (7, V. /V(N)) of M is called the normalized Jacquet module of 7
along P, and is denoted by Jacp(m).

1.4. Arthur’s extension of conjugate-self-dual representations. We define an
involution # on GLy(F) by

0: x— T
(~1)N- (~1)N-

Set GLy(E) = GLy(E) x (6).
Let m be an irreducible representation of GLy(£). Suppose that 7 is conjugate-self-
dual, i.e., m = 7o f. Then there is a linear isomorphism 7: m = 7 such that

Tonlg)=n(6(g9) o T, g€ GLy(E).

Note that T" is unique up to a nonzero scalar. We can normalize T as follows. Let Z, be
the standard module of GLy(F) whose Langlands quotient is 7. Since Z, is to-generic,
we can fix a nonzero to-Whittaker functional 2 on Z,. By m = 7 o 0, there is a unique
linear isomorphism Oy : Z, — Z, satisfying the equations

Ow o Lx(g9) = Zx(6(g)) o 0w, g € GLn(E),
Qo by = Q.
Since €2 is unique up to a scalar, the definition of 6y is independent of the choice of 2.

Then we can define a linear isomorphism 64: 7 = 7 satisfying 04 o 7(g) = w(6(g)) 0 04
for any g € GLy(F) and making the diagram

7. v,

Lo

T A on
commutative, where the vertical map Z, — 7 is the (fixed) Langlands quotient map,
which is unique up to a scalar. In particular, 64 gives an extension 7 = 7 X 6,4 of 7 to
évLN(E) We call it Arthur’s extension of m. Note that 84 depends on 7.

1.5. A-parameters. First, we consider GLy(E). A representation of Lg x SLy(C) is
a homomorphism

: Lg x SLy(C) — GLy(C)
such that

e )(Wg) consists of semisimple elements;
e |y, is continuous;
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® V|s,(c) is algebraic if E is archimedean, whereas, v|sr,(c)xsL,(c) is algebraic if
E is non-archimedean.
An A-parameter for GLy(FE) is an equivalence class of N-dimensional representations
Y: L x SLy(C) — GLy(C) such that ¢(Wg) is bounded. By the local Langlands
correspondence (LLC) for GLy(E) established by Langlands himself [IJ], Harris—Taylor
[HT], Henniart [He?], and Scholze [Scl], we obtain an irreducible representation m, of
GLy(FE) associated to the L-parameter

¢¢Z Lg>w—1 <w, (’w’% 0 1>> S GLN(C)

0 |uwlg?
This is a unitary representation.

If £E # F, fix s € Wp\ Wg and set “¥(w,a) = (sws™ a). We call “) the
conjugate of ¥». When E = F,| we simply set ‘) = 1. We say that ¢ is conjugate-
self-dual if 1 = V. In this case, m, is also conjugate-self-dual, i.e., my = my 0 0. Let
Ty = my X 64 be Arthur’s extension of my to GLy(E). We denote the character of 7y
by Oz, (f) = tr(my(f)) for f € C(GLy(E) » 6).

Next, let G be one of the following quasi-split classical groups

SO?nJrl(F)? Sp2n(F)7 Ogn(F)v Un

We denote by G° the connected component of the identity of G. Then G = G° unless
G = OJ,(F) in which case G° = SO1 (F'). As explained in Section [, we sometimes
write SO, (F) = SO3,(F) and Oz, (F) = O3, (F). We denote by Stz the standard

representation of G°, and set

2n if G = Sozn+1 (F), Ogn(F),
N =dim(Stg) = ¢ 2n+1  if G = Sp,, (F),
n it G =U,.

Let W(G) be the set of equivalence classes of conjugate-self-dual representations

~1 if G = SOgpi1(F),
sign = { +1 if G = Spy,, (F), On(F),
(-t ifG=1U,,
1 if G =802,41(F), Spy, (F),

det (1)) = {77 if G =03,(F).

See [GGP, Section 3] for the notions of the signs of conjugate-self-dual representations.
An A-parameter for G° is a G°-conjugacy class of L-homomorphisms

Y: Lp x SLy(C) = +G°
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such that ¢ (W) is bounded. If G = G°, then any A-parameter v: Lp x SLy(C) — LG
can be identified with an element of W(G) by ¢ +— 1|1, xs1,(c)- On the other hand,
when G = Oy, (F), if we denote by ¥(G®) the set A-parameters 1): Lp x SLy(C) — £G°,
then there is a surjective map ¥(G°) — U(G) whose fibers have cardinality 1 or 2. We
say that ¢ € U(G) is tempered if ¢ is trivial on the last SLy(C), i.e., ¢: Ly — GLy(C).
We denote by Pienp(G) the subset of ¥(G) consisting of tempered A-parameters.

Let ¢ € U(G). We decompose

w = 77Dbad S wgood S cw%/adv

where 1004 is @ sum of irreducible conjugate-self-dual representations of the same type
as ¥, and Yp,q is a sum of irreducible representations of other types (see cf., [GGP,
Section 4]). We say that v is of good parity if Yp.q = 0. In general, if we write

t
wgood = @ (bz X Sdia
=1

where ¢; is an irreducible representation of L with ¢;(Wg) bounded, and S, is the
unique d-dimensional irreducible algebraic representation of SLy(C), we set

Ay = P z/2Ze (41, dy).
=1

Namely, it is a free Z/2Z-module with a canonical basis {e(¢;, d;) }1<i<t. Let AZZ be the
kernel of the homomorphism
det: Ay — Z/2Z, e(¢;, d;) — dim(¢; X Sy,) mod 2.

Define A?b as the subgroup of A, generated by elements of the form e(¢;, d;) + e(¢;, d;)
such that ¢; X Sy, = ¢; X Sy, Note that Aj, C A;f. Finally, set z, = >.r_, (¢, d;)-
When F' is non-archimedean so that Ly = Wg x SLy(C), if ¢; = p; K S,,, then we also
write e(¢;, d;) = e(p;, a;, d;).

Let Sy = Cent(Im(¢), C/}\O) be the centralizer of Im(¢)) in G°, and consider the com-
ponent group

So = m(Su/Z(G°)").
Then we have the following.
o If G =S0y,,1(F), then z, € A}, = Ay. Moreover,

o If G = Sp,,(F), then z, ¢ A} # Ay. Moreover,
o If G = Og,(F), then z, € Aj. Moreover,
Sy = AL J(AY + L/2Zzy).
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If we define :Sij similarly to S,, with replacing Cent(Im(4)), G°) with Cent(Im(¢), Os,(C)),
then

o If G =1U,, then

Sq/, = ATZ’/(A?/J + Z/Zsz,)

These isomorphisms are given by sending e(¢;, d;) € Ay to the element in G° (or O9,(C))
which acts on ¢; X S;, by —1, and on the other irreducible components trivially.

1.6. A-packets via endoscopic character relations. Set Ay = Ay /(A +Z/27.2,)

and denote its Pontryagin dual by .Zl;, According to [Ar3, Theorems 2.2.1, 2.2.4] and
[MoK, Theorem 3.2.1] for ¢, one has a multi-set IL, over Irr,,;;(G) and a map

HT/J - ;t?ﬁ? T <'77T>T/J‘

We call II,, the A-packet associated to 1. By identifying .Zl; with a subgroup of //L\/,,
one regards (-, ), as a character of A, which factors through the surjection Ay, — Ay.
In particular, we can consider a sign (s, m), € {£1} for s € Ay.

The A-packet 11, together with the pairing (-, 7), will be determined by the following
endoscopic character relations.

(1) The equation

~ 1

(ECR1) Oz, (f) = = Z (sp, )y Ox(fc)

(G :G°)

ﬂEHw

holds whenever f € C(GLy(E) x 6) and fg € C>(G°) have matching orbital
integrals, where © is the character of 7, and we set

so= Y eldid).

1<i<t
d; =0 mod 2

(2) For s =3 .., e(¢si,d;) € Ay, set P+ as

vo =P RSy, bp=v -1
i€l

Fix a conjugate-self-dual character n. of £ such that there is a classical group
G+ satisfying that L @ ny € ¥(Gy). For fg € CX(Q), taking fq, € CX(GY)
such that

e fcand fq, ® fg_ have matching orbital integrals;

e when G = Oy,(F) and s € A (resp. s ¢ AJ), we further assume that

falg) =0 for g € Og,(F) \ SO, (F) (resp. for g € SO, (F)),

we define

1
fa ) = 1] Gr:Go) D (sveone Te)vanOn, (fa.)

He{i} ® ﬂ—“eme@nn
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Then f{(1, s) is independent of the choice of fi., and the equation

1
(ECR2) fol:8) = tagey 2 (5 50 ™uOn(fo)
(G :G°) =
¥
holds.
Remark 1.6.1. (1) We normalize the transfer factors such that it is consistent

with Arthur’s Whittaker normalization. It gives a precise meaning of “matching
orbital integrals”.
(2) The pair of characters (n;,7n_) determines an L-embedding

MG x G2) — FGe,
and the notion of matching orbital integrals depends on (n,,7n_) or &.

(3) A non-trivial pair of characters (n;,n-) is necessary when G = Sp,,(F') or
G = U, in general. More precisely, if G = Sp,,,(F) and dim(¢,) = 1 mod 2, we
must take 7, = det(¢,). If G = U,, and dim(v),) Z n mod 2, we need to choose
a conjugate-symplectic character 7,, of which there is no canonical choice.

Remark 1.6.2. In [Ar3], Arthur works exclusively with SO, (F'), but we have elected
to work with O, (F') in this paper. For a discussion of why this is natural and preferable,
see the introduction of [AGT].

Suppose that G = O,,(F) and ¥ € ¥(G). We shall explain how to reformulate
Arthur’s results in this setting.

(1) Arthur defines a packet ﬁ¢ over Irryit (SO, (F))/Oq,(F) together with a map

INI¢ — 3‘;, (7] = (-, [7])y. We set II, to be the inverse image of ﬁw under the
canonical map

Irrunit(OQTL(F>> — Irrunit(SOQR(F))/OQH(F>

obtained by taking the orbit of an irreducible component of the restriction.
Then [Ar3, Theorem 2.2.4] gives a map II,, — A, such that the diagram

I, — A,

M, — S,
is commutative. In particular, I, is stable under the determinant twist =
T ® det.

(2) Note that 11, is actually defined as a packet over Irryy;; (SOa, (F') X (Ad(e))). To
fix an identification Og, (F) = SOq,(F') x (Ad(€)), we need to choose € € T\ T°.
Hence the pairing (-, 7), for 7 € II,, depends on this choice.

(3) As in (ECRT), one can consider the distribution

1

Oy(fa) = GG > (s, muOx(fa),  fa € CX(G).
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On the other hand, if one denotes by C'2°(G°)¢ the subspace of C2°(G°) consisting
of f& such that f& o Ad(e) = f&, Arthur considers

OLE) = D (sw [Tl (f3), [G € C(G)"
[n]ell,
They are related such that the diagram

Oylege(ao)
T

C=(G°) C

l H

6°
Cx(G°) —= C

is commutative, where the left arrow is defined by fo — 3(fe+ faoAd(e)). Note

that ©, is a distribution on G, but it is restricted to C2°(G°) in the diagram.

Since fg o Ad(e) has the same transfer as fg, our (ECKT) is the same as the

ECR by Arthur [Ar3, Theorem 2.2.1]. Similarly, (ECR2) is the same as [Ar3,

Theorems 2.2.1, 2.2.4].

1.7. Normalized intertwining operators. For semi-standard Levi subgroups M7y
and M3 of G°, put
N(M7, M;) = {g € G|gM7g™" = M5}
The group M7 (resp. M3) acts on this set by multiplication on the right (resp. the left).
We consider the Weyl set
W(My, My) = M3\N(My, M3) = N (M7, M3) /M.

In particular, we write W (M?) = W(M?, M?) = Ng(M?)/M?. We also set W& =
Neo (T)/T°.

For w € W (M7, M), there is a unique element wy € N (M7, Ms)/T° such that it is a
lift of w, and it maps the Borel pair (B°N M7, T°) of M} to the Borel pair (B°NMs,T°)
of M. Unless G = Oy,(F) and det(w) = —1, we have wy € W and hence the the

Langlands—Shelstad representative wr of wy with respect to spl. See [LSH, p. 228]. We
call w = wr the Tits lifting of w. If G = Oy, (F) and det(w) = —1, then wpe ' € W&
and we have Langlands—Shelstad representative wre~!. Then we set w = wpe~! - € and
call it the Tits lifting of w. Note that w depends on the choice of e.

Let P= MN and P' = M'N’ be standard parabolic subgroups of G with the semi-
standard Levi components M and M’ respectively, such that W (M°, M) # (). For
w € W(M°, M), an irreducible representation 7 of M, and A € a}; ¢, we define a
representation wmy of M’ by wmy(m’) = my\(w ™ m/w) realized on the space of .

Lemma 1.7.1. For w € W(M°, M) and w' € W (M, M"), if we write

ww =w'w - z,
then z belongs to the center Z(M) of M. In particular,

(w'w)my = w'(wmy).
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Proof. Since ww and @'W are two representatives of w'w € W(M°, M"°), we have
z € M°. Moreover, by definition, z preserves the splitting of M°. Hence z € Z(M°).
This completes the proof if Z(M°) = Z(M). If Z(M°) # Z(M), then M is of the form

M = GLy, (F) x -+ x GLy, (F) x Oo(F).
In this case, by calculating
{Ea = eXp(Xa> exp(_X—a) exp(Xa)

for each simple root «, where w, is the simple reflection with respect to o, one can
check z € Z(M). See Section A=3 for the root vectors {X,}. O

By this lemma, for w € W(M°, M"®), we may write M’ = wMw ! as wMw™.

Now we have an intertwining operator

Jp(w,my\): Ip(my) = Ip(wr)
given by (the meromorphic continuation of) the integral
(. m)5)() = | (@ ug)du
(@NG=1NN")\N’

Suppose that M is a proper Levi subgroup, and we are within an inductive argu-
ment. Hence by inductive hypothesis, we have an A-packet IL, for ¢ € ¥(M) (with
all the desired properties) at our disposal. Let = € II,. In particular, = is a unitary
representation of M. Following Arthur [AT3, Section 2.3], [Mok, Section 3.3], we define
the normalized intertwining operator Rp(w,my,¥,) by

Rp(w, mx, ¥x) = rp(w, )" - Jp(w, ),
with
TP(U), 1/})\) = )\(U)) ’ rYA(()) ¢A7 p1\f)_1P’|P7 Q/JF)_l
where the notation is as follows.
e Put ¢y = ay - v, where ay € Z'(Wg, Z(M?)) is a l-cocycle whose class in
HY(Wpg, Z(M°)) corresponds to the character m + eMMN of M (see LM,

Lemma A.1]).
e For any finite dimensional representation p of “M°, we write

L(S7 7% P) = L(S, po ¢1ZJ)> 5(87 ¢> P, wF> - €<S7 po ¢1/)7 wF)
for the associated Artin L- and e-factors. Then Arthur’s modified gamma factor
is defined by

L(1+s,%,p)
714(87 wa Py ¢F) = 5(37 ¢7 P wF)—
L(s, ¢, p)
e Set w™'P' = w ' P'w and write p,-1pp for the adjoint representation of “M°
on

Ad(@) R/ (Ad(@) '/ N A)
with & = Lie(N) and @' = Lie(N).
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e Let Ao be the split component of T°. For a reduced root a of Ap. in G°,
we denote by G, the associated Levi subgroup of G° of semisimple rank 1 and
by Ggs the simply connected cover of the derived group of G,. Let A;(w)
(resp. Ag(w)) be the set of reduced roots a with @ > 0 and wa < 0 (with respect
to B°) such that Gy = Resg,/pSLy (vesp. Resp,/rSUg, /r, (2, 1)), where F, is
a finite extension of F' and FE, is a quadratic extension of F,. Following [KeSH,
(4.1)], we define

Aw) =Mw,vp) = [[ MF/FEvr) [[ MESFor)ME/Fapp) ™
acAq(w) a€Aa(w)
where A\(F'/F,1r) is the Langlands A-factor associated to a finite extension F”
of F.
Recall that Rp(w, my, 1) is regular at A = 0 ([Ar3, Proposition 2.3.1], MoK, Propo-
sition 3.3.1]), and hence we have a well-defined operator
Rp(w,m,¢): Ip(w) — Ip(wm).

When 7 is tempered, taking its L-parameter ¢, we set Rp(w,my\) = Rp(w, 7y, dy).

Let P” = M"” N" be another standard parabolic subgroup of G with the semi-standard
Levi component M” such that W (M, M"°) # (). Then the normalized intertwining
operators satisfy the following multiplicative property.

Proposition 1.7.2. Let m be an irreducible tempered representation of M. Then we
have

Rp(w’w, 71')\) = RP/ (w', ’LU7T)\) o) Rp(’w, 7T)\)
forw e W(M°, M") and w'" € W(M'", M").

Proof. When G = GLy(FE), the assertion was proved in [Sha3], [AxT]. (Note that the
local factors of Shahidi agree with those of Jacquet-Piatetski-Shapiro-Shalika by [Shad]
and hence with the Artin factors by the desiderata of the local Langlands correspon-
dence.)

When G is a classical group and M; = My = Ms, the assertion was proved in [ATr3,
(2.3.28)], [MoK, Proposition 3.3.5] at least unless G = Os,(F'). The general case will
be handled in Section BA=G below. 0J

The following is an important property of v4-factors throughout this paper.

Lemma 1.7.3. Suppose that F' is non-archimedean. Let ¢ and ¢o be two conjugate-
self-dual representations of Wg x SLy(C) of dimension N. Fori = 1,2, define a repre-

sentation Ny, of Wg by
%
houlw) = o, (w, (M50}
0 J|wlp®

If Mgy = Ny, then the quotient
VA(Sa ¢17 ¢E)
’)/A(Sa ¢2) 7vDE)
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is holomorphic at s = 0, and its special value at s = 0 is in {+1}.

Proof. Let 74, be the irreducible representation of GLy(E) corresponding to ¢;. If
Agi = Ag,, then my, and my, share the same cuspidal support, and hence we obtain an
equation of Godement—Jacquet v-factors

’Y(Sa 7T¢1>¢E) = 7(57 Tpas ¢E)

Since (s, Ty, ¥E) is equal to the usual y-factor (s, ¢;,¥g) in the Galois side, it is
enough to consider the quotient v4(s, ¢;, Vg)/v(s, ¢, ¥E). Note that

’YA(SagbzawE) L(].‘I‘S,le) L(1+Sv¢z) . L(1+Sa¢l)

V(s divm) L =s,¢/)  L(1—5¢) L(1—s6:)
If we write the Laurent expansion of L(1 + s, ¢;) as
L(1+ s,¢;) = as™ + (higher terms)
with a # 0, then we conclude that

’)/A(Sa (blawE) _ L(l + 87¢i) _ (_1)m
7(57¢i7wE> s=0 L(1 - 57¢i) s=0 '

This proves the lemma. O

In the rest of this section, we state three main theorems. Before doing them, let us
clarify the dependence of these results.

e The first main theorem (Theorem [CXT) depends on results in Sections A and
4 for proper Levi subgroups.

e The second main theorem (Theorem IT) is for G = GLy(F) so that it is
independent of Section IB. However, it still uses results in Section @74, in
particular, Proposition 2.

e In the third main theorem (Theorem ITOH), we will use results in Sections [
and 2 not only for proper Levi subgroups, but also for other classical groups
G’ such that dim(Stg) < dim(Stg). For more precision, see Hypothesis [T,

1.8. Main Theorem 1: [A27]. We set G to be GLx(E) or a (possibly disconnected)
quasi-split classical group as in the previous subsection. Let P = M N be a standard
parabolic subgroup of G, and let P = M N be the parabolic subgroup of G opposite to
P. Recall that we obtain a Whittaker datum to,; of M° from the F-splitting spl of
G°.

Let m be an irreducible tempered representation of M. Suppose that m admits a
non-trivial to,,-Whittaker functional w. We may also regard w as a to,,-Whittaker
functional on my for all A € aj; . Then w gives rise to a w-Whittaker functional ()
on Ip(my) given by (the holomorphic continuation of) the Jacquet integral

Qm)f = | w(f (@ 'n)x(n) " dn'.

N/
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Here N’ = wyNw, ' and wy = wew)!, where w, and w} are the longest elements in
W& and WM° | respectively.

Let P = M’'N be another standard parabolic subgroup of G, and w € W (M?°, M").
Then we may also regard w as a tw,,-Whittaker functional on wmy. Hence, it gives rise
to a ro-Whittaker functional Q(wmy) on Ip/(wmy).

The following is our first main theorem, which was supposed to be proven in [A27].

Theorem 1.8.1 (cf. [Ar3, Theorem 2.5.1 (b)], [MaoK, Proposition 3.5.3 (a)]). Let m be

]

an irreducible 1oy -generic tempered representation of M.
(1) If w € W(M?) satisfies that wr = m, then
Q(em) o L(e) if G = 09, (F), det(w) = —1,

Qwr) o Rp(w, m) = {Q(ﬂ-) otherwise.

Here
L(e): Ip(m) = Lpe-i(em), (L(€)f)(g) = f(e"g).
(2) Suppose that G = GLy(E). If w € W(M,0(M)) satisfies that wr = 7o 6, then

Q(wm) o Rp(w, ) = Q(m).

This theorem is regarded as the local intertwining relation for generic tempered rep-
resentations. We will prove Theorem [CX in Section D.

Note that the proof of [Ar3, Lemma 2.5.2] was also supposed to be included in [A27).
We will show it in Appendix D.

1.9. Main Theorem 2: [A26]. The second main theorem concerns G = GLy(E).
Recall that we have an involution § on GG. For a function f on G, define a new function

0*(f) on G by

0"()(g) = 1(6(g))-

Let P = M N be a standard parabolic subgroup of G. Note that 8(P) = 0(M)O(N) is
also a standard parabolic subgroup. Let i) be an A-parameter for M, and let 7y, be the
corresponding irreducible unitary representation of M. Suppose that the composition

L x SLy(C) & M — G

is conjugate-self-dual. Then the corresponding representation, which is the irreducible
induction Ip(my), is an irreducible unitary conjugate-self-dual representation of G. For
the irreducibility of Ip(my), see [Berl]. Recall from Section 4 that we have a specific
linear isomorphism

9AI ]p(ﬂ'w) :> Ip(ﬂ'w).
More specifically, we assume that there is an element w € W (6(M), M) such that
w(my 00) = my. Similar to the definition of 4, we have a normalized isomorphism

Ty(w x 0): w(my 06) = my
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as representations of M by using t,,-Whittaker functional on the standard module
T, = w(Zy, o0) of M whose Langlands quotient is my, = w(my 0f). Then we can define
a self-intertwining operator

Rp(e ow, %w)i [p(7T¢) — [p(ﬂ'w)
by the composition

Ro(p) (w,my00,1) Ip(7y(wx0))
AL LN RN

Ip(my) L Topy(my 0 0) Ip(w(my 0 0)) Ip(my).

If we write (h- f)(g) = f(gh) for g,h € G, then we have
Rp(0 0w, y)(h- f)(9) = Re(0 0w, ) f(g - 0(h)).

Hence Rp(6 o w, Ty) Is a constant multiple of 64.
The second main theorem, which was supposed to be proven in [A26], is now stated
as follows.

Theorem 1.9.1 (cf. [Ar3, Theorem 2.5.3], [Maok, Proposition 3.5.1 (b)]). Let P = M N
be a standard parabolic subgroup of G = GLx(E), and let 1 be an A-parameter for M.
Then for any w € W(0(M), M) with w(my o 8) = 7y, we have

Ep((g ow, %¢) = (9,4.

We can say that this theorem is the twisted local intertwining relation for GLy(E).
See also [Ar3, Corollary 2.5.4] for Arthur’s form of local intertwining relation for twisted
GLy(FE). We will prove Theorem I in Section B.

1.10. Main Theorem 3: [A25]. The third main theorem concerns classical groups
over a non-archimedean local field.

Assume that F' is a non-archimedean local field of characteristic zero. Hence Lp =
Wg x SLy(C). For a representation ¢: Wg x SLy(C) x SLy(C) — GLy(C), we define
its Aubert dual ¢: Wz x SL(C) x SLy(C) — GLy(C) by

~

Y(w, ay, az) = P(w, ag, ay).
We say that 1) is co-tempered if ¢ = ngS for some ¢ with ¢|{1WF}X{1SL2(C)}XSL2(C) =1.
Let G be one of the following quasi-split classical groups
SOQn—I—l(F)a SpZn(F>7 O2n(F>a Un

Fix a standard parabolic subgroup P = M Np of G such that M = GLy,(E) x --- X
GLyg, (F) X Gy, where Gy is a classical group of the same type as G. Let ¢y = ¢y ®--- @
Y1 @ 1y be an A-parameter for M, where v; (resp. ¢y) is an A-parameter for GLy, (E)
for 1 <i <t (resp. Gp). It gives the A-parameter

V=B D1 DYDY B DY)

for G. We assume that ¢; = p; X .S, X .S}, is irreducible and conjugate-self-dual.
Let V = C" and decompose

V=Vie---eVieWwweV,u®---dV,
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such that dim(V;) = dim(¢y;) for 0 < i < ¢, together with a fixed isomorphism I;: V; =
V_; for 1 < i <t. We regard v; as a homomorphism ;: Wg x SLy(C) x SLy(C) —
GL(V;). Let &; be the symmetric group on {1,...,t}. We identify 0 € &; with an
element in GL(V; & --- @ V) C M with entries in {0 1} such that o7} (GL(V;) x -+ - X

GL(W))o = GL(VU(t)) - x GL(V,(1)). Via M < G, we also identify o € &, with an
element of GLy(C) = GL(V). On the other hand, for 1 <i <t, we set

et o) MLt 0

in GL(V; ® V_;) according to whether 1); is of the same type as 1)y or not. We regard
u; as an element in GL(V') by setting u;|y, = idy, for j # +i.

Remark 1.10.1. When G = O,,(F') and k; = dim(V}) is odd, since #; is an irreducible
self-dual representation of dimension k;, it must be of orthogonal type. Hence wu; is

always (1-91 g) in GL(V; @ V_;) so that det(u;) = —1.

If G # Oy, (F), following [AT3, Section 2.4], we write Ny = Ny (G, M) for the nor-
malizer of Az in Sy, and define 91, by

Ny = mo(Ny/Z(G)).

When G = Oy,(F), we replace S, = Cent(Inl(w),é\o) with Cent(Im(v), O2,(C)) to
define 91,. Note that I, is generated by Ay, and
{ul' w6 € Z)2Z} x {0 € & [ o) = b (1 <0 <)}

See [Ax3, (2.4.3)]. We have two canonical maps M, — W (M°) and N, — Ay, which are
denoted by by u — w,, and u — s,, respectively. More precisely, for u = spui* ... ui'c €
Ny with sg € Ay, letting I, be the set of 1 <7 <t such that ¢, = 1 and ¢; is of the
same type as ¢y, we have

= so—irz e(pi, a;,b;) € Ay.
€1y,

Let u € My, and let w, € W(M?) be its image. It satisfies that w, 7y = mp for any
my € 1y, Moreover, as in [Ar3, Section 2.4] and [Mok, Section 3.4], there is a linear
isomorphism

(H, %M)%M(wu) T T M
making the diagram

(W, )T (W)
T M T M

iTrM(m)
(W, )T s (wu)
M T M

Tl']\/[(ﬁulm’ljl]vu)l

commutative for any m € M. In this paper, we understand that the symbol (u, 7Tas)7as (w,,)
denotes this map, and we do not separate it into two objects (u, Tys) and Tps(wy,).
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We recall the definition of the operator (u, )7y (wu) : my — may. Note that u € 91y,
normalizes M°. If we regard u as an ¢ element of W(M °), then we have its Tits hftlng
u. ConJugatlon by @ normalizes M and preserves the pinning inherited from G°.

Write 6 for the resultmg automorphism on Me °, and 0 for its dual, an automorphism
of M°. Write u = su. Then s lies in the #-twisted centralizer of v¢,;. The pair
(s,1p) determines a twisted endoscopic datum (M’ s, &) and a parameter ¢, such
that ¢y = £ o ¢pp. The isomorphism (@, Ty )7ar(wy,) is normalized by requiring that
the twisted endoscopic identity

Z <5¢M/77TM'>¢M/@7"M/(fM/) = Z <S'¢71\/I77TM>1/JMtr(<a7 Tan) T (wa) © Tar(far))

WJ\I/GH#)A/I/ ﬂ]y[EHwA/[

holds whenever fy, € C2°(M) and fyp € C°(M') have matching orbital integrals.

We define the normalized self-intertwining operator

(U, Tar) Rp(wa, Tar, ) s Ip(mar) — Ip(mar)
by
(@, Tar) Rp(wu, Tar, ¥an) f(9) = (@ Tar) T (wa) (Rp(wa, Tar, ) £(9)) -

Now we assume that the (multi-)set II, of irreducible components of Ip(mys) for

7y € 1y, is equipped with a pairing (-, 7), satisfying (ECRT), (ECR2) and that
<'7 7T>1ZJ|A¢O = <'7 7T0>1/J0

if 7 C Ip(mar) where my = my, X -+ - Ky, W my with mg € I1,,. See [Ar3, Proposition
2.4.3] and [MokK, Proposition 3.4.4]. Define a distribution fe(,u) on G for u € Ny, by

foltn) = g 3 Ul R B R, ) (. )

T €Ly,

for f € C°(G). Then Arthur’s local intertwining relation ([Ar3, Theorems 2.4.1, 2.4.4],
[MoK, Theorem 3.4.3]) states that the equation

(A-LIR) fa(, spsa) = fa(t,u)
holds for u € 91, where the left-hand side is defined in (ECR2) in Section [A. Notice
that if G = Oy, (F'), then w,, can be in G\ G°, in which case, (A=LIRJ) is [Ar3, Theorem
2.4.4].

On the other hand, in this paper, we consider the following statement for our local
intertwining relation. Fix an irreducible summand m C Ip(my). Then the equation
(LIR) (ﬂ, %M>Rp(wu,%M,’¢M)|7r = <Su,7T>¢ . 1(317r

holds for any u € M. Notice that this statement is slightly different from (A=LIRI).
We clarify the relation between (A=LIRI) and our (ICIRI).

Lemma 1.10.2. Assume the existence of the A-packet 11, together with the pairing
(-, m)y satisfying (ECR) and (ECR2). We assume further that we know that

o Ip(ma) is multiplicity-free for any my € 11y, and
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o for my,mhy € y,,, if 1y 2 Ty, then Ip(my) and Ip(m),) have no common
irreducible summand.

Then (A=LIRI) holds if and only if our (LIR)) holds for each irreducible summand
7w C Ip(mp) and myp € 1y, .

Proof. Note that we do not assume whether II;,, is multiplicity-free. Only in this

proof, we denote the canonical map II;, — Irry,(G) by m — [r], and the multiplicity

of o € Ity (G) in 11y, i.e., the cardinality of the fiber of ¢ under this map, by my (o).

By our assumptions, for any o € Irr(G) with my(o) > 0, there exists exactly one

om € Irr(M) such that o C Ip(oa) and my,, (o) > 0. Moreover, my(0) = my,, (o).
Fix u € My. By (ECR2), (1, sys.) is equal to

ﬁ Z <Su777>1/;@7r(fG) = (G'—1G°> Z Z <Su,7T>w @U(fg>.

welly ' oehrr(G) | m€elly
my(0)>0 \[r]=0
If 7 C Ip(my), since we assume that m appears in Ip(my,) with multiplicity one,
(@, Tar) Rp(wy, Tar, ¥ar) acts on m by a scalar cpr), which depends only on [7] and [my].
Then one can write fg(¢,u) as

fG(l/%U):ﬁ > > ¢ | Oo(fe)

o€lr(G) Tv€lly,,
InCIp(mp),m]=0

1
G > Y | Oslfe)

oclr(G) \ mm€lly,,
my(0)>0 \[ry]=0onm

- e X o0 (fo)
' celrr(G)

My (0)>0
By the linear independence of the characters O,, (A=LIR) holds if and only if

Co = 1 Z (Sus T) -

my(0) &

[7]=0

Note that (s,,7), € {1}, whereas ¢ is a root of unity since
mw SUur <a7 %M>Rp<wua 7’\T:Ma ¢M)

is multiplicative by Proposition 72 and [KMSW, Lemma 2.5.3] (see also the paragraph
in [AT3] containing (2.4.2)). Hence the above equation holds if and only if (s,, )y = ¢,
for all 7 € II,, with [7] = o. This is our (ILIRJ).
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Remark 1.10.3. The multiplicity-free assumptions can be proven in generality using
Moeglin’s explicit construction of A-packets. However, when 1, is tempered or co-
tempered, one can argue more directly as follows. The co-tempered case will be deduced
from the tempered case by the construction (see Theorem 54), and for the tempered
case, the multiplicity-free assumptions are included in [Ar3, Theorem 1.5.1 (b)] and
[MoK, Theorem 2.5.1 (b)]. In Section I8 below, we will need the multiplicity-free
assumptions for slightly more general parameters, which we will prove in Lemma [CG1.
In this paper, except for Section 6, we may identify (A=LIR]) with our (ILIRI).

In light of the inductive setting as in [Ar3, Chapter 7] in which [A25] is positioned,
as explained in Sections [l and X3, we are free to assume the following.

Hypothesis 1.10.4. There are A-packets satisfying (ECRI), (ECR2) and (A=LIRI)
associated to

e all tempered L-parameters for G;
e all A-parameters for G’ with G’ any classical group such that dim(Stg) <
dim(St@).
In particular, we have the A-packet I, for ¢p, € W(M), where M is an arbitrary
proper Levi subgroup of G.

We state the third main theorem, which was supposed to be proven in [A25].

Theorem 1.10.5 (cf. [Ar3, Section 7.1], [Mak, Section 8.2]). Assume Hypothesis
L. 10.4.

(1) For any co-tempered A-parameter 1) = éﬁ\ € U(G), we can construct an A-packet
I, together with a pairing (-, m), for m € Il, which satisfies (ECRI) and
(ECR2). Moreover, 11, is a (multiplicity-free) subset of Irr(G).

(2) Let P = M Np be a parabolic subgroup of G with M = GLg,(E) X - - x GLy, (E) X
Gy, and let Yy = ng =P D - DY DYy be a co-tempered A-parameter
for M such that 1; is irreducible and conjugate-self-dual for 1 < i < t. Set
Y = 1oy € U(G) with v: LM — LG. Then (LIR) also holds for every
irreducible summand ™ C Ip(mar) for any mar € Iy, .

Remark 1.10.6. The A-packet Il for a given co-tempered A-parameter ¢ = gg is
constructed by Aubert duality from the tempered L-packet II,. To be precise, see
Theorem b4 below. At this stage, it is not known that each representation = € Il
is unitary. The unitarity will be proven after establishing [Ar3, Proposition 7.4.3] and
[MoK, Proposition 8.4.2].

For co-tempered A-parameters we will establish (ECRI) and (ECRZ) in Section
H, whereas (ILIRJ) will be proven in Sections B and [@ using results in Section @. As a
consequence of Theorem [CTOA together with Lemma I, we have the following.

Corollary 1.10.7. Assume Hypothesis [[.10.4. For any co-tempered A-parameter 1 €
U(G) and for any u € Ny, we have an identity

fé(1/}7 Swsu) = fG(wa u)
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of distributions on G.

2. NORMALIZATIONS OF INTERTWINING OPERATORS

The purpose of this section is to prove Theorem [CX. Notice that almost the same
assertion was already proven by Shahidi [Sha7], but he used his own normalization of

the intertwining operators. So what we have to do is to compare Arthur’s normalization
with Shahidi’s.

2.1. Local coefficients. Let to = (B°, x) be a Whittaker datum for G°. We say that
an irreducible representation 7° of G° is tv-generic if

dim¢c Homy (7%, x) # 0,
in which case
dim¢ Homy (79, x) = 1

by the uniqueness of Whittaker functionals. For G = O,,(F), we also say that an
irreducible representation 7 of G is tv-generic if

dim¢ Homy (7, x) # 0,

but as we will see in the next lemma, the uniqueness of Whittaker functionals does not
necessarily hold. Recall that we have chosen an element ¢ € T\ T° C G\ G° with
€2 = 1 such that € preserves spl. In particular, x o Ad(e) = y. For any representation
7° of G°, we define a representation er® of G° by en°®(g) = 7°(e ' ge).

Lemma 2.1.1. Suppose that G = Oq,(F'). Let m be an irreducible vo-generic represen-
tation of G.

(a) If m

Go 1s irreducible, then T|go is w-generic and we have
dim¢ Homy (7, x) = 1.

(b) If w|ge is reducible, then any irreducible component of w|ge is vo-generic and we
have

dim¢c Homy (7, x) = 2.
Proof. Since
Homy (7, x) = Homy (7|ge, X),

the assertion (a) follows.
Assume that 7|ge is reducible. Let 7° be an irreducible component of 7
have 7|go = 7° @ en® and

co. Then we

Homy (7, x) = Homy (7°, x) @ Homy (em®, x).

Since y o Ad(e) = x, we see that 7° is to-generic if and only if er® is to-generic. This
implies the assertion (b). O
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Remark 2.1.2. In Lemma 21 (b), the multiplicity two statement may be a bit
disconcerting to the readers. While for connected reductive groups G°, the stabilizer
of a Whittaker datum is the center of G°, in the case of G = Oy, (F'), the stabilizer of
a Whittaker datum contains an extra group, generated by e. This group (¢) acts on
Homy (7, x) with two possible eigenvalues and each eigenspace has dimension at most
1. In other words, the multiplicity one statement is restored if we take into account the
full symmetry of the situation.

Let P° = M°N be a standard parabolic subgroup of G°. The heredity of Whittaker
functionals asserts that if 7° is an irreducible essentially unitary representation of M°,
then

dime Homy (Ind%. (7°), x) = dime Hompnage (7°, X).
(See [Rad], [CS, Corollary 1.7], [WII, Theorem 15.6.7], [WI2, Theorem 40]; note that
this equality holds for all admissible representations 7° when F' is non-archimedean.)

In particular, this dimension is at most 1.
For G = O, (F), we modify this property as follows.

Lemma 2.1.3. Let G = Oy, (F), and let P = MN be a standard parabolic subgroup of
G. Set P°=PNG° and M° = M NG°, so that P = P° <= M = M°. Let m be an
irreducible essentially unitary representation of M.

(a) If M # M°, and 7|y is irreducible, then
[p(ﬂ')‘go = Indgz (W’Mo).
Moreover,
dim¢ Homy (Ip(7), x) = dime Hompnp (7, x) < 1.

(b) If M = M°, or |y is reducible, then for any irreducible component ©° of |y,
we have
Ip(m) =2 Ipe(n°) = Ind%. (7°).

Moreover,

1
———— dim¢ Homy (Ip(7), x) = dim¢e Hompnp (, x) < 1.

(G:G°) (M : Me)
(Note that the left-hand side is an integer.)

Proof. Suppose that P # P°. Then G/G° = M/M°, and the restriction map gives an
isomorphism
Ind$ (7)|ge = Ind% (7|0 ).
This implies the assertion (a).
On the other hand, if P = P°, or if 7|y is reducible, for any irreducible component
7° of 7|are, we have m 2 Ind}jo(7°). Then Ip(m) = Ipo(7°). If we denote by Ij.(7°)
(resp. Ip.(7°)) the subspace of Ip.(7°) consisting of functions f on G whose supports
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are contained in G° (resp. G \ G°), then Ipo(7°)
have isomorphisms

co = I5.(7°) & [ 5o (7°). Moreover, we

I (7°) = ndSe (7°), f = flae,
Tpo(°) = elnde (7°), f = (7' f)lee
as representations of G°, where (¢! f)(x) = f(ze!). In particular, we have
Ip(m)|ge =2 IndSe (7°) @ eIndSe (7°).
Since x o Ad(e) = x, the following are equivalent:
e Hompyn (7, x) # 0;
e Hompynpse (7°, X) 7é 0;
e dime Homy (Ind$. (7°), x) # 0;
e dime Homy (eIlnd% (7°), x) # 0.
Hence, in this case, we have
dim¢c Homynpy (m, x) = (M : M°),  dimec Homy (Ip(7), x) = 2.
This completes the proof. O
Fix two standard parabolic subgroups P = M Np and P’ = M'Np: of G such that
W(M°, M) # 0, an element w € W(M°, M), and an irreducible unitary t;-generic
representation m of M. Choose a non-trivial tv,,~Whittaker functional w on 7. For
A € djyc, define a to-Whittaker functional Q(my) = Q,(m) on Ip(my) as in Section
[R. Then Q(m,) is holomorphic and nonzero for all A (see [CS], [WIT, Theorem 15.6.7],
[WI2, Theorem 40]). Similarly, define a w-Whittaker functional Q(wmy) = €, (wmy)
on Ip(wmy), where we regard w as a toy,-Whittaker functional on wr. When G =

G°, following Shahidi [Sha?, p. 333, Theorem 3.1], we define a meromorphic function
Cp(w, ) of A, called the local coefficient, by the equation

Cp(w, my) - Q(wmy) o Jp(w, my) = Qu(mn).

Note that such a function exists and does not depend on the choice of w by the unique-
ness of Whittaker functionals.

When G = Oy, (F), this uniqueness may fail, but we can define an analogous function
as follows.

Lemma 2.1.4. Suppose that G = Oy, (F). Then there exists a meromorphic function
Cp(w, ) of A such that

Cp(’w, 7T)\) . Qw(wﬂ',\) o Jp(w, 7T,\)

B {Qw(w,\) if det(w) =1
C \Qulemy) o L(e)  if det(w) = —1,

where L(€): Ip(my) — L.pe-1(emy) is given by (L(€) f)(g) = f(e 'g). Moreover, Cp(w,y)
does not depend on the choice of w.

To prove this, we need the following.
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Lemma 2.1.5. Suppose that G° = SOy, (F), P # P° (and hence eP°e™* = P°), and
det(w) = 1. Let w° be an irreducible unitary vo,;-generic representation of M°. Then
we have
Cpo(w, emy) = Cpo (w, 7y).
Proof. Since P # P°, we have
eNpe ' = Np, eNpe ' = Np, ewel=w, ewpe ! =w
with wy = wew)!, where w, and w)! are the longest elements in W and W
respectively. Fix a non-trivial w,,-Whittaker functional w® on 7°. Since y o Ad(e) = ¥,
we may regard w° as a t,,-Whittaker functional on er®. Then w® induces to-Whittaker
functionals Q(73) and Q(er3) on IndS. (7)) and Ind% (en3), respectively. By definition,
we have
Qery) = Q(73) o Ad(e)",
where Ad(e)*: Ind%: (er3) — IndS.(7%) is the linear isomorphism given by Ad(e)*f(g) =
f(ege™1). Similarly, we have
Jpo(w, my) o Ad(€)* = Ad(e)* o Jps(w, €m3).
Hence we have
Qers) = Q(73) o Ad(e)*
= Cpo(w,n3}) - Qwrs)

= Cpo(w,73) - Q(wn}) o Ad(€)* o Jps(w, €73)
= Cpe (IU, 7]—;\) ’ Q(Ew i) o Jpe (w’ Eﬂ—;\)

(w, 73) -

m
Q(wens) o Jpo(w, ems).

o Jpo(w,75) o Ad(e)*

=C polWw, ™ K
This implies the lemma. 0
Now we prove Lemma 214,

Proof of Lemma Z-13. First, we assume that M # M°, and w|ysp is irreducible. Then
the existence of Cp(w, 7)) follows from Lemma 213 (a). Moreover, since w is unique
up to a scalar, C'p(w, 7)) does not depend on the choice of w.

Next, we assume that M = M°, or 7|y is reducible. Fix an irreducible component
7° of m|pe. Note that 7° is oy-generic. If M = M°, then w is unique up to a scalar. If
M # M° (so that e € M\ M° and 7|0 = 7° @ en®), then by Lemma P11 (b), we may
take a basis w,w’ of Homyqy (7, x) such that w|ge = 0, W[ = 0. We identify 7 with
Ind}}. (7°), so that 7° (resp. ex®) is the subspace of Ind}%. (7°) consisting of functions f
on M whose supports are contained in M° (resp. M \ M°). Then w can be realized by
w(f) = w°(f(1)) for f € Ind}f. (7°), where w® is a non-trivial t,,-Whittaker functional
on 7°. In both cases, we have Ip(m) = Ipo(7°) and

Ip(mlge = Ij(n°) @ I5.(n°)

as in the proof of Lemma ZT23. Then Q,(my) (resp. Q,(emy) o L(€)) is a nonzero
element in Homgy (Ip(my), x) which is identically zero on Ip.(7°) (resp. I (7°)). In
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particular, Q,(m,) and Q,(emy) o L(¢) are linearly independent, and hence form a basis
of Homy (Ip(7y), x) by Lemma (b). On the other hand, Q,(wmy)oJp(w, 7)) is also
an element in Homy (Ip(7y), x) (provided that Jp(w,my) is holomorphic at ) which
is identically zero on Ip.(7°) (resp. Ip.(7°)) if det(w) = 1 (resp. det(w) = —1). This
proves the existence of the desired function Cp,,(w, y) with respect to w. If M = M°,
then Cp,,(w,m) does not depend on the choice of w by the uniqueness of Whittaker
functionals.

Finally, we assume that M # M°, and 7|y is reducible. In particular, we have
ePe ! = P. Recall the isomorphisms

I (7°) = IndSe (7°), f— f
I5o(7°) = dSe (en®), f— (L(e)f)

If det(w) = 1, then the restriction to I (7°) of the equality in the statement of the
lemma yields

G°,

GO.

Cpw(w, my) = Cpo(w, 73).
Similarly, if det(w) = —1, then the restriction to Ip.(7°) yields
Cpu(w,m) = Cpo(we ™, €m3),

noting that Jp(w, my) = Jp(we ™! emy) o L(e).

Now we switch the roles of 7° and er®, i.e., we identify 7 with Ind}}. (ex®), so that er®
(resp. m°) is the subspace of Ind}7. (e7®) consisting of functions f on M whose supports
are contained in M° (resp. M \ M°). Then w’ can be realized by w'(f) = w°(f(1)) for
f € Ind}j.(em®), where w® is now a non-trivial w,,-Whittaker functional on er®. The
same argument proves the existence of the desired function Cp,,(w,m)) with respect
to w’ and shows that

CP,w'(UJ, 7T,\) = {

By Lemma PZT3, we have

Cpo(w, emy) if det(w) =1,
Cpo(we ™, 7)) if det(w) = —1.

CP,OJ’ (w7 ﬂ—)\) - CP,LU (w7 7T)\) .

This shows that Cp,(w, ) does not depend on the choice of w and completes the
proof. O

In addition, from the proofs of Lemmas P13 and 214, we can deduce the following
relation between local coefficients for Oq,(F') and those for SOs, (F).

Lemma 2.1.6. Suppose that G = Os,(F) and det(w) = 1. Then we have
Cp(w,my) = Cpe(w, 73),
where 7° is an arbitrary irreducible component of 7|pye.

Now we assume that 7 is tempered. Let ¢ be the tempered L-parameter of m. To
show Theorem X it suffices to prove the following.
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Proposition 2.1.7. In each situation in Theorem I8, the function Cp(w, 7)) rp(w, dy)
18 holomorphic and equal to 1 at A = 0.

We will prove Proposition 2174 in Sections 24 and 4. By the next lemma, which
follows from the definitions, it suffices to consider Proposition 22177 in the following two
situations.

(1) G =G°, or G = 09,(F) and det(w) = 1, and wr = ;
(2) G = 09, (F), det(w) =1 and wer = 7.
Lemma 2.1.8. Suppose that G = O, (F) and det(w) = —1.
e We have
Jp(w, my) = Jeper(we™t, emy) o L(e)
so that Cp(w, 7)) = Cepe—1(we™t emy).
o We have rp(w, ¢y) = repe-1(we™t, ¢y).
2.2. The maximal case. Let P = MNp and P’ = M'Np be standard maximal

parabolic subgroups of G such that W (M° M) # (). From Lemma TR, we may
assume that

o if G = Og(F), M = GLi(F), and k > 1 is odd, then P’ = ePe~! and M’ =

eMe™! so that W (M°, M) # ();

e otherwise, G = GLy(E), or M = M’ so that W (M°, M) # {1}.

In either case, let w be the unique non-trivial element in W(M°, M').
First suppose that G = GLy(E) and M = GLy,(F) x GLpy,(E) so that M’ =

GLn, (E)xGLy, (E). We write m = m K7y with irreducible tempered representations 7
and 7y of GLy, (E) and GLy, (E), respectively. If we denote the L-parameters of m; and

7o by ¢n, and ¢, respectively, then we denote by L(s, ¢r, ® ¢r,) and e(s, ¢r, @ bry, VE)
the Artin factors associated to the tensor product of the standard representations.

Lemma 2.2.1. The function Cp(w,my) - rp(w, ¢)) is holomorphic and equal to
L(17 ;T/1 ® ¢7T2)
L(1, ¢, ® 9,)

at A =0.
Proof. If we write my = m| - |3 W mo| - |3 with s1,s0 € C and put s = 51 — s9, then we
have, by definition,
L(s, ¢m ® ¢y,)

S, bm ® Oy, VE)L(1+ 5,6, @ GY,)
On the other hand, by [Sha7, Theorem 3.5] (see also Section 2@ below), we have
e (s, m x Y, YE) LS (1 — s, 7y X m))

LSt (s, X ) ’
where the superscript Sh indicates Shahidi’s local factors. We know that

LSh<377T1 X 7-[';/) = L<Sa¢ﬂ1 ® ¢7¥2)7 €Sh(877T1 X W%/awE) = 6(87¢7r1 @ ¢;/27¢E)

rp(w, Pr) = =

CP(w7 7T)\) =
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since these local factors agree with those of Jacquet—Piatetski-Shapiro—Shalika by [Sha4]
and the desiderata of the local Langlands correspondence. This implies the lemma. [

Next suppose that G is a classical group, and write M = GLi(E) x Go. Note
that M’ = M unless G = Oq(F), M = GLg(F), and k£ > 1 is odd, in which case
M’ = eMe . We write 7 = 7 X 1y with irreducible tempered representations 7 and
7o of GLg(F) and Gy, respectively. If we denote the L-parameters of 7 and my by
¢, and ¢r,, respectively, we denote by L(s, ¢, ® ¢r,) and (s, ¢r ® ¢r,, ¥g) the Artin
factors over F associated to the tensor product of the standard representations. We
also denote by L(s, ¢, R) and £(s, ¢,, R, 1) the Artin factors over F associated to the
representation R of “GLy(E) given by

Sym2 if G = SOQn—i-l(F)a
N’ if G = Sp2n(F)7 OQn(F)a
Asait  if G =U,, n=0mod 2,
Asai™ if G =U,, n=1mod 2.
(See [GGP, Section 7] for the definition of the Asai representations Asai™ and Asai™.)

Lemma 2.2.2. The function Cp(w,my) - rp(w, ¢,) is holomorphic and equal to
L(17¢7\'/®¢7TO)L(17 ’\T/7R)
L(1, ¢ ® ¢y) L(1, ¢-, R)

at A = 0.

Proof. If we write my = 7| - |3 X my with s € C, then we have by definition
L(s, ¢r, St @ StV)
(s, ¢y, St ® St”, ) L(1 + 5, ¢r, St @ St)
« L(2s,¢., R)
e(2s, 07, R,p)L(1 + 25, 6., R)
Here L(s, ¢, St @ St") and (s, ¢, St ® St¥,¢p) are the Artin factors associated to the

L-parameter ¢, of m and the tensor product representation St ® St", where St is the
standard representation of “GLy(E) or “G§. Note that

L(s,¢r, St ®StY) = L(s, ¢, ® ¢, ),
e(s, 0r, St @ StY,1r) = Ao - £(5, 67 @ by, Vi),

where \g = 1 unless [F : F| = 2 (so that G = U,, and M = GLy(E) x U,,), in which
case,

rp(w, ) = AMw) x

Xo = AE/F, ).
See e.g., [D, Section 5.6]. On the other hand, by [Sha, Theorem 3.5] (see also Section
28 below), we have
eSh(s,m, St @ StY, )L (1 — s, 7V, St ® St)

o -1
Cp(w,m) = Mw) ™ % LSh(s, 7, St ® StY)
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eSh(2s, 7, R, ¢p) L (1 — 25,7V, R)
L% (2s, 7, R) ’

where the superscript Sh indicates Shahidi’s local factors. Here, when G = Oy, (F'), we
have det(w) = 1 by the assumption at the beginning of this subsection, and by Lemma
214, the above equality holds if we set

L (s, m,St ® StY) = L (s, 7°, St ® StV),
e (s, 7,8t ®@ StV ¢p) = (s, 7°, St @ StV, ),
where 7° is an arbitrary irreducible component of 7|y.. Putting
L(s, 7 x m)) = L% (s, m,St ® StV),
M (s, T x ), YE) = Ayt - % (s, m, St ® StV ),
by Proposition B~ below, we have
L(s, 7 x my) = L(s, ¢, @ gbxo), (s, T x Ty, VE) = &(s, ¢, @ beoa@DE)

Also, by [Hed], [CST], [Shan], [Hed], we have
LSh(S7 7—7 R) = L(S7 ¢T7 R)7 é\Sl'l(<5;7 T’ R7 r(ﬁF‘) - 5(87 QST? R? wF)’

This implies the lemma. H

2.3. Preliminary to the general case. Now we consider the general case. Recall that
U is the unipotent radical of the Borel subgroup B°. Let P = M Np and P’ = M'Np
be standard parabolic subgroups of G such that W (M°, M'°) has an element w whose
representatives lie in G°. Then by [Sha?, Lemma 2.1.2], we may take standard parabolic
subgroups P; = M;N; of G for 1 <i < n + 1 with the following properties:

e P=P and P = P,,1;

e for each 1 <i < n, there exists a semi-standard Levi subgroup G; of G contain-
ing M; such that P; N G; is a maximal parabolic subgroup of GG; and such that
the element w; = wf?wéwf belongs to W (My?, M?,,), where w} is the longest
element in W*;

W =W, Wi;

e for each 1 <17 <n, we have

Ty = Ty, © Ad(W0;) 'y,
where T, is the Lie algebra of Ny, = NpNw 'Uw for w € W, and w; =
Wy, - - - w; (with interpreting w},,; = 1).
This gives rise to a factorization of the intertwining operator
Jp(w,m\) = Jp, (Wp, Wy—1 -+~ wymy) 0 -+ 0 Jp, (wa, wimy) © Jp, (w1, )
(see [Sha2, Theorem 2.1.1]) and hence of the local coefficient

CP(U),WA) = HCPi<wi7wi—1 e -w17r,\)
i=1
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(see [Sha2, Proposition 3.2.1]). This also gives rise to a factorization of the A-factor

"""" =

Aw) = [T Aw:).
i=1
Moreover, since

~

N, =

~

vy B A(D)) Ty ® -+ B ATy - W1) T,

=D

we have
n

—_— . DY \/
L(S, T, pwflp/‘P) = H L(S, W;—1 W1T N, pwi—lpi+l‘Pi)7
=1
n

8(8, WA,owlP’|P7¢F> = H5(87wi—1 T WTN, pz/uflpi+1|pia 77Z)F)
i=1

Hence we have .
TP(U)JT,\) = HTPi(wiy Wi—1 - ~w17r,\).
i=1

Since the local coefficient Cp, (w;, w;_1 - - - wymy) and the normalizing factor rp, (w;, w;_1 - - - wymy)
agree with those for the intertwining operator

IndIGDZ (wi—l s w17r,\) — IHdIGgii+l (U,)l s w17r>\),

and G; is the product of general linear groups and a (possibly trivial) classical group,
this allows us to use these computations to attack Proposition 22174 in general. We will
see it in the next two subsections.

2.4. The case of general linear groups. Suppose that G = GLy(FE) and M =
GL,,(F) x --+ x GL,, (E). Put I = {1,...,m}. Write 7 = m X .-+ X 7, with
irreducible tempered representations 7, ..., 7, of GL,, (E), ..., GL,, (F), respectively.
We denote by ¢,, the L-parameter of m;. We regard w as an automorphism of I such
that wm = m,-1() & -+ - W 7,-1,). Then by Lemma 2271 and Section 23, the function
Cp(w,my) - rp(w, ¢y) is holomorphic and equal to

H A(’ﬂ'z‘,ﬂ'j)
(4,7) Einv(w)
at A = 0, where we set
inv(w) =A{(i,j) € I x I'i < j, w(i) >w(j)}

and

L(1,6Y, ® ¢,
(L, 6, ® 6,)

A(ﬂ'i, 7Tj) =

We may write

H A(ﬂ'i”]‘rj): H A(O'l,O'Q)n(UI,O'Q)’

(4,7)€inv(w) (01,02)
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where (01, 09) runs over ordered pairs of irreducible tempered representations of general
linear groups and

n(oy,09) = [(I(01) X I(02)) Ninv(w)|
with I(oy) = {i € I |m; = oy }. Since A(oy,09) =1 if 01 = 09 and A(o1,02)A(02,01) =

1, we have
H A 0_1’0_2 nal 02) o H A 0_1,0_2 n (01,02)—n(o2, 0'1)

0'1 0'2 {Ul 0'2}

where {0, 05} runs over unordered pairs.

Proof of Theorem IZA (1) for G = GLy(F). Assume that P = P’ and wr & 7. It
suffices to show that

n(oy,09) = n(og, 01).
) = I1(01,09) U Is(01,09) with

In(or,02) ={(i,j) € I(01) X I(02) |i < j},

Ii(oy,02) ={(i,)) € I(o1) x I(02) [P < j, w(i) <w(j)},

Iy(o,02) = {(i,)) € I(o1) x I(02) | i < j, w(i) > w(j)}-
Since wm = 7, we have m,15 = 7 for 1 < i < m. Hence the map (i,j)
(w™(i),w™1(j)) gives a bijection

Io(er,02) = Ij(o1,02) = {(i.4) € I(n) x I(0) |w(i) < w(j)}.

Note that 1j(o1,09) = [1(01,092) U I5(01, 02) with

Ly(01,02) ={(i,5) € I(01) x [(02) |i > j, w(i) <w(j)}-

Since the map (i, 7) — (j,7) gives a bijection I(oy,09) LN Iy(o9,01), we have

We consider the set Iy(o1, 09

n(o1,02) = |I(01,09)| = [I3(01, 02)| = n(o2, 01).
This completes the proof of Proposition T4 in this case, and hence Theorem I (1)
for G = GLy(E). O

Next, we consider Theorem & (2). For a representation o of GLy(F), define its
conjugate ‘o by ‘o(x) = o(T). Hence o 060 = g if o is irreducible. Since L(s, ¢y, ®
o) = L(s, 00, ® @), we have A(°oy, 0y)) = A(01,02), so that

[T Aler, 00" = ] Alor, 0p)" (012 eloro),

(01,02) [01,02]
where [07, 03] runs over orbits under the action (o1, 09) — (‘o5 , “0y’) and
n'(o1,09) = n(oy,09) +n(°oy, ‘o)),
2
e\01,09) = ———.
o) o e

Moreover, since

o A(oy,09) = 1if [01, 03] = |02, 01];
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o A(oy,09)A(09,01) = 1;
e e(01,09) = e(09,01),

we have

H A 0_1’0_2 n (01,02)/e(01,02) _ H A(O_l’0_2)(n’(al,og)—n/(ag,al))/e(al,az)’

[o1,02] [[o1,02]]

where [[07, 02]] runs over orbits under the action [0y, o] > [02, 01].

Proof of Theorem ¥ (2). Assume that wm = wo . This is equivalent to saying that
Tw-13) = “my 1 for 1 <@ <m. It suffices to show that

n'(o1,09) = n'(09,01).

Put

Then the map (i,7) — (,5) = (w™(m+1—j),w(m+1—1)) gives a bijection
)

{(i,5) € I(o1) x I(02) |i < 5} =5{(i",§') € I(“03) x I(“0) |w(i’) < w(j')}.

Note that the left-hand side is I(oq,09) U I3(01,02), whereas the right-hand side is
L(‘oy,%0)) U I3(°0y, “oy). Hence

[1i(01,09)| + [I2(01,02)| = |13, “o )| + | I5(“03, “o7) .
This implies that

Ii(01, 09)| + [ I2(01, 02)| + |11 (03, “o )| + | I2(“03, “o7)|

= |L(%03, o)) + | I5(03, “a))| + [Ti(o1, 02)| + |3(01, 02)]
so that

n'(01,02) = |I2(01,02)| + |I(°03, o)
= |I3(01,02)| + |I3(°03, “07)| = n'(02, 01),

where the last equation follows from the map (4, 7) — (4,4). This completes the proof
of Proposition 2177 in this case, and hence Theorem [T (2). O

2.5. The case of classical groups. We now consider Theorem &1 (1) for classical
groups. Suppose that G is a classical group and M = GL,,, (E)x---xGL,, (E)xGy. As
explained after Proposition ZZ170, by Lemma T8, it suffices to consider the following
two situations.

(1) G =G°, or G = 0y,(F) and det(w) = 1, and wr = 7,

(2) G = Og,(F), det(w) =1 and wer = 7.
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We consider the general situation for a moment. Put IT = {1,....m}, I- =
{-1,...,—m},and [ = [T UI". Writem =7y ¥ --- K 7, K 1 with irreducible tem-
pered representations 71, . . ., T, o of GL,, (F), . Gan( ), Go, respectively, and put
7 ="°7/ forie IT. We denote by ¢, (resp. gbﬂo) the L-parameter of 7; (resp. mp). We
regard w as an automorphism of I such that w(—i) = —w(i) for all 7 € I and such that
wm = Ty-11) M-+« B 7-100) M 9. Then by Lemmas 2271, 222 and Section P23, the
function Cp(w,m)) - rp(w, ¢y) is holomorphic and equal to the product

H A(TMTJ) H B 7'1771'0

(4,7)€invy (w) i€inva (w)
at A = 0, where
invy (w) = {(i,5) € I'* x I|i < |j|, w(i) > 0, w(j) > 0, w(i) > w(j)}
U{(i,5) € IT x I|i < |j], w(i) < 0, w(j) > 0}
U{(Gi,§) € I* x I|i < |j], w(i) <0, w(j) <0, Jw(i)] < hw(j)]},
invy(w) = {i € I'" |w(i) < 0}

and
L(1, 67 ® ¢r,)
L(1,¢r, ® ¢Y)’

L(17 qu\{l & gbﬂo) L(L ¢¥17 R)
L(1,¢r, @ ¢3,) L(1, ¢r,, )’

H A(THTJ H A 017 n 01702)7

(i,5)€invy (w) (01,02)

A(TZ‘,TJ‘> = B(Tﬁﬂ'o) =

First, we may write

where (07, 05) Tuns over pairs of irreducible tempered representations of general linear
groups and

ni(o1,02) = |(I(01) X I(02)) Ninvy(w)]
with I(0) = {i € I|; = o}. Since L(s,°ps, @ “¢,) = L(s, 05, @ ¢},), we have
Aoy, o)) = A(oy,02), so that

H A(01702)m(o1,02) — H A(0_1’0_2)TL/1(0'1,0'2)/6(0'17U2),

(01,02) [01,02]
where [07, 03] runs over orbits under the action (oy, 03) — (o5, “0y) and
ni(o1,02) = ni(o1,0) +nai(oy, oy,
2
e(oy,09) = Tovoal oroall
Moreover, since
o A(oy,09) = 1if [01,09] = |09, 01];

o A(oy,09)A(09,01) = 1;

o e(01,02) = e(02,01),
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we have
H A(O’l, O,Q)n/1(01,a'2)/€(01,0'2) —_ H A(O’l, 0.2)(TL/l(0’1,0’2)7’!7‘/1(0'270'1))/6(0'1,0'2)’
[o1,02] [[o1,02]]

where [[07, 02]] runs over orbits under the action [0y, 03] — |02, 01]. Similarly, we may

write
H B(r;, m) = HB(U, )27,

i€inva (w)
where o runs over irreducible tempered representations of general linear groups and
na(o) = [I(o) Ninve(w)].
Since L(s, “¢o @ pry) = L(s, 0o @y, ) and L(s, ‘¢, R) = L(s, ¢, R), we have B(o, m) =
Lif o VNU and B(o, 7o) B(‘0 7r0)f1 so that
(o)

HBO’ﬂ'O )t HBU?TO "2(”) n2(%o v)
[o]

where [0] runs over orbits under the action o +— ‘g

Proof of Theorem I8 (1) for classical groups G. Assume that wr = 7, or wer = 7
(in which case, G = Oy, (F)). It suffices to show that

ny(o1,02) = ny(02,01), na(o) =ny(‘c”).

First we consider the set
8

I°(01,00) = {(i,§) € I(01) x I(02) | i > 0,65 >0, < |j|} = | | I}(01,02)
k=1

for 0 = &, where

(o1, 00) = {(i,5) € I™(01) x I’(02) |0 < |5, w(i) > 0, w(j) >0, Jw(i)| < w(5)[},
L(o1,02) = {(i,§) € I"(01) x I’(02) | < |j], w(i) > 0, w(j) > 0, [w(@)| > [w(3)[},
I5(o1,00) = {(i,5) € I"(00) x I°(02) |0 < |5, w(i) > 0, w(j) <0, [w(i)| < w(5)[},
I§(o1,00) = {(i,5) € I"(00) x I°(02) i < |5, w(i) > 0, w(j) <0, [w(i)| > Jw(5)[},
I5(01,00) = {(i,5) € I"(00) x I°(02) i < [j], w(i) <0, w(j) >0, lw(i)| < w(7)[},
Ig(o1,02) = {(i,j) € I* (1) x I(e2) [0 < |j], w(i) < 0, w(y) > 0, [w(@)] > [w(j)[},
L(o1,02) = {(i,§) € I"(00) x I*(02) | i < |j], w(i) < 0, w(j) <0, [w(@)| < [w(3)[},
L(o1,02) = {(i,j) € I"(00) x I’(o2) | i < |j], w(i) <0, w(j) <0, Jw(i)] > Jw(5)l}
N I(o). Since wr = 7 or wer = w, the map (i,7) — (7,7) =

with I°(o) = I°
(w=H(4), w™(4))
J(01,02) = {(i',§') € I(01) x I(02) [w(i') > 0, w(j") > 0, w(i') < |w(j")|}

gives a bijection I°(0y, 09) NG (01,02), where
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k=1
with
T (o1,09) = {(i,7) € I'*(o1) x I*(09) | 1| < |j], w(i) > 0, w(j) > 0, w(i) < [w(5)]},
Ty (01, 00) = {(i,7) € I'*(00) x I (02) [ |i] > [j], w(i) >0, dw(j) > 0, w(i) < [w(j)[},
J3(o1,02) = {(i,5) € I'*(00) x I (02) |]i] < [j], w(i) > 0, dw(j) > 0, w(i) < [w(5)l},
T (o1,02) = {(i,5) € I'*(01) x I (02) |]i] > [j], w(i) > 0, dw(j) > 0, w(i) < [w(5)|},
J3(o1,02) = {(i,5) € I"(01) x I (02) |]i] < [j], w(i) > 0, dw(j) > 0, w(i) < [w(5)I},
Jg(or,02) = {(i,5) € I"(01) x I*(02) |]i] > [j], w(i) > 0, dw(j) > 0, w(i) < [w(5)I},
J2(01,09) = {(i,7) € I"(00) x I"(09) | [i| < |j], w(i) > 0, dw(j) > 0, w(i) < [w(5)]},
Je(o1,02) ={(i,7) € I (o) X I (02) [ |i| > [j], w(i) >0, dw(j) > 0, w(i) < |w(j)[}.
Hence, noting that
Ji (o1, 02) = If (01, 02), Jy (01,02) = I (01, 02),
Jy (01,02) = I (01, 0), J5 (01,02) = I3 (01, 02),
we have
DRI D DR A ]
kEe{2,4,5,6,7,8} kE{2,4,5,6,7,8}
where Ij(01,00) = I (01,02) U I} (01,02) and Jyi(01,00) = Jf (01,02) U J, (01, 02).
Moreover, since the map (i, j) — (—7, —i) gives bijections
(o1, 02) =5 I (‘o3 o), Ji (01, 02) =5 I (‘03 o),
J(01,02) =5 I (a3 o), I (01, 02) =5 I (‘o3 o),
we have
B D (klon o)+ (a3, o)) = DY (Julon,09)] + [Ju(“05,“0Y)]) .
k€{2,5,6,7} ke{2,5,6,7}
Since

ni(o1,02) = Z | 1x(01, 02)],

ke{2,5,6,7}

the left-hand side of () is equal to n/(cy,02). On the other hand, noting that the map
(1,7) +— (4,1) gives bijections

Ty (01,09) 25 I (02, 01), Jy (01, 09)
Jg (01,02) = 15 (09, 01), Jg (01,09) RSN Iy (09, 07),

1:

1
Igr<0.27 01)7
1
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and the map (7, 5) — (—i, —j) gives bijections

1:1 _ _ 1:1 _
Jg—(01702) — I? (CUYaCU¥)> J5 (51702) — 1 (001/7605/)7
1:1 _ 1:1
‘];_(0-1702) — ];_<CUY’CU¥)7 J? (01702) — ];_(CUY?CO-;/)v

the right-hand side of (f) is equal to n) (o9, 01). This proves
ny(o1,02) = ny(o2,01).
Next we consider the set
{iel(lo)]i>0y={ielt(o)|w()>0}u{ie I (o)|w(i) <0}
The map i — 7 = w™'(i) gives a bijection from this set to
{i" e I(o)|w(i") >0} ={i' e IT(o) |w(') >0} u{d € I (0)|w(i) >0}
Hence we have
na(o) = [{i € I'"(0) |w(i) < 0} = [{i € I"(0) |w(i) > O}| = na(°c™),

where the last equation follows from the map ¢ — —i. This completes the proof of
Proposition 2177 in this case, and hence Theorem X1 (1) for the classical group
G. O

2.6. Shahidi’s formula for local coefficients. In a series of influential papers [Shall,
Sha?, Sha3, Shad, Shai, KeSh, Shafl, Sha7| stretching over 12 years, Shahidi made a
deep study of local coefficients and developed a theory of v-factors for generic repre-
sentations of connected reductive groups. In particular, as a culmination of this study,
he showed that local coefficients can be expressed in terms of these ~-factors. These
results play a key role in the study of automorphic forms, in particular in Arthur’s
theory of endoscopic classification.

The theory of v-factors is very delicate because it requires a careful normalization
of various quantities (such as Weyl group representatives) and a careful evaluation of
pertinent integrals in the rank 1 case (i.e., for SLy and SU(2,1)). As the theory evolved
over a period of 12 years, and it was not a priori clear what the precise shape of the
final product should be, it is understandable that different normalizations may have
been preferred at different points in time, for different reasons. As a consequence,

consistent with each other. In this subsection, with the benefit of hindsight, we shall
explain and resolve these discrepancies so that one has a consistent story. We stress
that the discrepancies that we point out are mainly the results of different choices of
normalizations, and not of any conceptual flaws with Shahidi’s arguments.

We shall first review the key formula of Shahidi expressing local coefficients in terms
of gamma factors. Let F' be a local field of characteristic zero. Fix a non-trivial unitary
character ¥r of F. In this subsection, we consider an arbitrary quasi-split connected
reductive algebraic group G over F. Fix an F-splitting spl = (B, T,{X,}) of G. Let
to be the Whittaker datum for G determined by spl and 9.
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Let P = M N be a standard maximal parabolic subgroup of G. We denote by a the
simple root of Ar that does not belong to the root system of M, where A is the split
component of T'. Following [Shafi, p. 552], we define @ as the restriction of (p, a")"!p to
Ar, where p is half the sum of the absolute roots of T"in N, « is an absolute root which
restricts to a, and o is the coroot associated to . (Note that @ is the corresponding
fundamental weight when G is semisimple and split over F.) We may regard a as
an element in aj,. Let r be the adjoint representation of M on n, where n is the
Lie algebra of the unipotent radical of the dual parabolic subgroup P. Asin [Shaf,
p. 554], we decompose it as r = @, r;. Let P’ = M'N’ be another standard maximal
parabolic subgroup of G and assume that W (M, M) # {1} (resp. W(M, M) # () if
M = M’ (resp. M # M'). Take the unique non-trivial element w in W (M, M’). Let
AMw, 1r) be the A-factor as in [KeSH, (4.1)] (see also Section 7).

Let 7 be an irreducible to,,-generic representation of M, where tv,; is the Whittaker
datum for M induced by to. Recall that the local coefficient Cp(w, 75, 1r) for s € C
depends on the choice of the representative of w. We take the Langlands—Shelstad
representative w of w with respect to spl as in Section [Cd. For example, if G = SL,
and spl is the standard splitting, then we have

O

We write Cp(w, sz, 9r) = Cp(w, 7, ¥r) to indicate this dependence. In [Sha7, The-
orem 3.5], Shahidi expressed local coefficients in terms of y-factors, but (as Shahidi has
also informed us) the formula needs to be replaced by:

(Sl) CP({E? Tsas TPF) - )\(w, wF)_l H rySh<Z’S7 URRAT 2/}F>7
=1

where the superscript Sh indicates Shahidi’s y-factors. In the rest of the section, we
shall explain through several remarks why such a revision is necessary.

Remark 2.6.1. The first remark concerns [Sha7]. We write w°! for the representative
of w used in [Sha7]. As explained in the middle of [ShaZ, p. 281], @w™" is the same
as the one given in [Shad, p. 979] and [KeSH, p. 74]. Note that @ differs from
w and is in fact the Langlands—Shelstad representative with respect to the splitting
spl” = (B, T,{—X,}). For example, if G = SL, and spl is the standard splitting,

then we have
—sn (0 —1
)

We write Op (@™, 74, r) for the associated local coefficient. Since spl™ and 1, give
rise to the Whittaker datum to, the equality (51) is equivalent to

m

CP(iUVSh,Wsa, V) = A(w,ﬂp)_l HVSh(isv T, T%HJF)'

=1
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On the other hand, [ShaZ, Theorem 3.5, (3.11)] states that
(52) Cp(0™, wa, Yr) = Mw, ¥r)” H’YSh is, w1} p).

Hence there is a discrepancy between (K1) and (82), even after accounting for the
different choices of Weyl representatives. We will explain the reasons for this.

Before discussing the reasons, let us point out that the formula (§2) is not consistent
with the restriction of scalars. For simplicity, we assume that G is split over F. Let Fj
be a subfield of F' such that F'/F; has finite degree and assume that ¢p = g, o trp/pg,
for some non-trivial additive character v, of Fy. Put Gy = Resp/p, G, Iy = Resg/g, P,
and My = Resp/p, M. Denote by ag the simple root corresponding to M. Let spl, be
the Fy-splitting of G induced by spl. Then w"" (regarded as an element in Go(Fp))
is the representative of w with respect to spl,, and we can define the local coefficient
Cp, (W™, T, VR, ), where 7 is regarded as a representation of My(Fp). Since T = Tea
under the identification My(Fy) = M(F'), and spl, and 1, give rise to the Whittaker
datum tv, it follows from the definition that

C(PO ({EShv Tsap ¢F0) = CP({EShv Ts@s ¢F)
From this and (§2), we can deduce that

Auw, ) T2, Ind20rY ) = T[4 s, B,
i=1 =1
noting that A(w,¥r) = 1. By the property of A-factors (see [D, Section 5.6]), we should
have

’VSh(ZS ™ IndL%O T 7¢Fg) (F/F0>wF0)dlmr 'YSh(i‘g? W,T;/,EF)
and hence
AMw, ¥py) AF/ Fo, b, )™ N = 1.
However, this is not consistent with the definition of A(w, ¥ g, ):

Mw, ¥r,) = AF/Fo,g,) ™.

This explains why one should expect to have 1/, in the A-factor in (82) instead of ¢p.

In [Sha7], Shahidi used a global argument to derive the formula for local coefficients at
all places, using as inputs his previous results for arbitrary generic representations in the
archimedean case in [Shaf] and principal series representations in the non-archimedean
case in [KeSH]. More precisely, these input formulas were used in the proof of [Sha7,
Propositions 3.2 and 3.4]. The input formulas stated in these propositions differ from the
ones in [Shaf, KeSh] but this difference is adequately explained by the use of different
normalizations in these papers. (Compare (82) with (83) and (54) below.) However,
as we discuss below, it turns out that the input formulas from [Shaf, KeSh] are not
entirely accurate, and these are the sources of the eventual discrepancy between (ST)
and (52). We shall explain in Remarks 62 and P63 below how these input formulas
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can be appropriately revised. Once these revisions are made, Shahidi’s arguments in
[Sha7] leads to the desired formula (S1).

Remark 2.6.2. The second remark concerns [Shaf]|. Suppose that F' is archimedean.
In [Sha5], the induced representation [p(m) was realized on the space of V -valued
smooth functions f on G such that

1 _
flgmn) = dp(m)~2m(m)~" f(g)

for g € G, m € M, and n € N, with associated intertwining operators Whittaker

functionals, and local coefficients. By the isomorphism f +— [g — f(g~')] from this

realization to our realization, we see that the local coefficients defined in [Shaf] agree

with the ones defined in [5ha7]. Then [Shah, Theorem 3.1] states that

(S3) Cp(@™, 7, ¥r) = Mw Hv is, 7,70, 0p).

i=1
(Note that —2spy on the left-hand side of [Sha3, (3.1.1)] is a typo and should be 2spy.)
Observe that this is not consistent with (82) or (§1). To reconcile (S3) with (K1), we
examine the following F-rank one cases (to which the general case can be reduced):

e When G = SL,, we shall explicitly compute the local coefficient in Proposition
268 below. As this proposition shows, the equality (83) needs to be revised in
this case. Indeed, in the equality stated in [Shai, Lemma 1.4 (a)], one has to use
the local coefficient associated to w. Thus one has to replace Cp(@0™, 7.z, Vr)
n (83) by Cp(w, 755, % r). Note that A(w,?r) =1 in this case.

e When F' = R and G = Resc/rSLs, one uses [Sha3, (3.10)] in the proof of [ShaA,
Theorem 3.1], but there is a typo in that the inverse is missing from A\(C/R, ¢g)
on the right-hand side of [Shafi, (3.1.1)]. Thus one has to replace A(w,¥r) in
(83) by /\(wu 77Z)F)71

e When FF = R and G = SU(2,1), the equality (83) (and the one stated in
[Shad, Lemma 1.4 (b)]) indeed holds. In this case, we have Cp (@™, 7z, ¥r) =
Cp(W, Tsa, ¥r) and N(w,¥r) = Mw, r)! since

0 0 1
oPrP=w=10 -1 0
1 0 0

and A\(w,¥r) = AM(C/R, ¢vg)? = —1.
Consequently, (K) is the correct formulation of [Shaf, Theorem 3.1].

Remark 2.6.3. The third remark concerns [KeSh]. Suppose that F'is non-archimedean
and 7 is a principal series representation. Then [KeSh, Proposition 3.4] states that

<S4) CP(w 7TsaawF) - )\ 'LU wF H7 i$ y T, T awF)

Observe that this does not agree with (§2) or (E:I]) To reconcile this, note that:
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e When G = SL,, the equality (84) does not hold by Proposition ZG8 below.
Again, one has to replace Cp(w™, my, ¥r) in (84) by Cp(w, 7, ¢r) as in the
archimedean case.

e When G = SU(2, 1), the equality stated in [KeSHh, Corollary 3.3] indeed holds.
In this case, we have Cp(w™" mg,¢r) = Cp(W, Tsg, ¥r) as in the archimedean
case.

e In addition, one has to replace v(is, 7,7/, ¥r) in (84) by ~(is, 7, r;, 1) for the
following reason. For simplicity, we assume that G is split over F'.

— For a character x of T', let ¢, be the L-parameter of x and regard it as a

homomorphism ¢, : W — T. Recall that ¢y is given by
¢x = Px©° Art_l,
where Art: F* = W2 is the local reciprocity map, and p,: F* — T =
X*(T)®C* is the homomorphism corresponding to x: T'= X, (T)® F* —
C* by the natural isomorphism
Hom(X.(T)® F*,C*) 2 Hom(F™*, X*(T) ® C*).

Let a¥ be a coroot of T, which is a root of 7. Here we regard p € X, (T)
as a character of T' by

ult) = 2
for t=A®zeT = X*(T)®C*. Since the diagram
Hom (X, (T) ® F*,C*) —~> Hom(F*, X*(T) @ C*)

(av)*i J{(av)*

Hom(F*,C*) =———= Hom/(F*,C*)

read:

xoa' =a’og@, oArt,
so that one has to replace 75 on the left-hand sides of [KeSH, (2.9), (2.10),
(2.13), (2.14)] by ra.

Unfortunately we do not comprehend this equality.
Consequently, (K1) is the correct formulation of [KeSH, Proposition 3.4].

In view of Remarks 261, P62 and 263, we have explained the reasons for the
discrepancy between (K1) and (8§2), and why (5T) is the correct version.

Finally, we reconsider the rank 1 case. In Shahidi’s theory of y-factors, it is important
to fix the choice of Weyl group representatives and compute local coefficients (with
respect to this choice) in the rank 1 case explicitly. In the case of SU(2,1), our choice
is the same as Shahidi’s one and we refer the reader to [Shai, Lemma 1.4 (b)], [KeShH,
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Corollary 3.3] for the explicit formula. On the other hand, in the case of SLy, we
take a different representative and the situation is more subtle. Thus, for the sake of
completeness, we include the computation of the local coefficient in this case, following
[Jad, Section 1], [Shall, Lemma 4.4].

Suppose that G = SLy(F). Let S(F') be the space of Schwartz—Bruhat functions on
F. For ¢ € S(F), we define its Fourier transform ¢ € S(F) by

= /F o(y) e (zy)dy,

where dy is the self-dual Haar measure on F' with respect to ¥p. For s € C, ¢ € S(F),
and a character y of F'*, put

Z(s,x,¢) = - P)x ()|t Fd "¢,

where d*t = |t|z'dt. This integral is absolutely convergent for Re(s) > 0 and admits a
meromorphic continuation to C. Moreover, the functional equation

Z(l - S, X_la é;) = 7(37 X wF)Z(S7 X ¢)
holds, where
L(1 - S, X_l)
L(s, x)
We consider the normalized parabolically induced representation I(s,x) = Ind$ (x| -
%) of G on the space of smooth functions f on G such that

(5 2)s) = vl s

foralla € F*, b€ F, and g € G. For ¢ € S(F?) (where we regard F? as the space of
row vectors), we define f,,;, € I(s,x) by (the meromorphic continuation of)

Fosn9) = Z(s + 1, X, 6rig)0) = / ()0 x5

where ¢,(z) = ¢(0,2) and r(g)e(z1, 22) = ©((x1,22)g). For p € S(F?), we define its
Fourier transform Fo € S(F?) by

Fp(a, x2) =/ e(y1, y2)Ur (2291 — 21y2) dy1 dys.
F2
Note that F or(g) =r(g) o F for all g € G. Recall that the intertwining operator
J(s,x) = Jp(w, x| - [p): 1(s.x) = I(=s,x7")

is given by (the meromorphic continuation of)

= [ 5t

’Y(SaXawF) = 5($>X7wF)
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i= () mw=( 1)

Lemma 2.6.4. For p € S(F?), we have

where

J<87 X)fcp,s,x = 7(37 X wF>_1f]-'<p7—s,x—1
Proof. For Re(s) > 0, we have

T6: 0 nanle) = [ / X 9)2(0, )X (0I5 @t dy
= [ [ r@ett i atay
FX
-/ / (Ol dy d*t = 205, . 9),

where
b(z) = / r(9)e(@, y)dy.

Hence, by the functional equation, we have

T(5:X) fosn(9) = 7(s. . 0r) T Z(1 = 5,x 71, 9).

However, we have

¢(x) = (For(g)e)0,z) = (r(g) o Fp)(0,2) = dr(g)Fp(2).
Since fry—sy-1(9) = Z(1 — s, X, ¢r(g)7p), this completes the proof. OJ
For ¢ € S(F?), we also define its partial Fourier transform F'¢ € S(F?) by

-7:,@($1,132) = / ¢($1792)¢F(—$2y2)dy2-
F

Recall that the Whittaker functional Q(s, x) = Q(x/| - |%) on I(s, x) is given by (the
holomorphic continuation of)

Qs 0f = [ S@ n(w)ve(-y)dy.
F
Lemma 2.6.5. For ¢ € S(F?), we have

s, ) fpsn = | Frolt,t™)x(t)]tpd*t.

F><
(Note that the right-hand side is absolutely convergent for all s.)

Proof. For Re(s) > 0, we have

s foen = [ [ @ )OO e~ ey
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_ / / ot )X (O3 (=) d* ey
F JFEX
_ / / Dt ) (Ot tor (—t ) dyd*t
FX JF

= [ Fo(t,t x(t)[t|pd*t.
FX

This completes the proof. O
Finally, recall that the local coefficient C(s, x,¥r) = Cg(w, x| - |%,¥r) is given by
Q(s,x) = C(s,x,¥r) - Q=s,x"") 0 I (5, %)

(see [Sha2, p. 333, Theorem 3.1]).
Proposition 2.6.6. We have
C(s,x:¥r) = (s, X, ¥r).
Proof. By Lemmas 2264 and 2634, we have
V(5,0 0r) - QU=5, X7 (8,X) fousn = U=8,X7) frp—sx1
= | FFot,t7)x(t)"|t|pd*t

X

= [ FFot " t)x(t)|t|pd*t

FX
for ¢ € S(F?). Since F'Fo(x1,22) = F'p(x2, 1), the right-hand side is equal to

Floo(t, t X (O tld™t = Q(s,X) fosx

FX
by Lemma PZZG6A. This completes the proof. 0

3. THE TWISTED LOCAL INTERTWINING RELATION

The purpose of this section is to prove Theorem ICI. This theorem is stated in [AT3,
Theorem 2.5.3] and [Mok, Proposition 3.5.1 (b)]. Arthur expected that this theorem (for
non-tempered representations) would be proven by an argument “based on some version
of minimal K-types”. However, this idea might require a huge amount of computation
even if I is non-archimedean and m, is unramified.

To show Theorem [T, we shall use a new approach. The difficulty of this theorem
is that the linear isomorphism @4: m;, — m, is defined through the Langlands quotient
map from the standard module of 7. Our idea is to realize this Langlands quotient
map as a composition of normalized intertwining operators (see Lemma B=3 below).
Then we can show Theorem U1 by the multiplicativity of normalized intertwining
operators (Proposition [°73).
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3.1. Representations of general linear groups. Throughout this section, we write
G = GLy(FE). For 7 € Rep(G) and for a character y of E*, we define 7x by (7x)(g) =

7(g)x(det(g)).
Let P = MN be a standard parabolic subgroup of G' with Levi subgroup M =

GLy, (E) x -+ - x GLg,(E). For 7; € Rep(GLg,(E)), we denote the normalized parabolic
induction by

X xn=Ind4(n K- K7).
It is known by Bernstein [BerT] that if my; € Irr(M) is unitary, then Ip(my) = Ind$(ma)

is an irreducible unitary representation of G.
Recall that a standard module of G is an induced representation of the form

T].’ eElXXTt" %’

where 7; is an irreducible tempered representation of GLyg,(F) and e; € R such that
e; > --- > ¢;. It has a unique irreducible quotient, called the Langlands quotient. For
example, if p = ¢ S, is an A-parameter for G with ¢ an irreducible representation of
Lg with ¢(Wg) bounded, then 7, is discrete series, and my is the Langlands quotient
of the standard module

Iy =mol |7 xmol- |57 o xmgl-|g 7
In this situation, we write
Ty = Speh(my, a)

and call it a Speh representation. More generally, if ¢ = ®!_,¢; ¥ .S, is an irreducible
decomposition of an A-parameter for GG, then

t

my = X Speh(m,, a;)

i=1
and its standard module is
o i ait+l .
I:><><7T¢i|'|E2 )
i=1e;=1
where the product is taken in decreasing order of the exponents.
Lemma 3.1.1. Let I be a standard module of G. Then

Proof. This is a consequence of the famous fact that the Langlands quotient 7 of II
appears in II as subquotients with multiplicity one (See e.g., [BWI, Chapter XI, Lemma
2.13]). This fact induces an injective linear map

Endg(H) — Endg(ﬂ>.

Since dimc(Endg (7)) = 1 by Schur’s lemma, we obtain the assertion. O
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For the rest of this subsection, we assume that F is non-archimedean. We will identify
an irreducible unitary supercuspidal representation p of GL4(E) with the irreducible
d-dimensional bounded representation of Wg by the LLC for GL4(E).

Recall that a segment is a set of the form

[z, ylo = 1ol ool 150l - [},
where p is an irreducible unitary supercuspidal representation of GL4(E) and z < y
are real numbers such that z = y mod Z. One can attach to it two irreducible repre-
sentations A([z,y],) and Z([z,y],) of GLgy—z+1)(£), which are the unique irreducible
subrepresentation and the unique irreducible quotient of the standard module
pll x - xpl - 5 x pl - g,

respectively. We call A([z,y],) a (generalized) Steinberg representation. Note that
A([z,y],) is an essentially discrete series representation, and all essentially discrete
series representations are of this form (see [, Theorem 9.3]). Similarly, any irreducible
tempered representation is a product of representations of the form A([—z,z],). On
the other hand, by definition, we have Z([—z,z],) = T xs,xs,,., if 22 € Z. Recall from
[2, Theorem 9.7] that the following are equivalent:

e The induction A([z,y],) x A([2,y'],) is reducible;
o A(lz,ylp) x Al ¢]7) Z A, ¥]y) x Al ylo);

e the two segments [z,yl, and [2/,y/], are linked, i.e., [z,y], U [2/,y], is also a
segment, and [z,y], Z [¢/,v'], and [z,y], B [/, ¢].
A multi-segment is a formal finite sum of segments. For a multi-segment m, writing
m = [z, y1lp, + -+ [T, Yy, With 21+ 91 = - = 2, + 3, We set

I(m) = A([z1,y1lpr) % - X< Allzr, 4], )

This is a standard module. For example, let ¥ = pX Sy,41 X Sos41 be an A-parameter
for G = GLy(E). If we set

m=[-a+Ba+tB,+l-atB-LatB-1,+t[-a-fa-H,
then the standard module Z§ of m, is equal to Z(m).

Lemma 3.1.2. Let ¢ be an A-parameter for G = GLy(FE). Then the standard module
Ig of my contains an irreducible tempered representation m,p as a subrepresentation,
where P : Wi x SLy(C) — GLN(C) is given by ¥P(w, a) = ¢(w, a, ). Moreover, myo
appears in Ig as a subquotient with multiplicity one.

Proof. By [IS], the unique irreducible subrepresentation of Ig is generic. By [Z, The-
orem 9.7], it is an irreducible product of generalized Steinberg representations. In
particular, it is determined uniquely by its cuspidal support. As this cuspidal support
is the same as the one of 7y, we deduce that the unique irreducible subrepresentation of
Ig is myp. Finally, the multiplicity one statement follows from 7, Proposition 8.4]. [



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 57

3.2. The tempered case. Let G = GLy(FE) with an involution 6 defined in Section
4. Fix a standard parabolic subgroup P = M Np. In this subsection, we will prove
Theorem I for tempered representations, i.e., for generic (or tempered) . Thus we
consider an irreducible tempered representation m of M, and w € W(6(M), M) such
that w(m o 0) = 7.

Since 7 is tempered, it is to,/-generic. Fix a non-trivial tv,,~Whittaker functional w
on w. Then Ip(7) is an irreducible w-generic representation of G with the r-Whittaker
functional (7) induced by w as in Section 8. By definition (see Section [4), 64 = Oy
is the unique linear isomorphism 64 : Ip(7) = Ip(m) such that

Oa0Ip(m)(h) = Ip(m)(0(h)) o Ba, h e GLy(E),
Q(m) 004 = Q7).

In Section 9, we already argued that EP(H ow, ) is a constant multiple of 04, so the
equation Rp(0 o w, ) = 04 would follow from Q(7) o Rp(6 o w,7) = Q(7).
Recall from Section 9 that

Rp(fow,7) = Ip(F(w x 6)) o Rypy(w, 7 0 §) 0 6*.
So it suffices to check that the three squares in the diagram

Ry (py(w,mob) Ip(7(wxh))
_— _—

Ip(7) == Iypy(m o) Ip(w(mo6)) Ip(r)

ﬂ(w)l ﬂ(woe))l Jﬂ(w(woe» lﬂ(w)
C — C S C -  C

are all commutative. Here, we note that all these () are induced by the same linear
functional w. The commutativity of the middle square is nothing but Theorem =8
(2), whereas the one for the right square follows from w o T(w % ) = w, which is the
definition of the normalization of 7(w x 0).

We show the commutativity of the left square.

Lemma 3.2.1. For w € W%, we have

0(@) = O(w).

Proof. We recall the definition of the Tits lifting w € G of w € WY, If w = wg, * W,
is a reduced decomposition relative to the simple roots of (G, T"), where w, is a simple
reflection with respect to a simple root «, then w is defined by w = w,, - - - w,,. Hence
we may assume that w = w, for some simple root o. Then w,, is defined by

{Da = eXp(Xa) eXp(_Xfa) eXp(Xa)a

where X, is already given as we fix a splitting spl, and X_, is the root vector for
—a such that H, = [X,, X_,] is the coroot for . Since spl is f-stable, the claim
follows. 0
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Recall that Q(m) is defined by the holomorphic continuation of the Jacquet integral

Qm)f = | w(f (@ n)x(n) " dn'.

N/

Here N’ = woNwy ' with wy = wew}?, where wy and w} are the longest elements in W¢
and WM | respectively, and  is (the restriction of) the non-degenerate character of the
unipotent radical U of the Borel subgroup B given by spl and ¢. Note that 6(w,) = wy,

O(w}') = w?(M) and x o = y. Hence, Lemma B2 implies that Q(7 0 0) o * = Q(m).
This completes the proof of Theorem I for tempered representations.

3.3. Construction of the Langlands quotient map. Fix a standard parabolic
subgroup P = MNp of G = GLy(E). Let t» be an A-parameter for M, and let
7y be the associated irreducible unitary representation of M. Assume that there is
w e W(O(M), M) such that w(my o 8) = m,, and we fix such an element w in this and
next subsections.

Note that Ip(my) is irreducible. Let Ig be a standard module of G whose Langlands
quotient is Ip(my). Recall from Section [ that a Whittaker functional 2 on Z§ defines
a linear isomorphism 6Oy : Ig = Ig , which induces 04: 7, — my. To show Theorem
91 for 7y, we shall carefully construct Ig :

Set V = EV so that G = GL(V). Decompose V into a direct sum

V:\/(l)@...@v(t)

such that M is the subgroup of G stabilizing V@ for i = 1,...,¢t. Hence M = G x
o x GW ) where GO = GL(V®).
Recall that 1 is an A-parameter for M. It can be decomposed as

w:w(l)@...@w(t)7

where 1 is an A-parameter for G, Consider the decomposition of 1)) into irreducible
representations:
m;
00~
j=1
Corresponding to this decomposition, we can also decompose V@ as
my )
V@ — @ v
J
j=1

such that dirn(c(wj(.i)) = dimE(Vj(i)),
Define a representation ¢ o) of Lg by

B0 (1) = 0 <w, <|w|;5 O)) .
! 0 |
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;= gby) X S;, where gzﬁgz) is an irreducible representation of Lp with
qbgi)(WE) bounded, and d = d§-i) > 1, then we have

If we write Qb(i)

d+l_p

d
b0 =D I
k=1

Corresponding to this decomposition, we can decompose Vj(i) as

d
(i) d+1
v =@V (- k)
k=1
d+1

such that dimE(Vj(i)(dJrl kz)) = dim@(Qﬁgi)] : |E77k) = dimc(gbg.i)). Fix a linear isomor-
phism Vj(i)(% —k) = V (dJrl E') for 1 < k,k' < d. When a € (1/2)Z satisfies
a# 4l modZ or |af > d;rl, we formally set Vj(i)(a) =0.

Finally, we define
-V
j=1

After all, we obtain a decomposition

V@@v

=1 ae(1/2)Z
Counsider the finite set
V={VW(a)|1<i<t ae(1/2)Z such that V¥ (a) # 0}.

We can define two total orders <; and <5 on V as follows. Firstly, V¥ (a) <; V@) (a/)
if and only if
e i <i;or
e i=1¢and a > d.
Secondly, V@ (a) <, V(o) if and only if
e a>a;or
e a=ca andi<7.
If we write V ={Vq,...,V,} ={V/,... )V} with V} <y --- <y V, and V{ <5 -+ <o V,
we define two parabolic subgroups P = M;Np, and P{ = M N p as the stabilizers of
the flags
icvieWwhc---cVie---al,
and
Vl’cvl'@VQ’C ...C‘/l’@...@%”
respectively. Here, M; is the stabilizer of elements V; € V, which is a common Levi
subgroup of P, and P]. Note that P; is contained in P. We may assume that P; is
standard, but P/ is not standard in general. Let wy € W& be such that w, ' Pjw, =
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P, = M3Np, is a standard parabolic subgroup, where wsMow, L= M. We regard wo
as an element in W (M, My).

Let TJ@ be the irreducible discrete series representation corresponding to gzﬁg.z). We
regard T]@] -|% as a representation of GL(V}(i)(a)) if Vj(i)(a) # 0. (If Vj(i)(a) = 0, then
we interprete TJ@| -|% to be the trivial representation of the trivial group GL(Vj(i)(a)) =
GLo(E).) By induction, we obtain an essentially tempered representation

O Js = X713
j=1
of GL(V®(a)). We consider an essentially tempered representation
=@

of My, and set
Ty = Wy 17'1,
which is an essentially tempered representation of M.

Note that P, C P and M; C M. Recall that my, € Irr(M) is the representation
corresponding to ¢, via the LLC for M. It is the Langlands quotient of the standard
module

7" = Ind} (1)

of M. In particular, Ip(my) is a quotient of Ip(Z)") = Ip (7). Moreover, there is
wy € W(My) with w; € M such that the image of the normalized intertwining operator

Rp, (wy,m): Ip (11) = Ip, (wim)

is isomorphic to Ip(my). Hereafter, we identify Ip(my) with this subspace, i.e., Ip(my)
is realized as the image of Rp, (wy, 7). Hence we obtain a surjection

Rpl(wl,’ﬁ)Z ]Pl(Tl) —» IP(7T¢) - ]pl(wlTl).

On the other hand, as the unitary induction preserves the irreducibility for general
linear groups, we see that Ip(my) is the irreducible representation of G, which corre-
sponds to ¢, regarded as an L-parameter of G, via the LLC for G. It is the Langlands
quotient of the standard module Ig = Ip,(12). Since 11 = waTy, we have a normalized
intertwining operator

Rp2<w2,7'2)2 ]PQ(TQ) — Ipl(Tl).
Lemma 3.3.1. The composition

Rp, (w2,72) Rp, (w1,71)

Ip,(72) Ip,(11) Ip(my)
is well-defined and nonzero. In particular, this composition realizes the Langlands quo-
tient map. Namely, Ip,(72) is the standard module of Ip(my), and the above composition
1S surjective.
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Proof. Recall that the normalized intertwining operators are defined by the meromor-
phic continuation of certain (normalized) integrals. Note that the operators Rp, (w1, 1)
and Rp,(ws, T2) are compositions of normalized intertwining operators of the form

L x g 1E = 1 ]
with e > /. These displayed operators are regular and nonzero at the relevant points.
Hence, Rp, (w1, ) and Rp,(wsq, T9) are well-defined.

We now verify that the composite Rp, (w1, 71) o Rp,(ws, 72) is nonzero. Since Ip(my)
is the unique irreducible quotient of Ip,(72), and since Rp, (w2, T2) is nonzero, Ip(my)
appears in the image of Rp,(wq, T2). If Rp (w1,71) o Rp,(wa, 72) = 0, then we would
conclude that Ip(my) appears in Ip, (71) as subquotients with multiplicity greater than
one. Since the semisimplification of Ip (71) is the same as the one of the standard
module Ip,(73), this contradicts the fact that the Langlands quotient Ip(m,) appears
in Ip,(m2) with multiplicity one. O

3.4. The main diagram. Recall that we have fixed an element w € W(6(M), M)
such that w(my 0 0) = my. As in Section T2, we regard w as an element of W, By
construction, wd(M)w= = M; and w(7y o 0) = 7. Since w; is the longest element
in the subset of W (M;) consisting of elements whose representatives are in M, we see
that 0(w;) = w™lww in W(O(M)). Set

w = wy 'wtwl(w)0(wy) = wy fwh(ws).

Lemma 3.4.1. With the above notations, we have the following.
(1) The canonical inclusion Np — Np, induces a homeomorphism

Np N @Nypyw "\Np = Np, N wWNppw "\ Np,.

(2) We have w'0(My)w'=t = My and w'(1500) = 15. Let To(w' % 0): w'(100) =
be the isomorphism normalized by using a Whittaker functional on 7.

(3) The normalized intertwining operator Rp,(0 o w',Ta): Ip,(T2) — Ip,(12) defined
by the composition

Rg(py)(w',m200) Ip, (T2(w'x0))
— — 5

Ip, (1) 5 Topy) (2 0 6) Ip, (W (13 0 §)) Ip,(72)
18 bijective.
Proof. Assertion (1) follows from the equation WNypyw™' N M = Np, N M.
For (2), the first assertion follows by direct computation

W O(My)w' ™ = wy wd(wy)0(My)0(we)  w wy
= wy 'wl (M )w ™ w,
= w;lleg = MQ.

The second assertion is proven similarly.
For (3), it is obvious that 6*: Ip,(72) — Ig(p,)(T200) is bijective. Note that Iy(p,)(7200)
is a standard module of G whose Langlands quotient is Iy py(my 0 ) = Ip(my). Hence
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Ig(p,)(m200) and Ip,(72) are standard modules whose Langlands quotients are isomorphic
to each other.

Since 75 0 0§ and w'(7y 0 #) = 1 are essentially tempered representations of (M)
and My, respectively, such that two inductions Ipp,)(m2 o 0) and Ip,(w'(m2 0 0)) are
both standard modules, we see that Ry p,)(w’, 72 o ) is nonzero. Since Ip,(To(w' X
0)) o Ro(py)(w', 72 0 0) is a nonzero element in Home(Ig(p,) (72 06), Ip,(72)), which is one
dimensional by Lemma BT, it must be bijective. 0J

Now we will prove a key result:

Theorem 3.4.2. The “main diagram”

Iy (r) 220 1 ()
Rp2 (’LU2 Tz)l J{R (’w2 ,7'2
IPI (7—1) IPI (7—1)
Rp, (w17T1)J( J{Rpl (w1,m1)
Rp(Bow o)

18 commutative.

Admitting this result, we can complete the proof of Theorem I as follows. Recall
that Z§ = Ip,(72) is the standard module of Ip(my). Moreover, by Theorem =9 for
the tempered case together with analytic continuation, we have

EPQ(Q o} w’, ?2) = QW

By the definition of 4 (see Section TA), Theorem BZA2A together with Lemma B2
implies that

Rp(0ow,7y) =04

This completes the proof of Theorem I in general.
Now we show Theorem BZ72.

Proof of Theorem [3-7.3. Recall that the top and bottom maps of the main diagram are
composites of three maps:

EPQ(H ow', ) = Ip,(To(w' % 0)) o Rypy)(w', 2 080) 00"

and

Rp(Bow,7y) = Ip(Fy(w x 0)) 0 Rypy(w, 7y 0 6,4)) 0 %,
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Hence the main diagram written in its full glory has the form

Rg(pz)(wl,TQOG) Ip2 (7'2 (’LU >49))
_—

Ip,(r) —2— Io(py) (T2 00) Ip,(w'(ra00)) ———= Ip,(7)

(

lRPQ(wz,ﬁ) Rp, (w2,7'2)l
‘[Pl (7—1) ]Pl (Tl)

J{Rpl (w1,71) Rp, (w1,7'1)l

RQ(P)(w,w¢09,¢) I (7r¢(1u>49))

Ip(my) —— Igp)(my 0 0) Ip(w(my 0 0)) 2% In(my).

We shall enhance this diagram by introducing additional stepping stones in the second
row, namely by introducing the representations

Ippy(1100) and  Ip (w(m o0)),

and additional maps connecting them to their neighbors. Hence the enhanced diagram
has the form:

Rg(p2)(’w/,7'209) Ip2 7’2 w >40
_—

72) —2—s Ipipy (720 6) Ip, (W' (15 00)) —220 70

( In(r)
I | I |
( (
| |

T2

IPl 7'1 ’UJ><19

Ip (1) —— Iypy) (11 06) Ip, (w(r 06)) I (L (w0)), Ip,(11)

l l

Rg(p)(w,ﬂ'woe,’(b) I (7r¢(1u>49))

Ip(my) —— Igp)(my 0 0) Ip(w(my 0 0)) 2% In(my).

Here, the vertical maps are of the form Rp, (wy,7.), see below for the details. To prove

the commutativity of the main diagram, we shall show that the three vertical rectangles
are commutative.

The commutativity of the left rectangle

7'2) L) [9(132)(7'2 o) (9)

(
Rp, (wg,rg)l le(p2)(9(1U2),T209)
(

lRmaKanﬁwm
9*
[p(ﬂ'w) —_— IQ(P)(WwOQ)

follows easily from Lemma B=2.
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Now let us consider the right rectangle:

Ip, (Fa(w' %6))
Ip,(w' (75 00)) —— Ip,(72)

Rp, (wg,wl(TQOH))J/ lRP2 (w2,72)

(

Ip, (F1(wx0))
s

Ip (w(mi 0 0))
Rp, (w17w(7'109))l lRPl (w1,71)

Ip (% (w8))
—

IP1 71)

Ip(w(mpoﬁ)) [p(ﬂ'w).

If we realize w'(mp 0 @), 7o, w(m o) and 7, on the same vector space, say V, then
To(w' % 0) is a linear isomorphism ®: V — V satisfying

do TQ(Q(@/_Ime,)) = 7'2(7712) @) CI), mo € MQ.

Since 7, = wy 71, w = wyw'O(wy) "t and My = woMow,*, by Lemma 71, the above
property of ® can be rewritten as

oo 7'1(9(’&7*17711@)) = Tl(ml) e} (I), my € Ml.

Since To(w' x 0) and 71 (w x #) are both normalized using a Whittaker functional, we see
that To(w’ % 0) = 71 (w x 0) as linear isomorphisms on V. It implies the commutativity
of the top square. On the other hand, notice that Indﬂp/{m 1 (71) is the standard module
of my. By the definition of 7y (w x #) and the functoriality of Ip, we have the following
commutative diagram

Ip(w(Indp g (1) 00))  ——  Ip(Indpp (1))
IP(RPlﬂM(wlvw(Tloe)))J( l]P(Rplﬁ]W(wlﬂ'l))

Ip (7 (wx6))
Ip(w(my 0 0)) R Ip(my)

where the top map is induced from the isomorphism w(Indp (1) 06) = Ind} (1)
normalized by using a Whittaker functional. We shall show that this commutative
diagram is canonically isomorphic to the bottom square of the right rectangle under
consideration. To see this, note that we can realize [ p(w(Indy1m 1 (71)06)) as a subspace
of two-variable functions f: G x M — V satisfying
1
fm'g,m) = op(m') f(g, mO(@ ™" m'w))

for m,m’ € M and g € G. We have a canonical isomorphism

Ip(w(Ind%ﬂM(Tl) © 9)) ; IPl (w(Tl © 9))7 f(g>m) = f(gv 1)

Via this isomorphism, Ip(Rp,~n(wy, w(m 0 6))) corresponds to

Rp, (wy,w(m x0)): Ip (w(r 00)) = Ip(w(my 0 h)).
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Similarly, we have a canonical isomorphism Ip(Indp, 5, (71)) = Ip, (71). Via these canon-
ical isomorphisms, the above commutative diagram is rewritten as

IPl (771(w><10))
_

Ip, (w(m100)) Ip(71)
Rpl(u)l,’w(‘l'loa))J( lRpl(thl)

p(Ty(wx6))
Ip(w(ny 08)) 20 Ip(my).
Since this is exactly the bottom square of the right rectangle under consideration, we
have shown the desired commutativity of the bottom square.
To prove Theorem B4, it remains to show that the middle rectangle

R9<p2>(w’,7-206)
I

Ty(py) (T2 0 0) Ip,(w' (9 00))

Rg(p2)(9(w2)77209)l lRp2 (wa,w’ (1200))
To(py (71 00) Ip (w(mi 0 0))
R9<pl)(9(w1),no€)l J/Rpl (w1,w(7'109))

R, W, Ty, 00,2
SO Iyl 06)

commutes. The proof of this commutativity will be carried out in four steps below.
Roughly speaking, we will embed this diagram into a meromorphic family of diagrams.
Working in the context of this meromorphic family of diagrams, we will complete the
diagram by extending the last row of the diagram as

To(py(my 0 0)

Rg(py(w,my00,%)

[9(13)(7T¢ (o] 6))

|

I (pl)(wlTl (e} 0)

Ip(w(ry 0 0))

|

R w,w1 7100

Fo(py) (wanm )>IP1( (wyr, 0 0).
Then the commutativity of the meromorphic family of diagrams is a consequence of the
multiplicativity property in Proposition 2. We will then deduce the commutativity
of the desired diagram by specializing at the point of interest. Note however that the
additional normalized intertwining operator will generally have a singularity at the point
of interest (which is the reason why we use the dotted arrow), so its purpose is only to
help prove the commutativity of the whole meromorphic family, before specialization.

Let us start the proof of the commutativity of the middle diagram.

Step 1: Recall that

- ® @Ik

a€e(1/2)Z =1
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For tuples of complex numbers

t
A= (\9); e e,
=1

p= @) @ P

ae(1/2)Z i=1

t
PN C IO
TL,(Ap) = ® ®T( )l : |E+ e,

ac(1/2)Z i=1
We define 7 (» ) similarly. Hence

we set

T1,(\p) = W2T2,(Ap)-
Note that
Wow' (T, ) © 0) = w1 wh(w1)0(ws) (7o, 1) © 0)
= wflw(wlwﬁl()\M 06)
= wi w(wiTy (A 0 0).
We can consider the following diagram of meromorphic families of operators:

Ro(pyy (W',T2,(x 1) 09)\

To(py) (T2, (0 © 0) Ip, (W' (72,00, ©0))

RG(PQ)(O("UQ)JQ,(A,M)OG)l lRPZ (w2, (73, (x,4)00))
Loy (71,000 © 0) Ip (w(T,(aw00))
R9(P1)(9(1U1)771,(>\,“>09)l lRPl (w1,w(T1,(x,1)00))

Ro(py) (w,wiTy (x,)00

)
IG(Pl)(wlTl,()\,u) ) tg) > Ip1 (w(wlTL()\’u) e) 9))

By Proposition 72, this diagram commutes whenever a + A% + p®(a) €
v —1R for all «, 7. Hence, by analytic continuation, we see that this diagram is
commutative for all (A, u) at which all operators are regular.

Step 2: In the diagram in Step 1, we will specialize at ;1 = 0. We claim that all of
six intertwining operators are well-defined as meromorphic families of operators
in A

In fact, the bottom arrow Rg(p,)(w, w171, 0) © #) is a composition of inter-
twining operators of the form

; (i) % NG % NG ; ©)
T(l)‘ ) ‘%H % T(’)\ . %H N T(’)\ . %H % T(z)‘ . %H

for some ¢ # ¢'. Hence the subset {(A,0)} C {(A, p)} is not contained in the
subset consisting of (A, ) at which Rg(p,)(w, w17y (n ) 0 6) is singular. Here, we
notice that Rg(p,)(w, w71 (x) © #) can have a singularity at (A, ) = (0,0). On
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the other hand, as we have seen in the proofs of Lemmas BZ31 and B2 (3),
the other five operators are indeed regular even at (A, ) = (0,0).

Hence we can evaluate at ;1 = 0 in the diagram in Step 1, and get the following
commutative diagram:

Ro(py) (w',72,(x,0)00)

To(py) (T2,00,0) © 0) > Ip, (W' (2,00 0 0))
R9<P2>(9(w2)7‘r2,<x,0)09)l lR&(wmw'(a,@,O)oe))

To(py)(T1,00,0) © 0) Ip (w(T1,0,0) © 0))
R9<p1><9<w1),n,u,0)oe>l lRpl (w1,0(r5.0)00))

Ro(py)(w,w1Ty,(x,0)00)

Topy) (W1T1, (A 0) © 0) > Ip (w(wim,(x0) ©0)).

Step 3: Recall that Speh(Tj(i), dg.i)) is the unique irreducible quotient of

L =T L N
with d = dg-i). Note that
t my t m;
Ip(my) = X X Speh(r)”, "), v =Py
i=1j=1 i=1 j=1
Set
In(mn) = X 5 Speh(r, ) - [5°
i=1j=1
and

Yr = GB EB w1y

=1 j5=1

Note that Ip(my, ) is an irreducible subrepresentation of Ip, (w171,(x0)). More-
over, it is equal to the image of Rp, (w1, 71,(x,0)) 0 Rp, (W2, T2,(x,0)) by Lemma BZ3T.
We have now the diagram

Ry(p) (W,ﬂw,xoeyw)\

To(py(my 2 00) Ip(w(myx 00))

| l

R , [/
e @O0, (w0 0 6))

where the vertical maps are the canonical inclusions. We claim that this diagram
is commutative. Indeed, the defining integrals are the same by Lemma B2 (1),
and the normalizing factors also agree by definition. In conclusion, we obtain

To(pyy (w1T1,(00) © 0)
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the following commutative diagram of meromorphic families of operators:

Ro(py) (w',72,(x,0)00)

To(py) (T2,(0,0) © 0) > Ip, (W' (T2,0,0)00))

RG(PQ)(Q(W2)7T2,(A,O)°0)l lRPg(w%w/(TZ(A,O)OQ))
To(py) (T1,00) © 0) Ip (w(Ti,(x0)©0))
Fotey 00 7,0.0%0) | | eyt o0

RG(P)(wﬂw,Aoevw)\)\

Ip(w(ﬂ'w,)\ o) 9))

Step 4: In this last step, we would like to specialize the commutative diagram
above at A = 0. As we have seen in Step 2, the five operators that appear in
the top, left and right of the last diagram are regular at A = 0. Especially, the
composition

Topy(myx 0 0)

Rp, (w1, w(T1,(00) 0 0)) 0 Rp, (w2, w'(T2,(x0) ©6)) © Ro(py) (W', 72,10y © 0)
is regular at A = 0, and so is
Ropy(w, mpx 0 0,13) 0 Ro(py) (0(w1), 71,00,0) © 0) © Ro(p,) (0(w2), Ta,000) © 0).

Moreover, since the composition Rg(p,)(0(w1), T1,(,0)00) 0 Ro(p,) (0(w2), T2,(x,0)00)
is surjective if A is sufficiently close to 0 by Lemma BZ3l, the operator

Rg(p)(w, Typx 0 0,1)): ]9(13)(7T¢7)\ 06) = Ip(w(myo08))

is also regular at A = 0.
Therefore, we can specialize the last diagram in Step 3 at A = 0, and obtain
the following commutative diagram.

Ry(py) (w',7200)

To(py) (T2 00) Ip,(w'(m9 0 0))

Rg(P2>(6(w2),7-209)J( J/Rp2 (w2,wl(T209))
Io(py)(T100) Ip, (w(ri 00))
Rg(PI)(G(wl),noG)J( J/Rpl (’11)1,11)(7'109))
R 7,00,
To(py(my 0 0) M) Ip(w(my 0 6)).
Hence we obtain the claim.
This completes the proof of Theorem B4 0

The following example may help the reader to understand the argument.

Example 3.4.3. Let us suppose that M = GL3(E) x GL;(F) C P = MNp C G =
GL4(FE), and let us consider

=1, WS30 1., XS € U(M).
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Then
Ty = lany, ) M lan,p) € Irr(M)
is the corresponding representation. Note that Ip(my) = laLyk) X lan ) € Irr(G).
We realize it as a subrepresentation of
|5 < x| e x| [
In what follows, for simplicity, we denote the normalized intertwining operator Rp(w, )
by w € W¢. The main diagram becomes:

1
01
10
L 110 s 10 s 1=t e i 110 s 0 s = Y 10 s (0 [ |2
[l x| x|z x]-] [l x| 1% x|z x| [l x| x|z x]-]
E E E E E E E E E E E E

1 01 1
1 10 1
01 1 01
10 1 10
*

-1 -1 -1
e x g x g x|y — g x| x|z x| g g x s x| g <1 1%

() () )
9* ()

lonymy X o) = = laonum) X lanym laLym) X oL, (@)
') ')

1
1

-1 -1
R B P B A B A =g g L 119,

Notice that we have added a bottom “map”

1
1
-1 <1 1> -1 0 1 0
R R P R o =g < x |- [e x| |g
that is actually a singularity of a meromorphic operator. Hence this “map” is not
well-defined so that we cannot consider it.

3.5. Remark on the untwisted case. Note that the argument for Theorem I
works when we replace 6 with the identity map on GG. We state the analogue of Theorem
9 as in [Mok, Proposition 3.5.1 (a)].

Theorem 3.5.1. Let P = M Np be a standard parabolic subgroup of G = GLy(FE), and
let ¢ be an A-parameter for M. Then for any w € W (M) with wry = 7y, we have
Ip(7y(w)) o Rp(w, my, ¥) = id,

where Ty(w): wiry — my is the isomorphism normalized by using a Whittaker functional
on the standard module Ify of my.
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When G is a unitary group Uy, this theorem is needed as a local input at split places
for the global argument.

4. CHARACTERS OF COMPONENT GROUPS VS. AUBERT DUALITY

In this and the next two sections, we assume that F' is non-archimedean. Fix a
non-trivial additive character ¢p: F' — C*. Let og be the ring of integers of E.

In this section, assuming Arthur’s theory (Hypothesis B472), we provide a formula
for the action of Aubert duality on the characters of component groups in certain cases
(Corollaries B23 and B53). These results will be applied to tempered L-parameters
for a given classical group (G, and to certain A-parameters for a proper Levi subgroup M
of G: in both cases, Hypothesis B472 is known in the framework of Arthur’s inductive
argument.

4.1. Twisted Aubert duality for GLy(FE). In this and next subsections, we consider
twisted Aubert duality for GLy(F). For a preview of the general theory of twisted
Aubert duality, see Sections B4 and BZ3.

Let Rep((/}\i ~(E)) be the category of smooth finite length representations of the non-
connected group GLy(E) = GLy(E) x (), and let R(GLy(E)) be its Grothendieck
group. For 7 € R((ELV(E)), one can consider its character Oz, which is a linear form
on Cfo((f}\iN(E)) For m, 7 € R(@N(E)), we write

~ 0
™ =

T
if B B
@%1 (f) = @%2(f)
for any f € C®(GLy(E) x ). For example, if 7 € Irr(GLy(E)), then

GLy(E 0
IndGLxgEg(ﬂ) = 0.

Let

~

Rep(@iN(E)) - Rep<é\iN<E))a T
be the functor given by Definition B~48.

Proposition 4.1.1. The functor 7 +— 7 satisfies the following properties.
(1) The restriction 7Ly (k) 95 equal to Aubert dual of T|aLy (g)-

(2) If 7 is an irreducible representation of (EiN(E), then so is .
(3) For m € R(GLy(E)), set
- im(A¢ GL ~
Datoim@ = > ()0 S (Jacy (7)),
P=0(P)

where P runs over the set of standard parabolic subgroups of GLy(E) which are
stable under 0 and set P = P x (#). Then

~\ 0 im =
Dty () 2 (1) ey )7
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form e Irr((/}\iN(E)), where Py = MyNp, is a minimal standard parabolic sub-
group of GLn(E) such that Jacp,(T|aLy(m)) # 0. Note that such a Py is not
unique but the sign (—1)3mAo/Aciy®) s yell-defined.

Proof. These properties are proven in Propositions BXZ71 and BXh. For the nota-
tions of parabolic inductions and Jacquet modules, see Section BAH. Here, note that
dim((Ayr/AcLy(p))’) = dim(A}). O

We call 7 the Aubert dual of 7. We remark that 7 — 7 is expected to be an involution,
but we do not prove it and we will not use this property.

Let ¢: Wg x SLy(C) x SLy(C) — GLN(C) be an A-parameter for GLy(E) and
let my be the corresponding irreducible representation of GLy(E). Suppose that
(or equivalently, m,) is conjugate-self-dual. Then, as in Section I, we have Arthur’s

extension 7y, = my K64 of 7y to GLy(E). The Aubert dual of my is equal to 7, where
7:/1\ is defined by 1//)\(10, g1, 92) = Y(w, go, g1). However, ?f\w is not necessarily equal to 7.
Namely, if we write %w =7 X §A, then §A is not necessarily equal to 6, as linear

operators on mz. Since 62 = 1, we have 64 = +6,. Hence Dez o (m) (Ty) 2 7. We
define (1)) € {£1} such that

D(’;IN(E) (Ty) = 5(7?)%12-

Lemma 4.1.2. Let v be as above, and let n be a conjugate-self-dual character of E*,
which is regarded as a character of Wg by the local class field theory. Then B(1 @ n) =

BY).

Proof. Since 1 is conjugate-self-dual, we have n(det(6(g))) = n(det(g)) for g € GLy(F).
This implies that Tyg, = Ty ® 71, i.c., Arthur’s action of 6 on 7yg, is the same as the

one of m, as a linear operator on the same vector space. By Lemma B2, 7y, =
Ty @M 2 B()m; @n. Hence we have B(¢) ® n) = B(1)). O

On the other hand, since v is conjugate-self-dual, we can decompose the representa-

tion . )
Wg w1 (w, <|w|E 01> , <|w|E 07 >) € GLy(C)
0 |uwl|g® 0 |wlg

of Wg into irreducible representations as

P @ BPp 1 BP DD, DDy,

N

where

e p; is an irreducible representation of Wg;

e p_; = °p/ is the conjugate-dual of p;;

e p; is an irreducible conjugate-self-dual representation of W such that p; % pf
for1<i<j<t.
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Note that such a labeling of irreducible components is not unique, but the non-negative
integer r is uniquely determined from . We write r(¢)) = r.

Propositign 4.1.3. Suppose that ¢ = ¢ is tempered and conjugate-self-dual. Then
B(¢) = B(d) = (-1)"@.

Proof. A more general assertion was stated by Mceglin-Waldspurger ([MW3, Lemma
3.2.2]). However, they gave a proof only when every irreducible component of ¢|si, )
is even dimensional. Here, we will give a proof for the general case.

Let I(g be the standard module whose Langlands quotient is T3 If we denote by
Ow the action of 6 on s fixing a nonzero Whittaker functional, then the action 64
on 7y is induced from Oy, by definition. On the other hand, by Lemma BT, we see
that Ig) contains the tempered representation m, as a subrepresentation. Moreover, the
restriction of Oy, on 7, gives Arthur’s action 64 on 7, since the restriction of a nonzero
Whittaker functional on Iqq to m, is also nonzero. Thus, as representations of GL ~N(E),
we have

Te W Os =I5 RO — 15K 04.

Applying the duality functor 7 — %, we see that (m,X0,4) = W(;X]@; and (W(E&QA)A:
7r¢®§A are contained in (I(;@HW)A: ia&é\w as irreducible subquotients. By Proposition
AT (3), they satisfy

9

Dgi (T3 B ow) £ - I;R by,

0 ~
D@N(E)(W¢ X 6‘,4) =& Wa@ 9,4,

0 ~
D&N(E)(W(;IE 9,4) =& Ty X (9A

for some common sign £ € {£1} since all irreducible subquotients of Z; share the same
cuspidal support. Since I(g is an induction from a cuspidal representation, its Aubert
dual Z; is equal to Z; in R(GLy(E)). Moreover, as dime(Endery (1)(Z5)) = 1 by
Lemma BT, we can find § € {£1} such that 8y = 60y so that I;X by = ) I3 X Ow

in R(@N(E)) Hence

0
D@N(E)(I$Xl (QW) =5 I&;X’ GW

Since 74 and T appear in I$ as subquotients with multiplicity one, by Proposition

AT (1), we see that fqg X 6y contains only one irreducible representation of the form
m; X0 (resp. ms X1 0) as subquotients. In particular, we get

0 0
D@IJJN(E)(WQS&QA) = 65-7T$&9A, D(iN(E)(W(ZX'eA) = 55.7%@914.

This means that €0 = (¢) = ﬁ(aﬁ\) Therefore, what we have to show is e§ = (—1)"(®)
which we will prove in the next lemma. O
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Lemma 4.1.4. With the above notation, we have

0 r
Dai, m)( T3 ®0w) = (=1) Wzd; X Oy

4.2. An example. The proof of Lemma BT is complicated. Before giving the proof
generally, let us discuss a simple but non-trivial case. This example showcases the
strategy of the general proof.

Suppose that £ = F. Let xi1, x2 be two quadratic characters of F'*, and consider
¢ = x1 D X2 Then

Ty =75 =15 = x1 X x2 € Irr(GLa(F)).

We denote the upper triangular Borel subgroup of GLs(F') by B = TU, where T is the
diagonal torus. If we set B = B x (f) and T' =T x (6), then by definition

Di, (T W 0a) =7y W04 — IndgL2(F)(JaC§(7T¢ X 64))

in the Grothendieck group R(GLa(F)). Since
(1)@ — {—1 %f X1 = X2,
1 if x1 # xe,
the desired equation Dy, o) (g X 64) 2 (=1)"@r, K6, is equivalent to
2-mp X0y it x1 = xo,
0 if x1 # X

Note that Jacz(my X 04)|r = Jacg(my). By the Geometric Lemma [BZ, Theorem
5.2], we have an exact sequence

Ind](!’EVLQ(F)(JacB(7r¢> X 64)) 4 {

0 — o My1 —— Jacg(my) —— x1®xo2 —— 0

and hence IndgLQ(F)(JaCB(W¢)) = 274 in R(GLy(F)). To understand the induced
action of § on Jacp(m,), we recall the details for this exact sequence. The surjection
Jacg(my) — x1 X x2 is induced by the evaluation map

To=x1 % x22 [ f(1) € xa W xo.
The kernel of this map is

F ={f € xa X x2|Supp(f) C Bw;'B},

where wy = (% §) € GLy(F). We identify wy with its image in the Weyl group WSL2(5),
Then for f € F, the evaluation of the integral

Tn(wo, x1 B x2) f(1) = / () d

converges absolutely. Moreover, the map F o f +— Jg(wg, x1 ¥ x2)f(1) induces an
isomorphism Jacp(mg) D Jacg(F) = x2 X x1.

However, this description of Jacg(ms) does not seem convenient for us. We give
another description. Let ' be the subspace of 7, = x1 X X2 consisting of functions f €
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X1 X X2 such that Jg(wo, x1 X x2)f(1) is well-defined. This means that the meromorphic
continuation of

C* 3 A= (A, M) = J(wo, xa| - [ B xa| - [2) (1)

is holomorphic at A = (0,0), where fy € x1|- |3 B x| - |37 is such that fy|x = f|x with
K = GLy(op). Then F C F', and the map F' 3 f — Jp(wo, x1 W x2) f(1) also induces
a surjection
Jacg(my) D Jacg(F') — x2 B x1.
We set F" = {f € F'| Jg(wo, x1 X x2)f(1) = 0} so that Jacg(F')/Jacg(F") = x2 X x;.
Now we consider two cases separately.

Case 1: Suppose that x; = x2. Then the action 64 on 74 = x1 X x2 is given by
fr—fob.

Since (f 00)(1) = f(1), the induced action on Jacg(ms) preserves the quotient
x1 X x2 and acts on it trivially. Similarly, since 6(wg) = wg and O(U) = U, the
same holds for the subrepresentation x, X x1 of Jacg(m,). Hence by inducing
. . GLy(F

these two pieces, we obtain that Ind; 2( )<JaC§(7T¢ XO4)) =271 Kby

Case 2: Suppose that y; # x2. Then the map f — f o6 is no longer an action
of § on m,. Instead of this map, we use Theorem [CIT. Namely, the action 64
on myg = X1 X X2 can be realized by the normalized intertwining operator

Rp(wo, x2 X x1) 00" = 0" o Rp(wy, x1 X X2).
Since x1 # X2, we see that the normalizing factor
Va8, X1 @ X2, ¥F)
is holomorphic and nonzero at s = 0. Hence this action can be written as
04 =v4(0,x1 @ x2,9F) - 0" 0 Jp(wo, x1 W x2).
In particular, the map
F'2 f=0a4(F)(1) = 7400, x1 @ X2, ¥F) - Jp(wo, x1 K x2) f(1)

factors through f +— Jp(wo, x1 ® x2)f(1), and hence, this map is zero on F”.
Conversely, for f € x1 X xa, since Rp(wp, x1 X x2) o Rg(wp, x2 X x1) = id and
6(1) = 1, we have

Tp(wo, x1 B X2)04(f)(1) = 7a(0,x1 ® X2, ¥p) " - f(1).

Hence 04(f) € F' and the map f — Jg(wo, x1 ¥ x2)04(f)(1) factors through
f— f(1). In particular, if f(1) =0, then Jg(wq, x1 ¥ x2)04(f)(1) = 0. (Here,
it is not true in general that 04(f) € F.) Therefore, the induced action on
Jacg(my) swaps x2 X x1 and x; X x2. By inducing these two pieces, we obtain

that IndgLQ(F)(Jac—Bv(% X164)) 2.
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Note that Theorem U1 can be used even when x; = x2. However, in this case,
v4(0, X1 ® x2,%r) = 0 and so that 64(f)(1) = 0 for f € F'. Hence the argument in
Case 2 does not work for Case 1. In Case 2, it is trivial that the induced action swaps
X2 X x1 and x; X x4y since (x1 X x2) 00 # x1 X x2. However, this idea would not work
in general, e.g., for ¢ = Y7 @ xo with x1 # x2. On the other hand, the analysis using
intertwining operators can be generalized.

4.3. Proof of Lemma ET4. Now we prove Lemma B4 generally.
Proof of Lemma f-1.4. One can write Z3 = Indng(E) (7ag,) With
Ty =pr R Rp  Rp, K- Kp,Rp K- Kp,,

where

e [ corresponds to a partition (d,,...,dy,d},...,d},dy,...,d.) of N;
e p; is an irreducible cuspidal representation of GLg4, (E);
[ ]
[ ]

~ c,V

p—i = “p; is the conjugate-dual of p;;
p; is an irreducible conjugate-self-dual cuspidal representation of GLd; (E) such
that p; 2 p; for 1 <i < j <t
Then r(¢) = r.
Set W = WEL~(E) | For a f-stable parabolic subgroup P = M Np, by the geometric
lemma ([BZ, Theorem 5.2]), up to a semisimplification, we can write

Jacp(Z;) = B
weWM\W/WMo
for some representation J;A)” (possibly zero). We recall the relation between Jacp(Z3)
and Jé" more precisely. Fix a total order > on WM\W /WMo such that w' > w =

dim(Pyw' "' P) > dim(Pyw ™' P). For w € WM\W/W™Mo we define F, as the subspace
of Z consisting of functions f such that

Supp(f) C U Pyw''P.

w' eWM\W/wMo
w' >w

For w € WM\W/W™ and X € a};, ¢, let

Jpo (W, Targn) + Ipy (Tagen) — Ipw (WTazy )

be the unnormalized intertwining operator defined in Section 74, where Fj’ is the
standard parabolic subgroup of GLy(FE) such that wMyw™! is its Levi subgroup. If
f € F, and A = 0, then the integral (Jp, (w, mag ) f)(1) converges absolutely. Moreover,
the map F,, > f +— (Jp,(w, mar,) f)(1) gives a surjection

Jacp(Z) D Jacp(Fu) — J3.

By varying w, we obtain a filtration of Jacp(Z;). For details, see [BZ, Section 5.
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We modify this description for Jacp(Z3). Set K = GLy(op) to be the standard
maximal compact open subgroup of GLy(E). Then for f € Zj = Ip, (), one can
define f\ € Ip,(ma,n) by requiring fi|lxk = f|kx. Let F) be the subspace of I; =
Ip,(mp,) consisting of functions f such that the meromorphic function

A= Iy (w, T ) fA(1)

is holomorphic at A = 0. Then F,, C F,, so that we obtain a well-defined surjection
Jacp(Z3) D Jacp(F,,) — J7.

Its kernel is of the form Jacp(F)), where F! ={f € F., | Jp,(w, mps,) f(1) = 0}.

Using Theorem I, we realize an action Oy on Zz by a twisted intertwining oper-
ator. Set N’ =d| + --- +d,. Consider GLy/(E) and its standard parabolic subgroup
Py = MyNp, corresponding to the partition (dj,...,d;). Define

Ty = £ BB,

Then Indlc__;,éLN '(E) (mary) is an irreducible conjugate-self-dual representation of GLy(E).
Let wo € W(0(Mg), M) be the unique element such that wo(mag 08) = mry. We regard
wy as an element in W (6(My), My). By Theorem LI for 7y, we have
QW = ]po(%MO(U)O X 0)) @) Rg(pﬂ)(wo, T M, © 0) o *
= [Po (%MO(U)O X (9)) 00 o Rpo (9(’&)0), 7TMO).

Now the map w > 0(wwy) gives a well-defined involutive action of § on WM\ W/ /¥ Mo
since wy 'WMoy = WM = g(WMo) and wef(wy) € WMo, Since PY contains
wMow™!, we see that O(PY) contains 0(wwg)Myf(wwe)™! as a Levi subgroup. One
can check that

'VA(Oa T Mo, \» Pg(wwo)flg(pév)‘poy wF)

7A(07 Q(MO)WMO,M Pg(w)_lg(pg»)w(po), wF)

= [ a0, 0@ 0" wp)m
A=0 1<i<j<t
for some m; ; € Z. Since p; 2 p); for 1 <i < j <t, the right-hand side is in C*.
We denote the evaluation map f +— f(1) by evy. For w € WM\W/WMo we claim
that

(€V1 © JPO (wv WMO)) © (IPO (%Mo (UJ() A 6)) 0o RPO (H(wo), ﬂ-Mo))
factors through evy o Jp, (0(wwy), Ty, ). For simplicity, let V be the space of myy,, and we
regard 7, (wo x 0) as a linear isomorphism ®: V — V. Since Ry(p,)(6(w), 0(wo) T, ) ©
Rp, (0(wo), mrr,) = Rp, (0(wwy), mag,) by Proposition [C72, as linear maps, we have

(evl © ‘]Po (w’ 71-Mo)) © (‘[PO (%Mo (wO X 9)) 0f*o RPO (Q(wo)v ﬂ-Mo))

= ® o (evy o Jp, (w, wo(m, ©0))) © (67 © Rpy (6(wo), masy))

= ® o (evy o Jym,)(0(w), O(wo)mar, ) © Ry (0(wo), masy)

- H 7A<07 P; ® p;\/’ wE>m” ~®o (evl © JPO(H(ww0)> 7TMO))'

1<i<j<t
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wwg

This implies that O (Fj,.,,,) € Fo, and 0w (Fy,,,)) C Fu, which are the advantage

of F, over F,,. Hence the induced action Oy on Jacp(Z;) sends Jg(wwO) fo J. Since
w — O(wwy) is an involution on WM\W /WMo we see that Oy swaps J% and Jg(ww‘)).
Hence if (wwy) # w, then we have

(IndgLN@)(Jg) + Inle;,LN(E)(Jg(WO))> X 0y 2 0.

On the other hand, if #(wwy) = w, then Oy, preserves Jg. Moreover, the same argument

as above shows that IndgLN(E)(Jé” X Ow) = I; X by in R(@N(E)) Therefore
dS ) (Jacy(Z; 8 by )) £ P =6
we(WM\W/WwMo)?
JEH0

where (WM\W/WMo)? is the subset of the double coset space fixed by the action
w — O(wwy).

Suppose that P = M Np corresponds to a partition (1, ...,n1,ng, N1, ..., ny) of N.
Here, we assume that n; > 0 for ¢ > 0, but ng is possibly zero. Note that dim(A,) = m.
Asin [Z, Section 1.6], the double coset space WM\ W /W™ is canonically identified with
the set of matrices of the form

/ !/

e A A S R
A= : : : : : : € Mopi1,2r44(Z)
N (S S Ui Om Q.
such that

(1) all entries are non-negative integers;

(2) Yo L ais;=djfor 1 <j<r;

(3) Zi:_m a;"j = d; for 1 St] <t

(4> ijl(aiﬁj + ai,j) + Zj:l CL;J = Ny for —m <i<m.
Since p; and p are cuspidal, we see that Jg # 0 if and only if

(5) a;1j €{0,d;} for —m <i<mand 1 <j <r;and
(6) a;; €{0,d}} for —-m <i<mand1<j <t
In particular, for each £ (resp. j), there exists unique i such that a; +; = d; (resp. a; ; =

d;). Let Xp be the set of matrices A as above satisfying the conditions (1)-(6). For
A € Xp, the corresponding JQESU is given by

m m

7= X opi| x| X[ x| X ry|]| e @ REGL,(E)).

i=—m 1<j<r 1<j<t 1<j<r i=—m
ai7j7é0 ag’j;ﬁo ai,_]'750
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The action w — 0(wwg) on WM\W /WMo gives an action of § on Xp. This is given by

aij—ai—; (—m<i<m,1<j<r),
a;—~a;  (=m<i<m,1<j<t)

Therefore, A is fixed by this action if and only if
(7) a_j—j=a;j for —m <i<mand 1 <j <r; and
(8) a’;;=aj;for —m <i<mand1<j <t
Since for each 1 < j <¢, there is only one ¢ such that a} ; # 0, we must have a} ; = 0
for i # 0 and a; ; = d.
Therefore, for a fixed 0 < m < r, there is a bijection between

{(P,w) ] P = 6(P) = MNp, dim(A}) = m, w e (WY\W/WH) Jw 2 o}
and
(LY 0 £ L C{l, .y LN L =0 #7), e: [U-- UL, — {£1}}.

If (P,w) corresponds to ({I;},€), then the corresponding matrix A € Xp is given
such that

e if 1 <j<randje€ I for some 1 <i < m, then ac;); = d; and ay; = 0 for
i # e(j)i;

o if 1 <j<randj¢l forall 1 <i<m,then ap; =d; and ay; = 0 for i’ # 0;

o if 1 <j <t then ay; = d; and aj ; = 0 for i’ # 0.

Moreover, J;A)” is equal to

(X Pe(j)j) X X (X Pe(j)j) X oy X (X Pe(j)j) X X (X Pe(j)j)
j€Lm jeh jeh J€Im

for some g € Irr(GL,,,(E)). In particular, P corresponds to the partition
(Z dj,...,Zdj,no,Zdj,..., Z dj> .
JE€Im jenl jen Jj€ln
By setting k; = |I;|, we see that
‘{<{Il};il7€) | Q) 7& I@ - {]-7 s >T}7 Iz N Ii’ - Q) (l ?A i/)7 €: Il U Im — {:tl}}|

- Z 2k:1+-~+km7"(7“—1)---(r—k1—---—km+1)
Ktyookm>1 flo ko
[
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Therefore, we have

D (i) (L5 R Ow) = (Z ( )Tex(ezx—l)m

(n{a;ix) (1= (1 —e¥)*h
(@)

Here, we use the fact that e=*(1 — x)’”“ has a zero at x = 0 with order r + 1. Since
r(¢) = r, we obtain the assertlon .

_O> ;X Ow

>I¢7®0W

=0

) TR 0y = (—1)"Z; K by

4.4. ECR vs. Aubert duality. Next, we consider Aubert duality for classical groups.
We will use the notations in Section 2.
Let G be one of the following quasi-split classical groups

SOQn—I—l(F)a Sp2n(F>7 O2n(F>a Un
For m € Rep(G®), its Aubert dual is defined by

Deo(m) = > (—1)8mAre)Ind (3 (Jacps (7))
o

in the Grothendieck group R(G°), where P° = M°Np runs over the set of standard
parabolic subgroups of G°. Note that Age = {1} unless G° = SO,(F). If 7 € Irr(G°),
then Dgo(m) = f(m)7 for an irreducible representation 7 with a sign f(w) € {£1}
(see Theorem (2), (3)). As in Theorem B3 (2), this sign is given by f(7) =
(—1)dim(Awe) - where P° = M°Np is a minimal standard parabolic subgroup of G°
such that Jacps(m) # 0. Such a P° may not be unique, but the sign (—1)dm(Aae) jg
well-defined.

When G = O9,(F), we also consider twisted Aubert duality defined in Definition
B48. Fix a Borel subgroup B° = T°U of G° = SOy, (F). If we denote the normalizer
of (T°,B°)in G by T, then TNG° =T° and T'/T° = G/G". Fix a representative ¢ € T'
of the non-trivial coset in 7'/T° as in Section 2. For m € Rep(G), we define

Da(m) =Y (=1 Ind (Jacp (w)),
Po
where

e P° = M°Np now runs over the set of standard parabolic subgroups of G° =
SOq, (F') which are stable under the conjugate action of ¢;
e P=P°-TCG,
o AS,. is the subgroup of A, fixed by the action of e.
The Jacquet module Jacp(7) is defined as usual (see Section [23). It is a representation
of M = M?° - T and satisfies

Jacp(m)|pe = Jacpe (m|ge).
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By Propositions B4 (3) and B5), for 7 € Irr(G), one can find 7 € Irr(G) such that
the trace of Dg(m) — B(m)7 is zero on fg € C°(G \ G°). Here

B(m) = B(me)  if m|ge = T © 7o,

pm) =

p(m
Note that when m|ge = m @ mo, if Jacp(m) # 0, then Jacp/(me) # 0 with P’ the
conjugate of P by e.
Example 4.4.1. Let us consider G = Oy(F). Then G° = SO4(F') is a torus so that it
has only one parabolic subgroup P° = G°. For 7 € Irr(G), we have

. -1 if G° = S0O4(F) is split,

mm:«nmwm:{l 2(F) is sp

(_1)dim(A6Go) —1.

Hence Dg(w) = 7. Since 7 is equal to S(7)Dg(m) on Oy(F) \ SO2(F), we see that
7 # m if and only if G° = SO, (F") is split.

Go) if m|go is irreducible.

otherwise,

Now we compare Aubert duality for G with twisted Aubert duality for GL ~(E). To
do this, we consider the following hypothesis.

Hypothesis 4.4.2. Fix an A-parameter ¢ for G. Then there exist multi-sets II, and
IT; over Irr(G) equipped with (-, 7)y and (-, 7'); satistying (ECET) and (ECE2) in
Section IB. Moreover, we assume that for any proper Levi subgroup M of G and
any A-parameter 1, for M, there exists a multi-set 11, over Irr(M) equipped with
(-, 71y, satisfying (ECRT) and (ECRZ2) in Section [A.

Remark 4.4.3. Notice that Hypothesis B-272 does not require members in A-packets to
be unitary. For a proper Levi subgroup M, Hypothesis 42 assumes Arthur’s results
for all A-parameters 1y, whereas, for GG, it assumes only for a fixed A-parameter ¢) and
its dual 12 In particular, if ¢ = ¢ is a tempered L-parameter for GG, after establishing
(ECRT) and (ECR2) for ¢ in the next section, one can use results in this section for

¢ and ¢.
Lemma 4.4.4. Fiz ¢ € V(G). Assume Hypothesis [[-4.3.
(1) The A-packet I; is given by
Iy ={7|m €Iy}
Moreover, for m € 1L, we have B(1)(s5, )5 = (s, m)yB(T).
(2) For m €1l and s € Ay, we have

(8,75 B(1)

.m0 BB

where § € AIZ is the element corresponding to s via the canonical identification

Ay = Ay, e(p,a,b) = e(p, b, a),
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and Yy is given by s as in (ECR3) in Section 4.

Proof. We show (1). Since (twisted) Aubert duality commutes with the twisted endo-
scopic character identity (see [X2, (A.1)]), when f € C°(GLy(E)x0) and fo € C°(G°)
have matching orbital integrals, we have

B() Y (s5:7)30x(fa) = BW)(G : G°)Oz,(f)

erHa

— (G GO)@D&N(m(m)(f)
= Z <S¢, 7T>1/;@DG0(7r)(fG>

WEHw

=Y (54, muB(m)Ox(fa).

WEHw

By the linear independence of the characters ©, together with the surjectivity of f|—>
fa, we see that Iz = {m|m € lI}. Moreover, comparing the coefficients, we have
B()(sg, ) g = (Su, T)yB(T).

Next, we show (2). Similar to (1), by [Hi, Theorem 1.5] or [X2, (A.1)], when fs €
C>(G) and fo, ® fa_ € CX(GL x G2) have matching orbital integrals, we have

1
NS SN
) welly
1
= m Z <S Sy 7T>¢@DG°(7T)(fG)
’ 7T€H,¢,
— H Z (Spngnes M) buen. ODgo () (f6)
Iie{i} K) T €y @ne
=1l gy 2 lowmen mdunfm)On (o)
He{i} B e €lly omy

Here, we set

Do — D¢ if G = 0y,(F) and s ¢ A},
o Dgo otherwise,

and we assume that fg|ge = 0 if G = Og,(F) and s ¢ A, whereas fo € C(G°)
otherwise. Using (1) and Lemma BT, we have

(GBWG)) Z (s, M)y (55 1) 59z (fc)

ﬂ'EHw

6%@ ) )
H GZ)) D (Shene Ta)iuen, Onlfo)

re{+} G

Tk EHUJN Nk
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_ B4)B(¥-) A
=G ) > (855 7)504(fe)-

7AI'€H$
Comparing the coefficients, we have S(¢)(s, m)y = B(¢4)B(¢-)(8, 7) 5, as desired. [

By Proposition B13, we know (3(¢) for tempered parameters ¢ = ¢. It is useful to
state the following result.

Corollary 4.4.5. Let ¢ be a tempered L-parameter for G. Assume the existence of
A-packets 11y and 115 associated to ¢ and ¢ which satisfy (ECET) and (ECR2). Then

we have

(5705 _ 1)) r(en) (6o
(5,7
In particular, if s = e(p,d, 1), then
(e(p,1,d),7)5 1 if d =0 mod 2,
(e(p,d,1),T)g {—(—1)m if d =1 mod 2,

where m is the number of irreducible constituents of ¢ of the form p®R.S, for some a > 1
(counting with multiplicity).

Proof. The first assertion follows from Lemma B4 (2) and Proposition B13. Suppose
that s = e(p,d, 1) € Ag. If we write

o=0¢ oPpR S,

i=1
such that d; = d mod 2 and ¢’  pX S, for any a = d mod 2, then by definition

Z % if d =0 mod 2,
r(¢) =r(@)+{

Zdi;1+[%] if d =1 mod 2.

i=1

where [x] denotes the largest integer not greater than x. Hence

0 if d =0 mod 2,
r(¢) —r(ds) —r(e-) = EE [_m - 1} if d=1mod 2.
2 2
This is equal to 1 if and only if d is odd and m is even. O

Remark 4.4.6. Notice that the same proof shows the converse of Lemma E-472 in the
following sense. Namely, if we assume (ECRT) and Lemma B2 (1) (resp. (ECR2)
and Lemma B2 (2)) for an A-parameter ¢, then we obtain (ECKT) (resp. (ECRZ2))

for the dual A-parameter ¢. In fact, (ECRI) and (ECR2) for A-parameters of the
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form ¢ = gg, where ¢ is a tempered L-parameter, will be proven in this way. See
Theorem 271 below.

Note that the same statement as Corollary B-473 was recently given by Liu-Lo—Shahidi
[LLS, Theorem 5.9].

We shall give some example of this corollary for G = O4(F'). In this example, for
A, B € R(Gy), we write A < B if B — A is a non-negative combination of irreducible
representations.

Example 4.4.7. Write G = O4(F). We denote by B° = T°U the standard Borel
subgroup of G° so that its Levi is isomorphic to 7° = GL;(F') x SOs(F'). This is the
unique proper standard parabolic subgroup which is stable under the conjugate action
of T'= GL;(F) x Oy(F'). Set B =TU. For simplicity, write e, = e(x,1,1) € A, for
some ¢ containing .
(1) Let x and x’ be quadratic characters of F* with x # x’. Consider
d=xDx®X ®X € (G)
so that G° = SO4(F) is split. Then |Ay| = 4 and |Sy| = 2. We can write
[y = {m, 7 ®det,n’, 7’ ® det} such that
<6X77T>¢ =1, <6X’77T>¢> =1
(e, m@det)y = —1, (ey,m®det)y =—1,
(ex: o= =1, (ey,m)y =1,
ey, ™ @det)y =1, (ey,n ®det), = —1.
Similarly, write I, = {my, 7, ® det} and Il,/g, = {7/, 7,y ® det} such that
(-, )xay = 1 and (-, ) yay = 1. Then
mdG(xR7my)=nr@n, Ind§(Knr)=7a (7 @ det).
Hence, in the Grothendieck group R(T"), we have
Jacp(m) S 2x @My + X @ Ty + X' @ (my @ det),
Jacg(m) <2 @ my + X @ Ty + X ® (1, @ det)
so that
Jacg(m) = x @ Ty + X' @ Ty
Since B(m) = 1, we have
ﬁiDg(W) =7—(r+7)— (7 + (7' @ det)) 21 ®det.
One can check that
(e, T®@det)y  (ey,m®@det)y
<exv 7T>¢ <€X” 7T>¢
which is the statement of Corollary BZ473. Similarly, we have 7’ = 7’ ® det, and
one can also check Corollary B-273 for this case.

_17
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(2) Let x, X" and x” be distinct quadratic characters of F'*. Consider

p=xox®X ®x" )
so that G° = SO4(F) is not split. Then |Ay| = 4 and |Sy| = 2. We can write
Iy = {m,m ®det,n’, 7’ ® det} such that
<6X>7T>¢ =1, <6X’7 7T>¢ =1, <€X”77T>¢> =1
<6x’ 7T/>¢ = -1, <6X’77T,>¢ =1, <6X”v 7T/>¢ =1
Similarly, write Iye, = {m, 7o ® det} with (-, 7o)ey = 1. Then Ind%(y X
7o) = m @ 7’ so that Jacg(m) = x ® mp. Since f(m) = —1, we have
e —Dg(n) = -7+ (n+7')=7".
On the other hand, since
(—1) @) —r6-) — -1 ifs=ey
1 if s = Ex’y €X'y

we get Corollary B=473 for .
Let x and x’ be quadratic characters of F* with x # x’. Consider

p=xDxexBX € P(G)
so that G° = SO4(F') is not split. Then |Ay| = 2 and |S,| = 1. We can write
Iy = {7, 7®@det} such that (-, 7)s = 1. Then 7 = Ind% (xR ) with 7 € Tl e,
such that (-, m)yay = 1. Hence Jacg(m) = 2x ® mp. Since f(m) = —1, we have
e —Dg(m) = —m+ 21 =m7.
On the other hand, since
(_1)T(¢)*T(¢+)*T(¢>—) -1

for s = e, and €, we obtain Corollary B3 for 7.
Let x be a quadratic character of F*. Consider

P=XxBXDXDXE P(C)
so that G° = SO4(F) is split. Then |Ay| = 2 and |Sy| = 1. We can write
Ty = {7, 7@det} such that (-, 7)s = 1. Then 7 = IndG (xR, ) with 7, € Tl e,
such that (-, m),e, = 1. Note that
Jacg(m) =3y ® Ty + x @ (7, ® det).
Since B(m) = 1, we have

9

ﬁiDg(ﬂ):ﬂ—(Sw+(7r®det)) L 1 ®det.

On the other hand, since
(_1)7’(¢)—T(¢+)—7’(¢7) -1

for s = e,, we get Corollary BEZ-3 for .
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4.5. Computation of 3(1). To show Theorem [CIOH (2), we need to compare (5, 7);

with (s,m), in a little more general situation than the tempered case. The results in
this subsection will only be used in the proof of Lemma G2

In the next proposition, we compute (1)) when v is irreducible as a representation
of Wg x SLy(C) x SLy(C) assuming Hypothesis B2,

Proposition 4.5.1. Assume Hypothesis [-4.3. If 1 is irreducible and conjugate-self-
dual, then B(zp) = (—1)"®),

Proof. Using Lemma BT, up to replacing ¢ with ¢ ® n for some n if necessary, we
may assume that ¢» € ¥(G) for some classical group G.

Since ¢ is irreducible, we have A, = Az = {1}. By Lemma B4 (1), we have
B(y) = p(m) for every m € II,. By [Ar3, Proposition 7.4.1] and [Mok, Proposition
8.4.1] which we can use because we are assuming Hypothesis B472, we can take 7 to be
an element in the associated L-packet Il4 . If 7 is the unique element in this L-packet
corresponding to the trivial character of Ay, and if we write ¢» = pX S, X S}, then by
Theorem T3, we have

T pl-fg x| [ @0

for some supercuspidal representation o and real numbers x1,...,x, € R, where n =
[%b] For the notion of the parabolically induced representations, see Section C. Since
r(¥) = [2], we have B(¢) = B(r) = (—1)"¥), :

By Propositions 13 and B51, we know B(¢)) = (—=1)"®) when ¢ is irreducible
or (co-)tempered. We will need a few more cases. In the following proposition, for
¥ Wg x SLy(C) x SLy(C) — GLy(C), we define ¢ and * by

WP (w, g1, 92) = Y(w, g1, 1), ¥ (w, g1, 92) = ¥(w, g2, g2).

Recall that S, is the unique a-dimensional irreducible algebraic representation of SLy(C).

Proposition 4.5.2. Fiz an A-parameter i of G of good parity, and assume Hypothesis
Z-2-3. Suppose that ¥ = p1XS1DP2XSs for some representations ¢y, ¢o of WgxSLy(C)
(which can be zero). If we decompose 1 = @®L_ 1 into irreducible representations, then
we have

’YA(Saw;'A@C fawE>
1<idjer YA(S, i @ Yy, vE) |

Proof. Note that the product of gamma factors is independent of the order of the
irreducible components of ) by Proposition BT2.
We prove the assertion by induction on dim(¢s). If ¢ = 0, then 1) = ¢y is tempered
and the assertion is Proposition B3 since ¢! = 1@ for any 1 < ¢ <t in this case.
Suppose that ¢, # 0. Choose an irreducible subrepresentation ¢y C ¢9. Set 1y =
o X Sy and ¢ = ¢ — ¢y X S,. Hence 1y, = myr x my,. We denote the standard modules

B) = (-1
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of my, and my by Zy, and Zy, respectively. By Lemma BT, we have the following
diagram
Il/” X 7Twéj<—> le X I"/’O

| |

04>7T¢/X7T¢0D > Ty XI¢04>7T¢/ X7T¢04>O.

1
2

1 _
Here, the bottom sequence is exact since Ly, = Ty, | - |5 X Ty, | - | z* 1 of length two. By

the same argument as Lemma BT, we have
dime(Ender () (T X Zy,)) = 1.
Indeed, the canonical map
Endar () (g X Lyy) — Endgr ) (g X my,) = C

is injective since my X 7y, is the unique irreducible quotient of 7y x Zy,, and appears
in my x Zy, as a subquotient with multiplicity one. By the functoriality of the Aubert

involution (Theorem B2 (1)), we see that Endgr, (g)(Ty X fwo) is also one dimen-
sional.

The action 6y of 6 on the standard module Z,» x Z,,, which fixes a Whittaker func-
tional gives an action 6y on my X Zy,. This is the unique action inducing Arthur’s

actions 04 both on my x TyD and on my X my,. If we denote by é\w and é\A the actions
induced by 7~ 7, then by Proposition BZ7 (2) and Theorem B3 (4), we see that

(71'1;, X I%) &QW = (71'1;, X szo) X 04+ (ﬂ@, X 7Tw64) X 04
in the Grothendieck group R(GLy(E)). Since D, ()T B 04) 2 B(p)m; W04, if we
take an action 6}, of 6 on Ty x f% such that
(71'1;, X Ly, ) X g = (71'1;, X 71'1;0) X4+ <7T1Z/ X WT/’(?) X 914
in R(@N(E)) for some ¢4, then we have
B @ Y¢)
BY)

We realize this action 6y, on 7y X fwo using Theorem IUT. Namely, if we let
P = M Np be the standard maximal parabolic subgroup of GLy(FE) such that T &7@0
is an irreducible representation of M, and if we let w € W(0(M), M) be the unique
non-trivial element, then we have w(ﬂ'@ Xy o 0) = 7 Wy, and the normalized

0, =

04.

intertwining operator Rp(fow, 75 X7y ) realizes Arthur’s action 04 on mj; = w5 X w5 .
Recall that

Rp(0ow, 7y K75 ) = Ip(iy g (wx0)) 00" o Rp(6(w), 75 Ry, 1))
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The operator Rp(6(w), 75 K7y ,¢) can be extended to a meromorphic family of nor-

malized intertwining operators on 7 |- | xf% |-|5; for (s,s") € C. It can be decomposed
into the composition of the normalized intertwining operators
. A sl sil sl A sl
T | - |5 X ool - |5 * X ool - | * = ool - [ % X | - [ X Fgo| - [ ?
~ s—% A s+% ~ s/
= Tgo| g * X Tl - [p * X Ay - |
up to a scalar valued meromorphic function which is holomorphic at (s, s") = (0,0) (see
Lemma [C73). Since these two intertwining operators are holomorphic at (s, s’) = (0, 0)
by [MW2, 1.6.3, Lemma (ii)], we see that Rp(6(w), 75 W75 ,4) can be considered as

a well-defined operator on T X f%. On the other hand, the linear isomorphism
T Mg (wx0): wiry Ky o6) = T Wms
can be extended to a linear isomorphism
w(my Ry, 00) 5 75 BT,

Therefore, the action 6, on 77 X ZZ,O can be realized by ﬁp(@ ow, s K7y ).

By Propositions B13 and B together with (1) = r(1y), if we apply the functor

T 7 to the equation

Ly W Ow = myp KOs + myy K04
in R((/}IN(E)), then we obtain
fwoggw = Tya &GA—F?T%@@A
for some By,. Hence the above isomorphism w(wa, X fwo o) = m X f% induces
Ty K Tpa(w = 0): wng Kmyao0) = T Bmya.
Therefore the normalized intertwining operator Ep(ﬁow, T &%’%) on 7, X 7:/}0 induces

.ﬁp(eow7%’& @%%4) % VA(S,@E & @Dz,z/)E)
va(s, 9" ® Ui, )

s=0
on 7w~ X m,a. This means that
P ¥y

BW ®Y§) _ (s, ¥ @ o, ¥p)
6(1/)) ’}/A(Saw/@cw[?awkﬂ/)

Now, we write ¢’ = @&!_;1); for the irreducible decomposition. Then by induction, we
see that B(¢ @ ¥f) is equal to
SO>

A c, /A
(_1)r(w'®¢()D) ( IVA(S? ¢/z\ ® Aj 7¢E)
1<icj<t VA(S: i ® Y, UE)

s=0

) (m(s,wf ® Ui V)
s VA(Svlp/@Cq/}(j)élvwE)




88 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MfNGUEZ, S. W. SHIN
Since (¢’ ® ) = r(y), we have

VA(Saw;‘A@C ]AawE) ) <7A(571/}/A®C1/)(1)47w5)> )
0<i<j<t 'YA(Sa Y ® C@Z)ja @ZJE) =0 'YA(Sa P ® o, 7»UE) <=0
This completes the proof. O

Bw) = (=) (

Corollary 4.5.3. Fix an A-parameter 1 of G of good parity, and assume Hypothesis
7-2-3. Suppose that v = $1XS1DPKSy for some representations ¢y, gy of W xSLy(C).
Fors =73, e(pi,a;b;) € Ay, define . by

w—:@pi&sai&sbw ¢+:¢—¢—

el

as in Section CA. Then

<§’ﬁ—>$ _ (_1)r(1/1)—r(1/)+)—r(¢—) ’)/A(quﬁﬁ ® qu[if’ VE) ‘
<S77T>¢ ’YA(Saw-l— ®cw—a¢E) s=0
Proof. This follows from Lemma B4 (2) and Proposition B-22. O

5. ENDOSCOPIC CHARACTER RELATIONS FOR CO-TEMPERED PARAMETERS

The purpose of this section is to prove Theorem TI0H (1). In this section, we do not
impose Hypothesis 472

5.1. Equation (=). Let ¢ = (}5 be a co-tempered A-parameter for G. We will construct
the A-packet II, together with the pairing (-, 7), for 7 € II,. According to Lemma
A2 and Corollary B3, the correct definitions should be as follows:

o T = (7|7 € T}

° <§,ﬁ>$ = (=1)r@=r@+)=(é-)(s 7)4 for s € A4 corresponding to § € As.

As explained in Remark B4, to show (ECHT) for this packet II3, we need Lemma
E23 (1), ie., the equation B(¢)(sz, 7); = (s4,T)eS(m). It is not trivial that this
equation is compatible with the definition of (s, 7) 5 above.

If s = 53 € Ay corresponds to § = s5 € Az, we see that 7(¢) = r(¢4) + r(o-).
Hence our definition shows that (sq;, fr)a = <5A¢;, m)e. Using this together with sy = 1,
the equation 3(¢)(sg, )5 = (s¢, 7)eB(m) can be rewritten as

B(P)B(T) = (55, T)s-

In this section, we only assume Hypothesis B4 for tempered L-parameters. To
clarify our situation, we state this hypothesis explicitly.

Hypothesis 5.1.1. For any quasi-split classical group G with dim(St5) < dim(Stg),
and for any tempered L-parameter ¢’ for G', there exists a subset Ily of Irriemp(G’)
equipped with (-, 7')4 satisfying (ECRT) and (ECR2) of Section 8.
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This hypothesis is the same as Hypothesis C01 and hence, we can use the results in
Appendix 0. We also notice that the proof of Proposition E1-3 did not use Hypothesis
B2 2. Therefore we know that 3(¢) = (—1)"?) even now.

Now we can state what we have to show in this section.

Proposition 5.1.2. Assume Hypothesis b1 (but not [[-4.3). Let ¢ be a tempered
L-parameter for G. Then for m € Ily, we have

(%) B(9)B(m) = (55 m)s-

Remark 5.1.3. This statement was recently proven by Liu-Lo-Shahidi [LLS]. How-
ever, it is not obvious to us whether they use any results that are unavailable in the
setting we need, i.e., at the point of Arthur’s argument in [Ar3, Section 7.1]. For safety,
we will give a proof of Proposition BT

Let us explain our strategy for the proof of Proposition B-T2. One can check that both
B(¢) and () depend only on the cuspidal support of 7. However, it is complicated to
list the cuspidal support of 7 for all m € II,;. Instead of this, we give several reductions
by using Theorem CZ23. The final case is where 7 is supercuspidal, which we can treat
by a direct computation.

Let P = M Np be a standard parabolic subgroup of G with Levi subgroup M =
GLg, (E) x -+ x GLg, (F) x Gy. For 7; € Rep(GLy, (F)) and 7y € Rep(Gy), we denote
the normalized parabolic induction by

7—1><...><7'tNWOZIndJGD’(’ﬁ‘E"'&TtE’WO)'

5.2. Reductions. As the first reduction, we assume that we can decompose ¢ as
b= ¢1® do @ P
Then we have a canonical inclusion Ay, < Ay, which satisfies 53— 53. If we denote

by 7 the irreducible tempered representation of GL,,(F) corresponding to ¢; with
m = dim(¢y), then we have

e 7 X 7 is semisimple and multiplicity-free for my € Il4;
o m c Il, if and only if 7 < 7 x 7 for some 7y € Ily,;
o if T — 7 X 7y, then

<'> 7T>¢>’A¢o = <'7 7r0>¢0'

For these statements, see the proofs of [Ar3, Proposition 2.4.3] and [Mok, Proposition
3.4.4]. For such m < 7 x my, by definition of 3(¢) and 5(7), we have

B6) . B
o)~ Y T By

1
WE9w|—><;51 w, |w|E 0_;
0 [w|p?

where 7 is the length of
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as a representation of Wx. Hence if we knew (=) for my, we would have
B(@)B(m) = B(¢0)B(m0) = (55, T0)gy = (55, 7)o,
which is (=) for 7. Therefore we may assume that:

(1) ¢ is a discrete parameter, i.e., ¢ is of good parity and multiplicity-free.

When ¢ is a discrete parameter for G, we write

t
¢ = @ @p D SQap,r‘rh
p =1

where a,; € (1/2)Z and 0 < a,; < --- < a,¢ with t = ¢, > 0. Then p is conjugate-
self-dual, and the parity of 2a,; + 1 depends only on the sign of p. Recall that A, is a
quotient of

t
Ay = GB EBZ/QZ@(p, 2a,, +1).

p 1=1

Here, as we abbreviated pX S;X S; to pX .Sy, we write e(p, d) = e(p, d, 1) for simplicity.
Moreover, % € A, is the image of

t

Z Z e(p,2a,; +1).

P =1
ap 1¢€Z
Let m € II;. As the second reduction, we assume that one can find p and 1 <7 <t¢,
such that
(e(p,2a,; +1),m)s = (e(p,2a,i—1+ 1), 7).

In this case, by applying Theorem 473 repeatedly together with [Ar3, Proposition
2.4.3] and [Mok, Proposition 3.4.4], we have

QAp,i ap,i—1 —Qp,i—1

me=pl gt Xl [g T X< Xpl [T Mo,
where 7y € 11, with
o =0 — p™ (S2,,+1® S2a,,_1+1),
and
(5 m)olas, = (5 70) g0
Hence

BO) o s B
oy~ Y Blmo)

Note that via the canonical inclusion A4, — A,, we have

—~ % lf ap’i & Z,
RN ‘
o5 (elp,2ap: +1) +e(p, 20,0+ 1)) ifa,; €7
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Hence if we knew (=) for 7, using (e(p, 2a,;+1),m)y = (e(p, 2a,;-1+1),m) 4, we would
have

B(¢)B(m) = B(¢o)B(m0) = <%;,770>¢o = <5A$, s
which is (=) for 7. Therefore, we may assume that:

(2) (e(p,2a,; +1),m)4 # (e(p,2a,;—1 + 1), ), for any p and 1 <i <t,.

As the third reduction, we assume that one can find p with ¢, > 1 and a,; € Z such
that

(e(p,2a,1 +1),m)y = 1.
In this case, by applying Theorem C4-3 repeatedly, we have

ap,1 ap,1—1

1
T=pl-[g" xpl-[E X - X pl-|g X o,

where 7y € 11, with
o =9 —p™W S, 11,
and

(- m)ola,, = (5 70) g0

B6) o s B(R)
Blgo) Y B(mo)

Note that via the canonical inclusion A4, — A,, we have

Hence

85, 7> 55— e(p,2ap1 + 1).

Hence the equation (&) for my implies (®) for 7. Therefore we may assume that:

(3) (e(p,2a,1 +1),m)y =—1if a,1 & Z.
Note that an irreducible tempered representation 7 satisfying (1), (2) and (3) is called
strongly positive discrete series in Moeglin—Tadi¢’s terminology.

Let m € Il be a strongly positive discrete series representation, i.e., it satisfies the
conditions (1)-(3). Write again

t
¢ - @ @p X S2ap,i+17
p =1

where a,; € (1/2)Z and 0 < a,; < --- <a,; with t =t, > 0.

As the fourth reduction, we assume that one can find p with
ap; — api—1 > 1 for some 1 < i < ¢,. Here, formally we set a,o = —
applying Theorem T3, we have

> 1 such that
In this case, by

tp

1

5
api

T p|-|£" X mo,

where 7y € 11, with
o =¢—pKX S?ap,i+1 ®pX SQap,i—l»
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and (-, )y = (-, 7o) ¢, Via the canonical identification Ay = Ay, (see Proposition CAT).

Hence
86) _ | _ A
B(¢o) B(mo)

Note that 55 = 53 via Ay, = Ag. Hence if we knew (g) for 7o, we would have

B(Qb)ﬁ(ﬂ-) = 6(¢0)/3<7T ) < ¢0’7T0>¢ < ¢’ >¢’
which is (=) for 7w
Therefore, we may finally assume that

) ¢ is a discrete parameter;
2) (e(p,2a,;+1),m)y # (e(p,2a,,—1 + 1), m)4 for any p and 1 < ¢ < t,;
3) (e(p,2a,1+1),m)y=—1ifa,, & Z;

4) apy =0o0ra,; = ;;
5) ap; = a,;—1+ 1 fori>1.

Such a representation 7 is supercuspidal by Corollary C-43.

(1
(
(
(
(

5.3. The case of supercuspidal representations. Now we assume that 7 € Il is
supercuspidal, i.e., it satisfies the conditions (1)—(5) in the last subsection. We check
(=) for 7 directly.

Write

t
o= B D08 Sun
p =1

where a,; € (1/2)Z and 0 < a,; < --- < a,; with t =t, > 0. Then

¢<w,<lwl% )) @@f@ Wil e 5,

0 |w|E§

[

Note that if a,; € Z, then p appears in the right-hand side with multiplicity ¢ = ¢,,.

Hence,
zz(am )+ 2 ([ xe).

ap1¢ ap1€Z

where [x] denotes the largest integer not greater than =. By the conditions (4) and (5)
in the last subsection, we note that when a,; € Z, we have a,; =i — 1 so that

[ ] B[ 457 2

Similarly, when a,; € Z, we have a,; + % = ¢ so that

S (o b) = 3ni= 20

i=1
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Hence st
B(g) = (-1 = ] (-=1) = .
ap’fQZ
On the other hand, since 7 is supercuspidal, we have §(7w) = 1. Finally, by the condi-

tions (2) and (3), we have
¢

¢’ ¢_ H H p72apz+1 qb— H H H —1)@

ap, var” ap, Paz’ ap, vz
Therefore, we conclude that
B(@)B(m) = (55, 7)g,
as desired. We obtain (=) for 7, and hence we complete the proof of Proposition b1,

5.4. ECR for co-tempered A-parameters. Now we can prove Theorem T (1).
More precisely, we have the following:

Theorem 5.4.1. Assume Hypothesis I (but not [.4.3). Let ¢ be a tempered L-
parameter for G. Define Il and <§,ﬁ)$ for s € A by
I = {7 |m e lls}
and
(3, 7}>$: (_1)r( )—r($+)— <
Then (-, 7)5 factors through Az — As. Moreover, (ECET) and (ECR2) hold for 0.

e,
) a

Prof. Since 1(9) = (64) 6. .= G we have {5575 = (5 7l = AT b
fa €

Proposition B3, Hence, when f € C*(GLy(F)x6) and (Go) have matching
orbital integrals, by [X%, (A.1)], we have

> (55 7)30(fa) = B(¢) > B(m)O

7T€H$ TI'EHqg

$) > Opg.im(fa)
melly

(G GO0y (D
— (G G)on(f).
This shows (ECRT).
Similarly, since 3(¢) = (—1)"® and B(¢+) = B(¢+ ® n+) by Proposition EI-3 and

Lemma BT2, when fi € C2°(G) and fG+ ® fa_ € C(GS x G°) have matching orbital
integrals, by [Hi, Theorem 1.5] or [X2, (A.1)], we have

1 . .
GG > (8- 55,7)50x(fc)

fTEH(;
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= © :1Go) Z (_1)r(¢)—r(¢+)—r(¢—)<8’ ™o - B(0)B(1)Ox(fa)

- ﬁﬁ(@)ﬁ(qﬁ) D {8 1)6O g (r) (fo)

7T€H¢

1
= H mﬁ(gbm ® 775) Z @ch(WN)(fGn)
ke{£} VTR

— H (G';GO Z /B(¢H®nﬁ>/8(7rli)@ﬁ'n(fGn)

we{£} %) frn€ll~

Tk EH¢)§ Nk

1
- H m Z <5$,@®Wﬁ“>5$~®”E®ﬁ“(fG”)'

re{£} e Tn€lly o

Here, the definition of Dge and the assumption on fg are the same as in the proof of
Lemma 0274 (2). This shows (ECRZ). O]

6. LOCAL INTERTWINING RELATIONS FOR CLASSICAL GROUPS

The purpose of this and next sections is to prove Theorem IIOH (2). This is a
key result that is essential in the global method for establishing Arthur’s theory of
endoscopic classification. Arthur’s initial approach was to prove some special cases of
Theorem [CI0A (2), which would suffice for the global method, by an argument based on
Hecke algebras. However, our attempts to realize this approach led to very complicated
computations.

To show Theorem I3 (2), we will instead adapt the method for Theorem I to
the case of classical groups. However, unlike the GLy(E) case, the unitary parabolic
inductions of classical groups are not necessarily irreducible. Because of this fact, we
can apply our method only to “half” of the cases. The final key ingredient is Corollary
B33, which was obtained in an arXiv version of [KMSW]. This result tells us that
“half” of the cases is enough.

6.1. Hypothesis. Let F' be a non-archimedean local field of characteristic zero. Fix
a non-trivial character ¢p: F' — C*. Recall that G is one of the following quasi-split
classical groups

SOut(F). Spou(F), Osn(F), U,

In this section, we assume Hypothesis II04, which we restate here for the reader’s
convenience.

Hypothesis 6.1.1. We assume (ECRT), (ECR2) and (A=LIRI) for

e all tempered L-parameters ¢ for G;
e all A-parameters ¢ for G' with G any classical group such that dim(Stz) <
dim(St@).
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In particular, we have the A-packet IL,,, for ¢, € W(M) for any proper Levi subgroup
M of G, since M 1is a product of such a G’ and general linear groups.

Remark 6.1.2. (1) By Theorem b2, one has an A-packet IT; associated to co-

tempered A-parameters gg for G, satisfying (ECRIT) and (ECRZ2).

(2) For any proper Levi subgroup M of G, Hypothesis G11 is stronger than Hy-
potheses 22 and B3, Hence we can use Corollaries 53 and B33 for
Yy € \IJ(M )

(3) Note that we assume (ECR) and (ECRZ2) not only for proper Levi subgroups
M of G, but also for any classical group G" with dim(Stz;) < dim(Stg). Hence
Hypothesis B0 contains Hypothesis C01 so that we can use Theorems 473,
24 and Corollary C-45.

6.2. Reduction to the maximal parabolic case. Let P = M Np be a standard
parabolic subgroup of G. Write M = GLg,(E) x --- x GLg, (E) x Gp. Let ¢y =
$M =Yy B - DY B Yy be a co-tempered A-parameter for M such that 1; is an
A-parameter for GLy, (E) for 1 <i <t, and ¢y € U(Gy). Suppose that 1; is irreducible
and conjugate-self-dual for any 1 <7 < t¢.

In this subsection, we reduce Theorem [TOA (2) to the case where ¢t = 1. Namely,
we prove the following.

Lemma 6.2.1. Assume Hypothesis G11. We further assume that (ILIR)) holds for any
irreducible components m C Ipi(mp), where
o P = M'Np: is a maximal parabolic subgroup of G so that M' = GLi(E) x Gy;
o Yy = Q/Z;M’ = YaLBY, is a co-tempered A-parameter for M with Yy, irreducible
and conjugate-self-dual;
o my €11y,

Then (CIR)) holds for any irreducible components m C Ip(mwyr) for my € 11y, .

Proof. By Proposition and [KMSW|, Lemma 2.5.3|, the map

‘ﬁw > U (ﬁ, %M>Rp<wu, %M, ¢M)
is multiplicative. (See also the paragraph in [ATr3] containing (2.4.2).) Hence we may
assume one of the following:

o u=350€ Ay,
e u=u; for1 <i<t;or
e u =0 € G, such that ¢, = for 1 <i <,

since Ny, is generated by these elements. See Section [IT.
First, we assume that u = sy € Ay,. Then w, = 1 or w, = € (which occurs only
when G = O, (F')), and

(U, Tar) Rp (wo, Tar, ¥ar) = ({0, Tar)Tar (wa)) o mag (W)~
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By the definition of the operator (w, 7y )7 (w,) recalled in Section IO together with
(ECR2), we see that the right hand side is equal to (s, 7o)y, = (S0, 7). Hence we
obtain (IEIRI) for this case.

Next, we assume that u = 0 € &, such that ¥, = ; for 1 <i <+t. Let P = M'Np
be a maximal parabolic subgroup of G such that M’ = GLy, 1.4k, (F) X Go, and let
Uy = (Y @ -+ B 1) B b be the A-parameter for M’ given by 1y,. Then

1, , = {Ind%gM, (mar) ‘ T € HwM} |

By [KMSW, Lemma 2.7.2], (u, 7a)Rp(wy, Tar, ¥ar) descends to the normalized inter-
twining operator for GLg, 4.1, (E). (See also the proof of Lemma 2.4.2 in [Ax3].) Hence
by Theorem Bh, this operator must be the identity map. Since s, = 1 in this case,
we obtain (ILIRI).

Finally, we assume that u = u; for 1 < i < t¢. We will prove the assertion by induction
on t. We can assume that ¢ > 1. Let P" = M'Np:/ be a maximal parabolic subgroup of
G such that M' = GLg, (E) x Gj, and let

Vi =0 ® (V1 @ D1 Do Yy B -+ DY)

be the A-parameter for M’ given by v5,. Then for any my, € I, and any irreducible
component ™ C Ip(mys), there is a unique myy € Iy, , such that 7y C Ind? ()
and m C Ip/(myr). Moreover, there is a canonical injection A, , < Ay and we have

<'7 7T>¢|A1pM, = <" 7TM’>¢M/-

These facts follow from the tempered case by taking Aubert duality and using Corollary

B4,
Suppose that u = u; with ¢ # ¢ so that s,, € Ay ,. Then by [KMSW, Lemma 2.7.2],
(w, Tar) Rp(wy, Tar, ¥ar) descends to the normalized intertwining operator for G, i.e.,

<IZI£7 %M>Rp(wuzv %Ma ’l/}M) = Ind]GD/ (idﬂwt ® <IZIL7 %M{))RPHG{) (wuiv %M(ﬂ wM(/))) )

where My = M N Gy, ¥y = vy — ¢y € W(My) and we write 7y = my, K 7y with
may € Iy . By the induction hypothesis, (LIH) is known for G in place of G, so
0

this operator acts on Ip/(my) by the scalar (s,,, )y, = (Su;» T)y. Hence we obtain
(CIRJ) for this case.
Suppose finally that © = u;. Then by [KMSW, Lemma 2.7.2],

<’IIt, %M>Rp(wu” %M, ¢M)|IP’(7"M’) = <1:1:5, %M/>Rp/(wut, %M’, 'QZ)M’)
Since we are assuming (ILTR) for the maximal parabolic case, we know that

<7It7 %M’>RP’(wut7 T, wM’)|7T - <Sut7 7T>¢‘
)

Hence we obtain (ILIRI) for this case. This completes the proof. O
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6.3. Halving the problem. In the rest of this section, we will focus on the maximal
parabolic case.

Fix a standard maximal parabolic subgroup P = M Np of G with M = GL,(FE) x Gy.
Let ¢ = gL @ ¢ be an A-parameter for M, and let ¢ = vgr, @ 1o ® Py, be the A-
parameter for G given by 15,. Suppose that ¢qr, is irreducible and conjugate-self-dual.
The A-packet I, is given by the (multi-)set of irreducible components of Ip(my) for
€ Ily,,. Let u € Ny. Recall that the normalized self-intertwining operator

(U, Tar) Rp(Wu, Tar, Yar) : Ip(mar) — Ip(m)
is defined by

(w, Tar) Rp(wu, Tar, Yar) f(9) = (@, Tan) Tar(wa) (Rp(wa, mar, ¥ar) f(9))

with a linear isomorphism

~

(ﬂ, %M>%M(wu) M — TM
satisfying that the diagram

(@7 )T s (wa)
™M M

71 (g P midy,) i iw(m)
(@, ) g (W)

M TM

is commutative for any m € M. The definition of this isomorphism will be recalled in
the proof of the next lemma.

We can write my; = mgr, X 7y, where mqy, is an irreducible conjugate-self-dual repre-
sentation of GLi(E). Recall that 9, is generated by Ay, and an element u;. When
u = uy, similar to the definition of 4 in Section 4, by using a Whittaker functional on
the standard module of 7, one can normalize a linear isomorphism A, : mqL, 5 maL
such that the diagram

Ay, Qidr,
M M
7 (W Py, i i 7 (m)
Ay, ®idrg
M M

is commutative for any m € M.

Lemma 6.3.1. Let u € Ny.

(1) [fu = Sg € A1l107 then <’lj, %MﬁM(wu) = <80,70>w0WM(wu>.
(2) If u = uq, then (u, Ty )T (wy) = Ay, ® idy,.

Proof. Recall in Section 10 that the operator (u, 7as)7ar(w,,) is defined by a twisted en-
doscopic identity. We will check that this identify also holds after replacing (u, 7as) Tas(wy,)
with (so, 70) T (Wy) or Ay, ® idy, according to u = sg € Ay, or u = u.

First, we assume that u = sy € Ay,. Then the required identity follows from the
standard (or twisted) endoscopic character identity (ECRZ) for 1.
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Next we assume that u = wu;. Since the conjugation action of u on M° preserves
the standard pinning, and it acts on GLk(C) by the pinned outer automorphism and

on G° by the identity, we see that s € Z(MO) and M"° = Gy x G with G; a twisted
endoseoplc datum for GL.(E).
We may assume that fyr = foL ® fo and far = fi ® fo. Then

D (Sunes Tan ) t1(Aw, @ idy © Tar(far))

ﬂ'MEHwIM

= tr(Ay, o man(far)) Z (8405 T0) 00 Omo (fo),

WOGH’#O

whereas

Z <S¢M”7TM/>¢M/671’M/(]CM/)

sy EHUJ]WI

= Z <8¢1,7T1>¢1@7r1(f1) Z <5w0770>wo@7r0(f0> )

m1€lly, mo€lly,

where we write Yy = 1 @ Py € V(G x Gy). Since g, = £ o 9hy and dim(StGAl) <
dim(Stg), by (ECE) for ¢, we have

tr( Ay, o meL(far) = Y (S 1) On, (1)

T GH,L,1

Therefore, we obtain the desired identity. 0

Lemma 63T (1) immediately implies (LIR]) for u = so € Ay,. In the rest of this
and next sections, we assume that v = u;. R

By Lemma B2, we may assume that ¥y, = ¢p; where ¢y = dpar, @ ¢p is a tempered
L-parameter for M such that ¢gr, = pgr, X Soq41 is irreducible and conjugate-self-dual.
Then II,,, is given by Aubert duality from Ily,,. In particular, for my, € II,,, the
parabolically induced representation Ip(my) = Ind%(my,) is a direct sum of at most
two irreducible unitary representations. Indeed, by taking Aubert duality, this fact is

reduced to the tempered case, which follows from [At3, Theorem 1.5.1], [Mok, Theorem
2.5.1] and [A, : Ag,] < 2.

Lemma 6.3.2. Assume Hypothesis G11. Let ¢y = ggM be as above, and wy € Iy, .
Assume that Ip(mwyy) is reducible, hence Ip(my) = w1 © mo. Write

<ﬂ, %M>Rp(wu, %M, wM) m — Eit ldm

for e; € C*. Then we have e9 = —¢&7.

Proof. Let P be the parabolic subgroup of G' opposite to P. If we set oy = 7y and
o; = 7;, then Ip(op) = 01 @ 09 is a direct sum of irreducible tempered representations.
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Moreover, we have a normalized intertwining operator
(ﬂ, g]\/[)Rﬁ(UJU, 5M7 ¢M) : Iﬁ(O’M) — ]ﬁ(O'M)

If we write (u, opr) Rp(Wa, 0ar, Oar)|o; = €5 - id,,, then by (IEIR) for the tempered case,
we know that ¢, = —¢.
Recall that Aubert duality is a functor. We claim that the two intertwining operators

(w, Tpr) Rp (W, Tar, ) and (U, o) Rp(wa, 0ars oor)

are dual to each other up to a nonzero constant ¢ € C*. This means that ¢; = ce} for
i = 1,2. Therefore, we have ey = cel, = —ce| = —¢;.

This claim is Corollary BZ33 (1) in almost all cases. The exceptional case is where
G = O9,(F) and Ip(my;) = Ind%.(7S,) for some irreducible representation 73, of M°.
Then we can write Ip(my) = I (75,) @ Ip.(75,), where I}, (75,) (vesp. Ip.(m$,)) is the
subspace of Indgo(ﬂ}’w) consisting of functions f on GG whose supports are contained in

G° (resp. G \ G°). Corollary (2) says that

<ﬂ>%M>RP(wuﬁM7¢M)|Jg ) and  (u, 5M>Rf(wuyb-vM>¢M)|([io(7rMo))A

O(TrMO P

are dual to each other up to a nonzero constant c4 € C*.
Now for f € m;, write f = f, + f_ with fi € I5.(7%,). Then

(W, Tar) Rp(wy, Tar, ar) f

= i (U, on) Rp(wu, Oar, 1)) [+ + e~ (U, 0ar) Rp(wu, 0ar, o)) -

= i ((w, 0n) Bp(wu, 001, o11)) f + (e = ¢ ) ({0, Oar) Bp(wu, Oar, Our)) [

Since Aubert duality is a functor, we have

(U, Tar) Rp (W, Tars Yar) f, - e ({0, o) Rp(wu, 0ar, o0r)) f €
so that
(e — ) (@, 0ar) Rp(w, Gar, 1)) [ € mi OV 1o (75,

where § = — det(w,).

Suppose for the sake of contradiction that ¢, # c¢_. Then the above argument shows
that fo € m for any f = f. + f- € m;. It implies that m; N I}Fo (75,) # {0}. By looking
at the actions of (u, 7ar) Rp(wy, Tar, ¥ar) and the dual of (w,op) Rp(wy, Oar, dar) on
this subspace, we have ¢; = cye;. This shows that c,e, = c_¢] and hence €] = 0. This
contradicts that ¢, € {£1}. Hence we obtain that ¢, = ¢_, which shows the claim. O

Lemma B33 is a key step to prove Theorem I3 (2). It “halves” the problem, i.e.,
by this lemma, it is enough to prove (ILIRI) for only one direct summand m C Ip(myy)
for each my € 11,
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6.4. Highly non-tempered summands. In the previous subsection, we showed that
it is enough to prove (ICIRI) for one irreducible summand of Ip(mys). Here, we introduce
a notion that will isolate a suitable summand.

Let P = M Np be a standard maximal parabolic subgroup of G with M = GLj(E) x
Gy, and let 1y = a1, B 109 be an A-parameter for M. In this and next subsections, we
only assume that gy, is irreducible and conjugate-self-dual. Namely, 1), is not neces-
sarily co-tempered here. Note that then Ip(my;) could have more than two irreducible
summands for my; € I, .

Recall from Section B that for a multi-segment m, we denote by Z(m) the standard
module associated to m. For a segment s = [z,y], with p unitary supercuspidal, we
call the value x—;y the midpoint of s. The Langlands classification for Gy says that for
7o € Irr(Gy), one has a multi-segment my and an irreducible tempered representation
7o such that every segment s € my has a positive midpoint, and Z(mg) % 7y is the
standard module of 7. Thus, 7y is the unique irreducible quotient of Z(mgy) X 7.
When Gy = Og,,(F), it follows from the Langlands classification for SOy, (F"). Note
that if 7y € Irr(Ogp, (F7)) is the Langlands quotient of Z(mg) x 7o with 79 € Irr(Oayy (F)),
then To\sozn6 (r) is reducible if and only if ng > 0 and molso,,, (r) is reducible.

Recall that gy, is assumed to be irreducible. We write ¢, = par, X Saa+1 B Sapt1,
and set
maL = [—a+8,a+ Bl +—a+B—La+B—1py + - +[—a—8,a— 8.

Then the Langlands quotient mwgp, of Z(mgy,) is the representation corresponding to ¥qr,.

Definition 6.4.1. Define € {1, %} such that B — k € Z. For my = maL, W my € 11y,
write Z(mg) X 79 for the standard module of my. We say that an irreducible summand
7 of Ip(myr) is highly non-tempered if there is a tempered representation T with

, 1
T =19 Zflizé,

T A([—a,a],e) X710 ifr=1
such that Z(m) X 7 is the standard module of 7, where
m:m0+2[_a+67a+5]PGL+2[_a+ﬁ_17a+ﬁ_1]pGL+"'+2[_O‘+’£70‘+H]pGL'

Lemma 6.4.2. For any 7y = mgr W my € 1ly,,, there exists a highly non-tempered
summand 7 of Ip(myr). Moreover, it is unique if Kk = %, and there are at most two such
summands if k = 1.

Proof. The lemma is a special case of [Tad2, Proposition 1.3]. But for completeness,
we give a proof.

We use the notations as above. Write Z(m) = 7| - |3 X -+ X 7,.| - | with 7; being
tempered and s; > -+ > s, > 0. By Tadi¢’s formula (Theorem CIT), with a suitable
parabolic subgroup P’ = M’Np: and an irreducible tempered representation 7, we have

Jacp (Ip(mar)) > 7| - |57 @ - @°7)| - |5 @7
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in the Grothendieck group R(M’). Here, for A,B € R(M'), we write A < B if
B — A is a non-negative combination of irreducible representations. Conversely, if
Jacp (Ip(mp)) > || 57 @ - - @7 |-|5° ®T for some irreducible tempered representations
74,...,7. and 7, then we must have 77 = ¢7¥ for i = 1,...,r, and 7 = 79 if K = %,
whereas 7 — A([—a, a],,, ) ¥ 7o if K = 1. Moreover, such an irreducible representation
appears in Jacp (Ip(my)) with multiplicity one.

Suppose that an irreducible subquotient 7 of Ip(mys) satisfies that Jacp/ () > 7| -
|z @ @]+ |5 @ 7. Then by looking at the central character, (after replacing 7
if necessary) we see that the right-hand side is a quotient of Jacp: () in the category
Rep(M'), which is equivalent by Frobenius reciprocity to saying that

T X e x o) g X T
By [AG2, Lemma 2.2], one can see that the standard module of 7 is Z(m) x 7. In
particular, since Ip(mys) is semisimple, we conclude that 7 is a highly non-tempered
summand.

On the other hand, Jacp/(Ip(mys)) contains °r)’| - |5 ® -+ @ 7| - |5 ® 7 with
multiplicity at most one for each 7. The number of highly non-tempered summands

are at most the number of the choices of 7. By definition of 7, this number is 1 or 2
according to Kk = % or k = 1. O

For the rest of this subsection, we fix a highly non-tempered summand 7 C Ip(mys).
Let Z(mgr), Z(m) x 7 and Z(mg) x 79 be as above. Write

—1 —
I<mGL) = A([_a7a]PGL)| ’ ’% X A([_a7a]PGL>’ ) % X X A([_@7&]PGL)‘ ) ‘E6>
Z(mg) = 7| - [ x--- x|z,

where 7; is an irreducible tempered representation of GLg, (E) and e, > --- > e; > 0.

To define several objects, we realize G as an isometry group G(W) (or its identity
component) of a vector space W over E equipped with a non-degenerate sesquilinear
form. We write

W == V+ & Wo ©® V,,

where V. is a totally isotropic subspace with V. & V_ non-degenerate, and where Wj is
the orthogonal complement of V. & V_. Suppose that the standard parabolic subgroup

P = M Np is the stabilizer of V, and the Levi subgroup M of P is the stabilizer of V.
and V_. Hence M = GL(V,) x G(Wj). We decompose

Vo=V eV Ve ..ovi?,

Wy = (@ Wé“”)> oW @ <@ Wéei)>
=1 =1

such that
o dim(V\?) = dy with dy = dim(pgr, ® Saasr) for b€ {8, 8—1,..., =B}
° Vib) oV is non-degenerate for b € {5,8—1,...,—};

° Wéiei) is a totally isotropic subspace of dimension k; for 1 < i < r;
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° O(ei) - Wo(_e") is non-degenerate for 1 <i <r.

For j = 0,1,2, we define a total order <; on the set
_ V(b) V(b)} U {W(ei) W(_ei)} U W(O)
v={vOvO} u{man} o)

as follows.
(0) When j =0,
. Vib) <0 Wo(e) <o V.
o if b> ¥, then V") <, V¥
o if e > ¢, then W) <, W9,
(1) When j =1,
o VI < W <, v,
o if b> b/, then V¥ <, VI,
o if e > ¢, then W <, W,
(2) When j = 2,
o for X,Y € {Vi, Wy}, if b >V, then X® <, Y.
o if b=ec, then V" <, W <, V"
For j =0,1,2, if we write

(Vev|v<,w"={w, . v

with Vi <; -+ <; Vi < WO(O), then we define a parabolic subgroup Pj’ = Mle]{ as the

stabilizer of the flag
icvieWwC---CVid- - &V,

where M; is the common Levi subgroup of G stabilizing all V' € V. We may assume
that P, = P] is a standard parabolic subgroup. Note that P| C P. Let wy,w; € W€ be
such that w, Piw; ' = Py and such that wy ' Pjiy = Py = My Np, is a standard parabolic

subgroup. We may regard w; and ws as

wi € W(MY), wy € W (M, Mp).

Note that M; C M, and the adjoint action of w, preserves M;. Since w; is the longest
element in the subset of W (M;) consisting of elements whose representatives are in M,

we see that w,wiw; ' = wy in W (M), and hence w; 'w,w; = w,.
If we consider that
o GL(Vi(b)) acts on A([—a, ] pep )|« |%;
o GL(W ) acts on 7| - % if e; > 0 (resp. °7’| - % if e; < 0);
. G(Wéo)) acts on 7o,

then we obtain irreducible representations myy,, mas, of My and 7y, of My such that

IPO(’/TMO) = CI(mGL)V X CI(mo)v X To,

]P1(7TM1) :I(mGL) X I(mo) X To,
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; Z(m) x A([—a,a]pq) X0 if 264+ 1=1mod 2,
72 (M) = {I(m) X To if 2841 =0mod 2,

respectively, where Py = P is the standard parabolic subgroup with Levi subgroup
w, Myw;*. Here, we note that pgr, is conjugate-self-dual. Then we have

WaT My = T My W1T A = TMy-

See Section 4 for these notations.
Recall that

man = (A=l -3 % - x All=a, )| - 5)
X (T - % X - x| D xT).

For A= (Mg, A\g1-.,A5) € C¥ " and = (uy, ..., 1) € C", we set

Tt = (A=asalg)| - [ - x All=a, alpe,)] - [17)
X (7] - [l X oo x| i X T) .
We define s, (n ) and o, (a,) similarly. Let ¢pr; (x ) be the L-parameter of myy, (x )-
Recall that the intertwining operators
Rp, (w1, Ty (0w an ) Py (s, o)) — Ly (Tt ()
Rp, (W2, Tty Ay, O, (0gn)) + Lo (Tt (0g0)) = Ly (T ()

are defined by the meromorphic continuation of

RPj (wj, M, (A1) ¢Mj,(A,u))fj,(A,u) (9) = VA(Oa ¢MJ-,(A,M), p,\L/U]fle71|Pj7 wF)
<) [ Fas0(@; mg)dn
ijilﬁﬁ)iijjfﬁj_l\ijil

for 7 = 1,2. As in [BW, Chapter XI, Proposition 2.6 (1)], this integral converges
when we specialize it at A = (8,6 —1,...,—0) and u = (ey,...,e,). Hence R(w;) =
Rp, (wy,mar, ¢, ) and R(wy) = Rp, (wa, Tar,, ¢ar,) are well-defined and nonzero. More-
over, the image of R(wy) is exactly equal to Ip(myy).

Set w!, = wy "wi w,wiwy = wy fw,w,. Since w, and w!, preserve the Levi subgroups
My and Ms, respectively, we obtain normalized intertwining operators

RPO(wu,WMO,(,\,u), ¢M0,(A,p))3 IPO(WMO,(,\,H)) — Ip, (quMo,(,\,u))7
Rp, (W, Tty (A Otz 0i)) - IPo (Tt (0p)) = Ly (W Tty () -

We will show in Lemma 6223 (2) and (3) below that Rp,(w,, Tazs,, (s Pas,(rp)) 18
holomorphic at A = (5,...,—f) and u = (eq,...,e,). Moreover, since w,my, = oz
and hence w my, = 7y, one can normalize isomorphisms

. . ~ . . / ~
Ap, @1d: wympgy — Tagy,  Awy, @1d: w, T, — T,
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by Whittaker functionals on standard modules of general linear groups. By composing
Ip,(Ay, ®1id), we have a self-intertwining operator

RPQ (w;u 7AT/JV[Q» ¢M2) : [PQ (ﬂ-MQ) - IPQ (ﬂ—Mz)'
On the other hand, Rp,(wy, 7, dar,) might be a singularity of the meromorphic family
Rp, (Wa, Tty (00, O, 0) a6 A = (B, ..., —B) and p = (eq, ..., e,). Hence we just write

Rpy (wu, iy d01y)
) TN L ().

Lemma 6.4.3. Notations are as above.
(1) The image of the map R(wy)o R(wy): Z(m) X1 — Ip(mar) is exactly equal to 7.
(2) If 28 + 1 is even, then Rp,(w., T, ¢ar,) is the identity map.
(3) If 28+ 1 is odd, then

Rp, (W), Tasy, dar,) = (e(parL, 2+ 1,1), )4, - id
on Z(m) x 7, where ¢, is the L-parameter of T.

Proof. For (1), we claim that = appears in Ip (75 ) as a subquotient with multiplic-
ity one. Since the Jordan-Holder series of Ip, (mys,) and Ip, (7 ) are the same, it is
enough to consider Ip,(mas,). If Ip,(mas,) is a standard module, then the claim follows
from the famous fact that the Langlands quotient appears in its standard module with
multiplicity one (See e.g., [BW, Chapter XI, Lemma 2.13]). Otherwise, 2 + 1 is odd
and Ip,(myg) is a direct sum of two standard modules. Since the general linear parts
of these two standard modules are the same, by computing Jacquet modules, one sees
that 7 appears only in one of them. Hence m must appear in Ip, (7, ) with multiplicity
one.

Now, since Ip(mys) is a unitary induction, and hence semisimple, the image of R(w;)o
R(ws) is isomorphic to a subrepresentation of the maximal semisimple quotient of
Z(m) x 7. Since this maximal semisimple quotient is equal to 7, we see that the image
is equal to 7, or R(wy) o R(we) = 0. Since R(wq) is nonzero, m appears in its image.
Hence if R(w;) o R(wsy) were to be zero, then m would appear in the kernel of R(wy).
On the other hand, since the image of R(w;) is equal to Ip(mys), which contains 7, it
would imply that 7 must appear in Ip (7)) with multiplicity greater than one. This
contradicts the claim. Therefore we obtain (1).

Next, we prove (2) and (3). For b € R, set

V©® — GB x©®

XG{V+7V— 7WO}

Since myy, and w),myy, are essentially tempered and since Ip,(my,) and Ip, (w] may,) are
standard modules, we see that w!/, preserves V() for each b € R. We write {b > 0|V ®) £
0} = {by,...,b )} withb, < --- < b,. Fori=1,...,t, wesetw; tobew! on V) gV (b
and trivial on V® for b # +b;. Similarly, we define w,,, by w/, on V) and trivial on V)
for b # 0. Then w], = wy - - - wy-w,,. According to this decomposition, we can decompose
R(w/) - RP2 (wvlﬂ%Mz? ¢M2) into a prOdUCt R(w’:l,) = R<wt) 00 R(w1> ° R(wuo) by

u
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the multiplicativity of the normalized intertwining operators. For ¢ = 1,... ¢, since the
operator R(w;) is induced from a normalized intertwining operator for GL(V %)), we
can apply Theorem BB and obtain that R(w;) = id. In particular, if we are in the
case (2), we have V(O = Wéo) so that w,, = 1, and hence R(w!) = R(w,,) = id. On
the other hand, if 28 + 1 is odd, by (ILIRI) for the tempered representation 7, we see
that

R(wuo) = <€(pGL7 2a0 + 17 1)77—>¢7— -id

on Z(m) x 7. This proves (3). O

6.5. The main diagram. Using the notations in the previous subsection, with a con-
stant ¢ € C*, we now consider the following main diagram. When x = 1, it is:

Rp, (Wi, Tary P 05)
Z(m) x 7 2 il

~

I(nL)NT

RP2 (wgm%Mg ’¢M2)

I(m) X A([_a’a]PGL) A To I(m) X A([_ava]PGL) X To

R(ws) R(wz)
Z(mar) x Z(mg) X 7 Z(mgr) X Z(mg) X 7o
R(w1) R(w1)

e~ Hu,mp) Rp (Wu, Far, W)

]PQTM) IP(:TM)

Rpy (Wu, Ty O )

“I(mar)¥ x “T(mg)" x 1o o= T (mgr)Y x “Z(mg)Y X To.

When x = %, we replace A([—a, &, ) X 7o with 7y in the second line, or equivalently,
we remove the second line. The following is the main result in this section.

Theorem 6.5.1. The main diagram is commutative with

a8, YaL ®@ o, Vi)

C = )
Y4(S, “VaL @ Grgs VE) |o—g

where we write my = war X mo, and ¢, is the L-parameter of m.

Proof. As in the proof of Theorem B4, we will prove the assertion in five steps.
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Step 1: With complex parameters A € C?**! and p € C", we can consider the
following diagram of meromorphic families of operators:

RP2 (w;mﬂ'MQ,()\,,u))

Ipy (Tasy () Ip, (W, Tty (A )

RF’z(w%Wng(z\’u))l lRP2(w27w;tﬂM2»(/\vu))

Ip (Tan () I, (WuTar, (A p0))

Rpl (wlﬂﬂ—h{[l,()\,p,))l \LRpl (wlkuﬂ]\/ll,(k,u))

Rpy (W, T, (a0))

IPO (ﬂ-Mo,()vu)) ‘[PO (wuﬂ-Mm(/\vM))'

Here, we omit the L-parameters in the notations of the normalized intertwining
operators. If A € (v/—1R)?**! and u € (v/—1R)", then by Proposition [_Z2, all
maps in this diagram are regular and the diagram is commutative. By analytic
continuation, we see that this diagram is commutative whenever all maps are
regular.

Step 2: Let s € C be a new complex parameter. We will specialize the diagram
inSteplat A= (s+0,s+8—1,...,s—fF) and u = (e1,...,e,). We write my, 5
for the corresponding myy, (x,)- We claim that all operators in the diagram are
well-defined as meromorphic families of operators in s.

In fact, the bottom operator Rp,(wy, T, .s) is not always a pole of the family
of the operators Rp, (wy, Tay,(r)) (but might be a pole at s = 0). On the other
hand, as we have seen in Lemma E473, the other five operators are still regular
at s = 0.

Hence we can specialize the diagram in Step 1 at A = (s+f,s+6—1,...,5—0)
and p = (ey,...,e.), and obtain the following commutative diagram:

Rp, (W, ™ALy, s)

[P2 (7TM2,S) IP2 (wvlJTrMmS)

Rp, (’LUQ,WMQ,S)\L iRPQ (w2, we, Taty,s)

‘[Pl (T‘-MLS) IPl (wuﬂ-MhS)

Rp, (w1,m01y,5) \L iRPl (w1, Wy s)

Rpy (Wu,Tng,s)

IPO (ﬂ-MO,S> IPO (wuﬂ-Mo,S)'

Step 3: Note that the image of Rp, (w1, ma,s): Ip (Tar,s) = I (Ta,,s) 1S equal
to Ip(’/TM73) = Ip(WGL| . |SE X ’No). If we set

714(07 wM,S7 p’L\l/ngp‘P’ wF)
V; )
’yA(()? ¢M0,57 pw7:1P0|P0’ wF)

c(s) =
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then using a canonical homeomorphism
Np N, Npw, "\Np = Np, N w,Np,w, "\ Np,,
we obtain a commutative diagram of meromorphic families of operators

C(s)_lRP(wuaﬂ'M,s»wJ\l,s)

IP(FM,S) [P(wuﬂ-M,s)
Rp, (Wu,Tny,s) (l
[Po (WMO:‘S) - - [Po (wuﬂMmS)

where the vertical maps are the canonical inclusions. Here, we explain this
canonical inclusions more precisely. The representation 7y, is realized as the
unique irreducible subrepresentation of Indj -y, (maz,s), and the functor Ip in-
duces a canonical inclusion Ip(w,mars) < Ip(w,Ind} -y (7). The letter
induced representation can be realized as a subspace of two-variable functions
f:Gx M —V, where V is a space of myy, s, satisfying

Fm'g,m) = S3(m') f (g, mivy 'm'i,)

for m,m’ € M and g € G. Now the right inclusion in the diagram is induced
from the isomorphism

Ip(woInd (s (Tae,s)) = Ipy(WuTays),  f(g,m) = f(g,1).

The left inclusion is similar.
Combining the above diagram with the one in Step 2, we obtain the following
commutative diagram:

Rp, (W, ™ALy, s)

]P2 (WMQ,S) ]P2 (w:ﬂer,s)
Rp, (wzﬂrMQ,s)i J/sz(w27w»/u7rM2,s)
IPl (ﬂ-Ml,s) IPl (wuﬂ-MhS)

Rp, (U)lﬂTMLS)i \LRFH (wi,wary )

c(s) " Rp(wu, s, 5)

Ip(mars) Ip(wuTars)-

We note that

o(s) = Ya(s, YaL ® Uy, VE)
Ya(s, L ® XA Vg)

so that ¢(0) = ¢ by Proposition AT, We will see that ¢(s) is regular and
nonzero at s = 0 in the next step.

Step 4: We would like to specialize the commutative diagram above at s = 0. As
we have noted in Step 2, the five operators appearing in the top, left and right
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of the last diagram are regular at s = 0. In particular, the composition
Rp, (w1, wymar, s) © Rp, (Wa, W), mar,.5) © Rp, (Wl Tary.s),
and hence
c(s) ' Rp(wu, Tar6, Yars) © Ry (Wi, Tar, s) © Rp, (W, Ta, )

are regular and nonzero at s = 0. We can specialize the last diagram at s = 0,
and obtain the commutative diagram

Rp, (wy,,mary)

[Pz (ﬂ-M2> IP2 (w;ﬂ-Mz)
Rp, (w277TM2)l J{sz(wmwiﬁng)
]P1 (ﬂ-M1) IP1 (wuﬂ-l\/h)

Rp, (wlyﬂMl)l J{Rpl (w1, wumpry)

¢ Rp (wu,marnr)

Ip(?TM) [p(wuﬂ'M>.

Note that Rp(wy,mar,¥a) is well-defined and nonzero by [Ar3, Proposition
2.3.1] and [MoK, Proposition 3.3.1]. Since ¢ 'Rp(w.,, s, %) is nonzero, we
conclude that ¢(s) is regular and nonzero at s = 0.

Step 5: If we realize w!,mps,, Tar,, Wy, and myy, on the same vector space, say
V, then A,, ®id is a linear isomorphism ®: V' — V satisfying

o T M; (w;ilm?&?;) = T M, (m2) © (I), mo € MQ-

Since w!, = w; 'w,wy, by Lemma [CZ1, the above property of ® can be rewritten
as

@ole(@;lmliﬁu) :WMl(ml)O(I), my € Ml-
Therefore, ® is also equal to the normalized isomorphism A,,, ® id: w,my, —
Ty, and hence the diagram

/ Ipy (A, ®id)
]PQ (wuﬂ-Mz) [Pz (WM2)

Rp, (w27w{47rM2)i lRPQ (w2,mr15)
IPl (Awu ®id)

IPl (T‘-Ml)

‘[Pl (wuﬂ-Ml )

is commutative. On the other hand, since Ind};, y;(maz,) is the standard module
of myr, by the definition of A,,, together with the functoriality of Ip, we have
the following commutative diagram

Ip(w,ndp o a(ma,)) Ip(Indp o pr(ma,))

Ip(RplmM(wl,ﬂMl))i \LIP(RPmM(wlﬂTMl))

IP (Awu ®1d)

Ip(wymar) Ip(mar).
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Here the top map is induced from the isomorphism
A®id: w,Indp y (man) = Indp -y, (mar,),

where A is the isomorphism of standard modules of GLj(E) normalized by using
a Whittaker functional. Via the analogous identification Ip(Indp -y, (mar)) =
Ip, (mar,) (vesp. Ip(w,Indp oy (mar,)) 2 Ip (w,may)) in Step 3, the above com-
mutative diagram is rewritten as

Ip, (Aw, ®id)
‘[Pl (wUTer) : IP1 (WM1)

Rp, (wl,wule)i lRpl (w1,ma1y)
Ip(Aw, ®id)

[p(wuﬂ'M> IP(ﬂ'M>.

Combining this with the first diagram in Step 5, and using Lemma G231, we
obtain the commutative diagram

, IP2 (Aw& ®id)
]Pz (wuﬂ-M2> ‘[PQ (WM2)
Rp2 (U}Q,w,/uﬂ'MQ) i \LRPQ (w277r1\/12)
IPI (wuﬂ—M1> [Pl (ﬂ.Ml)

Rp, (w1,wamar) i lRpl (w1,ma1,)

Ip ((@,7ar) s (wu)

]p(lUuﬂ'M) IP(WM>‘

This together with the diagram obtained in Step 4 implies that the main diagram
1s commutative.
This completes the proof of Theorem B U

By the commutativity of the main diagram together with Lemma 6473, we have
c-id, if 264+ 1 =0 mod 2,

(@ ) B (0, T Y e = {c(e(pGL, 204+ 1,1),7)y, -id, {268+ 1=1mod 2.

Therefore, we obtain the following summary.

Corollary 6.5.2. Assume Hypothesis G11. Let 1y = gL @ Yo be an A-parameter
for M such that Vg1, = par B Saar1 X Sapyq is irreducible and conjugate-self-dual.
We assume further the existence of the A-packet 11, together with the pairing (-,m)y
satisfying (ECRI) and (ECR2). For my € 1y, let @ C Ip(may) be a highly non-
tempered summand, with the standard module Z(m) x 7. Then (LIR)) holds for m C
Ip(mar) if and only if the equation

Suy T if 2 1 =0mod 2
’YA(S,CQﬁGL@wOﬂ/JE) < U >¢' f 26 + 0 )

= <Su,7'l'>w .
€ 705 — 2 1=1 d?2
Ya (s, VL @ Grgs VE) | 4—o T 20t L), if 23 + mo

(*)
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holds, where ¢, (resp. ¢r) is the L-parameter of mo (resp. 7).

Remark 6.5.3. We will apply this corollary to co-tempered A-parameters v for G,
and certain A-parameters ¢’ for G’ with dim(St5) < dim(Stg). Hence we have A-
packets II, and IL, together with their pairings by Hypothesis I and Theorem
b1, However, Hypothesis B includes not (ILIRI) but (A=LIRI) for ¢". To deduce
(CIRI) for a certain " which is not co-tempered, we need Lemma 61 below. We
also notice that we cannot use Moeeglin’s result claiming that IL, is multiplicity-free
because Mceglin’s explicit construction of A-packets uses endoscopic character relations
for higher rank cases.

7. COMPUTATIONS OF LOCAL FACTORS

This section continues the work of Section B. Our goal is to show (ILIRI) for each
irreducible summand © C Ip(my) and each my € Il,;,,, where P = M Np is a standard
parabolic subgroup of a classical group G, and v, is an arbitrary co-tempered A-
parameter for M (Theorem TI0H (2)). Lemma 621 reduces the problem to the case
where P is maximal so that M = GLi(F) x Go. By the key lemma (Lemma BE33), we
may then assume that m C Ip(my,) is a highly non-tempered summand, which exists
by Lemma 6472, For such a representation, ([LIRI) is equivalent to the scalar equation
(m) in Corollary G2, In this section, we check by hand the validity of the equation
(m) for our case.

7.1. Preliminaries. Let P = M N be a standard maximal parabolic subgroup of G,
and let ¢y = aM = gL ® Yy be a co-tempered A-parameter for M. Write ¢); =
dar, @ ¢o so that g/iEGL = gL and ggo = 1)p. By Lemma B2, we may assume that ¢qr,
is irreducible and conjugate-self-dual. Let ¢ (resp. 1) be the L-parameter (resp. A-
parameter) for G given by ¢ (resp. ¥y).

First, we reduce the problem to the case of good parity.

Lemma 7.1.1. Write
¢0 - ¢0,bad ¥ QbO,good S¥ C¢5/7bad7

where Qogo0a 15 the sum of irreducible conjugate-self-dual representations of the same
type as ¢p, and ¢opaa 15 a sum of irreducible representations of other types. Set 1y =

G0 and Yo good = Pogood- For mo € Iy, let mogooa € Ly, .4 be the representation
determined by (-, 7o)y, = (*, To,good) i gooa Vi0 the canonical identification Ay, = Ay ,..4-
Then we have

¢¢0 - ¢w0,good = QSWO - qbﬂ—(),good'

On the other hand, if we take Ygooq and Tgooa similarly, then (su, )y = (Sus Tgood ) vgo0a -
In particular, the equation (=) holds for mqL Xy if and only if (&) holds for mar,Mmg good-

Proof. By applying Aubert duality to the tempered case, we see that

To = To,bad X 710,good
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where 7y paq is the representation of a general linear group corresponding to ¥ paa =

®obad- Since it is an irreducible parabolic induction, by [Tad?, Proposition 1.3], one can
describe the Langlands data of 7y using the ones of m 4004 similar to Definition 6271,
It shows that (¢r, — Py 00a) (W, @) is equal to

(D0 = Put,g00a) (W, @) = (B0.0ad B P paa) <w’ (M% " 1>>

0 |wlp®

for (w,a) € Wg x SLy(C).

On the other hand, note that (-, )y = (-, Tgood)ye.q Via the canonical identification
Ay = Ay,oq- Since s, € Ay is the same as s, € Ay, , via this identification, we
conclude that (sy, T)y = (Su, Tgood)pe0q- LNis implies the last assertion. O

Hereafter, we always assume that ¢¢ is of good parity, i.e., ¢o = @0 good-

To show the equation (®), we need to know the pairing (s,, ), for = € II,. Since
1 = ¢ is co-tempered, this pairing is defined such that the statement of Corollary B-4—3
holds. For convenience, we write this corollary once more.

Lemma 7.1.2. Let ¢ = @;lej X Sq, be a tempered L-parameter for G of good parity,
where p; is an irreducible representation of Wg. Set ¢ = qg Then for m € Il and
o= € lly, we have
(e(p,1,d),m)y 1 if d = 0 mod 2,
(e(p,d,1),0)s | —(=DIUlera=e}  f d =1 mod 2.
In particular, if d = d mod 2, then we have
<€(p,1,d),ﬂ'>w <6(p7 d71>70>¢

<€(p,1,d/),7T>¢ <€(pa d/a1)70>¢‘
Proof. This follows from Corollary E—473. O

We write ¢gr, = par, )& Saa4+1. Then s, = e(par, 1,20+ 1) € Ay if ¢gy, is of the same
type as ¢p. We compute (s, m), for a highly non-tempered summand 7 C Ip(my).

Lemma 7.1.3. Suppose that par, = par.™®Soq11 s of the same type as ¢y. Set )y = (EM
with ¢y = ¢ar, & ¢o. For my = mar, W € Iy, let @ C Ip(mar) be a highly non-
tempered summand, and let Z(m) X 7 be its standard module.

(1) If ¢ contains per ® Sy with d > 2 + 1, then

<8U7 7T>T/J = <€(pGL7 17 d+)7 7T0>’lb07
where dy = min{d > 2a+ 1| par. ¥ .S; C ¢o}.
(2) Otherwise, if ¢g contains pgr, X Sq with d < 2a+ 1, then
<8U7 7T>1/1 = <€<pGL7 17 d*)a 7T()>¢0,

where d_ = max{d < 2o+ 1| paL X Sq C ¢o}. Here, when 2a + 1 = 0 mod 2,
we formally understand that pcr, XSy C ¢ and (e(par, 1,0), mo)y, = 1.
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(3) Otherwise, i.e., if 2a +1 = 1 mod 2 and if ¢o does not contain pgr, X Sy for
any d > 1, then there are precisely two choices of 7w, and (s,, ), can take any
values in {£1} depending on this choice.

Proof. Write Ty = oy = o, W oy € 1, and 7 = 0. Recall that if Z(mg) x 79 is the
standard module of 7y, then the standard module of 7 is Z(m) x 7, where

m=mp+ 2[0(, a]PGL + 2[0& —lLa- ]']PGL +-t 2[’%7 "i]pGL
with & € {1, 1} such that @ — k € Z. By [AG?, Lemma 2.2], we have
T °L(m)Y x7, m = “L(mg)" x 70,

where L(m) (resp. L(mg)) is the Langlands quotient of Z(m) (resp. Z(mg)). Set d =
dim(pgr). For k& > 0, we denote by Py (resp. Pao) the standard maximal parabolic
subgroup of G (resp. Gy) with Levi subgroup of the form GLg(F) X G’ (resp. GLgg(E) X
Gy).

Suppose that we are in the case (1). If d; = 2a+ 1, then 0 = Ip(oyy) is irreducible
and (e(par, 200+ 1,1),0)s = (e(pcL,d+,1),00)¢,- If dy > 2a+ 1, then by Theorem
23, with z = “= we have

2

Jacp,,,(00) 2 (parl - [5)" x - x (perl - [5")" ® (nonzero) > 0

in the appropriate Grothendieck group with & being the multiplicity of pgr, ® Sy, in
¢o, and | = x — «. By a property of Aubert duality (Lemma [C273), it implies that
Jacp,,, (7o) and hence Jacp,, ,(°L(mg)" X 79) contain

(parl - 15°)F x - x (parl - [57)F @ (nonzero).

By Tadi¢’s formula and Casselman’s criterion (Theorems CT1 and C13), we see that

Jacr o (CL(mo)Y) > (par| - [35)F x -+ x (par| - [3*TV)* @ (nonzero) > 0,

where Ry is a suitable standard maximal parabolic subgroup of a general linear group.
Then by the definition of m together with [dan, Theorem 2.2.1, Proposition 2.1.4], we
have

Jacr,, (“L(m)") 2 (peu| - [5)F % - % (per| - [5*")* @ (nonzero) > 0
with analogous notations. By reversing the analogous argument as above, we have

—(a+1)

Fxoox (panl - 15T @ (nonzero) > 0

Jacp,, (7) = (peL| - [£")
and hence
Jacp,,(0) 2 (pal - 5)" x - x (par| - [57)" @ (nonzero) > 0
in the appropriate Grothendieck group. By Theorem 23, this happens exactly when
(e(par,2a+1,1),0)s = (e(pcr, d+, 1), 00)4,-
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If we are in the case (2) or (3), then by [Jan, Theorem 2.2.1, Proposition 2.1.4], with

d_—1
y = —5—, we have

Jacpy, (CLm)Y) > (pav] - [5%)? x -+ x (par] - [3¥7)? @ (nonzero) > 0

in the appropriate Grothendieck group with [ = a — y. Here, in the case (3), we set
d_ =1 so that y = 0. Then we have

Jacp,, (1) > (par| - [3%)2 % - x (par| - [3)? ® (nonzero) > 0
and hence
JaCPde(U) Z (pGL| : |%)2 X X (PGL| : 21{3—'—1)2 & (DOHZGI“O) Z 0

by Lemma C23. By Theorem CZ73, this occurs exactly when we are in the case (3),
or

(e(par, 20+ 1,1),0)4 = {e(par, d-, 1), 00) -
Hence we obtain (1)—(3) by Lemma T2 O

7.2. Strategy of the proof. We will prove (&) in Corollary 652 for 7y = g, Kmy €
IT,,, with ¥y = gTsM a co-tempered A-parameter. Notice that the left-hand side of
(m) involves the L-parameter ¢, of mp. In general, it is very difficult to list ¢, for
mo € Ily,. Instead of computing ¢, explicitly, we will give an inductive argument as
follows.

The initial case is where 7 is almost supercuspidal, which is defined as follows.

Definition 7.2.1. We say that an irreducible representation my of G is almost super-
cuspidal if the following condition holds for every mazximal parabolic subgroup Py of Gy.
If Jacp, (mo) contains an irreducible subquotient of the form pX o with p a supercuspidal
representation of GLi(E), then p is unitary.

Note that 7y is almost supercuspidal if and only if so is 7y by Lemma CZZ3. The
assumption that 7y is almost supercuspidal implies the following strong properties.

Lemma 7.2.2. Let ¢y = 50 be a co-tempered A-parameter of good parity for a classical
group Gg. Suppose that my € 11, is almost supercuspidal.

(1) The following conditions hold:
o [f we denote the multiplicity of p Sy in ¢g by my,(p,d), then my,(p,d) <1
for any d > 2;
o if pXILSy C ¢ with d > 2, then pX Sy 5 C ¢g and

<€(p, L, d), 7T0>¢0 - _<€(p7 l,d— 2)? 7T0>¢0;
o if pIXI Sy C ¢y, then

(e(p,1,2),m0)y, = —1.



114 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MINGUEZ, S. W. SHIN

(2) Let {piRSy,...,p. KIS} be the set of irreducible representations of Wg x SLa(C)
appearing in ¢o with even multiplicity, and set

2y; + 1 =max{d > 1|p; XS, C ¢}
Then the L-parameter ¢, of my is given by

bro = S0 — P Pi R (S1® Sy ) ©EP AN 13 & 127 ) B Syin.
=1 =1

(3) Suppose that ¢ar, = par X Soar1 is of the same type as ¢g, and that 2o+ 1 =
1 mod 2. Set myy = wgL W g and let @ C Ip(my) be a highly non-tempered
summand. We denote by Z(m) x 7 the standard module of w. Then

<€(PGL, 1, 1)77>¢T = <€(PGL7 1,d0)=7T>w=

where 1) = q/g is the A-parameter for G given by the dual of ¢ = a1 ® do DOy,
and dy = max{d > 1| pcL, ¥ Sy C ¢}.

Proof. (1) Recall that 7y is tempered since it is in Il,,. Since my is almost su-
percuspidal, so is mg. Hence by Corollary 43, we obtain several properties
of mg,(p,d) and (-, 7p)p,. Then Lemma [CTA implies the desired properties of

<'7 7TO>1/10'
(2) As in [AM, Proposition 5.4], Aubert duality together with Theorem 43 and
Remark CZ@ shows that if we write y; > --- >y, > 0=y;11 = --- = ¥, then

the standard module of 7 is
Z([0,y1] g + -+ + [0, yt] ) @ 70
where 79 € I, with

t
ngo = Qo — @Pg X (Sl D SQyH-l)
=1

and

—(elpd, 1), 70)g,  ifpe{pls 0},
(e(p,d, 1), 70) g, otherwise.

<€(p, d’ 1)>TO>¢TO = {

Here, we notice that [AM, Proposition 5.4] does not use Moeglin’s construction
of A-packets. From this, we obtain the description for ¢, in (2).

(3) If @ C Ip(my) is a highly non-tempered summand, then by Theorems 7473,
C 24 and Lemma [L123, we see that

T (parl - [%)° x - x (parl - ) % 7,

where 7’ € I1y with ¢/ = ¢o @ (parL X S1)#?, and (-, 7)y is determined by

<‘7 7AT/>¢'|.A¢O = <'7 7%0>¢07
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<€(pGL,1,1),7AT>¢ if pGLﬁSl - ¢0,
(e(paL,do, 1), ),  otherwise.

{e(par, 1,1), 1)y = {

Hence 7’ is almost supercuspidal, and if we denote by Z(m’) x 7/ its standard
module, then m = m' + 2([a, o, + -+ + [1,1],4,) and 77 = 7. In particular,
by the proof of (2), we have

—(e(par, 1,1), @)y if my(per) = 0 mod 2,
lre b b The 2 {<e<pGL, L1), 7

where my (per) is the multiplicity of pgr, X .57 in ¢'.
If paL. XSy & ¢y, then par, K Sy & ¢g for any d > 1, and by Lemma [ T2, we
have
<e<pGLa 17 1)7 7_>¢7— - —<€(pGL, 17 1)7 7ATI>¢' = _<€(pGL> d0> 1)7 7AT>¢> = <€(PGL, 1a dO)a 71'>¢.

From now we suppose that pgr, ¥ .S7 C ¢p. Assume first that pgr, X Sy, C ¢

so that 2a + 1 < dp. In this case, by assertion (1), we have pgr, X (S; @ S3 @

<@ Sg) C po, and my(per B Sy) =1 for 3 < d < dy with d odd. If we write
m = mg,(paL), then my (peL) = m + 2, and by Lemma [CT2, we have

(e(per, 1,1),7)s, = (1) Helpar, 1,1), 7') g
= (=1)""Ye(par, 1, 1), 7)y
= (~)™ (=1  e(par, 1, 1), Ty
= (e(paL, 1,dp), m)y.

Next, assume that pgr, XSy, ¢ ¢o so that dy = 2a+ 1. If we set dj = max{d >
1| peL ®Sy C ¢p}, by the same argument as above, we have

<€(pGL’171)>T> = (_1)m_1< (pGLalal) A/>
(=)™ Helpar, 1,1), %)y
(—=1)"He(par, 1, 1), 7o) g,
(—
= (e

if m¢/(pGL) = 1 mod 2,

) (_1)%+m_1<e(pGLv L, 1)””0)1110
(:OGL7 17 d ) > Yo+

By Lemma T3, we have

<€(pGL’ L, d6)a 7T0>¢0 = <SU> 7T>w = <€(pGL’ L, dO)? 7T>¢-
This completes the proof of Lemma 22 0

By this lemma, we can compute all terms of (&) when 7 is almost supercuspidal.
The details are given in Section 3.

For the general case, suppose that my is not almost supercuspidal. Then using
Corollary €52, we will find a classical group Gy with dim(StE%) < dim(Stg; ), an
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A-parameter 1y for Gp, and m; € Il such that the difference

(bwo - (bﬂ'é
is explicitly known (although we might not know ¢, nor ¢, themselves). By the

induction hypothesis, we can assume (IEIRI), equivalently equation (=), for ), = mqr X
my. Therefore, what we have to check is the equation

( Ya(s, “Yar @ Yo, ¥r) ) ( Ya (s, “Yar ® vy, VE) )_1
YA(8, “Yar @ Oy, VE) Ya(8, oL @ 1, YE)

where m C Ip(my) and ©° C Ip/(m,,) are highly non-tempered summands.
To give 7, we consider Jacquet modules of the tempered representation 7.

_ <Su’7T>¢
<3u7 7T'>w’7

()

s=0

Lemma 7.2.3. Let ¢y = ggo be a co-tempered A-parameter of good parity for a classical
group Gy. Suppose that my € ILy, is not almost supercuspidal. Then one can find an
wrreducible conjugate-self-dual representation p1 of Wg and positive half-integers x <y
with * = y mod Z such that

(1) P1 X (SQQC_H D 52x+3 &---P SQy-H) C ¢0;
(2) if we denote the multiplicity of p ™ Sy in ¢o by me,(p,d), then

. 1 if x <1 <vy,

fori € (1/2)Z with i = x mod Z;
(3) (e(p1,1,2i4+1),m0)y, = —(e(p1,1,2i —1),m0)y, forx <i <y withi=x modZ;
(4) one of the following holds:
(a) p1&Ss,—1 & ¢o, or p1&Ss, 1 C ¢o and (e(p1, 1,20+1), 7o)y, = (e(p1, 1, 22—
1)77'(0)1?0;
(b) P1 X SQx_l C ¢0, <6(p1, 1,21’ + 1),7T0>w0 = —<€(p1, 1,21’ — 1),7T0>w0 and
m = mg,(p1,2x + 1) > 1 is odd;
(¢) pr ® Sop1 C o, (ep1,1,22 + 1), m0)y, = —(e(p1,1,22 — 1), mp)y, and
m = me,(p1,2x + 1) > 1 is even.
Here, when x = 1/2, we formally understand that p®Sy C ¢ and (e(p1,1,0), 70)y, =
1.

Proof. Since my is not almost supercuspidal, in the appropriate Grothendieck group,
Jacp(m) contains a representation of the form p;|-|5" @, for some parabolic subgroup
P, some irreducible bounded representation p; of Wg and some real number = > 0.
Since ¢y is of good parity, p; must be conjugate-self-dual and = must be a half-integer.
Fix such a p;, and take the maximal x with this condition. Then by Theorems T3
and T4 we have p; X S5,11 C ¢g. Moreover, if we set

2y + 1 =max{d|p1 ®S; C ¢o},

then the same theorems together with Lemma [T imply the desired conditions (1)—
(4). O
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We will treat the cases (a), (b) and (c) in Sections [, 3 and [[8, respectively. In
the cases (a) and (b), the new A-parameter ¢y is also co-tempered. However, in the
case (c), 1 is no longer co-tempered, and it is more difficult to compute (s,,7")y .
This is where Corollary B53 will be used, and where we have to separate (A=LIRI) and

7.3. The initial case. Let ¥, = ggM be a co-tempered A-parameter for M, where
dm = dar @ ¢o. Fix mp € Il,. In this subsection, we assume that m € I, is almost
supercuspidal (see Definition [2T). Write

t
oL = paL B Saas1, b0 = @D pi B Sas11,

i=1

where p; is an irreducible conjugate-self-dual representation of Wg. As in Lemma [["2Z32,
write {p},...,p.} for the subset of {pi,...,p:} consisting of p;’s such that p; X S
appears in ¢g with even multiplicity. Set 2y; + 1 = max{d > 1| p, X Sy C ¢o}.

Let us check the equation (=) for 7. By Lemma 22 (2), the left-hand side of (®) is

Ya(s, “Per ® b0, VE) T (s, ber ® (X (S1 & 52y2+1)) ()
Ya(s,%bar © G0, ¥8) iy qals, Ger ® (A 12 © |- [57) B Syn) vs) |,

In the rest of this section, we write [[_,,., for the product with respect to a =
—a,—a+1,...,a (even if a € (1/2)Z \ Z). First, we compute the quotient involving
pi. To simplify the notation, we drop the subscript 1. Then by the formulas for local
factors in Section A, we have

va(s oL ® (PR (S @ S2y+1)), Vp)

Ya(s,%bar @ (P/(|- |5 @ |- 157) B Syia), )
- 11 vals, Cpar ® p)| - [p B (51 ® Say1) ¥8)
—azuza a(s, Cpar @ ) (|- |5 2 @ |- |5 2) B Syi1, ¥m)

On the other hand, using the notations and the formulas for local factors in Section
A1, we have

Ya(s, c<EGL ® 507 YE)
Ya(S, “Par @ o, VE)

_H 11 745 pGL' 5 ® (ol - 5 @ @ pil - [57), ¥p)
i=1 —a<a<a (pGL| |E®pl)|g825z+l7¢E)

B ~(L—s—p—a)\ a8, Ce(s+pu+a+b+1)
_g 11 1T o 1l Ce(s+p+a+b)

1 —a<a<la ueX (¢par®pi) —B:i<b<B;—1
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_—(3—s—p—a)\9p Ce(s +p+a+fi)
11 Il o G a—p)

=

=1 —a<a<a pue X (¢paL®p:)

~

E Ce(s+pu+a—35)

~(3—s—u—a) 95, CE(S + —a + )
11 [T (-« e
i=1 —a<a<a peX(¢pgL®pi)
Lemma 7.3.1. For p € C/2nv/—1(log qg)'Z and a, 8 € (1/2)Z, set

25Ce(s+p—a+p)

(. —(3—s—p—a)
fu,aﬁ(s)_( dg ) CE(S‘F,U—'—CL—ﬁ).

(1) If Re(u) =0 and p # —pu, then

2a(28—-1
Fuas () fpap($)| g = a0,

(2) Let py € C/2m/—1(log qr)'7Z be the unique nonzero element such that py =
—o- Then

Froas($)lemo = a2,
(3) If u =0, then
-1 283 a(26-1) ifaq = ,
Joap(8)| g = {( )253113 a(28-1) f ’
(=17 dp if a#p.
Proof. 1f Re(p) = 0 and p # —p, then

—p—a+p 1 u—a+p

1 —
—2(1-2a)5 1 — 4E 4k
fu,aﬁ(s)f—/ﬁ7a,ﬁ(5)|s:0 = QE2(1 2a) o —ita—
1 — q]lé"r B 1 — qE/H‘ B
—2(1—2a —u— —a 2a(28—1
=dg ( 7 (_QE# a+6) ) (_qg +6) = qE( )-

Similarly, if @ = po, then ¢z"° = —1 so that

—(1-2a)8 1 + qg“” _ a(26-1)

a,8(5)| =0 = — = .
Ju0,a,8(8) 4o =t 1+ % B E
Finally, suppose that ;= 0. If a # 3, then
—a2apl — qp"t? _
Foas()l oy = ()P g0 e = (1Y,
1—gqp
On the other hand, if a = /3, then
—(1-25—2a al - qis a —
foas($)l,cg = (—1)Pqpl PR = (1),
1 —q5" |2

This completes the proof. O
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We have proven that

'YA(SacC/b\GL ® ¢A507¢E)
va(s, Par ® ¢o, Vi)

Note that for p € X (°paL ® p;), if 1 # —pu, then —p appears in X (“pgr, ® p;) with the
same multiplicity as p. Since H—aga <a qg(% =D — 1, by Lemma =3, only ¢ = 0 can
contribute. Note that 0 € X (“parL ® p;) if and only if p; = ply, = per. In this case, 0

appears in X (“pgr, ® p;) with multiplicity one. Hence

Y4(S, “Par @ o, VE) _ ] [ ] [ Fops ()]
-~ - @, 0% s=0"
Ya(S, “Par @ o, VE) s=0  1<i<t —a<a<a
Pi=paL

t

= H H f#,a,ﬁi(sﬂszo :

s=0 =1 —a<a<a peX(°parL®p;)

and by Lemma =31, we have

Il foasn)lo=

—a<a<la

(_1)(2a+1)(2ﬂi+1)—1 if B; <, f; = o mod Z,
(—1)@GatDE5+D) otherwise.

Suppose first that ¢, = par X Saq11 is not of the same type as ¢g. Then if p; = par,
then f; # a mod Z so that (2o + 1)(25; + 1) € 2Z. Hence

P)/A(S?C&;GL X $0>¢E)
Ya(S, “Par @ ¢o, Vi)

— H (—1)GetDEo+D) — 1

s=0 1<i<t
Pi=PGL

Since (s, T) = 1 in this case, we obtain the equation (®). In the rest of this subsection,
we assume that ¢gr, = par X Son1 is of the same type as ¢g so that 8; = a mod Z if

Pi = PGL-
Suppose that 2a + 1 is even. Then we conclude that
714(37 C(bGrL ® ¢07 wE>
YA(8, “PaL ® do, ¥E)
If par ™ Saat1 C ¢, then

® OGL X (SQ &) 54 D---D SQOH—I) C ¢0) and
o My, (par B So,) = 1 and (e(per; 1,27), mo)y, = (—1)" for 1 <o <+ 3.

In particular,
<8u7 7T>¢ = <€<pGL7 17 2a0 + 1)a 7r0>1/)0 = (_1)04-"-% = (_1)|{i\Pi%PGL,Bz‘SO¢}\'

On the other hand, if pgr, X} Sont1 € o, then setting d_ = max{d > 0| par. ¥.Sy C ¢o},
we have

— (_1)‘{i|Pi§PGL75i§0¢}|.

s=0

d

(507} = (elpn L d), o)y = (<) = (<1)filn=rensisol,

Therefore, we obtain the equation (&) when 2a + 1 is even.
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Next, we suppose that 2a + 1 is odd. If pap, W Sy & ¢ for any d > 1, then noting
that (s,,m)y = (e(paL, 1,1),7)s, by Lemma T2 (3), both sides of (®) are equal to 1.
Hence we assume that pgp, X .Sy C ¢ for some d > 1. Set

do = max{d > 1| pagr X Sy C ¢},
and write dy = 26y + 1. If o > Sy, then since (s,,m)y = (e(paL,l,do), To)y, =
(e(par, 1,1),7)g,, we have
VA(S>C$GL (%9 507¢E)

14 — 1= <SU>7T>1ZJ
Ya($, “Pcr @ ¢o, Vi)

<€(pGL7 1a 1)’ 7—>¢‘r .

5=0
If a < By, then
a5, “Par, ® do, Ur)
va(s,“bar. ® ¢o, V)
On the other hand, we note that

® OGL Y (Sl D 53 D---D SQﬂO+1) C gbo; and
o (e(parL, 1,20+ 1), m0)y, = —(e(p, 1,22 — 1), m0)y, for 1 <z < fy.

Hence

= (—1y
s=0

(e(p,1,1),m)g,  (elpar, 1,260 + 1), m0)p,

Therefore, we obtain the equation (®) when 2« + 1 is odd. This completes the proof of
(=) when 7y € I, is almost supercuspidal.

<Su,7'l'>¢ - <€(pGL,17204+ 1)77T0>w0 _ (_1)ﬁ0*04.

7.4. The inductive case (a). Let ¢ be a tempered L-parameter for G of good parity,
and set ¢y = 50. Fix my € Il,,. In this subsection, we assume the conditions (1)-(3)
and (4a) in Lemma [CZ3. Set m = my,(p1,2x + 1) > 0.

In this case, by applying Lemma CZ3 and Theorem 473 repeatedly, we see that

o = (o] - [35)™ % pu] - |5 X x| - |5 o,

where 7 € Il is characterized such that
® ) = g% is a co-tempered A-parameter with
$o = o — pr B (S50 ® Soyi1) © p1 RS
e the character (-, )y, is given by
) i &= <1 <
o130 = {0 T e

Moreover, since 7, and 7, are in the situation in Section 3, by Corollary TR, the
L-parameters ¢, and ¢, are related by

T4y

e T2 —x m—
bn = bmy Ol 157 D[ 1p * )RSy 01 ® (|- 5@+ [5") RS



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 121

Set ¢qr, = par X Sony1 and Ygr, = <$GL. We denote the irreducible representation
of GLi(FE) corresponding to tg, by mgrL. Taking a suitable classical group G’ (with
dim(Stz) < dim(Stg)) and its maximal parabolic subgroup P' = M’'Np/, write ¢}, =
Yar @ Y. By the induction hypothesis, we may assume that the equation (=) holds
for a highly non-tempered representation ©' C Ip/(7),) with 7}, = mqL X m;. Take a
highly non-tempered representation m C Ip(ms) such that the tempered part 7 of the
Langlands data of 7 coincides with the one for 7’.

By Lemma [T73, we see that

<Su,7f>¢ -1 if paL. = p1, v < a<y,a =z modZ,
(su, )y |1 otherwise.

Note that if there is a choice of 7, then pgr, % p1 by Lemma 123 (3). We will check
the left-hand side of (=) is equal to the right-hand side of this equation.
Since v4(s, ¢, ¥ g) is multiplicative, we have

( Ya(s, “YaL ® o, YE) > < Ya(s, “YaL @ P, Ye) >_1
Va(8, YL ® bng, Vi) ) \7a(S, Va1 @ ¢y, VE)
Ya(8, YL @ (p1 B S X Sopi1), ¥e)™ tya(s, “War @ (p1 K S1 K Sayi1), ¥r)
Ya(s CwGL ® (p1 W51 W Sop1), ¥p)™

< TT vals, dor® (or] - [5* B Syar1), ) vals, Wor © pu - 1, )"
ec{£1}

IT I 7alspeul- %@ pal - [ op)™

—a<ala —z<b<lz

IT  II nats ool 1% ® ol - % ve)

—a<a<a —y<b<y

I I el ol e ™

—a<ala —x+1<b<z—1

H H va(s, (“parl - |5 @ prl - | )@Sy w41, ¥E) 7

—asa<aec{tl}

IT TI vasocel- 1s @ pil - [, m) D

—a<a<aec{*l}

= II II a6 cpel-15@pl- 5 vn)

—a<ala —y<b<l—zx
or
z<b<ly

< T TI a6 ool -5 @pl- 157 )RS, oor, o)™

—a<alaec{£1}
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_ H H —(1 2s—2p—2a)(y—=x) H CE(S+M+CL+I)+ ].)

peX (cpaL®p1) —a<ala —y<b< r—1 CE(S + 1% +a+ b)
:L‘<b<y 1
= I 1 « —u%2u%@xﬁﬂ8+u+a—xﬂgs+u+a+y

s+pu+a—y)lp(s+p+a+zx

peX (°parL®p1) —a<alo

( )
Ca( y) Ca( )
_ H H —(1 25—2u— 2(1yx)CEES‘i_,U"‘a_CU;CEES‘i‘,U_a‘i‘y;

(e(s+pu+a—y) (g(s+pu—a+zx

peX (cpaL®p1) —alala
- I I f“’“’ :
(s)
HEX (¢paL®p1) —a<a<a * DT

As in the previous subsection, Lemma [Z371 implies that only # = 0 can contribute to
this product after evaluating at s = 0. Hence it is 1 unless pgr, = p;. Moreover, since

2a(y—x .
Joay(s) | _ —qp" fa=x#yora=y#a,
foaa(s) |, qza(y—z) otherwise

by Lemma [Z3, we conclude that

( ’}/A(Sa CwGL ® ?ﬁo, zbE) ) ( 7A<SachL ® ¢6,¢E) )1
P)/A(S? CwGL ® ¢7ro7 wE) 7A(57 CwGL ® ¢7r67 wE)
_{—1 if pao = p1, < a<y,a=xmodZ,

1 otherwise,

as desired.
7.5. The inductive case (b). We use the same notation as in the previous subsection.
In this subsection, we assume (1)—(3) and (4b) in Lemma [C23. Set m = my, (p1, 2z +

1) > 1.
In this case, by Lemma C273 and Theorems 473, C44 (1), we see that

mo = (pa] - [z")" 1 = m,
where m € Il is characterized such that
° Y = ggg is a co-tempered A-parameter with
G0 =0 — p1 RS @ pr KIS
® (-, )y = (s T0)y, via the canonical identification Ay = Ay,.

Moreover, since my and 7, are in the situation in Section A, by Corollary T3, the
L-parameters ¢, and ¢, are related by

Oro = Omy @ (pr( - [ @ |- [57) B.S1)™
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We take highly non-tempered summands 7 C Ip(my) and 7" C Ip(7),) as in the
previous subsection. By Lemma [ T3, we have (s,, 7)y = (Su, 7T )ys. On the other hand,
by the multiplicativity of y-factors, we have

( Ya(s, “YaL @ Yo, ¥E) ) ( Ya(s, “YaL ® vy, YE) )1
’YA(Sa CwGL & ¢7To7 ,QDE) ’YA(Sv C¢GL X ¢7r6a ¢E)

m—1
Ya(s, “Yer, ® (p1 XS W SQm—i—l - 1
= ® )
7A(576¢GL & (p1 X S; X Sy 1 H %4 Yar P1| |E @/)E)
ee{£1}
=1.
Therefore, we conclude that
( Y4 (s, “YaL ® Yo, Vi) ) ( Ya(s, “YarL @ V), Vi) )1 _ (Su, Ty
Ya(8,“YaL @ ¢ry, ¥E) ) \VA(S, YL @ br, VE) (Su> ™)

7.6. The inductive case (c). We continue to consider the inductive case. Let ¢

be a tempered L-parameter for GGy of good parity, and set ¢y = ggo. Fix mp € ILy,.
In this subsection, we assume the conditions (1)-(3) and (4c) in Lemma [Z23. Set
m = mg,(p1,2x +1) > 1.

In this case, by Theorems C473 and C44 (2), we see that

o = (p1] - [2)" " x A([—z, 2 — 1],01) X prl - |5 XX py] - % %o
= (p] - B x| BT X x ] 1 X A([—a = 1],,) X0y,
where o}, is tempered, and its L-parameter is given by
Goy = o — p1 B (S537" @ Soyy1) © p1 K S5
and
e(pr,2t+1,1), 7 ifp=p,x<i<y,
(e(p,2i = 1,1), ), = { X2 L LRl 0=
0 (e(p,2i —1,1),70) g, otherwise.

This inclusion factors through

o = (] - [5)™ 7 X pa -

where 7 is the unique irreducible subrepresentation of A([—xz,z — 1],,) % 0y, i.e., the
Langlands quotient of A([—(x —1),x],,) x 0(. In particular, 7, belongs to the L-packet
associated to the A-parameter

ZZ(/) = (ba{) @pl &5233 &Sz,

and the character (-, 7() 3 is given by

\Hl X py] - | X T

(e(,01,22'—l—1,1),7%0)1;0 if par, = p1, v <i <y,
e(p1, 2t — )7 otherwise,
(e(p1, 2t —1,1), 7o) 5, herwi



124 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MINGUEZ, S. W. SHIN

(e(pl,Z:E,Q),ﬁ('))% = 1.
Taking the Aubert dual, we obtain

z)mfl —(z+1)

x pi| - |g X X pr| - |57},

mo = (o1 - |

where m; € 11, with
vy =1 — p1 XS K (ST @ Soysr) ® pr WS WST™ 2D py K Sy K Sy

Since 7y and 7, are in the situation in Section C3, by Corollary T2, the L-parameters
$ry and ¢ are related by
oty _aty
Oro = by B p1(|- 158 @1 T )RSy w1 ® (- 5@ [5") RS2

We take 7 C Ip(my) and " C Ip/(m),/) as in the previous subsections. By Hypothesis
BT, we know the local intertwining relation for ¢y, = gL @ ¢). However, it is
(A=LIR}). To deduce our (LCIRI) for 7' C Ip/(m), ), we need to check the conditions
in Lemma IO, We can check them by using the next lemma together with Aubert
duality. In this lemma, for simplicity, we refresh the notations for parameters.

Lemma 7.6.1. Assume Hypothesis E11. Let 1y = ¢par, ® Yo be an A-parameter for
M = GL4(FE) x Gy such that

e Ocr = par X Sont1 is a discrete L-parameter for GLy(E);

e Yy is an A-parameter for Go of the form

o = ¢o B p1 X S, X Sy
where ¢y is tempered and p;y is irreducible (and conjugate-self-dual).
Then
o Ip(myr) s multiplicity-free for any my € 1y, ; and

o for my,mhy € Ly, if mar 2wy, then Ip(my) and Ip(m),) have no common
irreducible summand.

Proof. This is a special case of Meeglin’s multiplicity one theorem (see [X2, Theorem
8.12]). However, her proof relies on (ECRT) and (ECRZ2) for all classical groups, and
hence we cannot use this result. We shall give another proof.

Note that we can use Arthur’s theory for 1, by Hypothesis E11. We apply the
formal construction of the A-packets in [Ar3, p. 416-417] to ¢y and sy,. See also the

proof of [Ar3, Lemma 2.2.2]. Since 9y = ¢o © 11 with 1 = p; K Sy, K Sy, we have an
exact sequence

0 —— 7T¢0®7T¢{3 — 7T¢O®I¢1 — 7T¢0|E7Tw1 — 0.

If we denote the standard module for my € Irr(G) by Z,, then the twisted and ordinary
endoscopic transfers of this exact sequence show that

> I= ) mo+ Y (s mypm

W0€H¢TP0 7T0€H¢,0 “GGH%D
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in the Grothendieck group R(Gy), where s’ = e(p1,2z — 1,1) + e(p1,22z + 1,1) (or
s'=e(p1,2,1) if z = 1/2). Hence every my € Il is

(1) tempered (with L-parameter ¥{’); or
(2) an irreducible subquotient of the standard module Z,, = A([—(z —1),z],,) X 0¢
for oy € H¢0'

If oo € Il,,, then by Casselman’s criterion (Theorem CTT73), we see that all irreducible
constituents of A([—(z —1), 2], ) X 0g other than the Langlands quotient are tempered.
(See the proof of [Afl, Proposition 5.2].) Hence every my € Il is

(1) tempered; or
(2”) the Langlands quotient of A([—(z — 1),2],,) X g for ¢ € I, .

We denote by mgy, the irreducible discrete series representation of GL4(E) correspond-
ing to ¢gr, and set my; = war, M. If g is tempered, then Ip(my,) is a multiplicity-free
sum of irreducible tempered representations by [Ar3, Theorem 1.5.1] and [MokK, The-
orem 2.5.1]. Suppose that 7 is in the case (2’) so that A([—(z — 1),2],,) X 09 = 7o
for some o € Il,. Since o, X A([—(z — 1),z],,) = A([—(z — 1),2],,) X maL by [Z,
Theorem 9.7], we have

A([—(IL’ — 1>,$]p1) X gL X 09 —» [p(ﬂ'M).

Since wgp, X0y is a multiplicity-free sum of irreducible tempered representations, A([—(z—
1), x],,) X maL X 0¢ is a sum of standard modules of the form A([—(x —1),x],,) x m; for
tempered representations m; which are not isomorphic to each other. Therefore, Ip(my/)
is a semisimple quotient of a sum of distinct standard modules, and hence Ip(my) is
multiplicity-free. Moreover, all irreducible summands of Ip(mys) are non-tempered.

Next, let my = mar, W mp and 7y, = mqr, K7y be in I1,,. Suppose that my 2 7).
Note that all irreducible summands of Ip(m)) are tempered (resp. non-tempered) if
7o is tempered (resp. non-tempered). Hence if Ip(my,) and Ip(7),) have a common
irreducible summand, then both of my and 7(, are tempered, or both of them are non-
tempered.

In the former case, we denote the tempered L-parameters of my and 7|, by ¢,, and
¢ns, respectively. If Ip(my) and Ip(m),) have a common irreducible summand, then
denoting by ¢ the L-parameter of this summand, we have

¢ = dar ® dr, © “Obr, = b B Gm © Py,

and hence ¢r, = ¢,. Moreover, since my % myy, by [Ar3, Proposition 2.4.3] and [Mok,
Proposition 3.4.4], we have

IP(WM)@IP(W%/D C @ .

7I'€H¢

By [Ar3, Theorem 1.5.1] and [Mok, Theorem 2.5.1], the right-hand side, and hence the
left-hand side are multiplicity-free. This is a contradiction. In other words, Ip(mys) and
Ip(7';) have no common irreducible summand.
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Now we assume that both of my and 7, are in the case (2’). We denote by oy, of, € 11,
the tempered representations corresponding to m, 7 as in (2’), respectively. Since
o # 7y, we have o9 ¥ 0. Moreover, since tempered L-packets are multiplicity-free
([Ax3, Theorem 1.5.1], [Mok, Theorem 2.5.1}), we see that mgr, X 0y and 7y, X o, have no
common irreducible summand. Hence Ip(my,) and Ip(7),) are semisimple quotients of
sums of standard modules which have no common standard module. Therefore, Ip(myy)
and Ip(7);) have no common irreducible summand. O

Let us go back to the situation at the beginning of this subsection. We have defined
Gop = o — p1 B (S537" @ Soyi1) ® p1 B S5,
Vo = boy @ p1 K Soy B Sy
Set
U =var @ & “Yar, € UG,
where G’ is a classical group such that dim(Stz) < dim(Stgz). Using Corollary B3,

we compare (Sy, m)y with (s, 7).

Lemma 7.6.2. Write ¢aqr, = par X Soqy1 and Yar, = (EGL. If Yy is of the same type
as g, then we have

<Su7 7T>¢ - fYA(Sa CdJGL X (,01 X SZ X ng), wE)

($us ™)y va(8,“UarL @ (p1 B St K (Sope1 @ Sozt1))s VE) |4
{—1 if paL = p1, v < a<y,a=xmodZ,
X

1 otherwise.
Otherwise, (Sy,T)y = (Sy, ™)y = 1.

Proof. Since ¢ = 15 is tempered, we can apply Corollary 473 and get

(5urT)p
Note that ¢ satisfies the assumption of Corollary E533. Since dim(qZ’ ) < dim(¢), we
can use (ECRT) and (ECR2) for ¢/, and hence we can apply Corollary BZ53 to 1.
SiIlCG 1/}GL = ¢GL = ¢éL and

-~

V= daL D doy © p1 K Sy, B S, V= g,

(SuThw _ (qyr@r-r(o)-r(o-)

we have
(S, T ) _ (_1)’“@’)*"(@)4@1) va(s, gL @ (p1 W S1 X (Sap—1 B Soz41)), Vi)
(Sus W) va(s, “Yar, ® (p1 W Sy W Say), ¥k) s=0

By a similar argument to the proof of Corollary =473, we have

(= 1)@ =r(60)=r(6-) — (_yr@)=r@)—rd),
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Therefore, the assertion is reduced to show
(50, 7)o -1 if par =2 p1, v <a<y,a=xmodZ,
R {1
Recall that A([—(z—1),z],,) X7tqr ¥ ol = Lp/(7),), where A([—(x—1), 2], ) X0y — 7.
In particular, if pg, = p1, * < a <y and @ = r mod Z, then ¢gr, C ¢y so that
(W) g = (e(par, 20+ 1, 1), 006,
= (e(paL; 2a + 3, 1), 70) 4,
—(e(par, 2a 4+ 1,1), T0) gy = — (50, T)o.

Otherwise, the same proof of Lemma 123 works, and we obtain that (s,,7’) > =
(Su,T)g. This completes the proof. O

otherwise.

Now, what we have to show is that

(Su, M)y ( va(s, “Yar ® Yo, Vi) ) < Ya(s, “YarL @ U, Vi) )_1
<8’u7 7T/>1/)’ ’}/A(Sa CwGL & (bﬂo; ¢E> 714(87 CwGL & ¢7T(/)7 ’I/JE)

Since
( ’YA<S7 CleL X 1/}07 ¢E) ) ( /YA(S) chL & 1/)6) ¢E> > -
Ya (S8, “Par @ Grg, ¥E) ) \Va(S, VoL @ ¢rs, VE)
Ya(s, “ar ® (p1 B Sy B Sapi1), VE)™ tvals, “Yar, @ (p1 ¥ S1 K Soyi1), VE)
Ya(s, “Yar @ (p1 XS B Sop1), ¥E)™274(S, “Yar @ (p1 W52 X Sa,), ¢E)

+
< ] vals,Uer @ (o] - 52 B Sy—as1), ) yals, oL ® pr| - |5, ¥p) "2,
ec{£1}

it is equivalent to checking that

Ya(s, “Yar, @ (p1 B8 B Sopi1), ¥E)™ 2ya(s, “Yar, @ (p1 K Sy B Soyi1), )
va(s, gL ® (p1 W S1 X Say—1), )™t

Ex; c (m—2)
x 11 a6 War @ (ol - (57 B Sy—arr), ¥m) als, “Yar © pa] - |F, ¥p)”

ec{£1} s=0

-1 if par =2 p1, v <a<y,a=xmodZ,
1 otherwise.

Let us check this equation. We have

Ya(s, “Yar @ (p1 B S B Sy, 1), ¥E)™ *va(s, “YarL @ (p1 B Sy B Sy, 11), ¥)
va(s, oL @ (p1 ¥ S; R Soy 1), ¢p)m!

ety — c €T —(m—
x [T vals, oL @ (o1l - 157 RSy ar), 6) " yals, VoL @ pr| - |5, )~
ec{£1}
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H H va(s,“parl - 1% @ pul - |5y )™

—a<ala —z<b<lz

H H va(s,parl - % @ p| - %, ¥E)

~a<a<a —y<b<y

11 II vt cpal- 15 @pl - 5 ve) Y

—a<ala —x+1<b<z—1

H H Yals, (“parl - [ @ p1l - | )&Sy w41, ¥E) 7

—a<a<a ge{:l:l}

T T aspail- 1@ pil - [ )~

—a<a<laec{xl}

= II 11 ~ats. el %@ pil- 1% ¢r)

—a<a<a —y<bly

11 T vaGsporl- 5@ pil - 5 )™

—a<ala —z+1<b<z—1
< T TI vals: Cocrl - 1% @ pl- I )gsy 241, 0E)
—asalaee{£l}

— H H 125 2u—2a)(y—x) H CE(S+[L+a+b+1)

peX (cpaLMpr) —a<a<la —y<b<—z—1 CE(S + 12 +a+ b)
:v<bo<ry 1
_ H H 125 21— 2a)y:cgE(S‘i‘/fJ‘i‘a—J;)CE(S‘i‘M—CL‘i‘y)

peX(: pGprl)_a<a<a Ce(s+pu+a—y)Ce(s+p—a+x)

- I I
peX (¢paLMp1) —a<a<a

By the same argument as in Section [/, this is equal to
{—1 if paL = p1, v < a<y,a=xmodZ,

1 otherwise

after evaluating at s = 0. This completes the case (c), and the proof of Theorem [ITU3

(2).

APPENDIX A. LOCAL FACTORS

In this appendix, we recall some facts about local factors. In particular, we shall show
that the local Langlands correspondence for classical groups Gq identifies the standard
Shahidi local factors for irreducible generic representations of GLg(E) x Go with the
tensor product Artin local factors of the corresponding L-parameters. This result was
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used in Lemma 2722, which is for the first main theorem (Theorem IZ8T). We also give
a proof of Proposition IZ72.

A.1. Formulas for Artin local factors. We use the notation in Section 1. Assume
that E is non-archimedean, and write gz for the cardinality of the residue field of E.
Let Ig be the inertia subgroup of the Weil group Wg. For a representation (¢, V') of
Wg, we write
¢'F = {v e V|p(w)v =v, Yw € Ig}.
This is a subrepresentation of ¢. Moreover, any irreducible component of ¢’# is unram-
ified so that there is a finite multi-set

X(¢) c C/2nv/—1(logqp) ' Z
o= P ||

HEX ()

such that

Note that
o X(o]-|%) ={n+solpeX(@)}
o if 9(Wg) is bounded, then Re(u) = 0 for any p € X(¢);
e if ¢ is conjugate-self-dual, then X (¢) is invariant under p — —pu.
We denote by o € C/2mv/—1(log qr)~'Z the unique nonzero element such that py =
—po. It satisfies that ¢z = —1.
We recall the formulas for the local factors. Let ¢ be a representation of Wg x SLy(C),
and decompose it as

6= P daX S,

d>1
with ¢4 a representation of Wg. Let (g(s) = (1 — ¢5°)~' be the local zeta function
associated to E. Then there are constants £(¢4) € C* and c(¢q) = ¢(¢q, VE) € Z such

that
=11 II ¢ <s+u+%),

d>1 peX(¢a)
e(¢a)(3-5)\ 3—s-
o(s,0.v8) = [T (s0aas™ ™) TT (—az ")
d>1 HEX (Pa)

In particular, we have
a1 ) = o5, 6, 0) o)
C(cbd% 9\ 2 (3 su)d1§E(3+N+%)
g( ) #GX(%)( e ) Ce(s+p+ 52
Moreover, L(s, ¢|-|2) = L(s+ so, ¢) and €(s, ¢| - |2, ¥E) = (s + so, ¢, ¥g) hold. Hence
we have c{g - [2) = c(gs) and e(gl - [2) = e(0u)az "
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When [E : F] = 2, we denote by “¢ the conjugate of ¢. We note that X (°¢) = X (¢)
and ¢(“¢) = ¢(¢) for any representation ¢ of Wg.

Lemma A.1.1. Suppose that [E : F| = 2. Let ¢}, be a non-trivial additive character
of E which is trivial on F. If ¢ is a conjugate-self-dual representation of Wg x SLy(C),

then we have
fyA(Sv C¢7 ¢2€)
VA(S7 ¢7 1%)
Proof. Since X (°¢) = X (¢), we have L(s,“p) = L(s,¢). On the other hand, since

e(s, 0", ¥ple(l — 5,6, ¥) = det ¢”(—1) = det ¢(—1),
by using ‘¢ = ¢V, we see that

£(5,°0,U) _ (5,0, U)ol — 5,0, 0p) _ det§(—1)
0 0) o050, Ul —5,0,0)  2(L 6,0

Since ¢ is conjugate-self-dual, by [GGP, Proposition 5.1 (2)], we know that e( %, b, ) =
1. Hence we obtain the assertion. 0

= det ¢(—1).

Proposition A.1.2. Suppose that [E : F| = 2. Let ¢ and ¢y be two conjugate-self-dual
representations of Wg x SLy(C). If det ¢y = det ¢, then we have

714(87 ¢17 ¢E> _ 714(87 c¢17 wE')

7A<Sa¢27wE) 7A<S7C¢27wE).
Proof. For a € E*, define an additive character aig of E by (ayg)(z) = ¢g(ax). Then

. dim(¢;)(s—3)
€<57¢i>a¢E) — det<¢l)<a)|a|E €(S7¢i7wE)
holds. Hence we may replace ¢¥g by any non-trivial additive character ¢ of E. If we
use ¢ such that ¢/;|r = 1, then the assertion follows from the previous lemma. [

A.2. Comparison of y-factors. Now we drop the assumption that E is non-archimedean.
Let G° be a connected quasi-split classical group. Fix a Whittaker datum to for
G°. Let P° = M°Np be a standard maximal parabolic subgroup of G° so that
M° = GLg(F) x Gf. Consider irreducible t-generic representations 7 and o of GLg(E)
and Gj, respectively. (By abuse of language, we say that 7 or ¢ is w-generic if it is
generic with respect to the Whittaker datum induced by tvo.) We denote by

L1 —s,7¥ x oY)
LS (s, 7 X o)
the associated v-factor of Shahidi [ShaZ]. On the other hand, let ¢, and ¢, be the

L-parameters associated to 7 and o, respectively, and define the Artin y-factor over
associated to ¢, ® ¢, by

'YSh(

Sh(

377'><07¢E):5 SvTX0-7¢E)

L(1— 5,0/ ® ;)

15,6 ® G, 5) = £(5, 02 ® 00, V) =T
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Here, we assume the local classification theorem for Gfj by the induction hypothesis, so
that there is a commutative diagram

Irr(GY) — O(GY)

l l

II‘I‘(GLNO (E)) EE— (I)(GLNO (E))

where the horizontal arrows are the local Langlands correspondence with ®(H) the set
of L-parameters for H, the left vertical arrow is the twisted endoscopic transfer (for
tempered representations), and the right vertical arrow is the natural map. In other
words, if 7 is the functorial lift of o to GLy,(E) (in terms of the twisted endoscopic
character relations), then ¢, (regarded as a representation of Lg) is defined as the
L-parameter ¢, of 7. In particular, we have

7(57 ¢‘r ® Qbme) = 7(57 ¢T & ¢7r7 7wbE>

Proposition A.2.1. For any irreducible vw-generic representation 7 X o of M°, we
have

7Sh(s’7— X 0, ¢E) = 7(87 ¢7’ & qu 77DE>
In particular, if T and o are tempered, then the equalities
L(s,7 x 0) = L(s,0; ® ¢5), (5,7 X 0,0p) = (5,0 @ ¢, ¥p)
also hold.
The desired equality of ~-factors in Proposition B2 seems to be well-known to

experts, but we briefly review the argument in Section A= below. Before it, we give
realizations of our quasi-split groups and splittings.

A.3. Groups and splittings. We denote by E; ; the square matrix (of a certain size)
with 1 at the (i, j)-th entry and 0 elsewhere. Define an n x n anti-diagonal matrix J,

by
1
J = ( ) .
1
For reductive algebraic groups G,T,... over F, we use the corresponding Gothic
letters g,t,... for the associated Lie algebras. We consider the following quasi-split

reductive algebraic group G over F' and the F-splitting spl = (B°,T°,{X,}) of G°.

Symplectic groups: Suppose that £ = F. Let G = Sp,,(F') be the symplectic
group defined by

!/ !/ ! Jn
Soun(F) = {0 € GLao(F) ‘s = ). =, 7).

Take the Borel subgroup B of G consisting of upper triangular matrices and the
maximal torus 7" of G consisting of diagonal matrices. Then the corresponding
positive simple roots are given by o; = e; —e;41 for 1 <¢ <n—1and a,, = 2e,,
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where {ey,...,e,} is the standard basis of X*(7T'). Take the root vectors given
by XOéi = Ei,i—i—l - EZn—i,Qn—‘rl—i for1<i<n-—1and Xan = En,n+1~

Odd special orthogonal groups: Suppose that £ = F'. For an extension K of
F, let On(K) be the orthogonal group defined by

On(K) ={g € GLy(K) |'gIng = In}.

Take the Borel subgroup B° of SOy (F') consisting of upper triangular matrices
and the maximal torus 7° of SOy (F) consisting of diagonal matrices.

Suppose that N = 2n 4+ 1 and consider G = SO, 1(F). Then the corre-
sponding positive simple roots are given by o; = ¢; — ;11 for 1 < ¢ <n—1
and «,, = e,, where {ej,...,e,} is the standard basis of X*(T"). Take the root
vectors given by X,, = Eiit1 — Eopt1-ionta—; for 1 <i <n.

Even special orthogonal groups: Suppose that £ = F. Let Oyx(F) be the

orthogonal group as above. Suppose that N = 2n and consider SO, (F). Then
the corresponding positive simple roots are given by a; = e; —e;11 for 1 <i <
n—1and o, = e,_1 + e,, where {e1,...,e,} is the standard basis of X*(T).

Take the root vectors given by X, = F; j1+1 — Fay—jont1—i for 1 <i <n—1and
Xo, = En1nt1 — Ep yo. For example, if n = 2, then
01 0 1
0 0 1
Xan_l = 0] —1 ) Xan = 0
0 0

Now for a (possibly trivial) quadratic character n of F*, we define a form
G = 0],(F) as follows. When 7 is trivial, we put O3 (F) = O, (F) as above.
When 7 is non-trivial, we denote by K the quadratic extension of F' associated
to 1 by the local class field theory. Then we define O] (F) as the subgroup
04, (K) consisting of matrices g such that

1 177,71

_ P~ — 01

g—=¢€ge , €= 10 )
177,71

where p is the non-trivial element in Gal(K/F'). Note that B° and 7 are defined
over F, and Ad(e)(X,,) = X, for 1 <i<n—2 and Ad(¢)(X,,_,) = Xa,. In
particular, € fixes the F-splitting spl = (B°,7°,{X,}).

We remark that any F-splitting of G° is conjugate to the splitting spl’ =

(B°,T°,{X}}), where X/ = X,, for 1 <i<n—2and

(X4

Qp—17

(Xa,_,,aXa,) iftn=1,
X/ ): n—1 n
an (bX., ,,0°X.,) ifn=#£1
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for some a € F* and b € K*. Then spl’ is fixed by € = et, with

diag(1,-1,a *,a,1,_;) if n=1,
| diag(1,_1,b(t") " 070, 1,1)  ifn#£ 1.

Finally, we notice that g = Lie(G) = Lie(G").

Unitary groups: Suppose that [F : F] = 2. Let G = U, be the unitary group
defined by

U, ={g9 € GL.(E)|'gJlg=J!}, J!=diag(l,—1,...,(=1)"") J,.

Take the Borel subgroup B of GG consisting of upper triangular matrices and the
maximal torus 7" of G consisting of diagonal matrices. Then the corresponding
positive simple roots are given by a; = e; —e; 1 for 1 < ¢ < n — 1, where
{e1,...,e,} is the standard basis of X*(T). Take the root vectors given by
Xo, =Eiip1for1<i<n-—1.

A.4. Proof of Proposition AZ2T. Now we shall prove Proposition BT

Proof of Proposition A_Z1. If 7 and o are tempered, then the L-factors and the e-
factors are uniquely determined by the corresponding ~-factors. Hence the equations
for the L-factors and the e-factors are derived by the one for the v-factors. Moreover,
since ¢, = ¢, as representations of Lg, where 7 is the functorial lift of o, it suffices to
show that

’ySh(svT X 0, wE) = ’7(87 ¢T X ¢7r7 wt@‘)

The equation for the ~-factors easily follows from the characterizing properties of
(s, 7 X a,1E), proved in [ShaZ, Theorem 3.5], which are some of the “Ten Com-
mandments” given in [LR]. For the convenience of the readers, we recall the properties
we need.

(1) (unramified twisting) For sy € C, we have

’YSh(SvT| ’ %E’) X 0, ¢E) = ,ySh(S + S0, T X 0, ¢E)

(2) (dependence on ©r) Let 9% be another non-trivial additive character of F, so
that 1y (x) = ¢p(azx) for some a € F*, and put ¢y = ¢ otrg/p. Then we have

kNo(s—%) gn

W, 7 x 0,0) = n(a) w-(a)™al v (8,7 X 0,4p),

Y
where 7 is the trivial character of F'* unless G° is an even special orthogo-
nal group, in which case 7 is the (possibly trivial) quadratic character of F'*
associated to the splitting field of G°, w, is the central character of 7, and
No = dim(Stg; ). See Section A.

(3) (multiplicativity) Assume that 7 is a subrepresentation of Ip (11 X 73), where Py
is a standard parabolic subgroup of GLg(E) with Levi component GLy, (E) X
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GLg,(F), and 7 and 75 are irreducible to-generic representations of GLy, (E)
and GLg,(FE), respectively. Then we have

’ySh(SvT X 0, ¢E) = P)/Sh<8>7—1 X o, wE) ' P)/Sh<8>7—2 X o, wE>

Similarly, assume that o is a subrepresentation of Ip (79 X 0¢), where Py is
a standard parabolic subgroup of G§ with Levi component GLg, (E) x G§,
and 79 and oy are irreducible to-generic representations of GLg,(F) and G,
respectively. Then we have

’YSh(SvT X 0, ,QDE) = 7(‘9’7— X TOawE) ' 7(377 X CT[;/qusz) : ’YSh(Sfr X UO7¢E)'
Here, (s, T X 10, 1g) is the Rankin-Selberg ~v-factor which is equal to the Artin

'y—factor 7(87 ¢T ® ¢Toa 7wbE)
(4) (unramified factors) Assume that F' is non-archimedean, and 7 and o are spheri-

cal (in the sense that they have nonzero fixed vectors under good special maximal
compact subgroups). Then we have

V(5,7 X 0,98) = (s, br ® b0, V).
(5) (archimedean property) Assume that F' is archimedean. Then we have

’YSh(‘S? T X0, wE) = 7(57 Or @ o, wE>
(6) (global prqperty) Let I be a number field with ring of adeles A=A 7, and let E
be either F' or a quadratic field extension of F'. Fix a non-trivial additive charac-
ter ¢ of A/F and put ¢ = ¢ otry p. Let G° be a quasi-split classical group
defined over F', and let M° = Resy,»GLy x G be a maximal semi-standard

Levi subgroup of G°. We denote by tv the Whittaker datum induced by the
F-splitting of G° and Y. Let 7 and ¢ be irreducible globally t-generic cuspi-
dal automorphic representations of GLg(A ;) and GS(A), respectively. Then we
have

L¥(s, 7 x &) = [[v™"(s. 70 x 60,005,) - L5 (1 = 5,77 x 6"),
vES

where S is a sufficiently large finite set of places of F' and L (s, 7 x 0) =
[Lo¢s L(s; ¢+, @ ¢5,) is the partial L-function (for Re(s) sufficiently large).

By (B), we may assume that F' is non-archimedean. By the Langlands classification,
we may write 7 and ¢ as unique irreducible subrepresentations of the duals of standard
modules. Since 7 and o are to-generic, the inducing data of these standard modules are
also to-generic. (See cf., [AG2, Lemma 2.2].) Hence, by (0), (8), and the definition of
L-parameters, we may assume that 7 and o are tempered. In this case, we may write 7
and o as subrepresentations of parabolic inductions of square-integrable representations.
By the same argument, we may assume that 7 and o are square-integrable.

First we treat the case where 7 and o are supercuspldal Choose F', E,G°, M° Vg as
in (B) such that F,,0 =F, EU0 B, G° =G°, M° M?° for some finite place vg of F.
Note that it is not always possable to ﬁnd wF such that ¢, = ¥p. By the Poincaré
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series argument [Hel, Appendice 1], [ShaZ, Proposition 5.1], we can find 7 and ¢ as
in (B) such that 7,, = 7 and ¢,, = o nd such that 7, and &, are spherical for all
finite places v # vy. Moreover, by [(ffKPSS1, CKPSS?|, [KKT, KK?] and [CPSS], the
functorial lift © of & is cuspidal. In other words, by the global classification theorem
for G (which we assume by the induction hypothesis), the global A-parameter of & is
generic and 7, is the functorial lift of &, for all places v. Then the global functional
equation says that

L3(s, 7 x 71) = [ [ (s, 70 x 700, 00p,) - L9(1 = 5,77 x 7Y),
veES

where S is a sufficiently large finite set of places of F', L5(s, 7 x ) = vazs L(s, 7, @s,)
is the partial L-function (for Re(s) sufficiently large), and (s, 7, x 7,,%5,) is the
Rankin-Selberg y-factor. Since L°(s,7 x ) = L5(s,7 x ¢) and (s, 7, X o, by ) =
v(8, P2, @ b4, ¥y,) (which is a desideratum of the local Langlands correspondence for
general linear groups), we may write this equality as

L5(s,7 x &) = [[ (s, 02, @ 030, 05,) - L5(1 — 5,7 x 6.

veS

On the other hand, by (@), (8), we have
Sh(sa 7._1} X dva ¢E,v) - 7(87 ¢7"U X ¢0"Ua ¢E7y) = 7(8a gbi'v & ¢7:('U7¢E7fu>
for all places v # vg. From this and (B), we can deduce that

W/Sh(sa T X g, @/}E,vo) = /7(57 ¢T X ¢7ra ¢E,U0)‘
If we write ¢y, (v) = ¥r(ax) for some a € F*, then the left-hand side is equal to

v

ENo(s—32) gp
n(a@)w (@)™l (5,7 x 0, 10)

by (B), whereas the right-hand side is equal to

det(¢, ® dr)(@)]aly™ 20 (s, 6, @ 6, )

(see [Tate?, Section 3.6]). This implies the desired equation for the ~-factors.

Now suppose that 7 and o are square- mtegrable Choose F, E,G°, M°, V) as above
and fix an auxiliary finite place v; # vy of F such that v; does not split in E when
[E:F]=2. By the Poincaré series argument [Hell, Appendice 1] for a central division
algebra over E of degree k ramified precisely at vg, vy (where we regard v; for i = 0, 1 as
the unique place of E lying over v; when [E F | = 2), and the global Jacquet-Langlands
correspondence [Bad], we can find 7 as in (B) such that 7,, ~ 7, 7,, is supercuspidal,
and 7, is spherical for all finite places v # vy, v;. Also, by [ILM, Appendix A], [GI3,
Appendix A}, we can find ¢ as in (B) such that ,, ~ o, d,, is supercuspidal, and &,
is spherical for all finite places v # vg,v;. (Note that [GI3] only treats the case of
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metaplectic groups, but the same argument goes through for other classical groups.)
Since we already know that

Y 8’7'_'01 X O.-'U17 ¢E',U1) - ’7(87 9257"1;1 ® ¢#u17¢E,U1>7

where 7, is the functorial lift of 7, , the above argument proves the analogous equation
for vy and hence the desired equation for the ~-factors. O

Sh(

Remark A.4.1. Recently, Cai-Friedberg-Ginzburg-Kaplan [CFGKI], [Cai], [CFKT]
introduced a new family of zeta integrals, which generalizes the doubling zeta integrals
of Piatetski-Shapiro—Rallis [PSR], [LR], and established an analytic theory of ~-factors

’YCFGK(Sv T X 0, wE)

for all irreducible representations 7 and o of GLg(F) and Gf, respectively. In par-
ticular, when Gj is a split special orthogonal group or a symplectic group, the “Ten
Commandments” were proved in [CEFKI, Theorem 4.2]. In this case, we can modify the
above argument and show that

PYCFGK(Sa T X0, 7wbE> = 7(87 (b‘r & Qbme)

as follows: To globalize an irreducible square-integrable representation o of Gf, we can
use [A r3, Lemma 6.2.2] to find an irreducible cuspidal automorphic representation ¢ of

G’S(A) with a generic global A-parameter such that ¢,, = ¢ and ¢, is spherical for all
finite places v # vy.

Remark A.4.2. The second and third authors would like to take this opportunity
to remark that the various desiderata of the local Langlands correspondence used in
[GIT, GIZ] are now supplied by the results of this paper in the case of quasi-split classical
groups. Namely, in the proofs of [GIT, Theorem C.5] and [GIZ, Proposition B.1], they
assumed the following hypothesis:

(1) the equality between the local y-factors of Shahidi and the corresponding Artin
~-factors;

(2) the equality between the local ~-factors of Piatetski-Shapiro—Rallis and the cor-
responding Artin y-factors;

(3) the formula for the Plancherel measures in terms of Artin ~-factors.

(See [GIT, Section C.2] and [GI2, Section B.2] for details.) Now (1) follows from Propo-
sition A21 and [Hed|], [CST], [Shan], [Hed], (2) can be verified as in Remark A=
(where the “Ten Commandments” in this case were proved in [LR, Theorem 4]), and
(3) is a consequence of the multiplicative property of the normalized intertwining op-
erators (see Proposition IZ72). They would also like to point out that the reason they
gave for the correct formulation of Shahidi’s formula at the end of the proof of [GIZ,
Lemma B.2] is not accurate: the proper justifications for the reformulation of Shahidi’s
results are given in Section 28 of this paper.

Remark A.4.3. As our argument above uses globalization, this may be a good chance
to comment on the globalization for unitary groups in [Maok]. We were unable to verify
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Lemma 7.2.1 therein when E/F is a ramified quadratic extension of p-adic fields in
that it is not obvious to keep the global extension E / F unramified at all finite places
away from the place of interest (denoted u); if this were true, one could globalize a local
unitary group with respect to E/F' to a global unitary group that is unramified outside
u. Nevertheless this does not affect the globalization argument for unitary groups in
that it is unnecessary to make E/F unramified outside u, just like it was unnecessary
in Arthur’s globalization for (non-split) quasi-split SOs,. The basic reason is that one
can prescribe a spherical parameter or a spherical representation (in the sense recalled
in [Ar3, Section 6.1]) at ramified finite places as in [MoK, Lemma 7.2.3, Corollary 7.2.7],
cf. [Ar3, Lemma 6.2.2, Corollary 6.2.4].

A.5. Dependence on ¢ for Shahidi’s gamma factors. The property (2) in the
proof of Proposition A2 is not stated in this form in [Sha7] but can be derived as
follows. We use the notation in Section 2 for the classical group G. Suppose first that
we are not in the case where G = Of, (F) with n = 1, M = GLi(F), and k > 1 is odd.
Put 7 = 7 X oy (regarded as a representation of M) and write m\ = 7| - |3 W oy with
s € C. Recall that the local coefficient Cp(w, ) is given by

Q(my) = Cp(w,my) - Q(wmy) o Jp(w, )

as in Section 20 and depends on the following choices:

e the Whittaker datum 1 determined by spl and ¥p;
e the Weyl group representative w = wgp; of w determined by spl;
e the Haar measure du = dugpyy, on Np determined by spl and 9p.

To indicate this dependence, we write

CP(w7 7T)\) = CP<w> X, Spl7 wF%
JP(w7 7T)\) - JP(w7 DY) 8pl7 wF)7
Q(my) = Q(my, spl, ¢r).

For another additive character ¢} given by ¢n(z) = ¢p(ax) with a € F*, we take
the splitting spl’ = (B, T, {X,}) such that X/, = aX, for all a. Then spl’ and ¢ give
rise to the Whittaker datum to. We may write X/ = Ad(to)(X,), where ¢ty € Ar(F) is
given by

diag(a”_%, a”_%, o ,a%, a_%, - ,a_"+%, a_"’L%) if G = Sp,,,(F),

diag(a™,a" ', ... a,1,a7t,... a7 " a™™) if G = SOg,11(F),
fo= diag(a"*,a"%,...,a,1,1,a",...,a” " o) if G =0} (F),

diag(anT_l,anT_B,...,a_"gs,a_nT_l) if G=U,,.

Note that the image of ¢, in the adjoint group of GG is an F-rational point, so that
Ad(tp) is an automorphism of G defined over F. Then we have Wy, = Ad(to)(Wept)-

Set zg = {D;I}l, - Wepr- Recall that wep is a representative of wp € N(M°, M°)/T°. 1t is
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easy to see that a representative of wy is given by

1;

1q,
+1

for some sign. Hence
20 = Ad(to)(ﬂ}spl)_l : ﬁ;spl

=to- Ad(w_ ) (t) ™

spl
= diag<aN0+k+61k7 1Go7 ai(N0+k+6)1k)7

where Ny = dim(Stg;) and

1 if G = SOg,41(F),

In particular, zy belongs to the center of M. Moreover, if we set | = dim(Np), then

1
duspl',w% = CSP(tO)_1 dusmw% = 5P(t0)_1|a|127 dusz)l,wp-

Since @;pll, = Z()w;pll and 6p(to) = dp(z0)?, we obtain that

1
Tp(w, 7y, 8Pl V) = way (20)0p(20)7 - Op(to) *|al} - Jp(w, mx, spl, vr)
1
= Wr,y (ZO)|a|I-27‘ : Jp('UJ, X, Spl7 dJF)
Similarly, we have
1
Q(ﬂ-ka Splla %v) = Wn, (ZO)|a|}27 ’ Q(ﬂ-)\? Spl7 ¢F)7
1
Q(@UT{‘)\, 'Spllv 1/’%) = Wwmry (ZO)|CL|1%7 : Q(wﬂ-)\a Spla ,lva)
This implies that
L 2 12
w7r>\ (ZO>|CL|§’ : Q(ﬂ-)n spl)1/}F> = Wunr)\ (ZO)|a|]2? : WWA(ZO)|G|]2? ) OP(w)T‘—)ﬂ Spl/,@b%*)
X Q(U}ﬂ')\, Splv wF> © JP(wa UPY) Spla wF)a
so that

_ L
CP(w7 UPY Spl,> %U}r) = Wuwmry (ZO)_1|CL|F2 : CP(UJ, UPY Spl7 ¢F>

Recall from Section 28 that Shahidi’s formula says that
CP(w7 DY) Spla ¢F) = A(U}, wF)_l)\(E/F7 wF)kNO’YSh(S7 T X0, ¢E)’78h(287 T, RJ ¢F)



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 139

with
Sym2 if G = SOgn+1(F),
© ) Asait if G =U,, n=0mod 2,
Asai™ it G=U,, n=1mod 2.
Note that
(K )t it G = O}, (F),
NE/F, )Nt 5 4 G = U,, n=0mod 2,
)\(w7¢F) - k(k+1)
MNE/Fp)™Not=2—  if @ =U,, n=1mod 2,
1 otherwise,

\

where K/F is the abelian extension corresponding to 7. Since

e(s, Indpy” (1w, ), ¥r)

e(s, Lwy, Yr o tr r)

MNE/F,r) =

which does not depend on s, we have

—————< =det(Indy” (1 = .
N o) = detndi (L) @) = (o)
Hence
(n(a)" if G = O3, (F),
Muw, ) | (@ " i@ =U,, n=0mod 2,
AMw,¥r) | @ 5™ G = U, n=1mod 2,
1 otherwise,

where, if G = U, we set 1/ to be the quadratic character of F'* associated to E/F by
the class field theory. If G # O3 (F') (resp. G # U,,), we simply set n = 1 (resp. ' = 1).

1 _ wT(aN0+k+6)|a|SENo+k+5)k5

Since wiyr, (20)~ , we obtain

k(k£1) No+k+8)ks -1
(s, 7 x 0, i)Y (28, 7, Ry ) = m(a) (@) 2 - wp (aNoTRES) g otk g 2

X PySh(S/r X 0, ¢E)78h(2377—7 Rv wF)a

where the exponent of /() is **=1 (resp. **) for G = U, with n even (resp. n

odd). i i

If G = O)(F) withn = 1, M = GLg(F), and k£ > 1 is odd, then we take
w € W(M°,eM°e!) such that det(w) = 1. Since t, commutes with ¢, the above
computation works after replacing wiyr, (20) With wyr, (€206 !). Hence we obtain the
same formula for v5%(s, 7 x o, %)y (25, 7, R, ¥%).
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In particular, if we take (G, M) = (SOo+1(F), GLy(F)), (O3,.(F), GLk(F)) with
n =1, and (Ug, GLi(E)), then we obtain

k(k—1)

25— 1)d(R
(28,7, R y) = /(a)" T w, () o) 22 Shiog R g,

where
k(k+1 _
1 if R = Sym?, —< 9 ) if R = Sym?,
—J _ ; — A2 _ _
S(R)=<{ -1 if R=A% d(R)=qkk-1) R=n2.
0 if R = Asai™, 2
k> if R = Asai™.

Moreover, in the last case, it follows from the definition (see [Sha?, p. 304]) that
9025, 7, Asai ™, 1) = 4 (25,7 @ (s o det), Asai*, ),

where p is a character of E* such that u|px = 1n'. Since k* = k mod 2, we obtain that
s—1)k2
(25,7, Asai™, ) = 1/(a) 7 wr(a)laly P N (2s, 7 Asai ™, ).
This implies that

kNo(s—3) _Sh

W, 7 x 0,0p) = n(a) w-(a)™al v (8,7 X 0,9p),

g

as desired.

Remark A.5.1. In the above argument, we have used Shahidi’s formula
Cp(w, e, spl, r) = Mw,vp) " [ [+ (s, 7,70, 0r)
i=1

for s € C (see Section Z8). This formula implies that the local coefficient is independent
of spl in the following sense. We consider an arbitrary quasi-split connected reductive
algebraic group G over F. Let spl = (B,T,{X,}) and spl' = (B,T,{X/}) be two
F-splittings of G which have a common Borel pair. We denote by w = (B, x) and
' = (B, x’) the Whittaker data for G' determined by spl and spl’, respectively, and a
fixed additive character ¢p. Let P = M N be a standard maximal parabolic subgroup
of G, and let 7w be an irreducible representation of M (F') which is t,,-generic and
to’,,-generic. Then Shahidi’s formula implies that

CP(U}, X, Spla 77bF) - Cp(UJ, X, Spl,7 ¢F)
for A € aj, . In fact, this equality can be proven directly as follows. Let Gaq = G /7 be

the adjoint group of G, where Z is the center of G. Choose an induced torus Z equipped
with an embedding Z — Z. For example, since Z is a subgroup of the maximal torus
T, we may take an induced torus Z such that there is a surjection X*(Z) — X*(T) of
[-modules. We denote the pushout of the short exact sequence

1 A y G > Gag —— 1
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via this embedding by

1 s 7 s G s Gpqg —— 1.

Note that if G is a classical group and Z = Resg/rGp,, then G may be taken to be the
corresponding similitude group. For any subgroup H of G containing Z, we write H for
the associated subgroup of G. Then spl (B T, {Xa }) is the F-splitting of G induced
by spl and w = (E,X) is the Whittaker datum for G determined by spl and Yp.
Choose an irreducible representation 7 of M. (F) such that 7|y (p) contains 7. (To find
such a 7, we first extend the central character of 7 restricted to Z(F') to a character of
Z(F), and use this to extend 7 to an irreducible representation 7+ of Z(F)M (F). Note
that Z(F)M(F) is a subgroup of M(F) of finite index since F is of characteristic zero.

~ . . . . M(F) "
Then we can take 7 to be a suitable irreducible constituent of Ind (FYM (F)(ﬂ' ).) Note

that 7 is wz-generic since 7 is t-generic. Moreover, by the uniqueness of Whittaker
functionals, 7|y (r) has a unique wj;-generic constituent, so that m appears in 7|y
with multlphclty one In particular, for any non-trivial to--Whittaker functional on 7,
its restriction to 7 is also a non-trivial tv,,-Whittaker functional on w. Hence it follows
from the definition that

Cﬁ<wv %Aa ;;ia ¢F) = Cp(U), X, Spla ¢F)7
noting that

e w in the left-hand side is regarded as a Weyl element of G ;

e the Weyl group representative of w in G determined by ;ﬁ/l agrees with the one
Wept in G determined by spl;

e the Haar measures used to define intertwining operators and Jacquet integrals
for G determined by ;\pﬁ and 1 agree with the ones dugp; 4, for G determined
by spl and 9p; N

o the restriction of Indg(%,\) to G as functions contains Ip (7).

Similarly, we have

Cp(w, 7y, spl’, ¥p) = Cp(w, my, spl’, V).

Thus, it remains to show that

C~(w %Aa gﬁ? wF) = Cﬁ(wa %/\7 Spl/a wF)
Since the natural map G(F) — Gaa(F) is surjective, the set of F-splittings of G con-

sists of a single G( )-conjugacy class, so that there is t, € T(F ) such that spl’ =
Ad(to)(spl) Then we have y' = X o Ad(ty) ™Y, Wepy = Ad(fo)(Wept), and Ay e =
gpi,yp for v/ = Ad(to)(u). Put @ = 7 o Ad(ty)~'. We may regard a mM—Whlttaker

functional on 7 as a t%’xj—Whittaker functional on 7’. Then by definition, we have

Q(%&, Splla TPF) = Q(ﬁ)\a ;;jla TPF) o Ad(%)*v
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where Ad(ty)*: Indg(%f\) — Indg(%)\) is the linear isomorphism given by Ad(t,)* f(g) =

f(Ad(to)(g)). Similarly, we have

Tp(w, %y, spl, ) o Ad(fo)" = Ad(fy)* o J5(w, 7}, spl’, 1p).
Hence we have
Q(%Sn Spl,a wF) = Q(%)\a /S—\pja wF) % Ad(/tvo)*

= Cp(w, T, spL, ) - Qwi, spl, ) o Jp(w, 7, spl, ¥or) 0 Ad(l)*
= Oﬁ(wa %Aa ;ﬁa 77ZJF) : w%)n ;ﬁ, wF) o Ad(a))* ° Jﬁ(wa %;\7 Spl/, 77DF>
= Oﬁ(wa %Aa ;ﬁa 77ZJF) : Q(W%iv ';—Z;l//a ,lva) o Jﬁ(w> %3\7 5/1\7?7 77DF>

Since 7" = 7, this implies the desired equality.

Q(
Q(

A.6. Proof of Proposition I72. Here, we give a proof of Proposition IZ2 for
classical groups in general. Recall the setting. Let G be a quasi-split classical group.
For ¢ = 1,2,3, consider a standard parabolic subgroup P, = M;N; of G. Assume
that W (M7, Ms) # O and W(Ms, M3) # 0. Then for wy € W(My, M) and wy €
W (Mg, M), and for an irreducible tempered representation 7 of M;, Proposition
asserts that
Rp, (U)le:ﬂ')\) = RPQ(U&,@UNT,\) o Rp, (wl, 7TA)-
Set wy Py = w; ' Pyw;. Following [Ar3, Section 2.3], we decompose Rp, (w1, 7y): Ip, (7)) —
Ip,(wymy) as
Rp (wi,m2) = (w1, ™) 0 Ryy—1p p (1),

where R, —1p p (m2): Ip (m2) = I,-1p,(7x) is given by (the meromorphic continuation
of) the integral

’YA<O7 X, pi;lpﬂplv 77DF)

= fa(ug)du
e(1/2,m, PZ);1P2|P1; Ur) /(NlmwllNgwl)\wllNzal

(Rw;1P2|P1 (m2) fr)(9)

and £(wq,my): walpz () = Ip,(wymy) is defined by
O(wy, 7)) = AMw;) te(1/2, 7y, pZ}l,lPQ‘PI,z/JF)L(wl)
with L(w,)fs(9) = fi(w;g). The key property of £(wy, ) is as follows.
Lemma A.6.1. The operator {(wy,my) satisfies the condition
L(wowy, my) = L(we, wymy) 0 L(wy,Ty).
Before showing this lemma, we prove Proposition [Z72.

Proof of Proposition [[_7-3. By [Ar3, Proposition 2.3.1], [Mok, Proposition 3.3.1] and
Lemma A6, we have

Rp, (wa, w1my) 0 Rp, (w1, )
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= (f(wz,wlm) oR 71P3‘P2(w17r>\)> o (é(whﬂ,\) oR wILPy|Py (m))

= l(way, wymy) o L(wy, my)

- ‘g(U)le, ﬂ-)\) o R wgwl)—1P3|P1 (ﬂ-)\)

oR 1

wy Wy 1Pg\w 1P2(7r)\) oR 71P2|P1 (W)\)

This completes the proof of Proposition 2.

= Rpl (w2w1, 7T)\)-
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Therefore, Lemma A761 is the missing part for Proposition IZZ2. For the proof of
Lemma A6, we need the following elementary fact.

Lemma A.6.2. Let V be a finite dimensional real vector space.

P, C V be a finite subset such that the union R; = P; U

Fori =1,2,3, let
—P; is disjoint. For B; € R;,

write B; > 0 (resp. B; <0) if B; € P, (resp. —f; € P;). Fix two automorphisms wy and
wy on V' such that wi(Ry) = Ry and

we have

1T ry-

B1>0
w1 B81<0

wawi B1<0

IT r6o- I] reB)!

’U)Q(RQ) = Rg.

w11>0 £1>0

Proof. We write Ry = L§_, I}, where

Then

IT r) =

B1>0
w151<0

T re=

£1>0
waw1 B1<0

I ={p € Ri| B
L={fieR|p
Iy ={p € Ri|
Ii={feR|p
Is ={p1 € Ri| B
Is={p1 € Ri| p
I; ={p1 € Ri| A
Is={B € R | B

II ro.

Br1EI3I,

IT sk,

B1€lUy

This implies the lemma.

Now we prove Lemma BTG .

Proof of Lemma [A—61. When G = G° and M,

wawi B1<0

>0, wif >0,
>0, w B >0,
>0, wif <0,
>0, wifr <0,
<0, wif >0,
<0, wi B >0,
<0, w1 <0,
<0, w1 p <0,

IT ro)=

w1 51>0
wawi B1<0

II

B1>0
w11 <0, wow1B1>0

:M2:

Then for a function f: Ry — C*,

11

£1>0

w11 <0, waw1B1>0

wowy By
wowy By
wowy By
waw1
wowy By
wawy
wowy By

w2w151

11

B1€l2lg

fB)f

> 0},
<0},
> 0},
<0},
> 0},
<0},
> 0},
< 0}.

f(Bu),

FBF(=5).

= I 1.

B1el3uUls

Ms, the lemma is [Ar3, Lemma

2.3.4] and [MoK, Lemma 3.3.4]. The proof of the general case is essentially the same as

these lemmas.
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Since wow; and wow, are two representatives of wow, € W (M, My), we can write
@2@1 = WaWn - Z(’U)Q, U)1>
for some z(wy,wy) € M7. By Lemma I, we see that z(ws,w;) is in the center of M
so that
L(waw) = wa, (2(wa, wy))L(wy) o L(w,),

where w,, is the central character of my. Our goal is to show that wy, (2(wq, wy)) is
equal to the product of

8(1/27 X, p;/};lpﬂpla ¢F)€(1/2a W1 TN, pfl\l/,2*1P3|p2> wF)€(1/27 X pz/wgwl)*lpg,\Pl?'l/}F)_l

and
)\(wl)_l)\(wg)_l)\(wgwl).

First, we consider the central character. Let R(7°,G°) be the set of roots of T° in
G°. As in the proofs of [Ar3, Lemma 2.3.4] and [Mok, Lemma 3.3.4], by [LSH, Lemma
2.1.A], we have

z(wy, wy) = (_1))\V(w2,w1)’

where AY (w2, w1) = 3k (wpo) @ With

Rp(wy,wy) ={a € R(T°,G°) |a > 0, wia < 0, wowyax > 0}.
Moreover, z(wsy,w;) is in the split part Ay of the center of M7, ie., AV (wy, wi) €
X (Anre).

For i = 1,2,3, we set R; = R(Aj5,G°). For B; € R;, we denote by 3; > 0 if the
weight space g, lies in 1;. Via the isomorphism X, (Ape) = X *(M?)p in [AT3, Section
2.3], we can identify AV € X,(App.) with a character of “M; which is trivial on the
semi-direct factor Wr of ZM7. Then by the description of central characters in terms
of the LLC for general linear groups, we have

wﬂx(z)\v) = )\V(gb,\(uz)) = /\V(m(uz))

for \V € X, (Anp) = X*(M?)F and u, € Wy whose image in W2 = F* is equal to
z € F*, where ¢, is the L-parameter for m,, and we write ¢(u,) = m(u,) X u, with
m(u,) € My. If AY = AV (wsq, wy), then we can write

)\V(wg,wl) = E )\\ﬁ/l,
B81>0
w1 B1 <0, wawi 81>0

where (3, runs over the elements of R; satisfying the specified conditions, and

AEI = Z aV

OzERBl



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 145

with Rg, being the set of roots a of T° in G° such that a|,,,. is a positive multiple of
1

3. Hence, fixing an arbitrary element u € Wy whose image in F* = W2P is equal to
—1, we have

W, (2(wa, wr)) = 11 A, (m(u)).
£1>0
w1 1 <0, wawy B1>0

Next, we consider the e-factors. For simplicity, we write (my, p) for €(1/2,my, p, ¥F).
The adjoint representation p,,-1p, p, of LMy on

wy MWy /(W] Mewy, NAY) = w; Mpwy Ny

@ ﬁﬁl?

B£1<0
w1 B1>0

decomposes as the direct sum

where f; runs over the elements of R; satisfying the specified conditions. If we denote
the adjoint action of “M; on gg, by ps,, then we obtain that

5(7T)\7p1\:1*1p2|p1): H €<7T/\7p51)'

B1>0
w1 51<0

In particular, by applying Lemma A6 to the function f(51) = e(m\, ps,) together
with [Tafe?, (3.6.8)], we see that

8(7r/\7 pZ)1—1P2|P1)€(w17T)\, pq\l/,glp3|p2>5(7r)\> pzlwgwl)*ng\Pl )71

= I ro- II r6o- II fB)~"

B1>0 w1 f1>0 B£1>0
w1 51<0 waowi $1<0 wawi 1 <0

= II  rGrE=s)

£1>0
w1 81 <0, wawy f1>0

= H 6(7T>\,p61>€(7T)\,pg1)

B£1>0
w1 B1<0, wawy f1>0

S | PR}

£1>0
w1 31 <0, wowy B1>0

Writing ¢y (u) = m(u) x u with m(u) € M?, this product is equal to

det | Ad(m(u) x u); EB 95
B81>0
w1 B1<0, wawy B1>0
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Since 1 x u acts on Am trivially, the direct sum is stable under the adjoint action of
1 % u, and we may compute this determinant as the product of the ones of Ad(m(u))
and Ad(1 x u). For the determinant of Ad(m(u)), we may assume that m(u) € M? is
in 7°. Then we conclude that

det | Ad(m(u); € Fa | = I AMmw),
B1>0 51>0
w1 B1<0, wawi B1>0 w1 81 <0, wow1 B1>0

which is equal to wy, (2(w2, w;)) as we have seen above.
Finally, we show that

det | Ad(1 % w); < 95, | = Mwi)M(w) A(wywy) L

B1>0
w1 B1<0, wowy B1>0

Recall that if we set A; (resp. As) to be the set of reduced roots a € R(Azre, G°) with
Gasc = Resp, /pSLy (resp. Resp,  pSUg, /r,(2,1)), and if we define fi(a) = M(F,/F,¢r)
(resp. fa(a) = N(Eo/F, )’ AN(Fu/F,¢br)~"), then

Mwn)Mwo)Mwaw) ™ = [ fila)- I Awae- ] A

acAq I<YAN a€Aq
a>0,w1a<0 wia>0,wawia<0 a>0,waw1a<0
-1
< [ fla)- [ ] flwa)- [ fla)™
a€Ng a€loy [ASVAN
a>0,w1a<0 wia>0,wawia<0 a>0,wawia<0

Here, we notice that w; induces a bijection on A;, and fi(wia) = fi(a) for i = 1,2.
Applying Lemma A6 twice, we have

Awi) Mwz) Mwywy) ™ = 11 fi(a)*- 11 fa(a)?
a€A; a€Ag
a>0,w;a<0,w2wia>0 a>0,w1a<0,w2wia>0

since f;(—a) = fi(a). Therefore, what we need to show is that det(Ad(1 X u); g(v)) =
fi(a)? if a € A; for i = 1,2, where we set §(ov) = Gav D G2qv and

Gv= D B

a€ER(T°,G°)
a\AoT =a

When a € Ay, the Wg-module g(,vy is isomorphic to Ind%ﬁ (1zx) and hence
det(Ad(1 x u); Gav) = det (Ind%g (1Fax)) (—1) = M(E,/F, ).

If a € Ay, then the Wg-module g(,v) is isomorphic to Ind%ﬁ (Msu(2,1)), where nigy21)
is the space of the sum of positive root spaces in the Lie algebra of the dual group of
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SUg,/r,(2,1). It is isomorphic to

Indy, o (Lpx) ©np,yr, = 1px ® ey, @ NE,/Fa

where g, /r, is the quadratic character of F,* associated to E,/F, by the local class
field theory. Hence

det(Ad(1 % u); §a) = det (Ind}}r (15)) (1) - det (nd}}% (75,5,) ) (~1)?
— det (Ind " (1 Fx)> (—1) = M(E,/F, ).

Since )\(Ea/F7 wF)4 = 1a we have f2(a)2 = )‘(Ea/Fa wF)4)\<Fa/F7 wF)_2 = )‘(Fa/Fa wF)2
This completes the proof of Lemma ATGT. 0

This result, along with others on the LIR will be extended to general disconnected
groups in a forthcoming paper.

APPENDIX B. REVIEW OF AUBERT DUALITY

The purpose of this appendix is to review several properties of Aubert duality, which
we used in the main body. In particular, we prove the commutativity of the normalized
intertwining operators with the Aubert involution up to scalars. It is a crucial result
to prove the local intertwining relations for co-tempered A-packets. This appendix is
an adaptation of an appendix in an arXiv version of [KMSWI.

We also define the twisted Aubert dual, and establish some properties that we need in
this paper. A more detailed study of twisted Aubert duality will appear in a forthcoming

paper.

B.1. Definition of a complex. Let F' be a non-archimedean local field and let G be
a connected reductive group over F. We identify G with the group of F-points G(F).
We denote by Rep(G) the category of smooth representations of G of finite length.
For a parabolic subgroup P = M Np of GG, where M is a Levi component of P and
Np is the unipotent radical of P, we have the normalized parabolic induction functor

Indg: Rep(M) — Rep(G), (0,V;) = (m, Vz),
where V; is the space of locally constant functions f: G — V, such that
f(nmg) = dp(m)20(m) f(9)

for n € Np, m € M and g € G with Jp the modulus character of P, and (7(x)f)(g) =
f(gx) for x,g € G. We also have the normalized Jacquet functor

Jacp: Rep(G) = Rep(M), (7, Vx) = (0, V5),

where
Vo= (Vi)ny = Ve/{(r(n)v —v|n € Np, v € V),
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and o(m)v = dp(m)"27(m)v for m € M and v € V, with the image v € V,. These
functors are adjoint, i.e., there is an isomorphism

Homg (7, Ind% (o)) = Homy, (Jacp (), o)

for m € Rep(G) and o € Rep(M).

For (m,V;) € Rep(G) and for a parabolic subgroup P = M Np of G, we set Xp(7) =
Indg(JaCP( )). This is the space of locally constant functions f: G — (Vy)y, such
that

f(nmg) = m(m)f(g)
for n € Np, m € M and g € G with f(g) € V, a representative of f(g) € (Vi)n,. If Q
is another parabolic subgroup of G' with () D P, since Ny C Np, we have a projection
map (Vz)n, = (Vz)np. We define a map ©2: Xo(m) = Xp(n) by the composition of
functions G' — (Vx)n, with this projection (Vx)n, = (Va)np-

Fix a minimal parabolic subgroup Fy = MyNp, of G. We denote the maximal split
central torus in a Levi subgroup M by Ay, and set Ag = Apy,. Let S C X*(Ap) be the
set of (relative) simple roots corresponding to Py, and set r = |S| = dim(A4/Ag). We
say that a parabolic subgroup P of G is standard if P D F,. Then there is a bijection

{J C S} — {standard parabolic subgroups of G}, J — Py,

where P; = M;Np, is such that Lie(P;) is the sum of Aj-weight spaces for all weights
that are Z-linear combinations of S with non-negative contributions of S\ J. We write
X,(m) = Xp,(m) for short. Note that if I C J, then P; C P;. Hence we have a map
0] = 90]12‘[’: Xy(m) = X (m) for m € Rep(G).

For J C S, we consider the 1-dimensional vector space

[S\J]
AJ = /\ <C|S\J|)7

which is regarded as the trivial representation of GG. Let {ei}ies\ J be the standard basis
of CI%VI. For I ¢ J C S with |J\I| = 1, letting J\ I = {j}, we define the isomorphism

el Ay — A, w w e

Consider a functor
X: Rep(G) — Rep(G)

given by X () = X;(r) ®c A, for € Rep(@). Then we define
1 Xy(m) = Xi(m)

by &7 = ¢ ® €.
For m € Rep(G) and for 0 <t <r, set

Xi(m) = P X,(m).

|J]=t
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In particular, X, (7) = 7. For 1 <t < r, define d;: X,(7) — X,_1() by

dy ZOCJ = Z Z &1 (x)),

JC IcS IcJcS
|J=t [I|=t—1 [J]=t

where 7; € X J(m). Then we have a sequence

0 — X, (1) — X, (1) — - —— Xo(7)
of representations of G.
B.2. The Aubert involution. For 0 < ¢ < r, we denote by Rep(G); the full subcat-
egory of Rep((G) consisting of representations 7 such that for every irreducible subquo-
tient 7’ of 7, there is J C S with |J| = ¢ such that 7’ is a subquotient of Ind%(a) for

an irreducible supercuspidal representation of M ;. Bernstein’s decomposition implies
the block decomposition

Rep(G) = [ Rep(G).

Note that the factor Rep(G), consists of direct sums of supercuspidal representations
of G, and every supercuspidal representation of G lies in Rep(G),.

Theorem B.2.1 ([A1, Théoreme 3.6]). For © € Rep(Q),, we have Xo(m) = --- =
Xi—1(m) = 0. Moreover, the sequence

0 —— )?T(w) e )N(T_l(w) —_— s —— )Zt(w)
18 exact.

Definition B.2.2. For m € Rep(G);, set

T = Xt(ﬁ)/dt—s-l()?t—kl(ﬂ))
and call 7 the Aubert dual of 7.

Theorem B.2.3. Aubert duality ™ — 7 satisfies the following properties.

(1) The map Rep(G) > m — 7 € Rep(G) is an exact covariant functor.
(2) For m € Rep(G):, we have

A= (-1t ST () [ (Jacp ()]

P=MNp

in the Grothendieck group R(G), where P runs over the set of standard parabolic
subgroups of G. Here, [Il] denotes the element in R(G) corresponding to a
representation 11 of G of finite length.

(3) If m is irreducible, then 7 is also irreducible.

(4) The Aubert dual of T is isomorphic to w as representations of G.
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(5) Let P be a parabolic subgroup of G with Levi component M, and denote by P the
parabolic subgroup of G opposite to P. Then for m € Rep(M) of finite length,
the Aubert dual of Ind%(7) is isomorphic to Ind%(#).

Proof. For (1), see [SS, II1.3]. The assertions (2), (3) and (4) are [Au, Corollaire 3.9)].
Finally, (5) is [Ber2, Theorem 31 (4)]. O

B.3. Intertwining operators and Aubert duality. In this subsection, let G' be one
of the following quasi-split classical groups

SO2n+1<F)’ Sp2n(F), OQR(F)v U,

Let P = MN be a maximal parabolic subgroup of G so that M = GLx(F) x G for
some classical group Gy of the same type as G. We denote by P = M N the parabolic
subgroup of G opposite to P. We fix ¢ € U(M).

In this subsection, we consider Aubert dualities for G° and M°, the connected com-
ponents of the identity of G and M, respectively. To avoid Aubert duality for non-
connected groups explained in the next subsections, we assume the following.

Hypothesis B.3.1. There are A-packets II, and II;; which are multi-sets over Irr it (M).
Moreover, there is a bijection Il, > m — 7" € I such that 7’| is the Aubert dual of
7T|Mo .

Write ¢ = tar, ® 1 with ¢y € ¥(Gy) and 7 = 7 Ko for 7 € Irr(GL.(E)) corre-
sponding to Ygr, and o € Il,,. We set ¢, = ¢aL| - |5 ® Yo and 7y = 7| - |5, K o for
s e C.

As in Section [, for w € W(M?°) and s € C, we have the normalized intertwining
operator
RP(wa Tsy ¢s) : ]P(ﬂ-s) - IP(wﬂ-s)a
which is a meromorphic family of operators. Since 7 is unitary, Rp(w, 7, ¥s) is regular
at s = 0, and we obtain a well-defined operator Rp(w, 7, 1) = Rp(w, s, s)|s=o-

Note that Ip(ms) = Ip(7s) as representations of G° by Theorem B™2Z3 (5). Since
wm, = w,, by the functoriality of Aubert duality, we have

—

Rp(w, T, iﬂs) : [ﬁ(ﬁ's) — Ip(wfrs)
On the other hand, we can define a normalized intertwining operator
Rp(w, 7ATS, %) : [ﬁ(ﬁ's) — Ip(wfrs),
which is regular at s = 0.

Proposition B.3.2. Assume Hypothesis BZZ 1. We further assume that Rp(w,fr,{lz\)
18 bijective.
(1) If G = G°, then there is ¢ € C* such that
Rp(w,m,¢) = c- Rp(w, 7, @/ZJ\)
(2) Suppose that G = Oq,(F).
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(a) If P # P° and if o|gg is irreducible, then there is c € C* such that

Rp(w,m,%) = ¢+ Rp(w, &, 7).

(b) Otherwise, there is w2 € Irr(M®) such that Ip(my) = Ipe(n2) = Ind%. (7°).
If we denote by I (72) (resp. Ip.(72)) the subspace of Ips(mS) consisting of
functions fs on G whose supports are contained in G° (resp. G\ G°), then
Ipe(72) = I5(72)® 1 pe (72). Moreover, there are two constants c,,c_ € C*
such that

-~

RP(wa T, ¢)fi =Ct Rﬁ(wa 7%7 w)f:t
for all fy in the Aubert dual of I5.(72).

Proof. Suppose that G = G°. Then since I5(7) is irreducible for almost all g%, we
have the inverse map

Rp(w, 7, 1hs) " In(wis) = In(#y),

for almost all ¢z°. It is regular at s = 0 since Rp(w, 7,) is bijective. We consider the
composition

Rﬁ<w7 7%57 Js)_l o RP(w> Ts, %)
This is a meromorphic family of self-intertwining operators on I(7s). Again by the

irreducibility of I5(7s) for almost all gz°, we can find a meromorphic function ¢(s) such
that

Rf(wv ﬁsa Js)_l o RP(E,-']T\S, 'Qbs) = C(S) -id.
Since the left-hand side is regular at s = 0, we can define ¢ = ¢(0) € C. Then

Rp(w, m,0) = ¢ Rp(w, #, D).

Since Rp(w, 7, 1)) is not identically zero, so is its Aubert dual. Hence ¢ # 0. This
completes the proof of (1).

When G = O,,(F), the proof is essentially the same, but we need to consider the
restrictions to the connected components of the identity. First, we consider (2a). Then
Tolve = (| are)s is irreducible, and Ip(7,)|ge =2 Ind%e((7|pe)s) by Lemma 213 (a).
By regarding Rp(w,w, ) and Rp(w, 7, 1&) as G°-homomorphisms, the same argument
as in (1) shows that

Rp(w,m,¢) = ¢ Rp(w, 7, )
for some ¢ € C*.

Next, we assume that P = P° or 7|y is reducible. Then by Lemma 213 (b), we
have Ip(ms) = Ipo(mY) for any irreducible component 7° of m|ye. Moreover, by the
proof of that lemma, we have Ipo(72) = I} (72) @ Ipo(72). As a G°-homomorphism,
Rp(w, s, 1) can be decomposed to the direct sum of

Rp(w, 75, 05): I (72) — ]}Ef(wﬂ;’),
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where § = det(w) € {£1}. By the same argument as in (1), we can find c¢x € C* such
that

RP<w7 T, ¢) = Ct Rﬁ(wa T, @D)
holds on the Aubert dual of I35, (7°). This completes the proof of (2). O

Now suppose that 7 is conjugate-self-dual. Then as in Section [CI0, we can define
the normalized self-intertwining operators

<aa %>Rp(wu7 %7 w) : [P(ﬂ-) - IP(W%
(u, Ty Rp(wy, m,0) : I5(7) — Ip(7).
Now we have the following corollary, which is a key result to prove Theorem [T 3.

Corollary B.3.3. Assume Hypothesis [B=3 1. We further assume that Rﬁ(w,fr,@) 18
bijective, and that T is conjugate-self-dual.
(1) If we are in the case (1) or (2a) of Proposition [B=33, then there is ¢ € C* such
that _ o
((a, m) Bp(wy, T, )] = ¢ - (U, 7) Rp(wa, 7, ¢).
(2) If we are in the case (2b) of Proposition [BZ33, then there are two constants
cy,c_ € C* such that

~ o~

(@ 7) Rp(wa, 7,9)] = e - (@, 7) Rp(w,, 7, 1)
holds on the Aubert dual of I, (72).

Proof. Recall that the normalized intertwining operator (w,7)Rp(w,,T,) is defined
by

<ﬁ> %>RP<wua %7 @D)f(g) = <ﬂv %>%(wu) (RP(ww ™, ¢)f(g))
for an isomorphism (u, 7)7(w,): w,m — 7. By Schur’s lemma, its Aubert dual is equal
to (u,m)w(w,) up to a nonzero constant. Then the claim follows from Proposition

B3 0J

Remark B.3.4. In the next subsections, we introduce Aubert duality for non-connected
groups, in particular for O, (F). However, an analogue of Theorem B3 (5) will not be
established, and hence a direct approach as in Proposition B3 (1) cannot be applied.

B.4. Twisted Aubert duality as a functor. Now we define twisted Aubert duality,
and establish some properties that we need in this paper. We use the same notations
in Sections B and BZ2.

Let 6 be an involution of G which preserves Py and M. Then 6 also preserves Ay
and acts on the set S of (relative) simple roots. We consider the disconnected group
G = G x (#). Let Rep(G) be the category of smooth representations of G of finite
length. For 0 <t < r, we denote by Rep(G), the inverse image of Rep(G); under the
restriction map Res: Rep(G) — Rep(G).

Lemma B.4.1. The category Rep(G) has a block decomposition [[, Rep(G);.
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Proof. The automorphism 6 acts on Rep(G) by m — 7o #. This action preserves
Rep(G);. Hence the Bernstein decomposition for Rep(G) gives the decomposition for

Rep(G). Since the functor Res: Rep(G) — Rep(G) is faithful, the orthogonality of the
factors follows. O

Let 7 € Rep(G),. Set 7 = Res(7) € Rep(G); and denote the space of 7 by V,. Recall
that for J C S, we have a representation X;(m) of G. This is a space of functions
[+ G = (Vi)np,- We have a map

Xs(0): X;(m) = Xowy(m), Xs(0)()(g) = 7(0)(f(6(9)))-
On the other hand, the bijection : (S'\ J) — (S \ 6(J)) induces an isomorphism
As(0): Ay — Aoy
Lemma B.4.2. Let I C J C S be two subsets.
(1) We have X1(0) o o] = SDQEJ)) o XJ(H)
(2) If |J] = [I| + 1, then A;(0) o €] = eg'7) 0 A, (0).

Proof. For f € X (m), we have a commutative diagram

G 49) G L (Vﬂ')NpJ (VW)NPI

%(9)l l%(e)

(VW)NPG(J> (VTI')NPQ

()’
This shows that X;(0) o ¢/ (f) = @) o X;(0)(f).

The second assertion is obvious. 0J

By taking the tensor product X ;(6) ® \;(0), we obtain a map

X5(0): X;(m) = Xoo ().
By Lemma B, it satisfies that X;(6) o 37 = fpgg)) o X,(0) if |.J| = |I| + 1. Putting
these together for all J C S with |J| = t, we can define an isomorphism
X,(0): X,(m) = X,(m)

by requiring the diagram
)?t(ﬂ )

J l

X (m) X0, Xo()(m)

is commutative for all J C S with |J| = ¢, where the vertical maps are the canonical
projections.

Proposition B.4.3. We have the following.
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(1) The isomorphism X,() satisfies that X,(m(g)) o X;(0) = X4(6) o X,(n(6(q))) for
g€eqG. N N N N
(2) The differential di: Xi(m) — Xy—1(7) satisfies that dy o Xi(0) = X;-1(0) o ds.
(3) For 7,7 € Rep(G) withm = 7| and «' = 7'|q, if p: T — 7' is a G-equivariant
map, then the induced homomorphism Xi(p): Xi(m) — Xi(n') satisfies that
Xi(p) 0 Xi(0) = X4(0) 0 Xi(e0).
Proof. I f € X (), then

X(m(g)) o Xs(0)(f)(x) = X, (0)(f)(zg

= X(0) 0 X;(m(6(9)))(f)(x).

(
Since G acts on A; trivially, this action commutes with A;(0). Hence X;(m(g))oX,(0) =
X;(0) o X;(m(0(g))) for g € G. This implies (1).
Next, we have

dto)?t(e) Zf] = dy 22?9(J)<0)<f9(J))

JCS JCS
|J|=t |J|=t

= Y S # o Kan ) ()

IcS IcJcs
\I|=t—1 [J]=t

- Z Z XG(I)(H)O@%))(JC&(J))

IcS IcJcS
\I|=t—1|J|=t

=X | > D> FHf

Ics IcJcS
[I|=t—1 |J|=t

Hence we obtain (2).
Finally, in the situation of (3), if f € X (m), then

Xy(p) 0 Xs(0)(f)(x) = ¢ 0 7(O)(f(0(x)))

= #(0)(o(£(62))))
= X,(0) 0 Xy (9) (/).
This implies (3). -
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On X,(7), we have operators X;(6) and X,(m(g)) for g € G. For § € G, we write
- [ Xiln(g)) ifg=g€G,
Xu(m(9) = § < - e
Xi(m(g)) o Xy(0) ifg=gx0eGxb.
Then by Proposition B-23 (1), we see that
Xi(7(3-9)) = X(7(9)) 0 Xu(7 (7))
for g, q € G. This gives the C-vector space )Aft(w) the structure of a representation of
G. We denote this representation by X;(7). Moreover, the automorphism X;(7(g)) is
functorial in 7 by Proposition B3 (3).
Namely, we have a functor
X,;: Rep(G) = Rep(G).

Lemma B.4.4. For 7 € Rep(G), we have
Xi()le = Xu(Flo).

Proof. This is obvious from the construction. O
Proposition B.4.5. If 7 € Rep(G);, then Xo(F) = --- = X, 1(7) = 0, and the
sequence

0 — X, (7)) — X)) — -+ —— Xi(7)

is an exact sequence of representations of G.

Proof. By Theorem BZZT1 and Lemma B4 we have the first assertion and the ex-
actness of the sequence. On the other hand, by Proposition B3 (2), this sequence

consists of G-equivariant maps. O

Now we can define twisted Aubert duality.

Definition B.4.6. For T € Rep(G);, set
T = Xi(@)/dua (X (7))
and call 7 the twisted Aubert dual of .

Proposition B.4.7. Twisted Aubert duality ™ — 7 satisfies the following properties.
(1) The map Rep(G) > 7 — Te Rep(G) is an exact covariant functor.
(2) If we write m1 = T|g, then %|G =7.
(3) If ™ is irreducible, then  is also irreducible.

Proof. (1) follows from the construction together with Theorem B=23 and Lemma [B7274.
(2) is a direct consequence of Lemma B2,

To show (3), let 7 be an irreducible representation of G. Set m = 7|¢ so that
7 =g by (2). Note that 7 is a direct sum of at most two irreducible representations
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of G since (é : G) = 2. If 7 is irreducible, then so is 7 and hence 7 must be an
irreducible representation of G. Suppose that m = 7w @ m with 7; irreducible. Then
7 = 7t; @ *y. Moreover, 7(6) gives a linear isomorphism m; — 7y as C-vector spaces.
By the construction, it induces a linear isomorphism 7#; — 7. Since this is nothing
but %(9), we conclude that 7 is irreducible as a representation of G. 0J

Remark B.4.8. We do not know whether the twisted Aubert duality functor 7 — T is
really an involution. This and the commutativites of the twisted Aubert duality functor
with the contragredient functor, the parabolic induction functors, and Jacquet functors
would be solved in a forthcoming paper. In this paper, we do not use these expected
properties.

_If np is a character of G satisfying 1o ¢ = 7, then we can extend 7 to a character of
G by setting n(#) = 1. Hence for T € Rep(G), one can consider the twist T ® 7.

Lemma B.4.9. Let n be a character of G such that no @ = . Then for T € Rep(G),
the twisted Aubert dual of T @ 1 is equal to T @ 0.

Proof. This follows from the construction. OJ

B.5. Twisted Aubert duality at the level of Grothendieck groups. Let P =
MNp be a standard parabolic subgroup of G. If P is f-stable, we may assume that M
is also B-stable. In this case, write P = P x (6) and M = M x (). Then the normalized
parabolic induction functor

Indg: Rep(ﬁ) — Rep(G)

and the normalized Jacquet functor

Jacs: Rep(G) — Rep(]\7)

can be defined as in the connected case. Note that for 7 € Rep(G), we have
Xp(7) = IndS(Jacp(7)) @ A,

as representations of é, where J C S is such that P = P;.

Let R(G) be the Grothendieck group of Rep(G). When 7 € Rep(G), we denote

by [7] € R(G) the corresponding element. The character Oz of 7, which is a linear
functional on C2°(G), depends only on [7r]. Moreover, it gives a map

R(G) 3 [7] — 6z € CZ(G)".
For [71], [Ta] € R(G), we write
) = [72]
if Oz (f) = O%,(f) for any f € C°(G % ). For example, for 7 € Irr(G), if Indg(w) =
1 @ T is reducible, then [m,] 2 —[m1).
In this subsection, we prove the following.
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Proposition B.5.1. Let 7 € Rep(G);. Then
[ £ 0 D0 (O [Indf(Jacs(7)))
P=MNp

where P runs over the set of O-stable standard parabolic subgroups of G, and (An/Ag)’
is the subgroup of An/Ac fized by 6.

Proof. By construction, we have the exact sequence

0 — X, (7) — X,1(7) — -+ — X,(7) > > 0
of representations of G. Hence
A=)y [56E)]
j=t

Since )Afj(%) =0for 0 <j <t—1, we may extend the sum over all 0 < j <.
Recall that if we write m = T|g, as representations of G, we have

X;(7) = P Xs(r) @ A

Jcs
[J]|=j

Moreover, the action of gx6 on )Z'j(?f) sends the summand X ;(m)®@A s to Xg ) (7)@Ag( ).
This means that if 6(J) # J, then

[(X(m) @ Ay) ® (Xow)(m) @ Agery) ] 2o,
and hence
X@L Y merl= Y [Ind%(Jaeng 7)) ® AJ} .
JCs JCs
|J|=3,6(J)=J |J|=5,0(J)=J

Note that A, is a 1-dimensional C-vector space, and g x 6 acts on it by a scalar \;(0),
which is equal to the sign of the action of § on S\ J. Hence we have

7L (=D Y ()Y (0) [maf (Jacg, (7).
0N

Therefore, what we have to show is the equation
)\J(Q) _ (_1>dim(AM/AG) . (_1>dim((AM/AG)9)
for J =6(J) C S with P = P; = M Np since dim(Ay/Ag) =[S\ J| = r —|J|. Note
that S\ J forms a basis of the Q-vector space X*(Ay/Ac)®Q. Moreover, 6 acts on this
space and its co-invariant space X*(Ays/Ag)e ®Q is isomorphic to X*((Ay/Ag)?) @ Q.

As a basis of this space, one can take the set of f-orbits in S\ J. If we denote the
number of #-orbits in S\ J of order n by m,, we see that

my + 2m2 = dlm(AM/Ag), my + me = dlm((AM/Ag)e)
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Since A;(0) = (—1)™2 by definition, we obtain the claim. O

APPENDIX C. DERIVATIVES OF TEMPERED REPRESENTATIONS

We use the notations in Sections T3 and @, except that we denote the normalized
absolute value of F by |- | for simplicity. In particular, let G be one of the following
quasi-split classical groups

SOQn+1<F>, Sp2n(F), OQn(F), Un

Throughout this appendix, we assume Hypothesis BIT1. For convenience, we restate
this hypothesis again.

Hypothesis C.0.1. For any quasi-split classical group G’ with dim(St5) < dim(Stz),
and for any tempered L-parameter ¢’ for G’, there exists a subset Iy of Irrien,(G')
equipped with (-, 7') 4 satistying (ECRT) and (ECR2) in Section [A.

The purpose of this appendix is to extend some results in [Mcg], [XT] and [Af] to
G. Note that in [Af], the author used Mceglin’s construction of tempered L-packets,
which relies on (ECRT) and (ECR2) for all classical groups G’. Hence it is not trivial
that the arguments in [Af] can work under our weaker hypothesis. To avoid Moeglin’s
construction, we will apply the argument in [XT] directly to tempered L-parameters.

C.1. Review of Tadié¢’s formula. One of the most useful tools to study represen-
tations of p-adic classical groups is the Geometric Lemma [BZ, Theorem 5.2], or its
semisimplified version called Tadi¢’s (structure) formula. In this subsection, we recall
this formula.

First, we prepare some notations for GLy(E). Let R(GLy(E)) be the Grothendieck
group of Rep(GLy(E)), and set

RO = éR(GLN(E)).

It is a graded commutative algebra equipped with the product
m: RECQRY 5 R n@n—n xn

defined using the parabolic induction functors. The unit element of R is the trivial
representation lgr,(g) of the trivial group GLo(E). Moreover, we have a ring homo-
morphism

m*: R — R @ RO

defined using the normalized Jacquet functors by

N
R(GLy(E)) 57— Y Jacgy—r)(7).
k=0
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Here, Jac(, ,) denotes the Jacquet functor along the standard parabolic subgroup
Pk, ky) of GLy, 41, (&) with the Levi factor GLy, (E) x GLy, (E). For these facts, see [,
Proposition 1.7]. For example, by [Z, Proposition 9.5, we know that

y—z+1
m (Az,yl) = Y Allr +i,9),) @ Al o + i — 1],).
i=0
Here, we formally understand that A([z,z —1],) = 1gi,(p) for any z € R. We define a
ring homomorphism
M*- RGL N RGL ® RGL
by the composition
M*=(m®id)o (“Y ®@m*)osom”,
where s: REV@RT — REL@REE denotes the transposition s(>, ;®@7/) = >, 7/ @ 7.
For example,
M Az )= Y (A2 =) ¥ Alw,y],) © A([z + 1w — 1),

z—1<2<y
z41<w<y+1

Here, the sum isover z = — l,z,...,yandw=2z+1,24+2,...,y + L.

Next, let G be a quasi-split classical group as above. We denote by G° the connected
component of 1 € G. Note that G° = G unless G = Oy, (F), in which case G° =
SO, (F). Fix a rational Borel subgroup B° = T°U of G°, and we denote the normalizer
of (T°,B°) in G by T. Let P° = M°Np be the standard parabolic subgroup of G° with
Levi subgroup M* isomorphic to GLg, (E) X - - - x GLg, (E) x G§, where G is a classical
group of the same type as G°. If P° is stable under the adjoint action of 7', we set
P=P°-Tand M = M°-T so that M = GLg,(E) x --- x GLg, (E) x Go. Otherwise,
we put P = P° and M = M°.

For my € Rep(Gy) and 7; € Rep(GLy,(E)) for 1 < i < r, we denote the normalized
parabolically induced representation by

TLX o X T, Nﬂozlndg(ﬁlﬁ---@n@m)
On the other hand, for m € Rep(G), we have the normalized Jacquet module
Jacp(m) € Rep(M)
along P. They are related by Frobenius reciprocity
Homg (7w, Ind% (o)) = Homy, (Jacp (), o)

for 7 € Rep(G) and o € Rep(M).

Recall that R(G) is the Grothendieck group of Rep(G). If P = M Np is as above,
the normalized parabolic induction and the normalized Jacquet functor induce linear
maps

Ind%: R(M) — R(G),
Jacp: R(G) = R(M).
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If (P, M’) is conjugate to (P, M) by an element in 7, then we can identify R(M")
(resp. Ind%,, Jacp/) with R(M) (resp. Ind$, Jacp).
Set

RY = PR(G),
=

where G’ runs over all quasi-split classical groups of the same type as G. It possesses
a module structure defined by

Xx:REILQRY S RE rer— 77
and a comodule structure
R -5 R @RY
defined by
R(G) 3w Y Jacp,(m).
k=0
Here, n is the F-rank of G, and Jacp, denotes the normalized Jacquet functor along a

standard parabolic subgroup P, of G’ with the Levi factor of the form GLx(F) x Gy.
The Geometric Lemma at the level of Grothendieck groups is stated as follows.

Theorem C.1.1 (Tadi¢’s formula ([Tadl, Theorems 5.4, 6.5], [Ban, Theorem 7.3])).
For 7 € RS and m € RY, we have

pr(r > m) = M*(7) % pt ().
Here, for 11,7, 75 € REY and 7y € RS, we set
(7’1 ®T2) X (7'3 ®7T0) = (Tl X 7'3) X (TQ X 7T0).

Remark C.1.2. Tadi¢’s formula holds even for Oq,(F) (see [XT, (5.5)] or [Baxn, Theo-
rem 7.3]). However, as in [XT, page 463], for SOy, (F'), this formula needs to be modified.
This is one of the reasons why we do not work with SOy, (F) but with Os,(F).

The following is also a basic and useful tool.
Theorem C.1.3 (Casselman’s criterion ([Kon?2, Lemma 2.4])). Let 7 be an irreducible

representation of G. Then the following are equivalent.

e 7 is a discrete series (resp. tempered) representation;

e for any irreducible representation T @ my appearing in 1 (7) — lar,p) @ 7, if we
denote the central character of T by w, = Xu| - |* with x, unitary and s € R,
then s > 0 (resp. s > 0).

C.2. Derivatives. Now we introduce the notion of derivatives. Note that this differs
from the Bernstein—Zelevinsky derivatives in [BZ)].

Definition C.2.1. Fiz an irreducible supercuspidal representation p of GLg(E).
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(1) Suppose that G° has a standard parabolic subgroup P° = M°Np such that M =
GL4(FE) x G_. Form € R(G), if we write

Jacp(m) = > 7 ® 0; € R(GL4(E)) @ R(G-)

i€l

with 7; € Irr(GLy(E)) and 0; € Irr(G_), we define the p-derivative D,(m) by

D,(m) = Z g € R(G_).
icl
Ti=p

If such a parabolic subgroup P° does not exist, we set D,(7) = 0.
(2) For k >0, we define the k-th p-derivative ng) (m) by

1
D (w) = 27 Dy o+~ 0 Dy(x).
k
In particular, DE,O)(W) = .
(3) Ifo)k)(w) # 0 but D,()Hl)(w) =0, we say that D,()k) (7) is the highest p-derivative,
and denote it by Dy*(r).
(4) We say that 7 is p-reduced if D,(m) = 0.

Note that for any = € Irr(G), it follows from Frobenius reciprocity that D,(m) # 0
if and only if there is an inclusion 7 < p X 1 for some representation m,. By [XT,
Lemma 5.6], if p' % p| - |*!, then D,0 D,y = D, 0 D,.

We write p*F = p x --- x p (k times) for short. Note that for 7 € R(G), the

k-th derivative D,()k) () is a linear combination of irreducible representations whose
coefficients are non-negative integers. In fact, it is characterized such that

Jacp(m) = p** @ Df)k)(w) + ZTZ' X 7;,

where P° = M°Np is such that M° = GLg(F) x G, and 7; K 7; € Irr(M) is such that
T ¥ pt

Lemma C.2.2. Suppose that p is not conjugate-self-dual. Then for any © € Irr(G),
its highest derivative Dy (m) is also irreducible. Moreover, the map Irr(G) > 7

max y y y ) y ). . y max k

D*(7) s injective in the following sense: for m, " € Irr(G), if D™ () = DE, )(7r) =
D ('), then m = 7.

Proof. Write Dy'*(7) = D,(,k) (7). One can take an irreducible summand 7o of DJ**(rr)
such that

Jacp(m) —» pX -+ - X pKm,
k
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in Rep(M), where P° = M°Np is an appropriate standard parabolic subgroup of G°.
By Frobenius reciprocity, we have

T p*F X m.

In particular, we have
Ty < Dl()k) (r) < Dg“) (pXk X 7T0)
in R(Gy) for some classical group Go. (Here, for A, B € R(Gy), we write A < B if
B — A is a non-negative combination of irreducible representations.) Since 7y is p-
reduced and since p is not conjugate-self-dual, by applying Tadi¢’s formula (Theorem
CT) to p** x 7, we have
D,(;k) (PXk X 7T0) = o,

and hence we have DS () = m,.

Suppose that 7' € Irr(G) satisfies D,(,k)(ﬁ’) = m and 7 % 7. Then 7’ is also an
irreducible subrepresentation of p** x 1. However, in the Grothendieck group, since
7 < (p*F x my) — 7, we have

o = Dl()k)(ﬂl) < Dl()k) ((p™* x mp) — ) = 0.
This is a contradiction. OJ
By the compatibility of Aubert duality with Jacquet functors, we obtain the following.

Lemma C.2.3. Fiz an irreducible cuspidal representation p of GLy(E). Let m be a
representation of G of finite length. Then

(Dy(m)) = Doy (3).

Proof. This is a special case of [Au, Théoreme 1.7 (2)] if G = G°. The same proof
works for G = O, (F). O]

Similarly, let P = M Np be a @-stable standard parabolic subgroup of GLx(F) such
that M = GLd(E) X GLN_ (E) X GLd(E) For 7 € R(GLN(E>), if we write
Jacs(T) = Zn ®o; ®°T) + Z(ﬂ'j +m;00)
i€l j€J
with 7, € Irr(GL4(E)), 0; € Irr(@iNf (E)) and m; € Irr(M) such that m; 2 7m; 0 6, we
define N -
D,(7) =) & € R(GLy_(E)).

i€l
Ti=p

Moreover, for £ > 0, we set

Note that a priori, D (%) is in R(GLy,(E)) ©z Q for some Ny > 0.
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C.3. Compatibility of Jacquet functors with twisted endoscopy. We denote by
C[IL(G)] (resp. CO[II(N)]) the space of invariant (resp. twisted invariant) distributions
on G (resp. GLy(F)) which are finite in the sense that they are finite linear combina-
tions of irreducible characters. Then the representation theoretic characters provide an
isomorphism
CI(G)] 2 R(G) ®z C.

For any m € R(G), its character is denoted by O, € C[II(G)]. Finally, we denote the
space of stable finite linear combinations of characters of G by C[II(G)]*.

By the above isomorphism, one can transfer our definition of Jacquet functors to the
spaces C[II(G)] and C[II(N)]. Now we set N = dim(Stg) as in Section [H. We fix an
irreducible unitary supercuspidal representation p of GL4(E), and = € R. We consider
Levi subgroups

GLd<E) X GL]\L (E) X GLd(E)
of GLy(E) and
M° = GLy(E) x G°
of G°, respectively. Then by [XT, (6.6)], we have a commutative diagram:

(G:G°)~ 1Trans%0

Clm@)* > CO(N))]

Dpl-\””l Jf’pw
(szG‘i)_lTrans%O

ClIIG-)]* - CO[II(N-)]
where the above horizontal map is the composition of the averaged restriction map © +—»
(G : G°)™'O|ce(gey and the twisted endoscopic transfer map Transg. : C[II(G°)]** —
CY[II(N)]. The bottom horizontal map is defined similarly. This commutativity was
proven for general quasi-split connected reductive groups in [X1, Appendix C], and
can be extended to the case of O, easily from the case of SO, (see Remark TG
(3)). Applying the above commutative diagram repeatedly, we obtain a commutative
diagram

(G:G°)~ 1Trans%o

ClI(@)* » COII(N)]

p® l l 5%
pl-|® ol-I®
(Go:G3)~ ' Trans? ° )
C[II(Go)]** > C[IL(No)]
for suitable Gy and Nj.
Let ¢ be a tempered L-parameter for GG, and let 11, be the L-packet associated to ¢.
Then we have a stable invariant distribution
> 0. eClI(G),
WEHQJ)
whose image under (G : G°)~!Transt. is the twisted character Oz , € CP[I(N)] by
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From now on, we suppose that

e p is conjugate-self-dual;
e 21 is a positive integer;
e ¢ contains p X Sy, 11 with multiplicity & > 0.

Then

D(k)m ~ —C.
ol ( ) GLN_24k(E) o

for some C' € Q, where

¢0 - 925 - (P X S21+1)€Bk D (p X 521—1)@k
In particular, Bgf_ﬁl)(@) = 0 and one can define €(¢) € Q such that
~(k) ~ \ 0 ~
DY (Fy) £ (@) - Ty

Here, we recall from Section BEZT that for 7, T € R(GVLN(E)), we write Ty Lk o if
Oz, (f) = Ox,(f) for any f € C°(GLy(E) x6). With the above commutative diagram,
it implies the following lemma.

Lemma C.3.1. We have Dgﬁl)(ﬂ) =0 for any 7 € Il,. Moreover, ¢(¢) € {0,1} and

Dy | 2om] =et@) 32 mo.

FEH¢ 71.061—[450
Proof. By (ECRT), we have
: " 50
mTranSGo o Dp‘ e Z O, = Dpl‘\”” o TransGo Z o,
WEH¢ 7T€H¢
k 0
DW.(0:,) L e(9) - ©5,
€(9) 0
= ——Transge Z O,
(Go : GY) 6 S
Hence
> DO =c9) Y On.
7T€H¢ W0€H¢O
. (k+1) B i,
A similar argument shows that ZWEH D (©,) = 0, which implies that D e (m) =
0 for any 7 € Ily. Hence by Lemma O3, 37 Sr)\z (m) is a multiplicity-free sum

of irreducible representations (possibly zero). This implies that e(¢) € {0,1}, and we
obtain the last equation in the statement.
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C.4. Computation of highest derivatives. Recall that we fix an irreducible unitary
supercuspidal representation p of GL4(FE), and x > 0 such that 2x € Z. We compute

Dgr_)‘x(ﬁ) for each 7 € II,.
First, we suppose that p X S5,.1 is conjugate-self-dual of the opposite type to ¢.
Then the multiplicity k of pX S, is even. Moreover, if we set ¢’ = ¢ — (p X S, 11)",

then Ay = Ay and

7= A([-z,x],) X - X A([—x,x]p)lmr',

k/2

where 7' € Il is such that (-, 7')y = (-, m)s. See [Ar3, Theorem 1.5.1] and [MokK,
Theorem 2.5.1]. Hence by Tadié¢’s formula (Theorem CTl), we have

Dif(m) = A=(x = 1w = 1],) X -+ X M|~ = 1)z = 1],) xr"

[ S/

2
This is equal to my € Iy, with (-, m0)e, = (-, T)e via the canonical identification A4, =

Ay, where ¢ is the same as in the previous subsection.
In the rest of this subsection, we assume that p X Sy, is conjugate-self-dual of the

same type as ¢. In this case, to compute D,()]ﬁx(ﬂ‘) for each m € II,, we use (ECR2).

Let s € Ag. When G = O,,(F) and s € A, \ AJ, we assume that G° # {1}. Let I; be
an index set such that s =, ., e(pi, a;, 1), and set

=P riRS,, b2=0¢—0¢.
i€l

For i = 1,2, fix a conjugate-self-dual character n; of E* such that ¢; @ 1; € Premp(Gi)
for some classical group G;. Then H° = G} x G5 is an elliptic endoscopic group of G°,
and (11, 72) gives an L-homomorphism

MG x G = EGe.
Let
M°® = GL4(E) x G°,
M7 = GLy(F) x G?ﬁ,
M; = GL4(E) x G5 _
be Levi subgroups of G°, GG} and G35, respectively, and write

H = G1 X GQ,
HL* = Gl,* X GQ,
HQ’_ = Gl X GQ,_.
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Then by [XT, (6.2)—(6.4), (6.7)], we have a commutative diagram:

G
Trans

ClII(H)

Dpn1|~lz@Dpn2\-\zl lDﬂHI

9 G_
> i—1 Trans

CII(H,, )" & C[(I(H,,))]* ————— C[I(G-))],
where Trans$ is the transfer map normalized such that
2
II 20 0nm 2 (sm)e®
=1 ”ieH%@m‘ 7TEH¢

For the proof, see [X1, Appendix C].
We denote the multiplicity of p X S5, 1 in ¢; by k;, and set

Gin = ¢i — (PR Sapi1) ™ & (p B Spp_1) M.
Let G be the classical group such that ¢; 0 ® 7; € Piemp(Gip)-

Proposition C.4.1. Let 59 be the image of s under the surjection Ay — Ay, defined

% e(p,2v —1,1)  if p'=p, d=2r+1>2,
e(p/,d,l)'—> 0 ifp =p,d=2r+1=2,
e(p/,d,1) otherwise.
Then
DL S (5,m)60x | = el @m)e(dr @) D (50,70) 00Oy
melly mo€lls,

Proof. Note that if ¢g = 0, then 22 +1 = 2 and ¢ = (pX Sy)®*. In this case, A;ﬁ = A,.
In other words, if G = Oq,(F) and s € A, \ AJr then we have G° # {1} automatically,
and we can use the above diagram.

By applying the diagram repeatedly together with (ECRZ) and Lemma C3, we
have

2
k k
Dyfie | 22 (5:m)e0x | = Djjie o Tramsie, ([T D0 s

71'En¢ =1 Wienfbi@"i
2
_ Go
- TranSGl,OXGz,o H PN | | Z O,
i=1 ﬂ"ier‘[%@m‘

N

= Transg‘ioxcl0 H e(oi @ m;) Z Orio

=1 7i,0€lg; pom;
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= (1 @M)e(d2 @1m2) > (50, 70) 69Oy

7r0€l'[¢0

This completes the proof. O

As a first consequence, we obtain the following important result.

Corollary C.4.2. We have e(¢) = 1.

Proof. Recall that €(¢) € {0, 1} satisfies EE)IIC)II (Ty) 2 €(¢) - Ty, and

> DYL(O:) =e(9) Y O

7T€H¢ ™0 €H¢0

We show the claim by induction on k.
0
3 b
then Df()ll_)‘m(%¢)]GLN72d(E) = Ty, S0 that e(¢) € {£1}. Since e(¢) € {0,1}, we must have
() = 1.

Suppose now that & > 1. We apply Proposition CZ21 to s = e(p, 2x + 1,1). Then by
the induction hypothesis, we have €(¢; @n;) = 1 fori = 1,2 since k; = 1 and ko = k—1.
Hence

The case k = 0 is trivial since D (7y) = Ty by definition. Similarly, if & = 1,

Dfﬁz Z<317T>¢®7r # 0.

F€H¢

This implies that €¢(¢) # 0 and hence €(¢) = 1. O

In particular, by Lemma 231 and Corollary T4, we have

LEND 3R D e

7T€H¢, ™ GHd’O

Now we compute D(’f.

p )|,c (m) for m € 11,.

Theorem C.4.3. Let ¢ be a tempered L-parameter for G. Suppose that ¢ contains
p X Soptq with multiplicity k > 0. Let m € 11,. Then D;ﬁz(ﬂ) = 0 if and only if one of
the following holds:

o >1, ¢ 2p X Sop—1 and <€(pa 2r+1, 1)77T>¢ 7& <6(p7 2r — 1, 1)77T>¢;

ez =1 and (e(p,2,1), )y = —1.
Moreover, if D;ﬂﬁ(ﬁ) # 0, then my = D,()ﬂx(ﬂ) € Iy, and it is characterized such that
(-,m) g is the composition of (-, 7o) e, with the surjection Ay, — Ay, in Proposition [C41.
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Proof. First, suppose that + > 1 and ¢ D pX S5, 1. We apply Proposition CZ to
s =e(p,20 +1,1) +e(p, 2z — 1,1). Then sy € A} so that

Dyjje | 2 (s men

ﬂ'EH¢

is a sum of irreducible characters with non-negative coefficients. Hence, if (s, 7)s =
(e(p,2x +1,1),m)4 - (e(p, 220 — 1,1),m)y = —1, then D,E)]r.)w(”) = 0.

Similarly, when z = 1, by applying Proposition T2 to s = e(p, 2, 1), we see that if
(e(p,2,1),m)y = —1, then D;’r_)lz(w) = 0.

Note that via the surjection A, — Ag,, we have z4 — 24, and the image of Ag
is included in Ago. Hence this map induces a surjection A, — Ag. Then 7 does
not satisfy the above two conditions if and only if the character (-, m)s: Ay — {1}
factors through the surjection Ay — Ag,. In this case, we denote the character of A,
associated to m by 7, i.e.,

(Mg Ap = Agy = {£1}.

For sy € Ag,, choose a lift s € A, of it. By applying Proposition T4 to s together
with Corollary T2, we have

Z (s,7r)¢Dgf_)|m(7r) = Z (50, T0) ¢ T0-

7T€H¢ 7T()€H¢0

This equation can be written as

Y nels) D () = > (s, 70) g

TI'GH¢ 7T0€H¢O
k
D£|,)‘z(7r)?f0
for sp € Ag,. This implies that D/(J’r)v(w) = m if and only if n, = (-, m)¢,. This
completes the proof. O

When me (m) = 0, the highest derivative of 7 is given as follows.

Theorem C.4.4. Let ¢ be a tempered L-parameter for G. Suppose that ¢ contains
p & Sopiq with multiplicity k > 0. Let m € Iy and assume that Df)li)lw(w) =0.

(1) If k is odd, then m = Dgr,‘_zl)(ﬂ) is nonzero, tempered and belongs to Iy, with
$1 =0 — (PN S0 1)1 B (P B Sypq) .

Moreover, there is a canonical isomorphism Ay, = Ay, and (-, m1)g, = (-, T)s
via this isomorphism.

(2) If k is even, then Dfﬁ@l)(w) is nonzero but not tempered. It is the Langlands
quotient of the standard module

A=z = 1), 2],) x s,
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where my € Iy, with
$2 = ¢ — (PR S1)™" @ (p B Gppr) P72

Moreover, there is a canonical inclusion Ay, — Ay, and (-, 72)p, = (-, T)g|a,, -
Proof. First, we consider the case k = 2. Then
T = A([—z,z],) Xm0 = p|-|* X A([—z,x —1],) X 2.
By Frobenius reciprocity, we have D! ol |$( 7) # 0. Since D |)‘1( ) = 0, by Lemma C=22,

we know that Dr(ak)lz( ) is irreducible. Moreover, we have a nonzero equivariant map
1
D). (7) = A([~z,2 = 1],) % 7.

Since D(Hx(ﬂ') is irreducible, this map must be injective. Using the MVW involution,

we see that D |)|I(7r) is the unique irreducible quotient of A([—(z — 1),x],) X 7. See
e.g., [AGZ, Section 2.7].

Note that when k& = 1, there is nothing to prove. Therefore, the remaining case is
where k > 3. Write k = 20 + k' with &' € {1,2}. Consider 7’ € Il with

Qb/ =¢— (P X SQzH)EBQZ
so that Ay = Ay, and (-, 7')y = (-, m)g[a,,- Then by [Ar3, Theorem 1.5.1] and [MokK,
Theorem 2.5.1], the parabolically induced representation
A([—z,xz],) x -+ X A([—z, z],) X7’

"'

l

is irreducible and is equal to 7. By Tadi¢’s formula (Theorem CT), we see that
DYV (m) = DSV (A2, 2l,) - x A([—z,2],) % 7)

pl-l* pl®
= A([=(z = 1),2 = 1],) x --- x A[=(x = 1),2 — 1],) ¥ D 7 ().
1
This shows the assertions. O

Finally, we give a characterization of (almost) supercuspidal representations. (See
also [Mcd, Theorem 2.5.1].)

Corollary C.4.5. Fiz an irreducible unitary supercuspidal representation p of GL4(E).
Let ¢ be a tempered L-parameter for G, and m € 11,. Then the following are equivalent:
(1) m is p| - |*-reduced for every nonzero real number x # 0;
(2) the following conditions hold:
o [f we denote the multiplicity of p X Sy in ¢ by my(p,d), then my(p,d) <1
whenever d > 2;
o if pX Sy C ¢ withd > 2, then pXR Sy_o C ¢ and

<6<p, d7 1)7 7T>¢ = _<€(,0, d— 27 1)7 7T>¢;

| x
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e if pXISy, C ¢, then

(e(p,2,1),m)y = —1.
Moreover, m is supercuspidal if and only if ¢ is a discrete parameter and the above
conditions hold for any irreducible unitary supercuspidal representation p of GL4(E).

Proof. By Casselman’s criterion (Theorem CTI23), we know that any tempered repre-
sentation 7 is p| - |*-reduced for any = < 0. Then the first equivalence follows from
Theorems C473 and C44.

If 7 is supercuspidal, then 7 is a discrete series representation so that ¢ is discrete.
Conversely, if 7 satisfies the conditions in (2) but not cuspidal, then one can find
an irreducible cuspidal unitary representation p of GL4(E) such that D,(7) # 0. In
particular, 7 < p x my for some irreducible representation my. Then Casselman’s
criterion (Theorem CT3) shows that 7y is also tempered. Hence ¢ contains p @ “p" so
that ¢ is not discrete. O]

Remark C.4.6. Fix an irreducible unitary cuspidal representation p of GL4(E). In
general, for m € Irr(G), the highest p-derivative D***(m) is not necessarily irreducible,
and it is difficult to describe D;ﬂa"(w) completely. However, when 7 is tempered, it is
easy. More strongly, the next claim follows from [Ar3, Proposition 2.4.3] and [MokK,
Proposition 3.4.4].

Let ¢ be the tempered L-parameter of 7 € IrTyen,(G). Then there exists 7" € Irr(G')
such that

T pxn

if and only if ¢ contains p@p". In this case, 7’ is uniquely determined by the conditions
€y with ¢ = ¢ & p P Y, and (-, 7))y = <-,7T>¢|A¢,. In particular, if we write
¢ = ¢o® (p & p”)®* such that ¢g B p & p¥, and if m € Iy, is such that (-, 7o)y, =
(-, 7) g a,,, then m— p** x my and

Dy () = Df()k)(w) =m- T
with m = 2% or m = 1 according to p = p¥ or not.

C.5. Langlands data for certain irreducible representations. In this subsection,
we explain how to compute the Langlands data for certain irreducible representations
of classical groups.

Fix an irreducible conjugate-self-dual cuspidal representation p of GL4(FE). Let 7 be
an irreducible representation of a classical group G, and let Z(m) x 7 be its standard
module. Suppose that D= () # 0 for some x > 0. We take the maximal z with this
condition. Let y > = be the maximal real number with y = x mod Z such that

! max .. max max
m = Dy 00 Dy o Dyt (m)
(ky) (kz+1) (k?z)
— O Y o O
D,,H—y Dp\.|—(x+1> Dp\.rz(”)

with kg, kyt1,...,ky > 1. Note that 7’ is irreducible by Lemma 2. We denote by
Z(m') x 7" the standard module of 7’
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Proposition C.5.1. With the above notations and assumptions, we have k, > k11 >
- > ky. Moreover, T = 1" and

m= m—l—z 2 — kai1)[z, 2,

hold, where kyi1 = 0. Here, > Y__ means the sum over z =z,x +1,...,y.

Proof. By construction, we have an injection
T (pl - ]7) 0 x (pf - [T s (o] - [T e

We claim that k, >k, > --- > k,, and the above injection factors through

(2 <>< (e >) 0

Fix 0 <i <y —x. Suppose that we have proven that k, > --- > k,; and the injection
factors through

x+1
— <>< A(l-2, —w]p)’”““) X (p| - [TEHHEDY s (p] - [T e

with k| = k.1 if 2 < o+, and k,,,., = 0. By [4, Theorem 9.7], A([—z, —x],)
commutes with p| - |~@*+*+ for < z < 2 +i. On the other hand, by the Zelevinsky
dual of [Z, Proposition 4.6], if z = x +1, then A([—(x +1), —z],) X p| |~(@++1) contains
A([=(z+i+1),—x],) as a subrepresentation, which commutes with p|-|~@*++D "and its
quotient is an irreducible subrepresentation of p| - |~@++1) x A([—(z +1), —z],). Hence
if ky1; < kziiy1, then every irreducible subquotient of

T+1
<>< A([—=z, —x]p)kz—k:;ﬂ) % (p| - |—(x+i+1))kz+i+1

is a subrepresentation of an induced representation of the form p| - [~@++1) x 7 for
some irreducible representation 7 of some general linear group. This implies that
D, -@+itn (r) # 0. This contradicts the definition of x. Hence k,y; > k,y;11, and
by the same argument, the injection factors through

r+i+1
= ( X Al _x]p)kz_k;/+l> X (pl - [T b oo (p] - )M e

with k7, = k.1 if 2 <o +i+1, and k], ,,, = 0. By induction, we obtain the claim.

Since D, |-w+n (7') = 0 by definition of y, the inclusion (f) shows that D, ,_./(7") =0
for any 2’ > y. Moreover, if D, - (7") # 0 for some x < 2/ <y, then 2’ = 2 mod Z
and, (f) shows that

‘ | x! (! —1)

(k, ,+1) (kyr_1) (k=)
D (Dpw 0.0 DPH,E(w)) £0.
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This contradicts of the definition of k... Hence D, . (7') = 0 for any 2’ > x. This
means that m’ does not contain segments of the form [2’,y'], for any 2’ > x.
By applying [AG2, Lemma 2.2] to (), we obtain the surjections

(X A([z, z]p)kz_kz“) XZ(m') x 7" — (X A([z, z]p)kz_k”l) X

Z=X Z=T

We see that the left-hand side is a standard module so that it is isomorphic to Z(m) x 7.
Hence 7 = 7" and

Yy
m=m'+ > (k. — kp1)[z, 2],
This completes the proof. 0

As a consequence, we can describe the L-parameter of 7 using the one of 7’ as follows.
This corollary is used in Sections [A-7G.

Corollary C.5.2. We use the same notations and assumptions as above. Let ¢, and
On be the L-parameters of m and 7', respectively. Then

b = 9w & (EB@(! T el ) Sz_x+1>@<kz-kz+l>> .

Z=T

APPENDIX D. THE TEMPERED L-PACKET CONJECTURE AND ARTHUR’S LEMMA
2.5.5

In this appendix, we prove two results whose statements appear unrelated, but whose
proofs follow from the same argument.

The first statement is that Arthur’s construction of tempered L-packets satisfies the
strong form of Shahidi’s tempered packet conjecture (Corollary D13). This conjecture
was initially formulated as [ShaZ, Conjecture 9.4] and stipulated that every tempered
L-packet should contain a generic representation. It was later strengthened to include
the statement that, for an arbitrarily fixed Whittaker datum to, every tempered L-
packet should contain exactly one to-generic member. For classical groups, this was
proven by Konno [KonT] and Varma [V2] assuming the twisted endoscopic transfer to
GLy, which is the basis of the constructions of [Ar3] and [Mok]. A further strength-
ening of the conjecture would require that the tv-generic member is matched with the
trivial character of the centralizer component group S,. It is this version that we for-
mulate here (Conjecture D13) and prove for classical groups, thus providing a mild
strengthening of the result of Konno and Varma for classical groups. We hasten to note
that our proof does not replace those of Konno and Varma, but rather it uses them
crucially. In fact, we prove a result (Theorem DT3) that is valid for general reductive
groups and infers the validity of this conjecture from its validity for endoscopic groups.
This result is a strengthening of [Sha7, Proposition 9.6] and the proof follows from a
similar outline, with a few additional arguments, and a key input from the work of
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Kottwitz [Kof2]. When combined with the results of Konno and Varma, this relative
result delivers Conjecture D123 for classical groups.

The second statement (Theorem D=27T) is of a more technical nature. It infers the
local intertwining relation from an a priori weaker statement. It was formulated for
symplectic and orthogonal groups as [Ar3, Lemma 2.5.5], whose proof was deferred
to [A27]. We formulate and prove it here for arbitrary connected reductive groups,
subject to assuming basic expected properties of tempered L-packets that are known
in the setting of classical groups.

Arthur suggested in [Ar3] that Theorem D21 can be shown by applying results of
Konno [KonT] concerning the behavior of local character expansions under the (twisted)
endoscopic transfer. We largely follows his suggestion in the proofs below. However,
it is also clear that the results of Konno needed to be refined and made more precise
before they can be applied. Thankfully, in the intervening years, Varma has provided
in [V2] such a refined result, and this is the main ingredient in our proof below. It
reduces the proof to an identity between Weil indices and e-factors, which follows at

verified by hand. Thanks to [V1], we can also remove the assumption in [Ar3, Lemma
2.5.5] that the residual characteristic of F' is odd.

We first employ this argument to obtain a proof of Theorem D T2. The flow is as in
[Sha®, Proposition 9.6], and is in some sense opposite to that of [V2]. Then we employ
a similar argument, in a slightly more abbreviated form, to obtain Theorem DT

Remark D.0.1. While the proofs of Theorems DT and D21 use the same argu-
ment, the statements have different assumptions. The main assumption for Theorem
DT is that (ECR2) holds with respect to any endoscopic group, and Corollary D13
assumes in addition that (ECRI) holds. Thus, in the setting of Arthur’s argument,
Theorem DT and Corollary D123 become available after the inductive argument has
been completed for the group of interest. On the other hand, the main assumption in
Theorem DX is that a weakened form of the local intertwining relation holds. This
assumption replaces (ECRZ). The reason is that Theorem D21 will be used in the
middle of the inductive proof, where (ECRZ2) is not yet available. In addition, the va-
lidity of Corollary D173 is assumed for groups of lower rank. In the setting of Arthur’s
argument, this is part of the inductive assumption.

D.1. Shahidi’s tempered packet conjecture for quasi-split classical groups.
Let F be alocal field of characteristic zero and let G’ be a quasi-split connected reductive
F-group. Fix a Whittaker datum tw for G. Let ¢ be a tempered L-parameter for
G. We assume that the corresponding L-packet II, and its pairing with S, have been
constructed, giving an injective map from Il to the set of irreducible representations of
S,; we use the notation (s, ), for the trace at s of the representation of Sy associated
to m. Note that the pairing (-,7), depends on w. Then Shahidi’s strong tempered
packet conjecture is the following statement, a strengthening of [Sha7, Conjecture 9.4].
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Conjecture D.1.1. Fiz a Whittaker datum vo for G. The L-packet 11, contains exactly
one t-generic member Ty, and it satisfies (-, Typ)p = 1.

This conjecture is known for archimedean base fields due to the work of Shelstad in

[Shell], see also [AK]. We may therefore concentrate on a non-archimedean base field
F.

Theorem D.1.2. Assume |Il;| > 1 and that, for any factorization ¢' of ¢ through a
proper endoscopic group, the character identity (ECRZ2) holds and Conjecture D11
holds for I1y. Then Conjecture D11 holds for 1.

We will show Theorem DT in Section D=3 below. For now, we extract the following
result in the setting of classical groups.

Corollary D.1.3. Let G be a quasi-split connected classical group. Assume that the
local results (ECR) and (ECR2) of [Ar3] and [MoK] are known for the parameter ¢
and for its factorizations through endoscopic groups. Then Conjecture D11 holds for
I1,.

Proof. As already remarked, the archimedean case is known by the work of Shelstad,
so we focus on non-archimedean F'. We induct on the size of L-packets.

Assume first that II, is a singleton {w}. Then Sy is the trivial group, so trivially
(-,m)¢ = 1 and it remains to show that 7 is to-generic. Let 7, be the representation of
GLy(FE) with parameter ¢, seen as a parameter for GLy(E) via the standard represen-
tation of “G. Then 74 is tempered, hence generic. Using (ECRT), the claim follows
from [Konl] and [V2].

Assume next that II, is not a singleton. Then Sy # {1}. For any s € Sy \ Z(G),
the pair (s, ¢) leads to a proper endoscopic datum G’ and a parameter ¢’ for G'. The
L-packet I1y has strictly smaller size than Ily, so Conjecture DT holds for I, by the
induction hypothesis. Thus Conjecture D11 holds for II, by Theorem DT 0

D.2. A weakening of the local intertwining relation. Let F' be a non-archimedean
local field of characteristic zero and let G be a quasi-split connected reductive F-group
equipped with a Whittaker datum tv. Let P = M N be a proper parabolic subgroup
of G and let ¢); be a tempered L-parameter for M. We assume the existence of
an associated L-packet Il4,,. Let ¢ be the parameter for G' obtained by composing

¢ with the natural inclusion “M — LG. Recall that N, = N(A, G) N S, and
¢ M ¢

Ny, = mo(Ny/Z (G)). We now recall some material from Section I_T0 in this more
general setting. For f € C°(G(F)) and u € My, define the distribution

fe faleu) = D te({u, Far) Rp(wa, Tar, dar) Ip(mas, f)),

ﬂ']uEH(pM
W TN TN

where w, is the Weyl element given by u which preserves M, and we are using a
representation 7, of the disconnected group

M(F) % (wu)
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that extends 7y, and the associated pairing (u, 7)), noting that the product

(u, Tar) Rp(Wy, Tar, dar)

is independent of the choice 7y, extending 7.
Let s € S, be the image of u. From the pair (s, ¢), we obtain an endoscopic datum
(G',s,n) and a parameter ¢’ for G'. We define a second distribution

[ [6(9,5) = Trans(SOy)(f) = SO ('),
where

S@¢/ = Z <]_,’7T/>¢/@7r/
'€l 4
is the stable character of ¢/, and f' € C*(G'(F')) is a Afw]-transfer of f, i.e. the two
functions f and f’ have matching orbital integrals with respect to the transfer factor
A[w] normalized with respect to the Whittaker datum to.
We now state the assumptions under which our result holds. The main assumption
is that there exists a constant e(s, u) such that

fé(¢a 8) - e(s,u)fg(¢, u)

The supplementary assumptions concern expected properties of L-packets, as follows.
We assume that Conjecture D11 holds for the parameter ¢,, as well as for the endo-
scopic factorizations ¢’ of ¢. In the setting of classical groups, this follows from Corollary
[DT3. Thus, we know that there is a unique tw,;-generic member m;, € Ily,, and it
satisfies (-, Taprw)e,, = 1. Let I be the set consisting of the irreducible constituents of
the representations Ip(mys), as my runs over Il;,,. According to the heredity property
([Rod], [CS, Corollary 1.7]), there is a unique w-generic member m, of II, and it lies
in Ip(mpw). Then the action of the operator (u, Ty w)Rp (W, Tarw, ¢ar) o0 Ip(Tarw)
must preserve m,, and hence acts on it by a scalar. We assume that this scalar is 1.
For classical groups, this follows from Theorem I8 (1) together with Lemma B3

Theorem D.2.1. Under the above assumptions, we have
e(s,u) = 1.
In other words, Fquation (A=LIRI) in Section TID holds.
We will prove Theorem D271 in Section D4 below.

Remark D.2.2. Since we are also interested in the case of the orthogonal group
G = Og,, which is disconnected, we will make the following slight modification in
this situation. We will take f € C*(G°(F)), and u € M, will also be taken with
respect to G°. The distribution fg(¢,u) and the stable character SO will be defined

as

ﬁ Z tr((u, Tar) Re(Wa, Tars oar) I (s, f))

€y,
Wy TN T
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and
1

@a 2 Lmeon,

7T/€H¢/

SO, =

respectively. Note that, when G is connected, these formulas recover the previous
formulas. Then the modifications for the case of G = O, follows by applying the
following argument to G° = SOs,. See Remark I6G2. In the following proof, we will
continue working with a connected reductive group G.

D.3. Proof of Theorem ID.T.2. For 7 € Ily, let

1 if 7 is to-generic,
e(m, ) = 0  otherwise.

We claim that it is enough to show the following statement: For any s € S, with s # 1,
we have

(t) > e(mw)(s,m)y = 1.

7T€H¢
Indeed, assume that we have shown this statement. Let
X ={rell,|c(mw)=1} C Il

and consider the conjugation-invariant function f on Sy defined by

I(s)= 3 clm, ) (s, m)e.

TI'GH¢

Equation (fi) and the assumption |Sy| > 1 implies f # 0, hence X # 0, and f(1) is a
natural number greater than 0 (if S, is abelian, then f(1) = |X]|). The scalar product
of f with the trivial character of S, is non-trivial, hence X contains the representation
w1 with (-, 71)s = 1. Thus, 7 is w-generic. Let X' = X\ {m} and let f' = f— (-, m1)4.
Then f1(s) = 0 for all s # 1. On the one hand, since f is a multiplicity free sum of
irreducible characters of S, the construction of f* implies that the scalar product of
f* and the trivial character of Sy is equal to zero, while on the other hand, this scalar
product is equal to f1(1) by evaluation. Thus f!(1) = 0 and we conclude f! = 0, hence
X! ={. Therefore X = {m}.

This reduces the proof of Theorem T2 to the proof of Equation (f). To prove it,
let 1 # s € S, and let G’ and ¢ be the corresponding endoscopic datum and factored
parameter, respectively. Consider the distributions

f e fole,s) = Trans(SO4)(f), SOy = Y (1,7)yOn

and

fa(d,s) = Y (5,m)6Ox(f),

7TEH¢
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both linear forms on C°(G(F)). According to (ECRZ2) we have
fG(¢7 S) = f,G’(¢a 8)'

For each 7 € Ily, we have the Harish-Chandra local character expansion

O:(f) =D _ el Ofio(f o exp)
o
for all f € C°(G(F)) with support close to the identity, where O runs over the set
of nilpotent orbits in g(F) = Lie(G)(F). To form the Fourier transform fip, we have
chosen arbitrarily a non-degenerate G(F')-invariant symmetric bilinear form 5 on g(F’)
and a non-trivial unitary character ¢p: FF — C*. Note that the measures on G(F')
(used to define ©,) and on O (used to define pp) also depend on the choice of 3, as in
[MWI, Section 1.8].
Putting these together we obtain

fa(ds)= > 87T¢>Z O)io(f o exp).
W€H¢
In the same way, we obtain
fe(@:5) = > (L)y Y o', Oior(f' o exp),
7T/€H¢/ (04

where now O’ runs over the set of nilpotent orbits in g'(F). We have used another
non-degenerate G'(F')-invariant symmetric bilinear form g’ on ¢'(F'), at the moment
unrelated to .

Thus (ECR2) implies that, in a neighborhood of the identity,

Trans Z (1,W’>¢/Zc(7r'70')ﬁo/ = Z S, ¢Z O)fio,

/el o mell,

and using the homogeneity of nilpotent orbital integrals, we obtain from this

Trans | > (L)y Y @, Ojio | =D (s,m)e Y cm,O)fio,

' €l y O':regular welly O:regular

see [Sha®, pp. 325-326].

We now use a result of Mceglin-Waldspurger [MW1)] and its extension to the dyadic
case by Varma [V1]. There exists a certain regular nilpotent orbit Oy, g, depending
on the Whittaker datum tvo, the form 3, and the character ¥ g, such that
1 if 7 is t-generic,

(7, Oy pro) = {0

We will specify the orbit Oy, g more precisely below. For now, we note that we
can apply this to both sides of the above identity. On the left-hand side, we use the
uniqueness of w’-generic constituent in I, for each Whittaker datum w’ on G, the

otherwise.
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fact that (1,7)y =1 for suCh a Constituent (which is the assumption that Conjecture

regular nilpotent orbit O’ is equal to OwF”g/,m/ for some ch01ce of ', to conclude that
Z <1’ 7T/>¢’ Z C(ﬂ-/’ O/)ZZO’ = Z ﬁO"
/€l 4 O’:regular O’:regular

Therefore, our identity becomes

Trans( Z ﬁ0/> = Z<5777>¢ Z c(m, O)lio.

O’:regular melly O:regular

According to [LSH, Corollary 5.5.B], we have

Trans < Z M0/> = Z Alw](O)po,
O’:regular O:regular

where the transfer factor A[w](O) is defined at the end of [LSH, (5.1)], in which it was

denoted by A(u), with u a regular unipotent element in G(F'). We are using here the

bijection between regular unipotent orbits in G(F') and regular nilpotent orbits in g(F’).
Since the endoscopic transfer commutes with the Fourier transform up to an explicit

scalar by [WI, p. 91, Conjecture 1] (which is a theorem due to [W2], [W3], [CHL], [N]),

we obtain

- Y(9(F), B, ¢r)
Trans Lo | = Al
(O"%lar ) ( B/ wF OI%I&I‘

where v(g(F), 8,¢r) and ~(g'(F),8',¢¥r) are the corresponding Weil indices. This
identity requires the forms 5 and 3’ to be synchronized, as explained in [W1l, Section
VIIL6], and as we now recall. Extending scalars from F to F identifies the space of
non-degenerate symmetric bilinear forms on g(F) that are invariant under G(F') with
the space of non-degenerate symmetric bilinear forms on g(F) that are invariant under
G(F)and I' = Gal(F/F). If T C G is an arbitrary maximal torus, then the restriction
to its Lie algebra t(F) identifies the latter space with the space of non-degenerate
symmetric bilinear forms on t(F) that are invariant under the absolute Weyl group and
I'. Note that, if 7" C G is a second maximal torus, then the spaces for t and t' are
canonically identified, namely by Ad(g) for any g € G(F) that conjugates T to 1". In
this way, taking a maximal torus of G’ and transferring it to G, we can transfer 3 to
g'(F'), and we take ' to be that transfer.

With this proviso, our identity becomes

<(< >§f@1 Y AW[(O)io= Y (s,m)s Y emOio

O:regular melly O:regular

By [HO, Theorem 5.11], we can separate terms. Comparing coefficients for the orbit
Oy B o and applying the results of Mceglin—-Waldspurger and Varma recalled above,
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this identity turns

g (F), B, ¢r)

[m](OwF,ﬂ,m) = Z C(7T,t'0)<8,71’>¢.

TI'GH¢

Our goal is to show that the left-hand side of this expression equals 1. As a first step,
we will rewrite this left-hand side in a way that does not involve the form S and the
Whittaker datum . For this, let S’ C G’ be a maximal torus defined over F' and let
S C G be its transfer. Decompose g = s @ t, where v is the direct sum of the root

is a canonical quadratic form ) on v defined as the orthogonal sum of quadratic forms
(Q+o on each g, ® g_, given by

[Yom Y—a] = Q:I:a(Ya + Y—a) : Hom

where H, is the coroot for a. We can thus form the Weil index v (¢(F'), Q, ¥ r). Note
however that this form does not always extend to a non-degenerate G(F)-invariant
quadratic form on g(F'), see [Kot2, Section 1.5].

We have the analogous decomposition g’ = s’ @t/ and the analogous quadratic form
Q)" on v/, hence also the Weil index v(¢/(F),Q’,1r). Finally, we have the maximally
split maximal tori (equivalently, minimal Levi subgroups) 7' C G and 7" C G’ defined
over F'. Note that such tori exist since GG is assumed to be quasi-split over F.

Lemma D.3.1. The identity

7(9(F>7B:wF> A V(t(F)anwF)
(g (F), B ¢F) V(' (F), Q' ¥r)

holds for any choices of character ¥g, Whittaker datum v, and non-degenerate G(F')-
invariant symmetric bilinear form (B, where 5 is the transfer of B to ¢'(F') according to
W, Section VIIL.6]. In particular, the left-hand side is independent of the choices of
t and (. Furthermore, both sides are independent of the choice of Y.

[m](OT/JF,ﬁ,m) = 5(1/2>X*(T)(C - X*<T,)(C77/JF)

Proof. Following the definition of A[](Oy, sw) given at the end of [LSH, (5.1)], we
have

Alwl|(m 157, .
A[m] (O%ZJF,BJU) = A[SLliEY(C%GZ(%)CJ) <1nvspl’(O¢Fﬂ,m)= S>’
where spl’ is an arbitrarily chosen splitting of G and spl’_ is its opposite splitting; the
left-hand side is independent of this choice, as well as of the choice of related elements
Ve and 7.

We will choose spl’ in such a way that NV gpp (Oyppw) = 1. To see what this entails,
we review the definition of Oy, s given in [MWI] and [V1)]. Choose a splitting spl =
(B,T,{X,}) that, together with 1, induces w in the sense of [KaSh1, Section 5.3]. Let
U be the unipotent radical of B and let U be the unipotent radical of the T-opposite
Borel subgroup to B. We write u and u for the Lie algebras of U and U, respectively.
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Then Oy, g is the G(F)-orbit of a regular nilpotent element Yy, s, € Uu(F) whose
property is that the character

X = Yr(B(X, Yyp )

of u(F') equals the composition of the exponential map exp: u(F) — U(F) and the
generic character U(F) — C* that makes up the Whittaker datum . One can check
that Yy, gw is given by

YwFﬁ,m = Z 5(Xaa X,a)_lX,o“

where X_, € g, is determined by [ Xo, X o] = H,. Thus, if we take spl’ to be
(B, T,{8(Xa, X_0) "' X_4}), then inv py (Oy, gw) = 1. Hence we have

Alw](Ver, V)
Alspll |(Va V)

for this particular choice of spl’. On the other hand, by the definition of the Whittaker
normalization [KoShll, Section 5.3], [KaSh2],

Al] (Ve V) = €(1/2, X*(T)c — X*(T")c, vr) - Alspl] (Ve Var)-

Thus we need to compute the ratio between A[spl](Fo, 7o) and Alspl |(Ver, Ve )-
Both of these being transfer factors, this ratio does not depend on the elements 7, and
e, as long as they are related (otherwise both factors are zero). So we choose arbitrarily
a pair of related strongly regular semisimple elements 7. € S’(F) and 7, € S(F). Note
that this choice determines an admissible isomorphism S’ = S, namely the unique one
that maps 7. to 74, and hence determines an inclusion of the absolute root systems
R(S",G") = R(S, Q).

The only term of the transfer factor that depends on the splitting is the term Ap,
where the splitting enters the definition of the splitting invariant. We have the relation
spll, = b- spl, where b, = 3(X,,X_,) for all « € R(T,G). Then [Kall, Lemma 5.1]
shows that rescaling the splitting has the same effect as rescaling the a-data, which
also enters the definition of the splitting invariant. On the other hand, [LSH, Lemma
3.2.C] shows how the transfer factor changes when the a-data is rescaled. With this,
we obtain

Afw](Oyy p) = €(1/2, X (T)ec — X*(T")c, ¥r) 11 Ko (Do),
a€R(S,G /G )aym/T

where R(S,G/G") is a short-hand notation for R(S,G)\ R(S’, G’), the subscript “sym”
indicates those roots that are symmetric, i.e. those a with —a € I' - a, and &k, is the
sign character of the quadratic extension F/FL,.

Using that the decompositions g’ = §' @t/ and g = s @ v are orthogonal for 5" and
B, respectively, we see that the Weil indices decompose accordingly as products, and

Al0}(Oyp o) =
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since f|s = '|¢ by the synchronization of 5 and /', the left-hand side of the equation
in the statement of the lemma becomes

AEF)BYR) o ey o b
’Y(t/(F)7 ﬁ/7 wF)€(1/27 ( )C ( )C? wF) aeR(&G/l_g)sym/F 'Lia( a)-

According to [Kal2, Lemma 4.8] and the fact that Q(X, + X_,) = 1, we have

V(¢ (F), Q, ¢r)

The analogous identity holds with (G, S) replaced by (G’,S’). This proves the identity
claimed in the lemma. The independence of the left-hand side of the choices of 5 and
to follows from that identity. To see the independence of both sides of the choice of
Yp, note that any other choice of character is of the form (ayr)(z) = ¥r(azx) for some
a € F*, but one sees directly from the definitions that replacing ¢ and 3 by ayr and
a~t- 8 does not change the Weil indices or the orbit Oy, . See Section D3 below for
the definition of the Weil indices. 0

V(e(F), B, ¢r) [T #alba)

OéER(S,G)sym/F

To complete the proof of Theorem DT, we need to show that the right-hand side
of the identity of Lemma D=3 equals to one. This is accomplished by the following
lemma.

Lemma D.3.2. Let S’ C G’ be any maximal torus defined over F' and let S C G be
its transfer. Decompose the Lie algebras g = st and ¢ = s & /. Let Q (resp. Q')

be the canonical quadratic form on v (resp. v') described before the statement of Lemma
[IFA. LetT' C G' and T C G be minimal Levi subgroups defined over F'. Then

7(t<F)7 Q? wF)
”y(t’(F), Q/’ wF)

c(1/2, X*(Te — X*(T")e, ¥r) = 1.

Y(e(F), Q,¢vr) = e(1/2, X*(S)c — X*(T)c, ¥r).

Applying this result once to G' and the torus S, and once to G’ and the torus S’, and
using that X*(S) =2 X*(5’) as [-modules, we obtain the desired result. O

We obtain Equation (fi), and hence complete the proof of Theorem DT

Remark D.3.3. In the case of classical groups, one can also compute the left-hand
side in Lemma D=3 explicitly and check that it equals 1. See Section D3 below.

D.4. Proof of Theorem D21, The argument is very close to that of the proof of
Theorem DTA. Since Theorem D21 is an important part of the argument of [Ar3], we
will still present all steps of the proof, but we will be more brief with the justifications,
which are the same as in the previous proof.
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We consider the same distribution f/ (¢, s) as in that proof, but replace the distribu-
tion fg(¢,s) by the distribution fg(¢,u) from the statement of Theorem D=271. This
distribution can be expanded as

folow) = 3 emO(f),

7T€H¢

where ¢(7) is defined as follows. Let m ® M, be the maximal m-isotypic constituent of
Ip(my). By Schur’s lemma (u, Tps) Rp(w., Tar, ¢ar) induces an operator on the finite-
dimensional C-vector space M, and () is the trace of that operator. Our assumptions
imply that M, is 1-dimensional and ¢(my,) = 1.

Instead of (ECRZ) in Theorem DT, we now use the assumed identity

fe(9,s) = e(s,u) fa (@, u).

Expanding both sides using the Harish-Chandra local character expansion and using
the homogeneity of nilpotent orbital integrals, we arrive at the identity

Trans Z(l,ﬂ'/>¢/ Z c(7', ONiior :e(s,u)Zc(w) Z c(m, O)lio.

' €y O’:regular melly O:regular

Here we have again fixed a non-trivial character ¥p: F' — C* and a non-degenerate
G(F)-invariant symmetric bilinear form 8 on g(F'), which we have transferred to a form
p' on g'(F'), and have used these to form the Fourier transforms. We consider again
the nilpotent G(F')-orbit Oy, g in g(F), which according to the results of Mceglin—
Waldspurger and Varma has the property

1 if m=my,

(7, Oupam) = {

Using the assumed validity of Conjecture T for G’, which gives the uniqueness
of w’-generic constituent in Il for each Whittaker datum to’ on G’ and the fact that
(1,7") s = 1 for such a constituent, and using further the fact that each regular nilpotent
orbit O is equal to Oy, g for some choice of w’, we conclude that

YLy Y e, Nior =, o

' elly O’:regular O’:regular

otherwise.

Therefore, our identity becomes

Trans( Z ﬁ0/> = e(s,u) Z c(m) Z c(m, O)lio

O’:regular melly O:regular

Applying [LSH, Corollary 5.5.B], [W1, p. 91, Conjecture 1], [W2], [W3], [CHL], [N], we

have
- V(a(F), B,¢r)
Trans( E ,uo/> = S W(b).5, J; g Al

O’:regular O:regular
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We separate terms using [HO, Theorem 5.11] and comparing coefficients for the orbit
Oy B, We arrive at

_ (g(F), B, ¢r)
e(s,u) - ’Y(QI(F),6,,¢F)A[m}<O¢F7B’m>‘

By Lemmas D=3 and D=3, the right-hand side is equal to 1. This completes the proof
of Theorem D211

D.5. An explicit computation of Weil indices and e-factors. The proofs of The-
orems DT and DT rely on the key Lemma D=32. We gave a proof of this lemma
for general reductive groups using the work of Kottwitz [Kot2]. For classical groups,
this lemma can also be verified by an explicit computation, which we shall give here.

For explicit computation, the left-hand side of Lemma D=3 is inconvenient, because
it stipulates that one has to work with a maximal torus of G that transfers to G’, while
the computation of the Weil index is most convenient when one uses as a maximal torus
a minimal Levi subgroup of G. So we return to the left-hand side of Lemma [D=371. As
shown there, the left-hand side is independent of the choices of the character ¢, the
Whittaker datum ), and the form 5 (recalled that 5’ is the transfer of ). We are thus
free to choose these objects in a convenient way. We first choose a character ¥» and an
F-splitting spl = (B,T,{X,}) and then take the Whittaker datum w determined by
spl and ¢ as in [KaShT, Section 5.3]. We have the G/(F)-orbit Oy, g of the regular
nilpotent element

Yipsw = B(Xa, X a) ' X 0.

It may be a priori different from the G(F)-orbit O of the regular nilpotent element
Yeo=» X

that is “associated” to the splitting spl,, = (B,T,{X_.}) opposite to spl. In our
computations, we will show that § can be chosen such that

(i) pr,ﬁ,m - OOO

This identity implies that invgy,_ (Oy,gw) = 1. We can then apply the computation of
Aw](Oy, sw) given in the proof of Lemma D231 but with spl’ = spl. and obtain

Al m) = Ao e = £(1/2.X° (D) = X (T ),

thereby reducing the desired identity to

V(g(F), B8, ¢r)  e(1/2, X*(T)c, ¢r)

V(g (F), 8 ¢r) e(1/2, X*(T")c, ¥r)
for those particular choices of ¥,  and spl. We will show this identity for classical
groups by explicitly computing all terms.

=1
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First, we compute the relevant Weil indices. To recall the definition and properties
of Weil indices, we introduce some notation. Let V' be a finite dimensional vector space
over F' equipped with a non-degenerate symmetric bilinear form . Following [W1I,
Section VIII.1], we put

YV, B, ¢r) = % with [ = /L1/’F (5@2, ZE)) iz,

where L is a sufficiently large lattice of V and dx is a Haar measure on V. Note that
v(V,B,¢r) does not depend on the choices of L and dz. When Q(z) = 38(z,z) is
the associated quadratic form, we also write y(V,Q,¢vr) = v(V,5,¢p). ItV = F
and S(z,y) = 2azy for some a € F*, then we have y(V, 5,vr) = vy(ar) with the
convention in [Rad, Appendix]. Here air is the non-trivial additive character of F'

given by app(x) = ¢p(ax). Note that v(¢vp)y(—1r) = 1 and

7(¥rF)

Yty ~ )
(see [Kahl], [SZ]). Here 7, is the (possibly trivial) quadratic character of F* given
by n.(x) = (a,x)r, where (-,-)r is the quadratic Hilbert symbol of F, so that 7, is
associated to F'(y/a)/F by the local class field theory. One can prove that if (V, ) is a
direct sum of (Vp, Bp) and the hyperbolic plane H, then ~(V, 8, v r) = v(Vo, Bo, ).

Recall that U is the unipotent radical of the Borel subgroup B = TU, and u is its Lie

algebra. Since G is quasi-split, u & u is an orthogonal direct sum of hyperbolic planes
and hence

V(Q(F)vﬁﬂbF) :V(t(F%ﬁawF)'

Now we take the splitting spl given in Section BA=3 and compute (g(F), 3, ¢¥r)
explicitly.
The case of symplectic groups: Suppose that G(F') = Sp,,(F), so that

t(F) = {diag(Xl,...,Xn,—Xn,...,—Xl)\Xl,...,Xn € F}
Take the non-degenerate G(F)-invariant symmetric bilinear form S on g(F)
given by S(X,Y) = tr(XY). Noting that X_,, = FEi11; — Eopt1-i2n— for
1<i<n-—1and X_,, = E,1,, we have

YwF,,B,m = 271(X7041 +ee Xfozn—l) + Xfan = Ad(to) (Z Xai) € O,
=1

where
to = diag(2"7, 2772, ... 1,1,...,27""2 27" € T(F).
Hence 3 satisfies the condition (ff). Since
BX,Y)=2(XY1+ -+ X,.Y,)
for X,Y € t(F), we have
Y(g(F), B,vr) =v(¥r)".
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The case of odd special orthogonal groups: Suppose that G(F') = SOq,11(F),
so that

t(F) :{dlag(Xl,,Xn,O,—Xn,,—Xl)\Xl,,Xn GF}

Take the non-degenerate G(F)-invariant symmetric bilinear form S on g(F)
given by S(X,Y) = tr(XY). Noting that X_,, = Eiy1; — Eopyo—iont1-i for
1<i<n-—1land X_,, =2(Epi1n — Eniont1), we have

YwF,ﬂJU - 2_1(X—0f1 Tt X— ) +27 2X—a = Ad to (Z X_al> 007

where
ty = diag(2", 2", ..., 2%,1,272,...,27", 27" ) e T(F).
Hence ( satisfies the condition (ff). Since
BX,)Y)=2(X1Y1+ -+ X,)Y,)
for X, Y € t(F), we have
Y(9(F), B, ¢r) = v(¢r)".

The case of even special orthogonal groups: Suppose that G(F') = SO, (F),
so that t(F') is equal to

{diag(Xl,...,Xn,—Xn,...,—Xl)|X1,...,Xn S F} lfn: 1,
{diag(Xl, . 7Xn7 _Xn7 cee _Xl) ’Xl, c. ,Xn,1 € F, Xn S Ko} Otherwise,

where K is the quadratic extension of F' associated to n by the local class field
theory and K is the set of trace zero elements in K. Take the non-degenerate
G(F)-invariant symmetric bilinear form § on g(F) given by f(X,Y) = tr(XY).
NOtng that X_al. = i+1,i E2n+1—i,2n—i for 1 S 1 S n — 1 and X—an =
En—i—l,n—l - En+2,n7 we have

YIZJF,B,m = 271(X7a1 ++ X Ad to (ZX 0‘1) Oco,

where
to = diag(2", 2772, ... 1,1,...,27""2 27" € T(F).
Hence 3 satisfies the condition (ff). Since
AXY) = {;Ei;{i i XX i i:ibl)/n_l) + trg/p(XnYn) ftzerwlis’e
for X, Y € t(F), we have

7(9(F)7 67 ¢F> - 7(¢F>n_17(a¢F)7
where we write n = 7, with a € F* so that K = F(y/a). Note that Ky = F'\/a.
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The case of unitary groups: Suppose that G(F) = U, so that
(F {diag(X1,..., Xp, =Xy, ..., —X1) | X1,..., X, € E},
C {diag(X1, ..o, Xpi1, —Xrs oo, —X1) | X1, .., X, € E, X,11 € Ep}

according to n = 2r or n = 2r 4+ 1, where Ej is the set of trace zero ele-
ments in F. Write E = F(y/a) with a € F* and put n = n,. Take the
non-degenerate G(F')-invariant symmetric bilinear form § on g(F') given by
B(X,Y) = strg/p(tr(XY)). Noting that X_,, = E;1; for 1 <i<n—1 and
that

WXy +F U1 Xe, , EWF) <= Ui=u,; (1<i<n-—1)

for uy,...,u,—1 € E/, we have
n—1
Yyr g = ZX—% € Oc.
i=1

Hence 3 satisfies the condition (ff). Since
BOX.Y) = {trE/F(X1Y1 +-+ X)) if n = 2r,
’ trg/p(X1Ya+ -+ XY+ (1/2) X1 Y40) ifn=2r+1
for X, Y € t(F), we have
V(r)y(adrp)" if n = 2r,
1Wr) (ap) v ((a/2)Pr)  ifn=2r+1.

The computation of the Weil indices for the various classical groups is now complete.
We turn to the proof of the equation

Y(g(F), B, Yr) ) e(1/2, X*(T)c, ¢r)

(a(F), B, vr) = {

V@ F),Boor) (/2 X (T br)
Recall that G'(F) is of the form
Span, (F7) x SO3,,, (F) if G(F) = p2n( ),
G(F) = SO2n,41(F) X SOsnp11(F)  if G(F) = SOsn 11 (F),
503, (F) x SOZ, (F) if G(F) = Ogn< ),
U, x Uy, it G(F) =

with ny + ny = n and mne = 1 (see e.g., [WH, Section 1.8]). Recall also that 3 is
the transfer of § to ¢'(F') according to [WI, Section VIIL.6]. Explicitly, if we write
G'(F) = G1(F) x Gy(F), then we have

B =1 @ Po,

where f3; is the bilinear form on g;(F') as above.
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The case of symplectic groups: Suppose that G(F') = Sp,, (F) and G'(F) =
SPay, (F) x SO3,,, (F') with 1 = n,. Then we have

Y(@(F), B, ¢r) =vWp)", (g (F),B vr) =vWr)" y(ap)
and
e(1/2, X" (T)c,vr) =1, e(1/2, X (T')c,¥r) = €(1/2, 10, ¥r).

Hence

Vg(F), B, ¢r)  e(1/2, X (T)e,br) _ v(¥r) 1
Y@ (F), B vp) e(1/2,X*(T")c,r)  ~(avp) e(1/2,104,¢F)

The case of odd special orthogonal groups: Suppose that G(F') = SOg,,41(F)
and G'(F') = SOqg, +1(F) X SOgp,+1(F). Then we have

Y(@(F), B.¢p) = y(@(F), 8, ¢r) = 7(r)"

=1

and
e(1/2, X" (T)e, vr) = e(1/2, X" (T")c, ¥r) = 1.
Hence
V(g(F), B, ¢r) _ £(1/2, X*(T)c, ¢r)
V(QI(F)a g, wF) 5(1/27 X*<T/)C7 ¢F>
The case of even special orthogonal groups: Suppose that G(F) = SO3, (F)
and G'(F) = SO3. (F) x SO22 (F) with n =7, and 7; = 1,,. Then we have

2n1 2ng

Y(g(F), B, vr) = ’Y(?ﬁF)nfl’Y(m/fF)a (o' (F), B r) = 'y(zﬁp)”’%(alzﬂp)’y(aﬂ/}p)

and

=1.

e(1/2, X*(T)c,r) = €(1/2,n,%¢r),
e(1/2, X*(T')c,¥r) = e(1/2,m, ¥r)e(1/2, 12, Yr).
Hence
V(g(F), B, ¢r) _ e(1/2, X*(T)c, ¥r)
(o' (F), B ¢r) e(1/2, X*(T")c, ¥F)
_ V(¥r)y(athr) ) e(1/2,m,¢r) —1
Y(arr)y(agr) (1/2,m,9r)e(1/2,02,9r)

The case of odd unitary groups: Suppose that G(F') = U,, and G'(F') = U,,, X
U,, with n = 2r + 1. Then we have

Y(9(F), B, vr) =v(g'(F), 8, vr) = v(¥p) v(abp) y((a/2)Yr)

and

e(1/2, X*(T)c, vr) = e(1/2, X*(T')c,br) = (1/2,m,p)" .
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Hence
7(9<F)7 Ba 77Z)F) . 5(1/2’X*(T)(C7 wF)
y(gl(F)aﬁlawF) 6(1/27X*(T/)C7¢F>
The case of even unitary groups: Suppose that G(F) = U, and G'(F) =
U, X Uy, with n = 2r. If n; and ny are even, then we have

Y(9(F), B,¢r) =v(g'(F), 8, r) = y(br) y(abr)"

=1.

and

5(1/27 X*(T)(C7 wF) = 5(1/27 X*(T/)(Ca wF) = 5(1/27 m, wFY'
Hence
(g(F), B, 9r)  e(1/2, X*(T)c, ¢r)
V(g (F). 8, ¢r) e(1/2,X*(T")c, ¢r)
If ny and ny are odd, then we have
Vo(F), B,¢r) = v(Wr) y(ar)', (g (F), B ¢¥r) = y(0r)  v(ar) " y((a/2)1r)?

and

e(1/2, X" (T)e,vor) = e(1/2,0,9r)",  €(1/2, X*(T)e, ¥r) = e(1/2,m,¢p)""".
Hence
Y(9(F), B,v%F) ) e(1/2, X*(T)c, ¢r) _ Y(Yr)y(ar) ) 1
(o' (F)3,¢r) e(1/2,X*(T")c, ¥F) a Y((a/2)¥r)?  e(1/2,n,%r)
(/2,02 %0)* Mapa(=1)
Coe(1/2myr)? (1)
_(a/2,-1)p
- (a,—1)p
Here, we use the fact that (z,1 —z)r =1 for z # 0, 1.
This completes the proof of Lemma D=3 for classical groups by explicit computation.

=1.

=(2,-1)p=1.

APPENDIX E. ENDOSCOPIC CHARACTER RELATIONS FOR THE ARCHIMEDEAN CASE

In this appendix, we will argue that [Ar3, Theorem 2.2.1(a)] holds for F' = R and
tempered parameters 1) = ¢, and that [Ar3, Theorem 2.2.4] holds for F' = R and discrete
parameters ¢ = ¢. The validity of these theorems is assumed at various places in [Ar3]
with the remark that they will follow from a forthcoming work of Shelstad and Mezo.
In the meantime, the work of Shelstad [She?] has appeared, which proves the transfer of
functions in twisted endoscopy for F' = R, and the works of Mezo [Mezll, Mez2|, which
prove a weaker version of the desired theorems: the character identities are shown to
hold up to a scalar.

In this appendix, we will use different sources. The forthcoming work [KM] treats a
general class of disconnected real reductive groups and L-parameters which are discrete
for the identity component; this will suffice for the purposes of [Ar3, Theorem 2.2.4],
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because the general tempered case can be reduced to the discrete case by a global
argument. However, this is insufficient for the purposes of [Ar3, Theorem 2.2.1(a)],
because the group GLy has no discrete parameters when F' = R and N > 2. Here we
will build on [AMR] and [CI]. This will again involve a global reduction argument, but
now to the case that ¢ is discrete for the endoscopic group. It will further involve a
local argument that allows for a variation of the L-homomorphism.

E.1. Theorem 2.2.4 for archimedean discrete parameters. We briefly review the
results of [KM]. One considers rigid inner forms of groups of the form G* = Gx A, where
G is a quasi-split connected reductive R-group and A is a finite group of automorphisms
of G that preserve a pinning. (These groups were denoted by G in loc. cit., but here
we are using the notation G* of Arthur.) In the case at hand we have G = SOy, the
non-trivial element of A = 7Z/27Z is acting by the unique pinned outer automorphism,
and we are interested in the trivial rigid inner form, i.e. the group G* = G x A itself.

It is shown in loc. cit. that to each discrete parameter ¢: Wr — ©G one can associate
an L-packet II4(G*) of irreducible discrete series representations of GT(R) and an

injection of this L-packet into Irr(Sy ), where S is the centralizer of ¢ in GxA=

SO9,(C) x Z/27, where again A acts by preserving a pinning of G. Note that we
are using the superscript 4+ here again in the sense of Arthur, and not in the sense of
[Kal3]. This injection is normalized using a Whittaker datum to that is A-admissible,
i.e. it is a G(R)-conjugacy class of pairs (B, x) that contains an A-stable such pair;
such Whittaker data always exist.

When the G-conjugacy class of ¢ is not stable under A, then Sg = S, is the centralizer

of ¢ in G. The setting of [Ar3, Theorem 2.2.4] is the opposite, namely the @-conjugacy
class of ¢ is stable under A, in which case S, is a normal subgroup of index 2 in S,
with quotient A = Z/27Z.

For any s € S; one can associate an endoscopic datum (G, G’, s,n), which is twisted
when s ¢ S,. The following character identity is proved in loc. cit.:

(ECR) SOy ()= > (s,M0x(f),

7T€H¢(G)

where the notation is as follows:

(1) f is a smooth compactly supported function on G(R) = SO,,(R), which we
interpret as a function on G*(R) that is supported on the non-identity coset,
by means of the injection G(R) — G™(R) sending g to g, with 0 € A = Z/2Z
the non-identity element.

(2) f' is the transfer of f to the twisted endoscopic group G’ in terms of the
Kottwitz—Shelstad transfer factor normalized by the fixed A-admissible Whit-
taker datum to.

(3) ¢’ is the factorization of the parameter ¢ through n: ‘G’ — LG.

(4) SO is the stable character of the L-packet 1, (G") of G'.
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(5) T is an arbitrary extension to GT(R) of the representation 7. We will argue
below that such an extension always exists in the special case we are considering.

(6) Oz is the distribution character of 7. It is shown in loc. cit. that the product
(s,m)Oz(f) does not depend on the choice of extension 7 of 7.

Identity (ECH]) is the desired identity (2.2.17) in [Ar3, Theorem 2.2.4], albeit in dif-
ferent notation. This proves part (a) of that theorem for discrete parameters over R.
Part (b) is the assertion that we made in (5) above that every = has an extension 7.
It is shown in loc. cit., in the general setting of disconnected groups discussed there,
that if 7 € II4(G) corresponds to p € Irr(S,), then the extensions of © to G*(R) are
in natural bijection with the extensions of p to S;. Thus, it is enough to show that in

the particular case of GT = SOy, X Z/2Z any p € Irr(S;) has an extension to S;.

To see this we note that G x Z /27 is isomorphic to Oy, (C). Therefore, the centralizer
S; is isomorphic to

HO(%) x Hsp(m)

and S, is the subgroup of index 2 on which the product of the determinants of the
individual factors is trivial. The representation p kills the identity component of Sy,
which is also the identity component of S(;. We are therefore looking for an extension
of p from m(S,) to 7'('0(5;). But the latter group is visibly abelian, in fact a 2-group,
so such an extension always exists.

E.2. Theorem 2.2.1(a) for archimedean tempered parameters. In the remain-
der of this appendix we will show that the twisted character identities in [Ar3, Theorem
2.2.1 (a)] and their unitary group analogue over R for tempered representations are
valid. Note that [KM] treats general disconnected real groups, but only those tempered
parameters that are discrete for the identity component, and this is not sufficient for our
purposes. Mezo has treated in [Mez?2] general twisted real groups and general tempered
parameters, but the desired identity is proved there only up to a scalar. We need to
know that this scalar factor is equal to 1. This is done in [AMR), Appendix A] (resp. in
[CI]) for G = Sp,,, and G = SO,, (resp. for G = U,,), but only for special L-embeddings
LG — GLy and only for L-parameters that are discrete for G. We will reduce the
general case to that core case.

E.3. Reductions. For convenience we adopt the notation of [Ar3] and make references
to there. (These are closely followed in [Mok] with minor differences.)

We can first reduce the identities to the case that G is a simple twisted endoscopic
group. Indeed, if G = Gg x G is not simple, then by [Ar3, Proposition 6.6.1], we
may assume that ¢ = ¢g X ¢o € P2(G) is square-integrable. (If G possesses no square-
integrable parameters, then there is nothing to prove.) There exist stable linear forms

F5(9s), f9(¢0), [ €H(Gs), fO € H(Go)
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either by the induction hypothesis or by well-known results in real endoscopy. (These
are the stable characters associated with the discrete series L-packets for ¢ and ¢¢.)
We define a stable linear form f(¢) by the formula

f(9) = f(9s)f (o), f=fx [
Mezo [Mez2] has shown that the twisted character fn(¢) (defined in [Ar3, (2.2.1)]) on

fe 7-[( ) satisfies the following twisted character identity up to a scalar ¢(¢) € C*,
where f€ denotes a transfer of f:

fu(9) = e(9) F4(@).
Lemma E.3.1. In the above setting, c(¢p) = 1.

Remark E.3.2. This lemma was assumed in the proof of [Ar3, Lemma 6.6.3] and [Mok,
Proposition 7.7.1] when the authors write “assumed as part of the theory of twisted
endoscopy” or “by the results of Mezo and Shelstad”. Unfortunately the current state
of twisted endoscopy for real groups is not enough to imply the lemma as a special case.
So we give a global proof in much the same way as Arthur treats p-adic places.

Proof of Lemma [EZZ1. Let d > 0 be a sufficiently large integer; this number controls
the number of archimedean places. (Arthur wants d to be large in the globalization of
[AT3, Sections 6.2-6.3]. For our purpose d = 2 is enough because we do not need [AT3,
Proposition 6.3.1 (iii)]. We do need d > 1 to be able to appeal to the simple trace
formula.)
By [Ax3, Proposition 6.3.1] (disregarding condition (iii) there) we have the following

globalization for each of i € {0,1}:

e a totally real field F; such that [F; : Q] = d + 4,

e a real place u; of F},

e a twisted endoscopic datum G; € geu(N ) over F,
e a parameter ¢; € O™ (G))

such that (E, G, (bz) specializes to (F, G, ¢) at the place u;, and such that
e (; possesses discrete series at all v € Sit, (in addition to v = uy),

° gb“, is square-integrable and in relative general position at all v € S}

where S; ~ stands for the set of real places of F;, and we put Site = Sico\{ui}. (The
degree [F, 1 Q) is not prescribed in loc. cit. but the existence argument there works for
a fixed choice of F; and u;.) In fact the real groups

Gio (i €{0,1}, v € Sio)

are all isomorphic to G (canonically up to inner automorphism) as they are quasi-split
real forms accommodating discrete series. We fix such isomorphisms.

Now the point is that, in addition to the above, we can arrange that the real com-
ponents of gzﬁo and ¢1 away from ug, u; are all equal, i.e.,

(b) gbi,v = gbgen (Z € {Oa ]-}7 v € S:floo)
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for some @gen € EIVDZ(G) in general position via G; v = G. This is possible since Arthur
can prescribe the parameters at v € S"l quite flexibly. More precisely, for i = 0,1
and v € Si'y, his argument fixes a regular infinitesimal character j;, (of a discrete

series representation) and shows that there exists a global parameter (bl such that ¢w
has infinitesimal character ngu;, and trivial central character, as long as n € Zsq is
sufficiently large. Thus we can achieve (H) by starting from the same y;, for all i,v as
in (H) and then choosing n large. (We use the same n for all 7,v.)

The rest of the argument proceeds as in the proof of [Ar3, Lemma 6.6.3], with u a real
place rather than a finite place. Namely we apply [Ar3, Lemma 5.4.2] (applicable since
[AT3, Assumption 5.4.1 (b)] therein is satisfied at all archimedean places) to deduce
that

fn(di) = fC(), = vaeH N)g.

Here the subscript F} is there to remind us that the Hecke algebra is for the twisted
general linear group over Fj. Condition (ii) of [Ar3, Proposition 6.3.1] allows us to
cancel out the terms at all finite places from both sides, as in the proof of [Ar3, Lemma

6.6.3]. Hence
H va ¢7,v - H fG ¢zv

’UES@',OO UESZ o

In light of the equation fy(¢) = ¢(¢)fC(¢), this implies that

c(@)c(fgen) " = 1.
Since this holds for both i € {0,1}, it follows that c(¢) = c(dgen) = 1, as desired. O

Now we may assume that G is simple. We further can reduce to the case that the
parameter ¢ is square-integrable. Indeed, if ¢ is tempered but not square-integrable,
[AT3, Theorem 2.2.1] follows as explained at the beginning of Section 6.6 in loc. cit.

Now consider the core case that G is a simple endoscopic group of twisted GLy and
¢ is a square-integrable parameter. If the endoscopic datum is standard (i.e. the L-
embedding “G' — GLy is standard), the result is covered by [AMB, Appendix A] for
SPan, SO, and [Cl] for U,,. This reduces the problem to Proposition [E-ZZT below, which
may be of independent interest, so we will prove it for any local field.

E.4. Set-up and statement of the result. Let F' be a local field, G a quasi-split
connected reductive F-group, (B,T,{X,}) a pinning, # an F-automorphism of G pre-
serving the pinning, and ¢¥r: F — C* a non-trivial character. To simplify matters,
we assume that the derived subgroup Gge is simply connected. Let (H,1,7H,&) be the
principal endoscopic datum for (G, #). We assume that there exists an L-isomorphism
LH — H and write 1¢: PH — £G for the composition of this isomorphism with &. The
pinning and the character ¢z lead to a Whittaker datum, which we use to normalize
the transfer factor.
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Let ¢: Ly — “H be a tempered parameter. The expected twisted character identity

is then as follows: _ N
Yoou@ )= > ue(fh)),

wel'[Léw(G) o€lly(H)

o

where 7 is the Whittaker normalized extension of 7 to G(F') x (6), f € C°(G(F) x 0),
and fH € C®(H(F)) is its transfer.

This identity is stated in the language of distributions, but can also be restated in
the language of functions as

o u@®0) =Y Al Y w(e(y)
TElL04(G) Y o€l (H)

TofXT

for any regular semisimple element Seq (F) x 6, where ~ runs over the set of regular

semisimple elements of H(F) up to stable conjugacy, and A[*¢](v,d) is the transfer
factor relative to the L-embedding ¢ and normalized by the Whittaker datum.

Proposition E.4.1. Assume that the twisted character identity holds for one choice
of embedding L&: YH — LG. Then it holds for any other choice of L& with the same
restriction to H.

Remark E.4.2. One can contemplate various generalizations of this statement. For
example, the proof given below easily generalizes to arbitrary endoscopic groups in the
ordinary setting, i.e. when 6 = 1. It also generalizes to inner forms of (G, 6). What
is not so clear to us is how to generalize it to arbitrary endoscopic groups when 6 is
non-trivial, but we do not need this case. Also, we will only give the proof when the
derived subgroup is simply connected.

E.5. Proof. First, we study the possible variations of “£. Since “£|5 has been fixed,
we use it to identify H with a subgroup of G to save notation. We have H = (G?)°.

Lemma E.5.1. We have Z@(ﬁ) = Z(G).
Proof. Let S € H be a maximal torus. Then since T = Z@(:S'\) is a f-stable maximal
torus of G, it is contained in a f-stable maximal Borel subgroup B, and § = (fe)o. The
root system R(S, H) is the set of indivisible roots in the relative root system R(S,G).
The latter is the set of restrictions to S of the absolute root system R(f, CAJ) No such
restriction vanishes, and the restriction map R(f, CA}) — R(§ : é) is surjective with
fibers being the 6-orbits.

An element of Z@(?[ ) centralizes S, hence lies in T. Moreover, it acts trivially on
each root space of S in Lie(H). For 8 € R(S, H), the root space Lie(ﬁ)g is the space
of f-fixed points in B, , 5 Lie(@)a. Therefore, t € T fixes this root space if and only if

a(t) =1 forall « — (. Since all E—simple roots a map to an indivisible root in R(§ , H ),
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we see that for an element ¢ € T to centralize Lie(ﬁ[ ) it is necessary and sufficient that
a(t) =1 for all B-simple roots in R(T', G), which is equivalent to t € Z(G). O

Lemma E.5.2. If¢: YH — LG is one choice of L-embedding, then any other choice
is of the form a - ¥& for some o € ZY (W, Z(G)) whose cohomology class is 0-fized.

Proof. The actions of ¢ € W on H and G are generally different, and we will write oy
and og for them. Then oy = Ad(gg) X g for some g, € G that is well-defined up to
multiplication on the left by Z5 (H) By above lemma we have Z5 (H) = Z(G).

Since, for any ¢ and o € Wp, the element L¢(1 x o) € £G normalizes H and acts
on it by oy, we see that if one *¢ is fixed, then other choice is of the form o - #¢ for a
continuous map «: Wp — Z(G).

The multiplicativity of ¢ and a - “¢ implies that « is a 1-cocycle. By an axiom of
twisted endoscopic data ([KoShT, (2.1.4a)]), there exist x,y € Z(@) such that 6 o L€ =
v-Lex b and fo (a-L8) =y (- L&) -y L. It follows that a~1(o) - 0 o a(o) =
(zy ) Lo(zy ), ie. [a] € HY(Wp, Z(G))’. O

Next, we reduce Proposition EZZ1 to a property of the transfer factor. We now fix
L¢ for which the character identity

> w7 0) =Y _AlE(r,0) Y tr(o(y))

TENL ¢, (G) Y o€l (H)
l=vs
holds. If we replace ¢ by o - L& for some a € ZH(Wp, Z(G)) whose class is 6-fixed,
then on the left-hand side of the identity, the packet Ilre.s changes to Il,.ceoq. If
Xo: G(F) — C* is the character corresponding to «, then tensoring representations
with y, provides a bijection
HL£O¢ — HouLfoqﬁ-

Moreover, the Whittaker extension of y, ® 7 equals X, ® 7, where 7 is the Whittaker
extension of 7, and X, is the extension of x, to G(F') x (#) specified by x.(f) = 1 (since
the class of a is f-fixed, the character Y, is f-invariant). Therefore, upon replacing ¢
by «a - ¢, the left-hand side of the character identity multiplies by Y,(d). Hence to
prove Proposition EZ it would be enough to show

Alar-"€)(7,0) = Xa(8) - A["€](7,9).
Finally, we shall show this property. The only piece of the transfer factor that

depends on the choice of L-embedding is Aj;;. Let us briefly recall its construction
following [KoSh1l, Section 5.3]. There exists a #-admissible maximal F-torus T C G

together with an element g € Gy (F) such that 6* = g~16g € T(F) » 6, and if we write
6* = 6" % 6 then the 1mage 7 € Ty(F) of 6* lies in Tp(F). Writing z, = g 'o(g) we
have (z;1,6*) € Zl(F,TSC T).

Let v € H(F) be related to 6 and let S C H be the centralizer of . There exists
a unique admissible isomorphism &, 1« : S — Ty mapping v to v*. Choosing x-data for



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 195

R(T?,G) provides L-embeddings “égp: 1S — LH and Lérg: T — LG. There is a
unique 1-cocycle n: Wr — T that makes the following diagram commute

Lg Lesm Ly

n'Lé'y,'y* i \LLf

Ly p———e)
Lera

Here ©¢, .+ is the L-embedding obtained from the L-isomorphism SxWp — (f@)o X Wg

dual to the inverse of &, .- and the inclusion (f(’)O — YA“, and we have multiplied it with

the 1-cocycle 1, composed with the projection S — Wy and the inclusion T — LT.

Then (n71,1) € Zl(Wp,f 1, fad). The factor Ajr; is the pairing of (2!, 0*) and
1),

(nIf W()e replace L€ by a - L€ then 7 is replaced by o - . We are using the natural

inclusion Z (é) —T , which is equivariant under both I' and 6, and induces an inclusion

of complexes of T-modules [Z(G) — 1] — [T 1=, Tia]. The value of the transfer
factor thus multiplies by the pairing of (a1, 1) with (z;!,*). Now (a™!, 1) is included
from [Z(G) — 1]. Using the functoriality of the Tate-Nakayama pairing and the fact

-~

that Z(G) is the torus dual to D = G/Gger Wwhen Gge, is simply connected, we may
compute the pairing of (a~',1) and (z,',6*) by mapping the latter under the map
[Ty iR T] — [I — D]. Now 6* x 0 = 6* = g~'0g = (¢g~'6g0 %) - & and the term
in the parentheses lies in Gg.,. Therefore we see that the images of 6* x 6 and S in
D(F) x 6 agree, and lie in D(F) x . In particular, the image & of 6* in D is an F-
point. Since Aj;; enters the transfer factor with its reciprocal, we see that changing
L¢ to o - “¢ multiplies the transfer factor by . (8), where y, is the character of D(F)
with parameter . This character is f-invariant and hence extends to a character x,, of
D(F) x (0) with Xo(#) = 1. Then Yo (6) = Xa(6 x ) = Xo(d), where we have mapped
6 in D(F) x 6 under the natural map G(F) x 0 — D(F) x . Since the character x, of
G(F) is simply the inflation to G(F') of the character x, of D(F'), the desired identity

A[Oé ' Lﬂ (77 g) = S(va(g> ’ A[Lg] (77 g)
has been established.

APPENDIX F. ARITHMETIC FROBENIUS VS. GEOMETRIC FROBENIUS

There are two conventions for normalizing class field theory in the literature, depend-
ing on whether arithmetic or geometric Frobenius elements correspond to uniformizing
elements under the local non-archimedean reciprocity map. In this appendix we shall
review these conventions and discuss how they influence Arthur’s endoscopic classifica-
tion. This is an expanded version of the discussion of [KaSh2, Section 4].
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F.1. Two conventions for L-factors. Consider a non-archimedean local field F' and
let (p, V') be a finite-dimensional representation of the absolute Galois group I'g, or of
its Weil group Wr C I'r. In [Arf, (9)], Artin has attached to this representation an
L-factor

La(s,p) =det(l —q°- p(Frobari)]Vp(IF))’l,

where I C W is the inertia subgroup and Frob,,; € Wr/I is the arithmetic Frobenius,
i.e. the element whose action on the algebraic closure F, of the residue field kr = F,
of F'is by the transformation z — z? On the other hand, Delgine considers in [,
(3.5.1)] the definition (we have set t = ¢~*)

Lp(s,p) =det(l —qg*- p(Flrobgeo)|V”(IF))_17

where Froby,, is the geometric Frobenius, i.e. the inverse of the arithmetic Frobenius.
We have

LD(SJ )0) = LA(SJ p\/)’

where (p¥,V*) is the contragredient representation.

Artin’s convention appears more natural from an arithmetic point of view, because
the substitution x + ¢ is a primary object for any field of characteristic p, and is not
always invertible. Deligne’s convention appears more natural from a geometric point
of view, because the geometric Frobenius acts on the /-adic cohomology of algebraic
varieties over [, with eigenvalues that are algebraic integers, and this is not the case
for the arithmetic Frobenius, see [D, Section 3.6].

Both conventions are widely used in the literature. On the other hand, the L-factors
associated to characters of F'*, and more generally to admissible representations of
reductive F-groups, are often defined, following Tate’s thesis, in terms of zeta integrals
on the group and related spaces, and make no reference to the Galois group of F.
We refer the reader to [Tatell] for the group F* = GL;(F'), Godement—Jacquet [GlJ]
for the standard L-function on the group GL,(F), and [IPSS] for the Rankin—Selberg
L-function of a “product” of two representations of general linear groups. These defi-
nitions are compatible with parabolic induction, which implies that for principal series
representations, they specialize to the 1-dimensional case. In that case, the output of
the construction is expressible in terms of uniformizers of F', see [Tate2, (3.1.3)] for
characters of F'*.

Therefore, as discussed in [D, Section 3.6], the desire that a correspondence between
representations of the Galois or Weil groups of F' and representations of connected
reductive F-groups should respect the L-factors on both sides leads to two possible
conventions for such a correspondence — one convention adapted to Artin’s definition
of a Galois-theoretic L-function, and one convention adapted to Deligne’s convention.

In the following, we will review these conventions and discuss the various parts of
Arthur’s argument which are affected by the choice of convention. We will then explain
how to make consistent choices and how the main results are affected by this choice.
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F.2. Class field theory. One of the main results of class field theory is the Artin
reciprocity map rrp: Cr — ['? available for each local or global field F', where Cr = F*
when F' is local and Cr = AL/F* when F is global. It is closely related to the
invariant map inv: Br(F) = H2(Cs, C%) — Q/Z, where C = F when F is local and
Cr = K; /FX when F is global. Here Ap = ligAE, the colimit taken over all finite
Galois extensions E/F.

In the classical normalization of Artin, the local reciprocity map sends a uniformizer
of Cp = F* to an arithmetic Frobenius element of I'? i.e. an element whose projection
to Ty, acts as x + 27 on kp = Fq. The local and global reciprocity maps are related
by the property that, for each place v of a global field F', we have the commutative
diagram

TE,

X ab
Fv FFv

| |

Aj/F* ————T%,

where the left map embeds x € F* into A} as the idele whose v-component equals x
and all of whose other components equal 1, while the right map is induced by identifying
'z, with the stabilizer in I'z of a lift of v to a “place” of F; the latter identification is
unique up to conjugation within I'r, hence unique after passing to abelianization.

The reciprocity map induces for each finite Galois extension F/F, an isomorphism
Cp/Ngr(Cg) = Gal(E/F)*. Conversely, these maps for all such E/F glue together
to the reciprocity map. The finite-level maps can be interpreted via Tate cohomology
as the isomorphisms

Gal(E/F)*™ = Hyi (Gal(E/F), Z) = Hiy(Gal(E/F),Cp) = Cp/Ngr(CF)

obtained by taking the cup product with the fundamental class in H*(Gal(E/F),Cg).
In turn, the fundamental class provides an isomorphism

1
. . 2
inv: H(Gal(E/F),Cg) — R F]Z/Z
sending the fundamental class to [F : F]~!. These invariants splice together under
inflation to form the absolute invariant inv: H*(T'r, C%) — Q/Z.

The local non-archimedean absolute invariant map can be described explicitly as
follows. Let F'* C F be the maximal unramified extension of F. It is known that the
inflation map H?(Gal(F"/F), (F*)*) — H*Tp,F") is an isomorphism. On the other
hand, if E/F is finite unramified, @ € F* is a uniformizer and o € Gal(E/F) is the
arithmetic Frobenius element, then the assignment

L fw itz [E:F,
<U’U)H{1 iti+j<[B:F,



198 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MINGUEZ, S. W. SHIN

for 0 <i,j < [E : F] is an element of Z?(Gal(E/F), E*) that represents the funda-
mental class in H%(Gal(E/F), E).

The local archimedean invariant map can also be described explicitly. It is trivial for
F = C, and when F' = R and ¢ € Gal(C/R) denotes the complex conjugation, then
the assignment
1 ifi=j=1,

(o', 07) {1

for 0 < 4,7 < 1is an element of Z?(Gal(C/R),C*) that represents the fundamental
class in H?(Gal(C/R),C*). We can also give an explicit description of the archimedean
local reciprocity map. It is again trivial when F' = C, and when F' = R, it is the unique
surjective group homomorphism R* — Gal(C/R) whose kernel is R-.

All the objects described so far are in the Artin convention. To switch to the Deligne
convention, we compose the local and global reciprocity maps with the inversion auto-
morphism of C'r. This has the effect that, at each non-archimedean place, a uniformizer
of Cr = F* is mapped to a geometric Frobenius element, i.e. the inverse of an arith-
metic Frobenius element. To keep the invariant maps aligned with the reciprocity maps,
so that the reciprocity map is again obtained by the cup product with the fundamental
class, we also invert the fundamental classes, which means that we also invert the local
and global invariant maps. At the archimedean places the reciprocity map, the invari-
ant map, and the fundamental class, remain unchanged, because the relevant groups
have exponent 2.

Note that we cannot choose an Artin convention at one non-archimedean place and a
Deligne convention at another non-archimedean place, because doing so will not be com-
patible with any global reciprocity map. Thus, there are overall just two conventions,
which hold at all local places simultaneously, as well as globally. At the archimedean
places the Artin and Deligne conventions coincide.

It would be next to impossible to list exhaustively all treatments of class field theory
and say for each of them which convention is used. A small and useful list appears in
[Tate?, (1.4.1)]. In particular, [AT], [CH], and [Sex], use the Artin normalization, while
[D] and [Tafe?] use the Deligne normalization.

otherwise

F.3. Two conventions for e-factors. In [D, §4], Deligne proves the existence and
uniqueness of a local e-factor €(p, ¥ p,dxr) € C* associated to a finite-dimensional rep-
resentation p of the Weil group of a local field F', a non-trivial character ¢p: F' — C*,
and a Haar measure dz of F, subject to the properties listed in [, Theorem 4.1].
Following Langlands, Tate reinterprets this definition in [Tafe2, (3.6.4)] as a function
e(s,p,r) = e(p ® ws, ¥V, dr), where dx is the unqiue Haar measure on F' that is
self-dual with respect to ¥p, and ws: Wr — Ryq is the character sending w € Wg to
|77t (0)]%, where w € W2P is the image of w, 7 is the Artin reciprocity isomorphism
F* — W2b and | - | is the normalized absolute value on F' (see [Tate?, (2.2)]).

Tate uses subscripts “D” and “L” in his article to distinguish between two possible
conventions for the local e-factors (one due to Deligne and one due to Langlands), which
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are related by a shift by wy /9, see [Tate2, (3.6.1)]. This difference of conventions is not
related to the difference we are discussing here, and the two conventions lead to the
same function (s, p,1¥r). Since that function is the form of the e-factor that will be
relevant for us, we do not need to distinguish between these conventions. We will write
ep(s, p,r) for this function.

If I is now a global field, p a finite-dimensional complex representation of Wgr, and
Yp: Ap/F — C* a non-trivial character, then for each place v of F' we have the
factor ep(s, pu,¥r,), where p, = plw, and ¢p, = ¢p|p,. The product ep(s,p) =
IL, en(s, pv, ¥r,) is well-defined and independent of the choice of 1, and we have

LD(Sv p) = €D(87P>LD(1 - 87/)\/)

according to [Tafe?, (3.5.3) Theorem| (recall that Tate’s article uses Delign’s normal-
ization of class field theory).

Returning to a local field F', to switch from Deligne’s to Artin’s normalization of
class field theory we define

5A(:07 ¢F7dx) = ED(pv7wF7dx)7 5A(S’p’ 1/}F> = gD(SHOVaqu)F)'

The factor e4(p, ¥, dz) satisfies the conditions (1)—(4) of [D, Theorem 4.1] in terms
of class field theory in Artin’s normalization — indeed, the conditions (1)-(3) make no
reference to class field theory and are stable under the contragredient operation, while
the condition (4) asserts that e(p, ¢¥r,dx) = e(x, ¥r,dx) whenever p: Wp — C* is a
character and xy = p o rp. Therefore, [D;, Theorem 4.1] implies the uniqueness of the
collection of factors e4(p, ¥r, dz).

Moreover, when F is global and we define as above €4(s, p) = [[, €a(s, pv, ¥y), then
the functional equation in Deligne’s normalization implies at once

LA(Sv P) = 5A(37p)LA(1 - S>pv)'

We conclude that the local factors e 4(s, p, ¥ r) provide a satisfactory theory of e-factors
for the Artin normalization of class field theory.

F.4. The local correspondence for GL,. Let F' be a non-archimedean local field.
Fix a non-trivial additive character ¢p: F' — C*. It was proved by Henniart [He3] that
there exists at most one collection of bijections

recr,: Irr(GL,(F)) — HZL (Wp x SLy(C), GL,(C))
indexed by natural numbers n satisfying the following conditions:

(1) The map recp; coincides with pull-back under the inverse of the isomorphism
rp: FX — Wb,
(2) For my € Irr(GL,,, (F)) and my € Irr(GL,,,(F)), we have

L(s,m X m3) = L(s,recpy, (1) @ recp,,(ms))

and

Y

e(s,m1 X Mo, Yr) = (8, 1€CEp, (T1) ® TeCrp, (T2), V)
IPSS].

where the left-hand sides are the local factors defined in |
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(3) If m € Irr(GL,(F)) and x € Irr(GL(F)), then
recn (T @ (x © det)) = recpn(m) @ recp(x).
(4) If 7 € Trr(GL, (F')) has central character y € Irr(GL;(F')), then

det(recp, (1)) = recr1(x).
(5) If m € Irr(GL,,(F)), then recp,(7") = recp,(m)".
The existence of such a bijection was proved by Harris-Taylor [HT] and Henniart [He?]
for the characteristic zero case, and by Laumon—Rapoport—Stuhler [LRS] for the positive
characteristic case.

The compatibility properties (1)—(5) make it clear that recp, also depends on the
choice of normalization of local class field theory. More precisely, (1), (3) and (4) relate
recp,, to recpy, and the latter is directly induced by the local reciprocity map, while (2)
relates recp,, to local L and e-factors, for which we have the two conventions of Artin
and Deligne. Therefore, there are two normalizations of the collection of maps recg,,
— one compatible with the Artin normalization of recy; and the Artin convention for
local factors, and the other compatible with the Deligne normalization and convention.

Passing from Artin to Deligne normalization composes recp,, with the contragredient
operation on its source, equivalently (by (5)) on its target, for all n simultaneously.
Since for n = 1, taking contragredient is equivalent to composing with inversion, which
is the operation that switches between the Artin and Delgine normalizations of local
class field theory, we see that (1), (3), and (4) remain valid, and so does clearly (5).

To see that (2) also remains valid, we just note that on the left-hand side we have
the Rankin—Selberg factors, which are intrinsically defined in terms of zeta integrals,
and do not depend on the choice of normalization we are discussing, while on the
right-hand side the factors are Galois-theoretic and depend on the choice of Artin
vs. Deligne convention. Since by the equations Lp(s, p) = La(s, p") and ep(s, p, ¥p) =
ea(s, pY,vr), i.e., since switching from one convention to the other with regards to the
local factors has the effect of taking contragredient, we see from (5) that (2) will remain
valid if we also compose recp,, with the contragredient operation.

In the work of Harris-Taylor, the Deligne convention is used. If one prefers the
Artin convention, one has to compose the result of their work with the contragredient
operation.

F.5. The isomorphisms of Langlands and Tate—-Nakayama. To see how the Artin
and Deligne conventions influence Arthur’s endoscopic classification, we begin with the
two most basic tools on which everything else is built: the Langlands correspondence
for tori and the Tate-Nakayama isomorphism. Letting I' = I'r be the absolute Galois
group of F'; the Tate-Nakayama isomorphism is the isomorphism

H}‘[‘;ge(]x X*(S)) = H’i“ate(FJ X*(S) Bz Of)u

functorial in any F-torus S, given by taking the cup product against the fundamental
class. Note that X,(S) ®z Cy equals S(F) when F is local, and S(Az)/S(F) when F
is global. Passing from Artin to Deligne normalization inverts the fundamental class,
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hence composes the Tate-Nakayama isomorphism with the inversion automorphism on
X.(5) ®z Cr, equivalently with the negation automorphism of X, (.5).

There is also a duality version of the Tate-Nakayama isomorphism, where it takes
the form of a pairing

H'(T', X*(8)) x H*™'(T', X.(S) ®z CF) — H*(I',CF) = Q/Z,
for i = 0,1,2. Here, the first map is given by taking the cup product, and the second
tions inverts the invariant map, hence composes this duality pairing with the inversion

automorphism of X, (S5) ®z CF, equivalently the negation automorphism of X*(.5).
The Langlands correspondence for tori is the homomorphism

Hl

cts

-~

(WF, S) — HOHlCtS(X*(S) X7, CF, CX),

functorial in any F-torus S, which is an isomorphism when F' is local, and surjective
with kernel given by the locally-everywhere-trivial classes when F' is global.

We claim that passing from Artin to Deligne normalization also composes this homo-
morphism with the inversion automorphism of X, (S) ®z Cr, equivalently the inversion
automorphism of S.

A special case of this claim is an application of the discussion of Tate-Nakayama

-~ -~

duality. Consider the subgroup H!(Gal(E/F),S) C HL,(Wp,S) for an arbitrary finite
Galois extension F/F splitting S. The restriction of the Langlands isomorphism to this
subgroup can be described as follows: The exponential map induces the exact sequence
0 —-Z — C — C* — 1, which upon applying X*(S) ®z — produces the exact sequence
0 —— X*(5) — Lie(5) S > 1,
and the connecting homomorphism in the resulting long exact sequence of Gal(E/F)-
cohomology induces an isomorphism H'(Gal(E/F),S) — H*(Gal(E/F), X*(S)). The
cup product pairing between this group and HY,, (Gal(E/F), X.(S)®7Cg) takes values
in H*(Gal(E/F),CEg), and its composition with the invariant map becomes a perfect

-~

pairing which identifies H'(Gal(E/F), S) with the group of characters of X,(S) ®z Cr
that vanish on the image of the norm map for the extension E/F. Switching from
Artin to Deligne normalization inverts the invariant map, hence also this piece of the
Langlands homomorphism.

To discuss the full Langlands homomorphism, we need to review the Weil group
Wr and see how it is affected by the switch from Artin to Deligne normalization.
We follow the exposition of [Tate?], in which a “Weil group for F” is defined as a
triple (Wg, o, {rg}), where Wr is a topological group, pr: Wr — I'p is a continuous
homomorphism with dense image, and for each finite extension E/F, the map rg is an
isomorphism of topological groups Cp — W2P. Here Wy is defined as the preimage
under pp of I'y C I'p, W2 is the quotient of W by the closure W§ of its commutator
subgroup. It is required the composition pr o rp: Cp — I'% is the reciprocity map of
class field theory. In particular, if £/F is Galois and we define Wy, p = Wp/Wg, then
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we obtain an extension
1 > Cg E > WE/F L Gal(E/F) — 1.

If we pass from Artin to Deligne normalization, then the reciprocity map is composed
with inversion, and in order to keep the condition on ¢r o rg satisfied, we will compose
rp with the inversion automorphism of Cg for all E/F (we cannot compose ¢ with
inversion, because ¢ is a homomorphism between non-abelian groups). We emphasize
again that, in a global situation, we have to do this for both the global field and all of
its localizations, to keep the local-global compatibility intact.

We now recall from [[aB, Section 6] that the Langlands homomorphism over F' is
obtained from the commutative diagram

Hcts(WE7 S) —— HomctS(X*(S) X7z CE, (CX)
Hcts(WFv S) - Homcts(X*(S) K7z CF, CX)

where F/F' is any finite Galois extension splitting S, the left map is corestriction along
the inclusion Wg — Wpg, and the right map is restriction along the inclusion Cr <—> C’E
Since I'g acts trivially on S we have HL (Wg, S ) Hom,s (W, S ) = Homg(W2P, S )
which 7 becomes identified with the group

HomCtS(CE, §) = HomCtS(CE,X*(S> ®Z (CX) = HomCtS(X*<S) ®Z CE7CX).

Passing between Artin and Deligne normalizations composes rg with inversion, hence
the Langlands isomorphism with inversion, as claimed.

F.6. Unramified local Langlands correspondence. Let GG be a connected reductive
group over a non-archimedean local field F' that is unramified, i.e. quasi-split and
split over a finite unramified extension E of F'. Fix a hyperspecial maximal compact
subgroup K of G and consider the subset Irrg on(G) of Irr(G) consisting of those
irreducible representations m whose space 7% of K-fixed vectors is non-zero. Then the
Satake isomorphism induces a bijection

Irr e spn (G) = @“(G), ™ — ¢,

where ®%((G) is the subset of ®(G) consisting of L-parameters which are trivial on Ip x
SLy(C). However, this bijection depends on the choice of Artin vs. Deligne convention.
In this subsection, we recall its construction and explain how it is affected by this choice.

Let H(G, K) be the C-algebra of bi- K-invariant compactly supported functions on G
equipped with the convolution product. Then the map m +— 7% gives a bijection from
Irr g pn(G) to the set of isomorphism classes of simple H (G, K)-modules. To describe
H(G, K) explicitly, we fix a Borel pair (B, T) of G such that K is in good position with
respect to T' (see [Can, Section 3.5]). Let A = Ar be the maximal split torus in 7', so
that

T/(TNK)=A/(ANK) = X.(A).
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Here the first map is induced by the inclusion A < T', and the second map is induced
by the map A — X,(A) that sends a € A to A € X.(A) = Homy(X*(A),Z) given
by A(x) = valp(x(a)), with valp: F* — Z being the normalized valuation. Then the
Satake isomorphism states that
where W = Ng(T)/T is the Weyl group of G (see [Cad, Theorem 4.1]). In particular,
H(G, K) is commutative and hence 7% is 1-dimensional for 7 € Irrg opn(G). Thus we
obtain a bijection
7 g pn (G) = Home.ag (H(G, K), C)

= Homc_a1g<C[X* (A)]W, (C)

>~ (X*(A) @ C*)/W = A/W.
Now we need to choose a Frobenius element. For a moment, we use the finite Galois

form of the L-group G x Gal(E/F) and fix a generator o of the cyclic group Gal(E/F).
By [B, Lemma 6.4], the inclusion A < T induces a surjection T'— A and a bijection

(T x 0)/Int(N) = A/W,

where N is the inverse image of W = (N@(T\) JT)F in N@(T\) Moreover, by [B, Lemma
6.5], the inclusion 7' < G induces a bijection

(T x 0)/Int(N) = (G x 0)s/Int(G),

where (é X 0)gs 18 the set of semisimple elements in G x 0. This gives rise to a bijection
(depending on the choice of a generator Frob € Wr/Ir)

IrrK—sph(G> — (I)u<G)7 ™= ¢7T

determined by
¢ (Frob) =t x Frob

up to @—conjugacy7 where t € T is an element whose image in /Al/ W corresponds to 7
under the canonical bijection Irrg o, (G) = fAl/ W. We write ¢, = ¢ (resp. ¢p = ¢P)
if we take Frob = Frob,,; (resp. Frob = Frobg,).

Now we discuss the relation between ¢2 and ¢P. For this, we need to introduce
more notation. For a moment, let G be an arbitrary quasi-split connected reductive
group over F. Recall the Chevalley involution C = Cg of the complex connected
reductive group G. See [AV], Proposition 2.1]. For given a pinning (E,f, {)/(\'a}), the
involution C is defined as the unique automorphism of G that normahzes T and acts
as anGI"SIOIl on it, sends B to the opp081te Borel subgroup, and X to —X _o such that
[Xa, X _a] H,,. Since all pinnings of G are conjugate, all involutions obtained this way
are also conjugate?. We can extend such an involution to “G by ensuring the pinning

2We could have also chosen to send )?a to X _o and would have again obtained an involution in the
same inner class.
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is ['-stable, which implies that C commutes with the [-action, and then taking the
automorphism “C' = C x idr of “G = G x T'. Since all I'-stable pinnings are conjugate
under G, the same holds for all versions of “C obtained this way.

Lemma F.6.1. Suppose that G is unramified, and let K be a hyperspecial mazximal

compact subgroup of G. For 1 € Ity oon(G), let ¢2 (resp. ¢2) be the L-parameter of T
in the Artin (resp. Deligne) convention. Then we have

oF ="Cogr.
Proof. Recall that
¢ (Frob,y;) = t X Frobgy,
¢P (Frobge,) = t X Frobge,

for some common ¢ € T whose i image in A / W corresponds to m under the canonical bi-
jection Irrg oon(G) = A / W. Since the natural map 7' — A restricted to 77 is surjective

by [B, p. 37, (3)], we may assume that ¢ is I'-fixed. Then we have
@2 (Frobay) = ¢F (Frobge,) ™! =t 3 Frob,
= 6(2&) X Frob,; = *C o gb?(FrObari).
This implies the lemma. 0
Let (,V) be a finite-dimensional complex representation of “G. For 7 € Irrg_gpn(G)
with the L-parameter ¢, define the unramified L-factors La(s,n,7) and Lp(s,m, T) by
La(s,m,7) =det(1 — ¢ * -7 0 ¢ (Frobu)) ",
Lp(s,m,7) =det(l — ¢ *-70¢”(Frobge,)) "
Then we have
Lp(s,m,7) = La(s,7’,7").
Indeed, since LC o ¢ = ¢4, we have
70 P (Frobge,) = 70 “C o G2 (Frob)
=7 0 ¢ (Frob,) ™
Its characteristic polynomial is equal to that of 7V o ¢2, (Frob,y).

F.7. Endoscopic transfer. Geometric and spectral endoscopic transfers are governed
by the transfer factors defined in [LSH] and [KoShT], in the setting of ordinary and
twisted endoscopy, respectively. Since twisted endoscopy generalizes ordinary endoscopy,
the factors of [KoShll] ought to specialize to the factors of [LSH]. Moreover, since
Arthur’s endoscopic classification of representations uses both ordinary and twisted en-
doscopy between various pairs of groups, it is important for all factors to be normalized
compatibly.

The reader needs to be aware that the definition given in [KoShT] is incorrect. There
are two ways to correct it, depending on whether one uses Artin or Deligne convention
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for class field theory. But neither of these corrections specializes to the definition
of [LSH]. Consequently, that latter definition also needs to be modified. All this is
explained carefully in [KoSh?, Section 5| and we will content ourselves with a brief
summary.

Let I be a local field and let G be a quasi-split connected reductive F-group. Fix an
automorphism 6 of G that preserves an F-pinning and a 6-stable pair (B, x) consisting
of a Borel subgroup B over F' and a generic character y of the unipotent radical U of
B. Let (H,s,H,n) be an endoscopic datum and let (Hy,7;) be a z-pair. Associated to
these data, there are two normalizations of the transfer factors: the Artin normalization
A4 (denoted by A’ in [KaSh2, Section 5]) and the Deligne normalization Ap. They
are defined in [KoSh2, (5.5.1), (5.5.2)] as

Ay =c€- (A?QWAIU)AAUAIV

and
Ap =e€- A?GWAIHAI_IIAIV,

where the terms €, Ay, Arrr, Apy are defined in [KoShT], and the corrected term A}*Y
is defined in [KoSh2]. We note here that both A 4 and Ap use the same e-factor, namely
the one normalized according to Artin’s convention; the construction of the remaining
pieces uses both the Tate-Nakayama and the Langlands isomorphism, and in the above
formulas, these two isomorphisms have been normalized according to the conventions
in [KoSh1], namely the Artin normalization of the Tate-Nakayama isomorphism and
the Deligne normalization of the Langlands isomorphism. This is the reason why A4
and Ap are given by different formulas.

In the case of trivial twisting, i.e. # = 1, these factors can also be described using
the terms A[, A[[, A][[l, AIIIQ7 A[V defined in [' ASh], namely as

Ay=ce€- (AIAIIA)_IAHAHIQAIV

and
—1A-1
Ap =¢€- A1A1111AH AHIQAIV =€- AIAHIlAIIAIIIg,DAIVa

where Ay, p is obtained from Ay, by first inverting the x-data that is being used in
the definition, and then inverting the entire factor, see [KoSh2, (5.1.2)]. Note also that
in the setting of ordinary endoscopy, the twisted A;;; breaks up as Ayyy, - AI’}IQ.

F.8. The Arthur—Langlands conjectures. From now on, we assume that the char-
acteristic of the base field is zero. Before we discuss the effect of Artin and Deligne
normalizations on the Arthur-Langlands conjectures, we briefly recall them. Their
main thrust can be summarized as follows.

Conjecture F.8.1. Let G be a quasi-split connected reductive group over a local or
global field F' of characteristic zero.
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(1) For F global, there exists a set Vo(G) and for each ¢ € Uy(G) a subrepresenta-
tion L3(G) C L3 (G) such that

disc
YeW2(G)

(2) For F local, there is a multi-set 11,(G) over Irryyt (G) attached to each p € U(G)

such that
Irienp(G) = | | T4(G).
$EDiemp (G)
(3) For F local and ¢ € V(QG), there is a stable distribution f — (f) supported on
II,(G), as well as a map 11,(G) — Irr(Sy), depending on a choice of Whittaker

datum vo for G. We denote it by ™ +— py . For each semisimple s € Sy we
have

(ECR) Y (ms e spwy () = ¢ (f),

WEHw(G)

where (T, Yy = tr(pwr(-)) and f — f' is the endoscopic transfer of functions.
(4) For F global, there is a localization map

@2(G) - \Ij(Gv)v ,QZ} = ,[7Z}’U
for any place v of F', and

13(6) - @

where m runs over all irreducible admissible representations m = @ m, of G(A)
which satisfy m, € 1y, (G,) for all places v, and

m<w7 ﬂ-) = mult(€w7 ®U(pmv77"v ‘qu>>7

where v, are the localizations of a fixed global Whittaker datum vo for each place
v. Here, €, is the quadratic character of Sy defined explicitly in terms of ¢ as
in [Ax2, (8.4)].

(5) When F is non-archimedean and v € V(G) is unramified, 1L, has a unramified
representation w (with respect to a fized hyperspecial mazimal compact subgroup)
with multiplicity one such that

Oy = ¢,

where x = A (resp. * = D) if we use Artin’s (resp. Deligne’s) convention for
class field theory. Moreover, it corresponds to the trivial representation of Sy.

Let LC = C x idr be the Chevalley involution of LG = G x T' defined in Section
EB. Given ¢ € U(G), define ¢ = “C o 4. Note that (1»¥)" = 1 and that C induces
an isomorphism Sy — Syv. For the group GLy and the standard pinning, we have
C(g) = 'g~. In particular, if 7: GLy(C) — GLy(C) is a representation, then 7o C
is isomorphic to the contragredient of 7, and if p: A — GLy(C) is a representation of
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some group A, then Co p is isomorphic to the contragredient of p. Therefore, for any
G, we may think of ¢ as “the contragredient” of 7). The following result, whose proof
will be given further below, lends some credence to this thought.

Proposition F.8.2. Fiz a quasi-split group G and consider the validity of Conjecture
[EZ82 for all endoscopic groups G’ of G.

(1)

(2)

(3)

Assume that F is local and Congecture (81 (2)—-(3) holds (in either conven-
tion). Assume further that for all G' and ¢/ € W(G'), the equation " (f') =

W' (f' oid') holds, where i' is the inversion anti-automorphism of G'. For any
Y € U(Q), consider I1,(G)Y = {n¥ |7 € II,(G)}. Then

My (G) = y(G)Y, (7Y, Cla™) )1 v = (T, @)

for m € Iy(G) and x € Sy, where w™' = (B, x™ ') for w = (B, X).

Assume that F is global and Congecture [E81 (1)-(4) holds (in either conven-
tion). Assume again that for all G' and ¢ € V(G'), the equation " (f') =
Y'(f'oi') holds. For any ¢ € ¥o(G) and m € 11,(G), we have

m(r*, ") = m(m, ).

If G is a quasi-split classical group, then the identity ¥V (f) = (f o) holds
for Arthur’s construction (in either convention). Since all G' are products of
classical groups, we see that parts (1) and (2) hold for G.

Let us now turn to the effect of the Artin and Delgine normalizations on the Arthur—
Langlands conjectures. We will write ¢ and ¢ for the Langlands parameter associated
to a representation m with respect to either convention. We have the following cues:

(1)

In the local correspondence for G = GLy, switching between the two normal-
izations is accomplished by taking the contragredient of the representation of
G(F), equivalently of its Langlands parameter. That is the same as composing
the Langlands parameter with the Chevalley involution of GLy(C). Thus we
have ¢P = Co 2.

If G is an unramified group, then we saw in Lemma EG1 that ¢ = LC o ¢2.
It is expected that there should be an independent definition of an L-function
L(s,m, 7) associated to an automorphic representation 7 of G(Ar) and a finite-
dimensional representation 7: “G — GL(V), which does not reference the Galois
side, and that L(s,m,7) = L.(s,7 0 ¢%), where ¢% is the L-parameter of = and
x € {A, D} is either of the two normalization conventions. It is not known
how to define L(s, 7, 7) in general, but there are some known examples, such
as that of Godement—Jacquet [Gl], where G = GLy and 7 is the standard
representation of G = GLy(C) and trivial on I'. In that setting L(s,w,7) is
insensitive to the normalization of class field theory. One might expect that, for
general groups G, the definition of the automorphic L-function L(s, 7, 7) might
be insensitive to the normalization of class field theory provided that LG is a
direct product G x I' and 7 is trivial on I'. This implies that we should have
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La(s,70¢%) = Lp(s, 70 ¢P), pointing towards 7 o ¢ = (7 0 ¢)V as finite-
dimensional representations of the Langlands group of the base field. Now on
the one hand (7 0 ¢4)Y = 7V 0 ¢, while on the other hand 7 = 7 o C; the
latter can be seen by first reducing to the case that 7 is irreducible and then
noting that the welghts of 7o C are exactly the negatives of that of 7. This
again points to ¢2 = C o ¢A.
With regards to (3) we want to point out that if we do not assume that “G = G x I and
that 7 is trivial on T', then it is not reasonable to expect that L(s, 7, 7) is independent
of the choice of normalization of class field theory. A degenerate example would be
when G = {1}, in which case *G = I' and L(s,m, 1) is simply the L-function of the
Galois representation 7.
A less degenerate example is the unramified L-function L(s, 7, 7), where both G and
7 are unramified, where we saw that there are two normalizations linked by the identity

LD(Saﬂ->7-) = LA(S77T\/’7-V)‘

Note that, in this setting, if G is in fact split and 7 is trivial on the I-factor of *G =
G x I, then

LD(Saﬂ—’T):LD TO¢ )
(s, (1o07)")

(s
(s,
a(s, 7V 0 @)
(
(

A\S, T OCOgb)

AlS, TO¢ ) LA(Saﬂ-aT)7

|
~ oSN

consistent with (3) above.
We are thus led to expect the following:

Conjecture F.8.3. Let G be a quasi-split connected reductive group over a local or
global field F.

(1) If F is local and 11,(G)* (resp. I1,(G)P ) is the A-packet associated to 1 € U(G)
by the Artin (resp. Deligne) convention of Conjecture 81, then

I, (G)" = (Iy(G)")” =Ty (G)*,
and for m € lIy(G)P and x € Sy, we have
(T s = (1,0 oy = (1, O (@)

(2) If F is global and L7 (G)* (resp. LZ(G)P ) is the 1-constituent of L3, (G) asso-
ciated to 1 € Uy(G) by the Artin (resp. Deligne) convention, then

L(G)? = (LL(G))Y = Ly (G)Y, m(rY,¢Y) = m(m, ).

Proposition F.8.4. Let G be a quasi-split connected reductive group over a local or
global field F.
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(1) Assume that F is local and Conjecture 81 (2)—(3) holds in Artin’s convention.
For any ¢ € V(G), m € II,(G)4, and x € Sy, define

I,(G)° = ((G)Y)Y, {x",2)2, = (ma )i,

Then Conjecture 82 (2)—(3) holds in Deligne’s convention.
(2) Assume that F is global and Conjecture [EZ81 (1)—-(4) holds in Artin’s conven-
tion. For any 1 € V(G), define

L2(G)° = (L3(G)")".

Then Conjecture [EZ81 (1)-(4) holds in Deligne’s convention.

(3) In the setting of a quasi-split classical group G, let v (f) and P (f) be the Artin
and Deligne normalizations of the stable character corresponding to ¢ € ¥(G)
according to Arthur’s construction (for quasi-split symplectic, orthogonal, or
unitary groups). Then VP (f) = A(f o ig), where iq is the inversion anti-
automorphism of G. In particular, Arthur’s construction satisfies Conjecture

(83

We will now give the proof of Propositions 82 and E-&4, which are closely related.
The generic part of Proposition [EZ89 (1) was proved in [Kalll]. These arguments extend
to prove both propositions, as was noted in the setting of unitary groups by Bertoloni
Meli and Nguyen in [BMN, Section 2.2].

The technical heart of the proof is the following lemma, whose statement needs a bit
of preparation. Given an endoscopic datum e = (H, s, H, ) for G x 6 we write £C(¢)
for the quadruple (H,s',H',¢'), where s’ = 6(3_1), ‘H' is the same group as H but
with the embedding H — H composed with CH, and & = LC oL o £. Given a z-pair
3= (Hy,&m,) for ¢ we write “CH(3) for the pair (Hy, *CHt o &y)).

Recall that the endoscopic transfer of a compactly supported function on G(F') x 6 to
H,(F) is generally not compactly supported. Indeed, as discussed in [KoSh1, §5.5], such
a function f; transforms under the kernel of H,(F) — H(F) by a character A = Ay,
and only the image in H(F) of its support is compact. We shall write C{°.(H,(F")) for
the space of these functions.

Lemma F.8.5. Let (G,0) be a quasi-split twisted group, let ¢ = (H,s,H,n) be an
endoscopic datum, and let 3 = (Hy,m) be a z-pair. Denote by ig and iy the inversion
anti-automorphisms on G x () and Hy, respectively.

(1) Assume that f € CZ(G(F) % 0) and f; € CX(H\(F)) are matching functions
with respect to the transfer factor Alro,e, 3] (in either convention). Then the
functions foig € CX(G(F) x67") and fioiy € C,(H\(F)) are matching with
respect to the transfer factor A=, 2C(e),*Cy(3)] (in the same convention).

(2) Assume that [ € CP(G(F) x 0) and fi € C.(H\(F)) are matching func-
tions with respect to the transfer factor Aavw, e, 3]. Then the functions foig €
CX(G(F) % 07Y) and fi0iy € CX(Hy(F)) are matching with respect to the
transfer factor Ap[w=t, ¢ 3], where ¢ = (H,s ', H,n).
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Admitting this lemma, whose proof we will give at the end of this section, we complete
the proofs of Propositions EZ82 and 84 as follows.

Consider first parts (1) of these propositions; thus F' is local. The A-packets I1,(G)
and the maps I, (G) — Irr(S,) are uniquely characterized by the stable characters ¢( f)
and the identities (ECHI). In Proposition EX2 (1), we are assuming ¢"(f) = ¢ (f o 1)
and it is enough to show that Equation (ECH]) for a fixed ¢ and all s € S, implies the
same equation for ¢V and all sV € Syv, while for Proposition EZ84 (1), we are defining
VP (f) = ¢A(f oi) and we want to show that the validity of Equation (ECH) for a
fixed ¢ and all s € Sy, in Artin’s convention implies its validity in Deligne’s convention,
where the two pairings are related as in the statement of Proposition EZ&4 (1).

For Proposition 282 (1), we will give a proof which works in either convention. We
compute

¢/V(f/ Oi,) — ¢/(f/)
= Z (m,8 " Sy)wy  T(f)

W€H¢ (G)

Z (7,8 Sy T (f o).

VeI, (G)V

According to Lemma E=RH(1), the functions f o and f’ o’ are matching with respect
to Ao~ “C(e), *Cy(3)]. This implies that the collection {7V | 7 € I1;(G)} constitutes
the A-packet for the parameter for G whose transfer via “C/(e) and *Cy(3) equals 9",
but this parameter is ¥V. In other words, we conclude that

Iy (G) = {='| 7 € T, (C)}.

Furthermore, equating scalars in the above equation with those in Equation (ECHI) for
the parameter ", we conclude

(m¥, é(x—1)>m71,wv = (T, T)ro

which completes the proof of Proposition EZ82 (1).

The proof of Proposition EZ84 (1) is similar. First, part (2) of Conjecture E-T
in Artin’s convention directly implies part (2) in Deligne’s convention, since the con-
tragredient operation preserves Ilien,(G). So we consider part (3). We first need to
associate to 1 a stable character ¢?(f). We define /P (f) = ¢*(f o4), which is a stable
character, in fact equal to (") (f). Next we want to verify Equation (ECH)) for given
¥ and all s € § in Deligne’s convention, provided it holds in Artin’s convention. Fix
s €Sy, and let e = (H,s,H,§), 3, and ¢/, correspond to (¢,s). Let f € CX(G(F))
and f' € C{.(Hy(F)) be matching with respect to Aftv, ¢,3]. Then, as in the proof of
Proposition EZ82 (1), we obtain the identity

YP(froi) = (f) = Y (w5 syhmy 7 (foi)

W€H¢ (G)A
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- Z (o, s7L. S¢>g—1,w co(f o).

Uenw (G)D

According to Lemma ERH(2), the functions f o and f’ o’ are matching with respect
to Ap[ro~t ¢ 3], from which we conclude that Equation (ECHI) holds for (,s™!) in
the Deligne convention. This completes the proof of Proposition EZ&4 (1).

Next we move to the proof of parts (3) of these propositions. They claim that, in
Arthur’s construction, we have

VP(f) =9 (foi) = (N (f),

for I’ both local and global. The global case reduces immediately to the local case. In
the local case, the stable character ¢*(f) is uniquely determined by the twisted transfer
identity
VH(f) = Troy (fY).

Let us explain the notation. The superscript * stands for either of the normaliza-
tions of Artin or Deligne, fV € C®(GLy(F) x 0) is an arbitrary test function, and
f € CX(G(F)) is its twisted transfer with respect to the transfer factor A,[to,e, 7],
normalized with respect to the convention used. Here ¢ stands for the endoscopic datum
that realizes G as a twisted endoscopic group of GLy, 7 is the standard representation
LG — GLy(C) used by Arthur, 7%, is the representation of GLy(F') associated to the
L-parameter ¢, by the local Langlands correspondence for GLy normalized accord-
ing to the convention being used, and 77, is its Whittaker-normalized extension to
GLN(F) x (0).

Now we claim that for any irreducible #-stable representation 7 of GLy(F') asso-
ciated to an A-parameter, the contragredient of its Whittaker-normalized extension
to GLy(F') x (0) is equal to the Whittaker-normalized extension of its contragredi-
ent. For this, it is enough to show that a non-degenerate GLy(F')-invariant pairing
(«,y:mx 7w — Cisin fact a GLy(F) x (f)-invariant pairing.

Suppose first that 7 is tempered. Notice that 7 is unitary so that 7 is isomorphic to
the complex conjugate of 7. Hence we may consider a GLy (F')-invariant inner product
on 7 instead of a bilinear form on 7 x 7¥. Fix a non-trivial Whittaker functional w on
7. By [Berl, Theorem 6.2, Theorem A], the integral

(0,0/) = / CLORECaRT

converges and realizes a non-degenerate GL y (F')-invariant inner product on 7, where M
is the standard mirabolic subgroup and U is the standard maximal unipotent subgroup.
Then we have (7(1 x 0)v,7(1 x 0)v") = (v,v") by definition. In general, letting Z, be
the standard module of 7, a pairing (-,-) can be induced from a pairing for standard
modules (-,-): Z, x TV — C. By Lemma BT, there is a constant ¢ € C* such that

(Owv, 00"y = clv,v)
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for v € Z, and v¥ € ZY, where Oy (resp. 0y,) is the action of 6 on Z, (resp. Z)
normalized by Whittaker functionals with respect to to (resp. o!). Considering the
unique irreducible tempered subrepresentation of Z, (Lemma BT2), we see that ¢ = 1.
Since the diagram

7V (1x0)
v — 7Y

l l

\
AL AN
is commutative, which follows from Theorem [T, we obtain the claim.

The claim implies that 7oy (fY) = T, (fY 0in), where 7)., denotes the Whittaker
extension of the contragredient of 7 ., and iy is the inversion anti-automorphism of
GLy(F) x (9). By Lemma [EXH (1), the functions f~ oiy and f o have matching
orbital integrals with respect to A[to™!, Cy(e),“Cg o 7], where Cy (resp. “Cg) is the
Chevalley involution on GLy (resp. “G). Therefore (dropping the superscript * and
agreeing that we are using an arbitrary but fixed convention)

O(f) = Frouw(fY)

::%xm(fAzoiN>

= %CNoTow(fN o ZN)

= ("Cq o) (foi) =4"(f o),
proving Proposition EZ82 (3).

The proof of Proposition 84 (3) is quite similar. Namely, if f¥ and f match

with respect to Ay[to, e, 3], then f~ oiy and f o match with respect to Ap[o=t, ¢/, 3]
according to Lemma E8H (2). The switch from t to to~! is now irrelevant since they

are equivalent on GLy, and the switch from e to ¢’ is also irrelevant, since the endoscopic
element s has order 2. Hence we see that

VP(foi) =T, (fY oin) = Ty (fY) = v4(f),

as desired.

We now come to the global statements (2) of Propositions E-82 and E-&4. For
Propositions [EZ8 (2) we have, using part (1) and noting that €, is a quadratic char-
acter,

m(m, ) =[Sy Y ey(@)(m, z)y

$€S¢

= 1S ep(@)(xY, C(x)) o

$€S¢,

= 1Spv |7 D (@ @) (Y )y,

:vESw\/
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where we are using the global pairing (7, z)y = [[, (7, )wy, and suppress the Whit-
taker datum from the notation on the left, because its influence on the local pairings
obeys a global product formula, so the global pairing is independent of it.

We claim that e¢(5_1(x)) = eyv(z) for all x € Syv. We recall a formula for €, in
[CL, Section 8.3.5]. Decompose

"Lp = Tl[dl] H.--H Tr[dr],
where 7; is an irreducible (conjugate-)self-dual unitary cuspidal automorphic represen-
tation of GL,,,(Ag). Then Sy is an elementary abelian 2-group generated by elements
i

where £(7; x 7;) = €(1/2,7; x 7;) € {£1} is the central value of the Rankin-Selberg
epsilon factor. Since C~'(ar(4)) = arvig,) € Syv and e(r; x 75)e(1 x 7;/) = 1, we have
es(C71(@)) = e (2) for @ = gy,

Therefore,

m(m, ) = |Syv| ™ Z epv ()Y, 2) v = m(m¥, YY),
TES v

which proves -8 (2). Note in particular that it implies L7 (G) = L3, (G)".

The computation for the proof of Proposition -84 (2) is almost identical. Consider
an irreducible constituent 7 of L7 (G)P = (L3,(G)*)". The multiplicity m”(r,) of =
in L3 (G)P C L%, (G) is equal (tautologically) to the multiplicity m* (", ) of 7 in

disc

L} (G)* C L3(G). Therefore
mP(m, ) = Syl ) ep(@)(m a)) = 1Sy Y el@)(m )y,

x€8¢ wESw

Since €, is a quadratic character, we have e, (z) = €,(27!), and we can reindex the sum
to replace x7! by x. This completes the proofs of Propositions E82 and E-84, modulo
the proof of Lemma EX3, which we now give.

Proof of Lemma [EZ873. Part (1) is proved as [Kall, Corollary 5.5]. Note just the slight

G(F) and are letting G(F') act on itself by #-twisted conjugation, i.e. hgf(h)~!, while
now we are using test functions on the coset G(F') x 6 in the group G(F') x (§) and we
are using the action of G(F) on this coset coming from the action of G(F') on G(F') x (6)
by usual conjugation. The translation between the two set-ups is by the map g — g %6,
and we have (f oig)(gx 0) = f(071(g71) x 671).

The proof of part (2) is reduced in the same way to the identity

Ap[ro=,e5)(y 1, 07(071)) = Aalw, e,5](71,0).
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To prove the latter, we follow the discussion of [Kall, Proposition 5.4]. We write out
as in (5.2) of loc. cit.

AA[tu7 973](7175) - E(VG,H71/}F> : A?ew[e7 Spl,(l]_l : AII[CL7 X] : AIII[6’37X]_1 : AIV7

where we have chosen arbitrarily a-data and y-data. We will now alter the pieces,
without changing their product, in such a way as to see that their product equals
Aplwo~t, ¢ 5](y 071 (6) 7).

As discussed in [Kall, (5.3)], we have

A (71,01) = Ay (i, 071(6) 7).

We will also keep ¢ fixed, which keeps (Vg i, ¥r) unchanged.
Next, since the choice of a-data is arbitrary, we may replace a by —a without changing
the product of all pieces. Of course the individual pieces A; and Ay change. We have

AY¥¥[e, spl, —a] ' = A¥¥[e, —spl,a] "t = A¥V[¢/, —spl, al,

struction. The passage from (71, d) to (v ', 671(671)) makes no difference to that piece.
On the other hand, we have

Apr[—a,x](n,61) = Aprla, =x](v 071 (01) ) = Apgla, x] (v 07 () )

where the first identity is discussed in [Kall, (5.5)] and the second is by construction.
Next we claim

Arrrle, 3. x1(1,0) 7 = Argle, 3, 3] (071 (07).

The proof is similar to that of [Kalll, (5.9)], so we will just give a minimalistic sketch

using the notation from that reference. The term Ajj[e, 3, x](71,0) is obtained by
1-61

pairing the cohomology classes inv(y;,d) € H'(F,Ss. —> S1), obtained as the pair
(0(g)g~L,6%), and Aole,3,v] € H (Wr, S, =2 S.4), obtained as a pair (as[x]™}, ss),
via a hypercohomology version of Tate-Nakayama duality which blends the usual
Tate—Nakayama isomorphism (in Artin normalization) and the usual Langlands iso-
morphism (in Deligne normalization). Switching (y1,6) to (77, 607*(07!)) does not
change o(g)g™", but inverts §7. Switching e to ¢’ does not change as[x], but inverts sg.
In other words, we are now pairing (o(g)g~", ;") with (ag[x]™",sg"), both of which
lie in the corresponding hypercohomology groups but with ; replaced by #;*. Since
the pairing is built by pairing 07 with ags[x]™! and o(g)g~! with sg, we see that the
total outcome of the pairing is inverted.
Combining the changes of the individual pieces, we arrive at

AA["O> 673](71, 5) = €<VG,Ha wF) : A?BW[QI, —spl, a] : AII[CL7X]_1 : AUI[QI,Z%X] Ay,

where now all pieces are built for the related pair (7, ',60(67!)). Noting that ¢p
and —spl lead to the Whittaker datum !, we see that the above product equals
Aplro~t e 3](vh, 071 (6)7Y), as claimed. O
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