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Abstract. The local intertwining relation is an identity that gives precise informa-
tion about the action of normalized intertwining operators on parabolically induced
representations. We prove several instances of the local intertwining relation for quasi-
split classical groups and the twisted general linear group, as they are required in the
inductive proof of the endoscopic classification for quasi-split classical groups due to
Arthur and Mok. In addition, we construct the co-tempered local A-packets by Aubert
duality and verify their key properties by purely local means, which provide the seed
cases needed as an input to the inductive proof. Together with further technical re-
sults that we establish, this makes the endoscopic classification conditional only on
the validity of the twisted weighted fundamental lemma.
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Introduction

The theory of automorphic forms is a profound topic in number theory with broad
applications to other areas of mathematics and theoretical physics. A fundamental
problem, which is central in the Langlands program, is to classify automorphic repre-
sentations of connected reductive groups G over global fields and to obtain the analo-
gous classification over local fields in terms of parameters pertaining to the Langlands
L-group LG. Such a classification should be consistent with the Langlands functoriality
conjecture, whose rough form posits that a morphism of L-groups LH → LG should
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induce a functorial lifting of representations from H to G, provided that G is quasi-
split. The functoriality conjecture is beyond our current technology in general, but
some special cases fit in the framework of endoscopy à la Langlands further developed
by Arthur, Clozel, Kottwitz, Labesse, Shelstad, and others.

When G is a quasi-split classical group, one can hope to study the classification prob-
lem for G by relating it to the general linear groups and to quasi-split classical groups
of smaller rank, via (ordinary and twisted) endoscopy. This was achieved in Arthur’s
book [Ar3], which represents a crowning achievement in the endoscopic approach to
functoriality, and builds on tremendous foundational work on the trace formula and
related matters spanning multiple decades. The results of [Ar3] were later extended to
quasi-split unitary groups by Mok [Mok], following the same arguments. These results
were partially extended to non-quasi-split classical groups in [KMSW] and [Ish]. Since
classical groups are ubiquitous, the endoscopic classification for them has played an
indispensable role in a number of arithmetic applications such as:

• new instances of the global Langlands reciprocity, see [Sc2, Section 5.1], [BCGP,
Section 1.4.1], [KrS1, KrS2];

• the p-adic Gross-Zagier formula and the Beilinson–Bloch–Kato conjecture, see
[DL], [LL], [LTXZZ];

• Euler systems, see [GS], [LSk], [LTX];
• the Gan–Gross–Prasad conjecture, the Ichino–Ikeda conjecture and their local
analogues, see [W6], [BP1, BP2, BP3], [BPLZZ, Remark 1.7], [BPCZ], [BPC];

• the Sarnak–Xue density conjecture, see [DGG], [EGGG];
• an extension of the Shimura–Waldspurger correspondence, see [GI3], [Li];
• classification/counting of irreducible algebraic cuspidal automorphic represen-
tations of GLN or classical groups over Q of level one, see [CR], [Täı], [CL],
[CT];

• Harder’s conjecture, see [CL], [ACIKY1, ACIKY2].

The main theorems of [Ar3] and [Mok] depend on several results which were unproven
but expected at the time. Some of the results have become available over the past ten
years. The most notable is the stabilization of the twisted trace formula by Mœglin–
Waldspurger [MW4, MW5], assuming the validity of the twisted weighted fundamental
lemma; the latter is as yet not available and is discussed further in Section 0.4 below.
Mœglin–Waldspurger also established the local twisted trace formula in [MW6], which
is one of the vital ingredients in [Ar3, Chapter 6]. The remaining issues were to be
resolved in the projected papers by Arthur, which are named as [A24, A25, A26, A27]
in [Ar3], at least in the symplectic and orthogonal cases. The problem to be addressed
by [A24] has been solved in [MW4], whereas the other three references [A25, A26, A27]
have not been treated yet. For [A24], see also Section 0.3 below. The problems to be
covered by [A25] appear to be particularly challenging, and the Hecke algebra method
mentioned below [Ar3, Lemma 7.1.2] leads to rather complicated calculations that are
delicate even in the (supposedly simplest) case pertaining to the Iwahori Hecke algebras.
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The goal of this paper is to prove all unproven assertions that [Ar3] and [Mok] rely
on, apart from the twisted weighted fundamental lemma, uniformly for quasi-split sym-
plectic, special orthogonal, and unitary groups. Our three main theorems correspond
to what should be expected from [A27], [A26], and [A25], respectively, including their
analogues for unitary groups. In addition we justify a few other technical results that
are used in [Ar3] and [Mok] without explicit reference. It is worth noting that we de-
velop a novel method for [A25] and [A26] based on a careful study of local intertwining
operators, that is quite different from the approaches suggested by Arthur in [Ar3]. As
a consequence of this paper, the main endoscopic classification for quasi-split classical
groups will become unconditional as soon as the twisted weighted fundamental lemma
is fully verified. Also unconditional will be the wide range of applications resting on it.

We remark that a weak global Langlands functoriality from split classical groups
(as well as split general spin groups) to general linear groups was established by Cai–
Friedberg–Kaplan [CFK2] via doubling constructions and the converse theorem, ex-
tending the work by Cogdell–Kim–Piatetski-Shapiro–Shahidi et al. (see [CPSS] and the
references therein) in the globally generic case. Even though the trace formula method
leads to more precise results that are suitable for broader applications, their theorem
is unconditional and less demanding in terms of prerequisites as they avoid the trace
formula. On the other hand, it is possible to deduce a weak global Langlands functori-
ality from (not necessarily quasi-split) classical groups to general linear groups by the
trace formula in a way much softer than [Ar3] and [Mok], and conditional only on the
twisted weighted fundamental lemma; see [Shi], cf. [Ar3, Proposition 9.5.2].

0.1. Context. Now we partially review the outline of Arthur’s inductive argument in
[Ar3] to put our work in context. (The same applies to [Mok] regarding unitary groups.
Since the structure of [Mok] closely follows that of [Ar3], our review focuses on [Ar3].)
We may organize the main theorems in [Ar3] as follows using the numbering from there.

• Local classification theorems: Theorems 1.5.1, 2.2.1, 2.2.4.
• Local intertwining relations (LIR): Theorems 2.4.1, 2.4.4.
• Global seed theorems: Theorems 1.4.1, 1.4.2.
• Global classification theorems: Theorems 1.5.2, 1.5.3.
• Global stable multiplicity formulas: Theorems 4.1.2, 4.2.2.

The local classification includes the local Langlands correspondence, construction and
internal parametrization of A-packets, and the endoscopic character relations. The
global seed theorems support the formalism of Arthur’s global parameters for classical
groups; the global classification includes Arthur’s multiplicity formula as well as the
dichotomy for self-dual cuspidal automorphic representations of GLN , with N even,
into symplectic and orthogonal types. The above theorems are proven all together
by induction on a positive integer N for quasi-split symplectic and special orthogonal
groups which are twisted endoscopic groups for GLN .

The most crucial ingredient of the proof is the stabilization of the trace formulas for
quasi-split classical groups and twisted general linear groups. Essential for its use is
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a precise understanding of the intertwining operators appearing in the trace formulas.
This is the role of our main theorems corresponding to [A26] and [A27] (announced in
[Ar3, Section 2.5]) clarifying the relationship between normalized intertwining operators
and Whittaker models, as well as the part of [A25] pertaining to LIR for A-parameters.

In addition, the theorems on [A25] serve as the cornerstone for Chapter 7 of [Ar3].
Let us provide more details. Arthur obtains the local theorems for tempered repre-
sentations and bounded Langlands parameters, a.k.a., tempered L-parameters, by the
end of Chapter 6 of [Ar3]. Chapter 7 is devoted to the local classification and LIR for
non-tempered A-parameters. Building on the local results of Chapters 6 and 7, Arthur
finishes the proof of the global theorems, thereby completes the inductive argument, in
Chapter 8.

Arthur’s strategy in Chapter 7 broadly consists of two steps:

Step 1: Handle a certain class ofA-parameters over p-adic fields by a local method.
Step 2: Prove the general case via globalization.

Step 2 propagates the results from Step 1 by carefully globalizing a given local A-
parameter such that the local A-parameters at all the other places, apart from the place
of interest, are essentially understood. With that said, we concentrate on Step 1 as this
is what our main theorem is about.

A key input in Step 1 is Aubert duality, which is defined on local A-parameters as
well as on irreducible representations of p-adic reductive groups. On A-parameters, it is
induced by simply permuting the two SL2-factors in the source group. On representa-
tions, Aubert duality is defined in terms of parabolic inductions composed with Jacquet
modules; for example, the trivial representation and the Steinberg representation are
Aubert-dual to each other, and each supercuspidal representation is its own Aubert
dual. Aubert duality on the two sides should be compatible with each other through
the local classification. This is indeed shown to be so by the end of Chapter 7 in [Ar3].

Arthur’s strategy for Step 1 is to turn the tables around. Since the local theorems
are known for tempered L-parameters, we can hope to construct A-packets and prove
the local theorems via Aubert duality when the A-parameters are co-tempered, i.e.,
when they are Aubert-dual to tempered L-parameters, provided that we understand
how Aubert duality interacts with the local classification and LIR. This is exactly what
our third main theorem achieves.

In [Ar3] the counterpart of this theorem is stated as Lemma 7.1.2 and the penultimate
paragraph on p. 428, whose proof was deferred to [A25]. In fact Arthur asserted only
a weaker statement for certain co-tempered A-parameters, which nevertheless suffices
for Step 2 above. On the other hand, our method seems robust and optimal in that it
allows us to deal with all co-tempered A-parameters.

0.2. Results, proofs and organization. Let us describe our results. Let F be a
local field of characteristic zero with the local Langlands group LF , and let either G =
GLN(F ) equipped with a non-trivial pinned outer automorphism θ (which coincides
with g 7→ tg−1 up to an inner automorphism), or let G be a symplectic group Sp2n(F )
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over F ; for simplicity, in this introduction, we will not discuss orthogonal or unitary
groups, which require more notations. See also Section 1, where we review Arthur’s
results and state our three main theorems in the general setting.

Fix a proper standard parabolic subgroup P =MNP of G, and an A-parameter

ψM : LF × SL2(C) → LM

for the Levi component M . As an induction hypothesis, we assume that we have the
A-packet ΠψM , which is a multi-set of irreducible unitary representations of M . Let w
be a (twisted) Weyl element of G that preservesM , i.e., an element of NG(M)/M when
G is the symplectic group, or an element of NG⋊θ(M)/M when G is the general linear
group. After fixing some auxiliary data, for πM ∈ ΠψM , Arthur defines a normalized
intertwining operator

RP (w, πM , ψM) : IP (πM) → IP (wπM),

where IP (πM) is the normalized parabolic induction of πM and (wπM)(m) = πM(w̃−1mw̃)
with a carefully chosen representative w̃ of w (see Section 1.7 for more details). Our
three main theorems concern these normalized intertwining operators.

0.2.1. Main Theorem 1. In the first main theorem (Theorem 1.8.1), we consider the
tempered and generic case. Let ψM = ϕM be a tempered L-parameter, which means
that ϕM |{1LF }×SL2(C) = 1, and let πM be the generic representation lying in ΠϕM . In
this case, from a fixed Whittaker functional on πM , one can get a Whittaker functional
Ω(πM) of IP (πM) by the Jacquet integral (see Section 1.8). Then Theorem 1.8.1 claims
that

Ω(wπM) ◦RP (w, πM , ϕM) = Ω(πM)

if wπM ∼= πM . This is [Ar3, Theorem 2.5.1 (b)], whose proof was deferred to [A27].
Note that a similar result is proven by Shahidi [Sha7], but Shahidi’s definition of
RP (w, πM , ϕM) is not the same as Arthur’s because it uses different normalizing factors.
As suggested in the proof of [Ar3, (2.5.5)], Theorem 1.8.1 will be proven by comparing
Arthur’s normalization factors with Shahidi’s local coefficients. This is done in Section
2. In particular, if G is a classical group, we need the coincidence of Shahidi’s gamma
factors (constructed in terms of representations of reductive groups) with those defined
by Artin, Deligne, and Langlands (constructed in terms of Galois representations). This
is well-known to experts, but for completeness, we give a proof of this fact in Section
A.2.

Another result whose proof was deferred to [A27] is [Ar3, Lemma 2.5.5]. This lemma
claims that the local intertwining relation (see Section 0.2.3 below for more details) for
the tempered case can be reduced to a slightly weaker statement. We will show this
lemma in Appendix D. Theorems 1.8.1 and D.2.1 together with the twisted endoscopic
character relations for the archimedean case, which are explained in Appendix E, make
the discussion of [Ar3, Chapter 6], and hence the local classification in the tempered case
(under the inductive hypotheses), conditional only on the twisted weighted fundamental
lemma.
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0.2.2. Main Theorem 2. The second main theorem concerns G = GLN(F ) and its
automorphism θ. In this case, ΠψM = {πM} is a singleton, and IP (πM) is an irreducible
unitary representation. Let w be a θ-twisted Weyl element such that wπM ∼= πM .
Then we have a normalized isomorphism π̃M(w) : wπM

∼−→ πM , whose composition
with the normalized intertwining operator RP (w, πM , ψM) discussed above produces
the intertwining operator

R̃P (w, π̃M) : IP (πM) → IP (πM) ◦ θ,
see Section 1.9. On the other hand, the assumption wπM ∼= πM implies that IP (πM)
is self-dual, i.e., IP (πM) ∼= IP (πM) ◦ θ. Using a Whittaker functional on the standard

module of IP (πM), one can define a normalized isomorphism θA : IP (πM)
∼−→ IP (πM) ◦ θ

(see Section 1.4). Our second main theorem (Theorem 1.9.1) asserts that

R̃P (w, π̃M) = θA.

This is [Ar3, Theorem 2.5.3], whose proof was deferred to [A26].
The proof of Theorem 1.9.1 is given in Section 3. When πM is tempered (and hence

generic), the assertion immediately follows from the first main theorem (Theorem 1.8.1).
In the non-tempered case, Arthur notes below [Ar3, Theorem 2.5.3] that it requires fur-
ther techniques, based on some version of minimal K-types. While trying to follow
this argument we were led to heavy calculations. Therefore, in this paper we will prove
Theorem 1.9.1 in the non-tempered case with a completely different approach. One of
the challenges is that the isomorphism θA is inexplicit, since it is defined through the
Langlands quotient map from the standard module of IP (πM), which is a priori known
to exist only abstractly. Our novelty is to construct the standard module carefully
and to realize the Langlands quotient map as a composition of normalized intertwin-
ing operators (Lemma 3.3.1). This together with Theorem 1.8.1 describes θA using
intertwining operators, and Theorem 1.9.1 is reduced to the commutativity of a certain
diagram in Theorem 3.4.2, which we call the main diagram. However, since IP (πM) is a
non-tempered unitary induction, this commutativity does not follow directly from the
previous results, and requires further arguments. A simple but non-trivial example for
Theorem 3.4.2 is given in Example 3.4.3.

0.2.3. Main Theorem 3. Let F be a non-archimedean base field so that LF = WF ×
SL2(C) with WF the Weil group of F . We now discuss the results whose proofs were
deferred to [A25]. They pertain to a classical group G over F (in this introduction we
are taking the example of G = Sp2n(F )), and are formulated as [Ar3, Lemma 7.1.2].
This lemma builds on the inductive assumptions that the local theorems have been
proved for

• all tempered L-parameters for G; and
• all A-parameters for G′ any classical group with dim(St

Ĝ′) < dim(StĜ),

where dim(StĜ) is the dimension of the standard representation of the Langlands dual

group Ĝ of G. These inductive assumptions hold at the start of [Ar3, Chapter 7]. The
statements of this lemma concern (certain) co-tempered parameters. More precisely, for
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an A-parameter ψ : WF × SL2(C)× SL2(C) → LG, we define its Aubert dual parameter

ψ̂ : WF × SL2(C) × SL2(C) → LG by ψ̂(w, g1, g2) = ψ(w, g2, g1). We say that ψ is co-

tempered if its restriction to the first copy of SL2(C) is trivial. In other words, ϕ = ψ̂
is a tempered L-parameter.
Under the above inductive hypotheses, our third main theorem (Theorem 1.10.5)

asserts that for every co-tempered A-parameter ψ = ϕ̂ for G,

(1) we can construct an A-packet Πψ together with a character ⟨·, π⟩ψ of the compo-
nent group Sψ assigned to each π ∈ Πψ which satisfies the ordinary endoscopic
character relations, as well as the twisted endoscopic character relations with
respect to GLN(F ) (where N = 2n+ 1 if G = Sp2n(F )); and

(2) it also satisfies the local intertwining relation, explained further below.

Note that this is a stronger statement than what is claimed in [Ar3, Lemma 7.1.2],
because it covers all co-tempered parameters, rather than the special class of tamely
ramified quadratic co-tempered parameters.

Let us be a bit more precise about the statement of our theorem. The construction
of the A-packet Πψ in (1) is actually very simple. We define

Πψ = {π̂ | π ∈ Πϕ},

where ϕ = ψ̂ is the tempered L-parameter that is the Aubert dual of ψ, Πϕ is the
L-packet constructed in [Ar3, Chapter 6], and π̂ is the Aubert dual of π (see [Au]). The
problem is to prove that this definition satisfies the twisted and ordinary endoscopic
character identities.

For the twisted character identities, we need to show that an alternating sum of the
characters of the members of the packet Πψ defined above is the twisted transfer of the
twisted character of the representation of GLN(F ) associated to ψ (now viewed as a
parameter for GLN(F ) via the standard embedding of LG into GLN(C)). For this we
need to relate Aubert duality for the classical group G to twisted Aubert duality for
GLN(F ). Building on the work of Hiraga [Hi], this comes down to verifying that certain
signs defined in terms of Aubert duality for representations agree with corresponding
signs defined in terms of Aubert duality for parameters.

For standard character identities, we need to establish a map π 7→ ⟨·, π⟩ψ between Πψ

and the set of characters on Sψ in such a way that, for each s ∈ Sψ, the virtual character∑
π∈Πψ⟨s · sψ, π⟩ψΘπ matches its endoscopic counterpart. By construction there is an

obvious bijection π 7→ π̂ between Πψ and Πϕ, while at the same time we have the
identity Sψ = Sϕ. However, it is not true that ⟨·, π⟩ψ = ⟨·, π̂⟩ϕ, in the sense that, if we
took the above identity as a definition, then the endoscopic character identities would
not hold1.

1It was also pointed out by Liu–Lo–Shahidi [LLS] recently. Their “anti-tempered” is synonymous
to “co-tempered” in this paper.
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To see what the correct definition would be, we assume that the desired character

relations hold for an arbitrary A-parameter ψ and its dual ψ̂, and investigate the im-
plication of this assumption on the relationship between ⟨·, π⟩ψ and ⟨·, π̂⟩ψ̂ in Lemma

4.4.4 (2), where we show that the quotient of these characters can be described by cer-
tain signs β(ψ+), β(ψ−), and β(ψ); here β(ψ) is the sign that occurs in twisted Aubert
duality on GLN for the representation corresponding to ψ (see Section 4.1) and β(ψ+),
β(ψ−) are the analogous signs for certain supplementary parameters ψ+ and ψ− defined
in terms of ψ and the element s (see Section 1.6). While we cannot compute these signs
in full generality, we do compute them for tempered representations in Proposition
4.1.3, and for a certain class of representations in Proposition 4.5.2, respectively. Hence
we obtain an explicit relation between ⟨·, π̂⟩ψ̂ and ⟨·, π⟩ψ in Corollaries 4.4.5 and 4.5.3.

Note that Proposition 4.5.2 is an application of the second main theorem (Theorem
1.9.1), and Corollary 4.5.3 will be applied in the final step of the proof of Theorem
1.10.5 (2).

Turning the tables around (see Remark 4.4.6), we now drop the assumption that the
desired character identities hold (after all, these are the identities we want to prove)

and for a co-tempered A-parameter ψ = ϕ̂, we define the character ⟨·, π⟩ψ such that the
formula obtained in Corollary 4.4.5 holds. In order to see that this is well-defined, one
has to check a certain equality (∗) in Proposition 5.1.2. As a consequence, we can see
that the A-packet Πψ satisfies the endoscopic character identities (Theorem 5.4.1).

Finally, we shall explain the proof of Theorem 1.10.5 (2), the local intertwining
relation for co-tempered A-parameters. Our approach is entirely different from the one
suggested below the statement of [Ar3, Lemma 7.1.2]. While the suggestion there was
based on the theory of Hecke algebras and an expected extension of results by Morris,
our initial attempts in this direction quickly led to very difficult calculations. Therefore,
we develop a new approach that is based on the study of certain special representations,
motivated by a result of Tadić [Tad2], as well as the study [At] of Jacquet modules for
tempered L-packets by one of the authors, to treat the case of maximal parabolic
subgroups and parameters ψM whose linear part is irreducible and self-dual, and then
we use an induction procedure to generalize this to arbitrary parabolic subgroups and
arbitrary co-tempered parameters.

Let P = MNP be a proper standard parabolic subgroup of G = Sp2n(F ). If ψM
is an A-parameter for M , we denote by ψ the A-parameter for G given by ψM and
the embedding LM ↪→ LG. Then the A-packet Πψ is the multi-set of the irreducible
components of IP (πM) for πM ∈ ΠψM . Moreover, if a Weyl element w of G preservesM

and ψM , we can normalize an isomorphism wπM
∼−→ πM . This allows us to define for an

element u ∈ Sψ = Cent(Im(ψ), Ĝ) that normalizes M̂ , a normalized self-intertwining
operator

⟨ũ, π̃M⟩RP (wu, π̃M , ψM) : IP (πM) → IP (πM),

where the Weyl element wu is determined by u. If we knew that IP (πM) is multiplicity-
free, then this operator, being G-equivariant, would act on each irreducible summand
π ⊂ IP (πM) by a scalar. The local intertwining relation (LIR) asserts that this scalar
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is equal to ⟨su, π⟩ψ, where su ∈ Sψ = π0(Sψ) is the image of u ∈ Sψ. For a more precise

statement, see Section 1.10. When ψM = ϕ̂M is co-tempered, the multiplicity-free state-
ment follows from the corresponding statement for ϕM , which has been established in
[Ar3, Chapter 6], and Theorem 1.10.5 (2) claims that (LIR) holds. We prove Theorem
1.10.5 (2) in Sections 6 and 7.

As mentioned above, the proof can be reduced by an inductive argument (Lemma
6.2.1) to the case where P = MNP is a maximal parabolic subgroup, so that M ∼=
GLk(F )×G0 with G0 = Sp2n0

(F ), and the GL-part ψGL of ψM = ψGL⊕ψ0 is irreducible
and self-dual. After that, our approach to attack (LIR) is to extend our method for
Theorem 1.9.1 from the case of GLN(F ) to the case of classical groups. The reason why
our method works well for GLN(F ) is that the unitary induction IP (πM) is irreducible,
which implies that its Langlands data are easily described from the ones of πM . When G
is a classical group, IP (πM) need not be irreducible. In Section 6.4, we isolate a certain
irreducible summand of IP (πM) for which our method would work, which we call a
highly non-tempered summand. The relevance of this notion is that one can infer the
Langlands data of a highly non-tempered summand of IP (πM) from that of πM , while
the Langlands data for general subquotients of parabolically induced representations are
mysterious. It follows from the definition that for any πM ∈ ΠψM , there exists a highly
non-tempered summand of IP (πM), and in many cases it is unique. Our method would
work only for highly non-tempered summands of IP (πM). Since we are assuming that
P is maximal and that ψGL is irreducible, the unitary induction IP (πM) for πM ∈ ΠψM

is a direct sum of at most two irreducible representations. In this sense, our method
has a chance to prove (LIR) only for “half” of the cases.

The good news is that Corollary B.3.3 tells us that “half” is enough! More precisely,
if IP (πM) = π1 ⊕ π2 is reducible, then this result, which says that Aubert duality
commutes with the normalizing intertwining operator up to a nonzero scalar, implies
that (LIR) for π1 is equivalent to (LIR) for π2 (see Lemma 6.3.2). Note that Corollary
B.3.3 was established in an appendix in an arXiv version of [KMSW], but because it is
a key input to our argument, we move this appendix to Appendix B in this paper.

This allows us to focus on (LIR) for a highly non-tempered summand π ⊂ IP (πM).
By the definition of this summand, we have at our disposal the analogue of the main
diagram from the GLN(F ) case. However, since the intertwining operator on IP (πM)
is normalized using the A-parameter ψM , whereas the other operators appearing in the
main diagram use L-parameters, the main diagram is commutative only up to an explicit
scalar, which is a special value of the quotient of the normalizing factors defined using
the A-parameter ψM and the L-parameter ϕπM of πM . See Theorem 6.5.1. By (LIR)
in the tempered case, we can relate this scalar with the eigenvalue of the normalized
intertwining operator on π. In conclusion, (LIR) for the highly non-tempered summand
π ⊂ IP (πM) is equivalent to a certain scalar equation (⋆) presented in Corollary 6.5.2.

The proof is therefore reduced to establishing this scalar equation (⋆). Note that
the left-hand side of this equation involves the L-parameter of πM . In general, it is
very difficult to completely list the L-parameters of representations in a given A-packet
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ΠψM . Circumventing this problem, we give an inductive argument to show (⋆). The
initial step is where the classical part π0 of πM = πGL ⊠ π0 is almost supercuspidal
(see Definition 7.2.1). In this case, we will compute everything by hand in Section
7.3. For the inductive steps (Sections 7.4, 7.5 and 7.6), we use [At, Theorem 4.2] that
computes the Jacquet modules of tempered representations. According to this theorem,
we need to consider three cases separately. The first and second cases are amenable,
whereas in the last case in Section 7.6, we have to treat an A-parameter which is beyond
co-tempered, but it fits the artificial assumption in Corollary 4.5.3.

In our proof of Theorem 1.10.5, Mœglin’s work on the explicit construction of A-
packets (see [X2] and its references) plays a fundamental role. In particular, her results
on the computation of the cuspidal support of discrete series representations and their
reinterpretation in terms of enhanced L-parameters by Xu (see [X1]), as well as the
extension [At] of these results to the tempered case by one of the authors, are an
essential tool in our argument.

However one has to be quite careful at this point. As explained in [X2, Section 8],
the original arguments presented in [X2] and [At], follow a strategy that requires the
validity of Arthur’s results not only for the group G itself, but also for groups of higher
rank. Therefore, such approach cannot be taken in the middle of a proof by induction
on the rank of G, which is the situation of [Ar3, Chapter 7]. This requires us to give new
proofs of some of these results, in particular [At, Theorem 4.2], which avoid appealing
to groups of larger rank. We do this in Appendix C, and also extend the results to
cover the case of unitary groups.

Note also that, if we could use the full extent of these results, that would easily lead
to a generalization of Corollary 4.5.3 that does not use Theorem 1.9.1. But because of
the inductive constraints, we are forced to prove the stated version of Corollary 4.5.3
and appeal to Theorem 1.9.1 in that proof.

0.2.4. Supplementary results. In addition to the main theorems, we prove a number
of supplementary results in the appendices, most of which are also required for the
inductive argument in [Ar3], and some of which may be of independent interest.

In Appendix A, we prove that the local Langlands correspondence for classical groups,
that is established by the inductive argument of [Ar3] and [Mok], matches the Galois-
theoretic local factors defined by Artin, Deligne and Langlands with the automorphic
local factors defined by Shahidi. This result is used in the proof of our first main
theorem (Theorem 1.8.1) and it is also of independent interest: for example, it is used
in [GI1] and [GI2], where it was taken as an assumption.

In general, the matching of such local factors is a basic expectation for the local
Langlands correspondence, at least in the setting in which automorphic local factors
have been defined. In some constructions of the correspondence (such as those based
on converse theorems), this matching is built into the construction. In the approach via
endoscopy that is the subject of [Ar3] and [Mok], this matching does not follow directly
from the construction. In Appendix A, we verify it for groups of the form GLk × G0,
where G0 is a classical group. In this setting, the automorphic local factors were defined
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by Shahidi, and we verify that they match the Galois factors defined by Artin, Deligne
and Langlands.

In Appendix B, we review the Aubert involution for connected reductive groups and
prove that it is compatible with intertwining operators up to a scalar. This result is
used in an essential way in the proof of our third main theorem (Theorem 1.10.5). This
theorem, roughly speaking, explicitly determines the scalar.

We also review a forthcoming work on the Aubert involution for disconnected reduc-
tive groups, which is also necessary in the proof of the third main theorem (Theorem
1.10.5). In order to keep this note complete and self-contained, we have included in
this appendix those definitions and proofs that are required for our purposes.

In Appendix C, we extend and reprove some results of [Mœ], [X1], and [At], to all
classical groups. These results are essential in the proof of our third main theorem
(Theorem 1.10.5). On the one hand, some of these results were originally formulated
only for symplectic and orthogonal groups, and we take the opportunity here to formu-
late and prove them also for unitary groups. As already mentioned, the earlier proofs
of some of these results relied on some arguments that presuppose that the endoscopic
classification of representations has been established for all groups, in particular for
groups whose rank is higher than the group one is interested in. Since such an assump-
tion is problematic in the midst of a proof by induction on the rank, we present in this
appendix alternative proofs that avoid this assumption.

Appendix D is devoted to the proofs of two results which are based on the same
argument. The first result is the strong form of Shahidi’s tempered L-packet conjecture
(a strengthening of [Sha7, Conjecture 9.4]), which states that every tempered L-packet
contains exactly one member that is generic with respect to a given fixed Whittaker
datum w, and moreover that the pairing of this L-packet with the centralizer group of
its parameter matches the generic constituent with the trivial character. For classical
groups, the existence and uniqueness of the generic constituent was proven by Varma
[V2]. We prove this for general connected reductive groups under relevant assumptions,
which the construction of the local Langlands correspondence in [Ar3] and [Mok] does
indeed satisfy.

The second result is of a more technical nature. It is formulated in [Ar3] as Lemma
2.5.5 and is used in the inductive proof. This lemma states that a weaker version of
the local intertwining relation, where a certain unknown scalar is inserted, implies the
stronger version, in which this scalar equals 1. In [Ar3], this statement is formulated
for classical groups and for odd residual characteristic. Building on results of Kottwitz
[Kot2] and Varma [V1], we are able to give a proof that works uniformly for all reductive
groups and arbitrary residual characteristic.

In Appendix E, we prove certain twisted character identities over the real numbers
that are assumed at various places in the inductive argument of [Ar3]. Such identities
are now available in the literature, so we simply collect the required references and
supply the necessary additional arguments to adapt them to the form needed in [Ar3].
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Finally, in Appendix F, we shall review two conventions for normalizing class field
theory depending on whether arithmetic or geometric Frobenius elements correspond
to uniformizers under the local non-archimedean reciprocity map, and discuss how they
influence Arthur’s endoscopic classification. It is an expanded version of the discussion
of [KoSh2, Section 4]. This appendix is independent of the other sections in this paper.

0.2.5. A roadmap. The following is a roadmap of our paper and Arthur’s results:
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0.3. On [A24]. As alluded to above, the problem associated with [A24] has been re-
solved. The main role of [A24] is to justify [Ar3, Proposition 2.1.1], which asserts
that choosing a test function on the twisted general linear group essentially amounts
to choosing a family of test functions on (not necessarily elliptic) twisted endoscopic
groups satisfying a certain compatibility condition. The proposition “represents part
of the stabilization of the twisted trace formula” (see [Ar3, p. 57, line -8]), and in-
deed, it has been proved in general (not only for twisted general linear groups) by
Mœglin–Waldspurger [MW4, I.4.11]. Note that [A24] is used again in the proof of [Ar3,
Corollary 8.4.5] to back up an implicit fact in one of Arthur’s papers; this fact is covered
by [MW4, I.4.11] as well.

0.4. On the twisted weighted fundamental lemma. As mentioned above, the
stabilization of the twisted trace formula depends on the twisted weighted fundamental
lemma stated as a theorem in [MW4, II.4.4], which remains conditional to the best of
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our knowledge; cf. the third last paragraph in the preface of [MW5]. As explained in
[MW4, II.4.4], this theorem is reduced via [W4, Theorem 3.8] to

(i) the weighted fundamental lemma for Lie algebras; and
(ii) the non-standard version thereof; see [W4, Conjectures 3.6, 3.7] for the precise

statements.

We should point out that (i) is already needed to stabilize the untwisted trace formula.
The proof of (i) was completed for split groups by Chaudouard–Laumon [CL1, CL2].
Even though their methods are expected to generalize beyond the split case, no written
account has appeared on the proof of (i) for non-split groups, or on the proof of (ii).
Such a generalization is necessary for the stabilized trace formulas considered in [Ar3]
and [Mok].

It is worth noting that all versions of the unweighted fundamental lemma are theorems
thanks to Ngô, Waldspurger, and others; see the introduction of [N] and [LMW] for the
explanation and further references, and [GWZ] and [Wa] for other proofs.
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1. Arthur’s theory of the endoscopic classification

In this section, we review Arthur’s theory and state our main theorems in their
appropriate generality.

1.1. Basic notation. Fix a local field F of characteristic zero. Let E be either F or a
quadratic field extension of F . We denote by x 7→ x the generator of Gal(E/F ). Fix a
non-trivial unitary character ψF : F → C×, and put ψE = ψF ◦ trE/F . The normalized
absolute value of E is denoted by | · |E. In particular, if E is non-archimedean, and if
ϖE is a uniformizer of E, then |ϖE|E = q−1

E , where qE is the cardinality of the residue
field of E.

Fix an algebraic closure F of F , which contains E. The absolute Galois group of F
is denoted by Γ = ΓF = Gal(F/F ). Let WE be the Weil group of E, and let

LE =

{
WE if E is archimedean,

WE × SL2(C) if E is non-archimedean

be the local Langlands group of E. Finally, let | · |E be the norm map of LE, i.e.,

| · |E : LE ↠ Lab
E

∼= E× |·|E−−→ R>0,

where Lab
E

∼= E× is the isomorphism given by the local class field theory. Here, we
normalize this isomorphism such that an arithmetic Frobenius map corresponds to a
uniformizer in E×.

1.2. Groups. In this paper, we often identify a connected reductive group over F with
the group of its F -points.

Let G◦ be a general linear group GLN(E) or one of the following quasi-split classical
groups

SO2n+1(F ), Sp2n(F ), SO2n(F ), Un.

Here, when G◦ = Un, it is an outer form of GLn with respect to a specified quadratic
extension E of F , whereas when G◦ = SON(F ), Sp2n(F ) we simply set E = F . On the
other hand, when G◦ = SO2n(F ), we denote by K the splitting field of G◦, which is
equal to F or a quadratic extension of F . Letting η be the (possibly trivial) quadratic
character of F× associated to K/F , we sometimes write SO2n(F ) = SOη

2n(F ).
Fix an F -splitting spl = (B◦, T ◦, {Xα}α) of G◦. Namely, B◦ = T ◦U is an F -rational

Borel subgroup, T ◦ is a maximal torus, U is the unipotent radical of B◦, and {Xα}α
is a Γ-invariant set of root vectors, where α runs over simple roots of T ◦ with respect
to B◦. Then spl and ψF give rise to a Whittaker datum w = (B◦, χ), where χ is a
non-degenerate character of U . For any Levi subgroup M◦ of G◦ containing T ◦, we
take the F -splitting of M◦ induced by spl, so that the associated Whittaker datum is
given by wM = (B◦ ∩M◦, χ|U∩M◦).
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For any subgroup N of U stable under the adjoint action of T ◦, we take the Haar
measure on N determined by {Xα}α and the self-dual Haar measure on F with respect
to ψF .

If G◦ = SOη
2n(F ), we also consider the full orthogonal group G = Oη

2n(F ) such that
G◦ is the connected component of 1 ∈ G. We also abbreviate Oη

2n(F ) as O2n(F ). Let
T be the normalizer of (T ◦, B◦) in G. Then T/T ◦ ∼= G/G◦. Fix ϵ ∈ T \ T ◦ with
ϵ2 = 1 such that ϵ preserves the splitting spl. (See cf., Section A.3 below.) It gives an
identification of O2n(F ) with a twisted group SO2n(F )⋊ ⟨ϵ⟩. If G◦ ̸= SO2n(F ), we set
G = G◦ and T = T ◦.

Let P ◦ = M◦N be a parabolic subgroup of G◦, where M◦ is a Levi component of
P ◦ and N = NP is the unipotent radical of P ◦. We say that P ◦ (resp. M◦) is standard
(resp. semi-standard) if it contains B◦ (resp. T ◦). If P ◦ is stable under the adjoint
action of T , we set P = P ◦ · T and M = M◦ · T . Otherwise, we put P = P ◦ and
M =M◦. We call the subgroup of the form P =MN (resp. M) a (standard) parabolic
subgroup (resp. a (semi-standard) Levi subgroup) of G.

1.3. Representations. Let G be one of the groups GLN(E), SO2n+1(F ), Sp2n(F ),
O2n(F ) or Un as in the previous subsection. We denote by Rep(G) the category of
smooth (Fréchet) admissible complex representations ofG (of moderate growth) of finite
length. Here, the notions of Fréchet and moderate growth are meaningful only when
F is archimedean. Let Irr(G) be the set of equivalence classes of irreducible objects
of Rep(G). The subset of Irr(G) consisting of irreducible unitary (resp. tempered)
representations is denoted by Irrunit(G) (resp. Irrtemp(G)).
Let P = MN be a standard parabolic subgroup of G with semi-standard Levi com-

ponent M . Put aM = Hom(Rat(M),R) and a∗M = Rat(M) ⊗ R, where Rat(M) is the
group of algebraic characters of M defined over F . Let a∗M,C = Rat(M) ⊗ C be the
complexification of a∗M . Define a homomorphism HM : M → aM by

|χ(m)|F = e⟨HM (m),χ⟩

for all χ ∈ Rat(M) and m ∈M , where ⟨·, ·⟩ : aM × a∗M → R is the natural pairing. For
an irreducible representation π of M and λ ∈ a∗M,C, we define a representation πλ of M

by πλ(m) = e⟨HM (m),λ⟩π(m) realized on the space Vπ of π. We denote by

IP (πλ) = IndGP (πλ)

the associated normalized parabolically induced representation of G. As a C-vector
space, IP (πλ) is the space of smooth functions fλ : G→ Vπ such that

fλ(nmg) = δ
1
2
P (m)πλ(m)fλ(g)

for n ∈ N , m ∈ M and g ∈ G. When F is archimedean, this space is a Fréchet space
with some natural semi-norms. For more precision, see [Cas, Section 4].

On the other hand, if F is non-archimedean and if (π,Vπ) is a smooth representation
of G, set Vπ(N) to be the subspace of Vπ generated by vectors of the form v − π(n)v
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for v ∈ Vπ and n ∈ N . Define an action π of M on Vπ/Vπ(N) by

π(m)(v mod Vπ(N)) = δ
− 1

2
P (m)π(m)v mod Vπ(N).

The representation (π,Vπ/Vπ(N)) of M is called the normalized Jacquet module of π
along P , and is denoted by JacP (π).

1.4. Arthur’s extension of conjugate-self-dual representations. We define an
involution θ on GLN(E) by

θ : x 7→

 1

. .
.

(−1)N−1

 tx−1

 1

. .
.

(−1)N−1


−1

.

Set G̃LN(E) = GLN(E)⋊ ⟨θ⟩.
Let π be an irreducible representation of GLN(E). Suppose that π is conjugate-self-

dual, i.e., π ∼= π ◦ θ. Then there is a linear isomorphism T : π
∼−→ π such that

T ◦ π(g) = π(θ(g)) ◦ T, g ∈ GLN(E).

Note that T is unique up to a nonzero scalar. We can normalize T as follows. Let Iπ be
the standard module of GLN(E) whose Langlands quotient is π. Since Iπ is w-generic,
we can fix a nonzero w-Whittaker functional Ω on Iπ. By π ∼= π ◦ θ, there is a unique
linear isomorphism θW : Iπ

∼−→ Iπ satisfying the equations

θW ◦ Iπ(g) = Iπ(θ(g)) ◦ θW , g ∈ GLN(E),

Ω ◦ θW = Ω.

Since Ω is unique up to a scalar, the definition of θW is independent of the choice of Ω.
Then we can define a linear isomorphism θA : π

∼−→ π satisfying θA ◦ π(g) = π(θ(g)) ◦ θA
for any g ∈ GLN(E) and making the diagram

Iπ
θW−−−→ Iπy y

π
θA−−−→ π

commutative, where the vertical map Iπ → π is the (fixed) Langlands quotient map,
which is unique up to a scalar. In particular, θA gives an extension π̃ = π ⊠ θA of π to

G̃LN(E). We call it Arthur’s extension of π. Note that θA depends on π.

1.5. A-parameters. First, we consider GLN(E). A representation of LE × SL2(C) is
a homomorphism

ψ : LE × SL2(C) → GLN(C)
such that

• ψ(WE) consists of semisimple elements;
• ψ|WE

is continuous;
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• ψ|SL2(C) is algebraic if E is archimedean, whereas, ψ|SL2(C)×SL2(C) is algebraic if
E is non-archimedean.

An A-parameter for GLN(E) is an equivalence class of N -dimensional representations
ψ : LE × SL2(C) → GLN(C) such that ψ(WE) is bounded. By the local Langlands
correspondence (LLC) for GLN(E) established by Langlands himself [L], Harris–Taylor
[HT], Henniart [He2], and Scholze [Sc1], we obtain an irreducible representation πψ of
GLN(E) associated to the L-parameter

ϕψ : LE ∋ w 7→ ψ

(
w,

(
|w|

1
2
E 0

0 |w|−
1
2

E

))
∈ GLN(C).

This is a unitary representation.
If E ̸= F , fix s ∈ WF \ WE and set cψ(w, α) = ψ(sws−1, α). We call cψ the

conjugate of ψ. When E = F , we simply set cψ = ψ. We say that ψ is conjugate-
self-dual if ψ ∼= cψ∨. In this case, πψ is also conjugate-self-dual, i.e., πψ ∼= πψ ◦ θ. Let

π̃ψ = πψ ⊠ θA be Arthur’s extension of πψ to G̃LN(E). We denote the character of π̃ψ
by Θπ̃ψ(f̃) = tr(π̃ψ(f̃)) for f̃ ∈ C∞

c (GLN(E)⋊ θ).
Next, let G be one of the following quasi-split classical groups

SO2n+1(F ), Sp2n(F ), Oη
2n(F ), Un.

We denote by G◦ the connected component of the identity of G. Then G = G◦ unless
G = Oη

2n(F ) in which case G◦ = SOη
2n(F ). As explained in Section 1.2, we sometimes

write SO2n(F ) = SOη
2n(F ) and O2n(F ) = Oη

2n(F ). We denote by StĜ the standard

representation of Ĝ◦, and set

N = dim(StĜ) =


2n if G = SO2n+1(F ),O

η
2n(F ),

2n+ 1 if G = Sp2n(F ),

n if G = Un.

Let Ψ(G) be the set of equivalence classes of conjugate-self-dual representations
ψ : LE × SL2(C) → GLN(C) with

sign =


−1 if G = SO2n+1(F ),

+1 if G = Sp2n(F ),O2n(F ),

(−1)n−1 if G = Un,

det(ψ) =

{
1 if G = SO2n+1(F ), Sp2n(F ),

η if G = Oη
2n(F ).

See [GGP, Section 3] for the notions of the signs of conjugate-self-dual representations.

An A-parameter for G◦ is a Ĝ◦-conjugacy class of L-homomorphisms

ψ : LF × SL2(C) → LG◦
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such that ψ(WF ) is bounded. If G = G◦, then any A-parameter ψ : LF ×SL2(C) → LG
can be identified with an element of Ψ(G) by ψ 7→ ψ|LE×SL2(C). On the other hand,
when G = O2n(F ), if we denote by Ψ(G◦) the set A-parameters ψ : LF×SL2(C) → LG◦,
then there is a surjective map Ψ(G◦) → Ψ(G) whose fibers have cardinality 1 or 2. We
say that ϕ ∈ Ψ(G) is tempered if ϕ is trivial on the last SL2(C), i.e., ϕ : LE → GLN(C).
We denote by Φtemp(G) the subset of Ψ(G) consisting of tempered A-parameters.

Let ψ ∈ Ψ(G). We decompose

ψ = ψbad ⊕ ψgood ⊕ cψ∨
bad,

where ψgood is a sum of irreducible conjugate-self-dual representations of the same type
as ψ, and ψbad is a sum of irreducible representations of other types (see cf., [GGP,
Section 4]). We say that ψ is of good parity if ψbad = 0. In general, if we write

ψgood =
t⊕
i=1

ϕi ⊠ Sdi ,

where ϕi is an irreducible representation of LE with ϕi(WE) bounded, and Sd is the
unique d-dimensional irreducible algebraic representation of SL2(C), we set

Aψ =
t⊕
i=1

Z/2Ze(ϕi, di).

Namely, it is a free Z/2Z-module with a canonical basis {e(ϕi, di)}1≤i≤t. Let A+
ψ be the

kernel of the homomorphism

det : Aψ → Z/2Z, e(ϕi, di) 7→ dim(ϕi ⊠ Sdi) mod 2.

Define A0
ψ as the subgroup of Aψ generated by elements of the form e(ϕi, di)+ e(ϕj, dj)

such that ϕi ⊠ Sdi
∼= ϕj ⊠ Sdj . Note that A0

ψ ⊂ A+
ψ . Finally, set zψ =

∑t
i=1 e(ϕi, di).

When F is non-archimedean so that LE = WE × SL2(C), if ϕi = ρi ⊠ Sai , then we also
write e(ϕi, di) = e(ρi, ai, di).

Let Sψ = Cent(Im(ψ), Ĝ◦) be the centralizer of Im(ψ) in Ĝ◦, and consider the com-
ponent group

Sψ = π0(Sψ/Z(Ĝ◦)Γ).

Then we have the following.

• If G = SO2n+1(F ), then zψ ∈ A+
ψ = Aψ. Moreover,

Sψ ∼= Aψ/(A
0
ψ + Z/2Zzψ).

• If G = Sp2n(F ), then zψ ̸∈ A+
ψ ̸= Aψ. Moreover,

Sψ ∼= A+
ψ/A

0
ψ
∼= Aψ/(A

0
ψ + Z/2Zzψ).

• If G = O2n(F ), then zψ ∈ A+
ψ . Moreover,

Sψ ∼= A+
ψ/(A

0
ψ + Z/2Zzψ).
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If we define S̃+
ψ similarly to Sψ with replacing Cent(Im(ψ), Ĝ◦) with Cent(Im(ψ),O2n(C)),

then
S̃+
ψ
∼= Aψ/(A

0
ψ + Z/2Zzψ).

• If G = Un, then
Sψ ∼= Aψ/(A

0
ψ + Z/2Zzψ).

These isomorphisms are given by sending e(ϕi, di) ∈ Aψ to the element in Ĝ◦ (or O2n(C))
which acts on ϕi ⊠ Sdi by −1, and on the other irreducible components trivially.

1.6. A-packets via endoscopic character relations. Set Aψ = Aψ/(A
0
ψ +Z/2Zzψ)

and denote its Pontryagin dual by Âψ. According to [Ar3, Theorems 2.2.1, 2.2.4] and
[Mok, Theorem 3.2.1] for ψ, one has a multi-set Πψ over Irrunit(G) and a map

Πψ → Âψ, π 7→ ⟨·, π⟩ψ.

We call Πψ the A-packet associated to ψ. By identifying Âψ with a subgroup of Âψ,
one regards ⟨·, π⟩ψ as a character of Aψ which factors through the surjection Aψ ↠ Aψ.
In particular, we can consider a sign ⟨s, π⟩ψ ∈ {±1} for s ∈ Aψ.
The A-packet Πψ together with the pairing ⟨·, π⟩ψ will be determined by the following

endoscopic character relations.

(1) The equation

(ECR1) Θπ̃ψ(f̃) =
1

(G : G◦)

∑
π∈Πψ

⟨sψ, π⟩ψΘπ(fG)

holds whenever f̃ ∈ C∞
c (GLN(E)⋊ θ) and fG ∈ C∞

c (G◦) have matching orbital
integrals, where Θπ is the character of π, and we set

sψ =
∑
1≤i≤t

di≡0 mod 2

e(ϕi, di).

(2) For s =
∑

i∈I− e(ϕi, di) ∈ Aψ, set ψ± as

ψ− =
⊕
i∈I−

ϕi ⊠ Sdi , ψ+ = ψ − ψ−.

Fix a conjugate-self-dual character η± of E× such that there is a classical group
G± satisfying that ψ± ⊗ η± ∈ Ψ(G±). For fG ∈ C∞

c (G), taking fG± ∈ C∞
c (G◦

±)
such that

• fG and fG+ ⊗ fG− have matching orbital integrals;
• when G = O2n(F ) and s ∈ A+

ψ (resp. s ̸∈ A+
ψ ), we further assume that

fG(g) = 0 for g ∈ O2n(F ) \ SO2n(F ) (resp. for g ∈ SO2n(F )),
we define

f ′
G(ψ, s) =

∏
κ∈{±}

1

(Gκ : G◦
κ)

 ∑
πκ∈Πψκ⊗ηκ

⟨sψκ⊗ηκ , πκ⟩ψκ⊗ηκΘπκ(fGκ)

 .
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Then f ′
G(ψ, s) is independent of the choice of fG± , and the equation

(ECR2) f ′
G(ψ, s) =

1

(G : G◦)

∑
π∈Πψ

⟨s · sψ, π⟩ψΘπ(fG)

holds.

Remark 1.6.1. (1) We normalize the transfer factors such that it is consistent
with Arthur’s Whittaker normalization. It gives a precise meaning of “matching
orbital integrals”.

(2) The pair of characters (η+, η−) determines an L-embedding

ξ : L(G◦
+ ×G◦

−) ↪→ LG◦,

and the notion of matching orbital integrals depends on (η+, η−) or ξ.
(3) A non-trivial pair of characters (η+, η−) is necessary when G = Sp2n(F ) or

G = Un in general. More precisely, if G = Sp2n(F ) and dim(ψκ) ≡ 1 mod 2, we
must take ηκ = det(ψκ). If G = Un and dim(ψκ) ̸≡ n mod 2, we need to choose
a conjugate-symplectic character ηκ, of which there is no canonical choice.

Remark 1.6.2. In [Ar3], Arthur works exclusively with SO2n(F ), but we have elected
to work with O2n(F ) in this paper. For a discussion of why this is natural and preferable,
see the introduction of [AG1].

Suppose that G = O2n(F ) and ψ ∈ Ψ(G). We shall explain how to reformulate
Arthur’s results in this setting.

(1) Arthur defines a packet Π̃ψ over Irrunit(SO2n(F ))/O2n(F ) together with a map

Π̃ψ → Ŝψ, [π] 7→ ⟨·, [π]⟩ψ. We set Πψ to be the inverse image of Π̃ψ under the
canonical map

Irrunit(O2n(F )) → Irrunit(SO2n(F ))/O2n(F )

obtained by taking the orbit of an irreducible component of the restriction.

Then [Ar3, Theorem 2.2.4] gives a map Πψ → Âψ such that the diagram

Πψ −−−→ Âψy y
Π̃ψ −−−→ Ŝψ

is commutative. In particular, Πψ is stable under the determinant twist π 7→
π ⊗ det.

(2) Note that Πψ is actually defined as a packet over Irrunit(SO2n(F )⋊ ⟨Ad(ϵ)⟩). To
fix an identification O2n(F ) ∼= SO2n(F )⋊ ⟨Ad(ϵ)⟩, we need to choose ϵ ∈ T \T ◦.
Hence the pairing ⟨·, π⟩ψ for π ∈ Πψ depends on this choice.

(3) As in (ECR1), one can consider the distribution

Θψ(fG) =
1

(G : G◦)

∑
π∈Πψ

⟨sψ, π⟩ψΘπ(fG), fG ∈ C∞
c (G).
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On the other hand, if one denotes by C∞
c (G◦)ϵ the subspace of C∞

c (G◦) consisting
of f ◦

G such that f ◦
G ◦ Ad(ϵ) = f ◦

G, Arthur considers

Θ◦
ψ(f

◦
G) =

∑
[π]∈Π̃ψ

⟨sψ, [π]⟩ψΘπ(f
◦
G), f ◦

G ∈ C∞
c (G◦)ϵ.

They are related such that the diagram

C∞
c (G◦)

Θψ |C∞
c (G◦)−−−−−−→ Cy ∥∥∥

C∞
c (G◦)ϵ

Θ◦
ψ−−−→ C

is commutative, where the left arrow is defined by fG 7→ 1
2
(fG+fG◦Ad(ϵ)). Note

that Θψ is a distribution on G, but it is restricted to C∞
c (G◦) in the diagram.

Since fG ◦ Ad(ϵ) has the same transfer as fG, our (ECR1) is the same as the
ECR by Arthur [Ar3, Theorem 2.2.1]. Similarly, (ECR2) is the same as [Ar3,
Theorems 2.2.1, 2.2.4].

1.7. Normalized intertwining operators. For semi-standard Levi subgroups M◦
1

and M◦
2 of G◦, put

N(M◦
1 ,M

◦
2 ) = {g ∈ G | gM◦

1 g
−1 =M◦

2}.
The groupM◦

1 (resp.M◦
2 ) acts on this set by multiplication on the right (resp. the left).

We consider the Weyl set

W (M◦
1 ,M

◦
2 ) =M◦

2\N(M◦
1 ,M

◦
2 ) = N(M◦

1 ,M
◦
2 )/M

◦
1 .

In particular, we write W (M◦
1 ) = W (M◦

1 ,M
◦
1 ) = NG(M

◦
1 )/M

◦
1 . We also set WG◦

=
NG◦(T ◦)/T ◦.

For w ∈ W (M◦
1 ,M

◦
2 ), there is a unique element wT ∈ N(M◦

1 ,M
◦
2 )/T

◦ such that it is a
lift of w, and it maps the Borel pair (B◦∩M◦

1 , T
◦) ofM◦

1 to the Borel pair (B◦∩M◦
2 , T

◦)
of M◦

2 . Unless G = O2n(F ) and det(w) = −1, we have wT ∈ WG◦
and hence the the

Langlands–Shelstad representative w̃T of wT with respect to spl. See [LSh, p. 228]. We
call w̃ = w̃T the Tits lifting of w. If G = O2n(F ) and det(w) = −1, then wT ϵ

−1 ∈ WG◦

and we have Langlands–Shelstad representative w̃T ϵ−1. Then we set w̃ = w̃T ϵ−1 · ϵ and
call it the Tits lifting of w. Note that w̃ depends on the choice of ϵ.

Let P = MN and P ′ = M ′N ′ be standard parabolic subgroups of G with the semi-
standard Levi components M and M ′, respectively, such that W (M◦,M ′◦) ̸= ∅. For
w ∈ W (M◦,M ′◦), an irreducible representation π of M , and λ ∈ a∗M,C, we define a

representation wπλ of M ′ by wπλ(m
′) = πλ(w̃

−1m′w̃) realized on the space of π.

Lemma 1.7.1. For w ∈ W (M◦,M ′◦) and w′ ∈ W (M ′◦,M ′′◦), if we write

w̃′w = w̃′w̃ · z,
then z belongs to the center Z(M) of M . In particular,

(w′w)πλ = w′(wπλ).
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Proof. Since w̃′w and w̃′w̃ are two representatives of w′w ∈ W (M◦,M ′′◦), we have
z ∈ M◦. Moreover, by definition, z preserves the splitting of M◦. Hence z ∈ Z(M◦).
This completes the proof if Z(M◦) = Z(M). If Z(M◦) ̸= Z(M), then M is of the form

M = GLk1(F )× · · · ×GLkt(F )×O2(F ).

In this case, by calculating

w̃α = exp(Xα) exp(−X−α) exp(Xα)

for each simple root α, where wα is the simple reflection with respect to α, one can
check z ∈ Z(M). See Section A.3 for the root vectors {Xα}. □

By this lemma, for w ∈ W (M◦,M ′◦), we may write M ′ = w̃Mw̃−1 as wMw−1.
Now we have an intertwining operator

JP (w, πλ) : IP (πλ) → IP ′(wπλ)

given by (the meromorphic continuation of) the integral

(JP (w, πλ)fλ)(g) =

∫
(w̃Nw̃−1∩N ′)\N ′

fλ(w̃
−1ug)du.

Suppose that M is a proper Levi subgroup, and we are within an inductive argu-
ment. Hence by inductive hypothesis, we have an A-packet Πψ for ψ ∈ Ψ(M) (with
all the desired properties) at our disposal. Let π ∈ Πψ. In particular, π is a unitary
representation of M . Following Arthur [Ar3, Section 2.3], [Mok, Section 3.3], we define
the normalized intertwining operator RP (w, πλ, ψλ) by

RP (w, πλ, ψλ) = rP (w,ψλ)
−1 · JP (w, πλ),

with
rP (w,ψλ) = λ(w) · γA(0, ψλ, ρ∨w−1P ′|P , ψF )

−1

where the notation is as follows.

• Put ψλ = aλ · ψ, where aλ ∈ Z1(WF , Z(M̂◦)) is a 1-cocycle whose class in

H1(WF , Z(M̂◦)) corresponds to the character m 7→ e⟨HM (m),λ⟩ of M◦ (see [LM,
Lemma A.1]).

• For any finite dimensional representation ρ of LM◦, we write

L(s, ψ, ρ) = L(s, ρ ◦ ϕψ), ε(s, ψ, ρ, ψF ) = ε(s, ρ ◦ ϕψ, ψF )
for the associated Artin L- and ε-factors. Then Arthur’s modified gamma factor
is defined by

γA(s, ψ, ρ, ψF ) = ε(s, ψ, ρ, ψF )
L(1 + s, ψ, ρ)

L(s, ψ, ρ)
.

• Set w−1P ′ = w̃−1P ′w̃ and write ρw−1P ′|P for the adjoint representation of LM◦

on
Ad(w̃)−1n̂′/(Ad(w̃)−1n̂′ ∩ n̂)

with n̂ = Lie(N̂) and n̂′ = Lie(N̂ ′).
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• Let AT ◦ be the split component of T ◦. For a reduced root a of AT ◦ in G◦,
we denote by Ga the associated Levi subgroup of G◦ of semisimple rank 1 and
by Ga,sc the simply connected cover of the derived group of Ga. Let ∆1(w)
(resp. ∆2(w)) be the set of reduced roots a with a > 0 and wa < 0 (with respect
to B◦) such that Ga,sc

∼= ResFa/FSL2 (resp. ResFa/FSUEa/Fa(2, 1)), where Fa is
a finite extension of F and Ea is a quadratic extension of Fa. Following [KeSh,
(4.1)], we define

λ(w) = λ(w,ψF ) =
∏

a∈∆1(w)

λ(Fa/F, ψF )
∏

a∈∆2(w)

λ(Ea/F, ψF )
2λ(Fa/F, ψF )

−1,

where λ(F ′/F, ψF ) is the Langlands λ-factor associated to a finite extension F ′

of F .

Recall that RP (w, πλ, ψλ) is regular at λ = 0 ([Ar3, Proposition 2.3.1], [Mok, Propo-
sition 3.3.1]), and hence we have a well-defined operator

RP (w, π, ψ) : IP (π) → IP ′(wπ).

When π is tempered, taking its L-parameter ϕ, we set RP (w, πλ) = RP (w, πλ, ϕλ).
Let P ′′ =M ′′N ′′ be another standard parabolic subgroup ofG with the semi-standard

Levi component M ′′ such that W (M ′◦,M ′′◦) ̸= ∅. Then the normalized intertwining
operators satisfy the following multiplicative property.

Proposition 1.7.2. Let π be an irreducible tempered representation of M . Then we
have

RP (w
′w, πλ) = RP ′(w′, wπλ) ◦RP (w, πλ)

for w ∈ W (M◦,M ′◦) and w′ ∈ W (M ′◦,M ′′◦).

Proof. When G = GLN(E), the assertion was proved in [Sha3], [Ar1]. (Note that the
local factors of Shahidi agree with those of Jacquet–Piatetski-Shapiro–Shalika by [Sha4]
and hence with the Artin factors by the desiderata of the local Langlands correspon-
dence.)

When G is a classical group and M1 = M2 = M3, the assertion was proved in [Ar3,
(2.3.28)], [Mok, Proposition 3.3.5] at least unless G = O2n(F ). The general case will
be handled in Section A.6 below. □

The following is an important property of γA-factors throughout this paper.

Lemma 1.7.3. Suppose that F is non-archimedean. Let ϕ1 and ϕ2 be two conjugate-
self-dual representations of WE × SL2(C) of dimension N . For i = 1, 2, define a repre-
sentation λϕi of WE by

λϕi(w) = ϕi

(
w,

(
|w|

1
2
E 0

0 |w|−
1
2

E

))
.

If λϕ1
∼= λϕ2, then the quotient

γA(s, ϕ1, ψE)

γA(s, ϕ2, ψE)
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is holomorphic at s = 0, and its special value at s = 0 is in {±1}.

Proof. Let πϕi be the irreducible representation of GLN(E) corresponding to ϕi. If
λϕ1

∼= λϕ2 , then πϕ1 and πϕ2 share the same cuspidal support, and hence we obtain an
equation of Godement–Jacquet γ-factors

γ(s, πϕ1 , ψE) = γ(s, πϕ2 , ψE).

Since γ(s, πϕi , ψE) is equal to the usual γ-factor γ(s, ϕi, ψE) in the Galois side, it is
enough to consider the quotient γA(s, ϕi, ψE)/γ(s, ϕi, ψE). Note that

γA(s, ϕi, ψE)

γ(s, ϕi, ψE)
=
L(1 + s, ϕi)

L(1− s, ϕ∨
i )

=
L(1 + s, ϕi)

L(1− s, cϕi)
=
L(1 + s, ϕi)

L(1− s, ϕi)
.

If we write the Laurent expansion of L(1 + s, ϕi) as

L(1 + s, ϕi) = asm + (higher terms)

with a ̸= 0, then we conclude that

γA(s, ϕi, ψE)

γ(s, ϕi, ψE)

∣∣∣∣
s=0

=
L(1 + s, ϕi)

L(1− s, ϕi)

∣∣∣∣
s=0

= (−1)m.

This proves the lemma. □

In the rest of this section, we state three main theorems. Before doing them, let us
clarify the dependence of these results.

• The first main theorem (Theorem 1.8.1) depends on results in Sections 1.6 and
1.7 for proper Levi subgroups.

• The second main theorem (Theorem 1.9.1) is for G = GLN(E) so that it is
independent of Section 1.6. However, it still uses results in Section 1.7, in
particular, Proposition 1.7.2.

• In the third main theorem (Theorem 1.10.5), we will use results in Sections 1.6
and 1.7 not only for proper Levi subgroups, but also for other classical groups
G′ such that dim(St

Ĝ′) < dim(StĜ). For more precision, see Hypothesis 1.10.4.

1.8. Main Theorem 1: [A27]. We set G to be GLN(E) or a (possibly disconnected)
quasi-split classical group as in the previous subsection. Let P = MN be a standard
parabolic subgroup of G, and let P =MN be the parabolic subgroup of G opposite to
P . Recall that we obtain a Whittaker datum wM of M◦ from the F -splitting spl of
G◦.

Let π be an irreducible tempered representation of M . Suppose that π admits a
non-trivial wM -Whittaker functional ω. We may also regard ω as a wM -Whittaker
functional on πλ for all λ ∈ a∗M,C. Then ω gives rise to a w-Whittaker functional Ω(πλ)
on IP (πλ) given by (the holomorphic continuation of) the Jacquet integral

Ω(πλ)f =

∫
N ′
ω(f(w̃−1

0 n′))χ(n′)−1dn′.
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Here N ′ = w̃0Nw̃
−1
0 and w0 = wℓw

M
ℓ , where wℓ and wMℓ are the longest elements in

WG◦
and WM◦

, respectively.
Let P ′ =M ′N be another standard parabolic subgroup of G, and w ∈ W (M◦,M ′◦).

Then we may also regard ω as a wM ′-Whittaker functional on wπλ. Hence, it gives rise
to a w-Whittaker functional Ω(wπλ) on IP ′(wπλ).

The following is our first main theorem, which was supposed to be proven in [A27].

Theorem 1.8.1 (cf. [Ar3, Theorem 2.5.1 (b)], [Mok, Proposition 3.5.3 (a)]). Let π be
an irreducible wM -generic tempered representation of M .

(1) If w ∈ W (M◦) satisfies that wπ ∼= π, then

Ω(wπ) ◦RP (w, π) =

{
Ω(ϵπ) ◦ L(ϵ) if G = O2n(F ), det(w) = −1,

Ω(π) otherwise.

Here

L(ϵ) : IP (π) → IϵPϵ−1(ϵπ), (L(ϵ)f)(g) = f(ϵ−1g).

(2) Suppose that G = GLN(E). If w ∈ W (M, θ(M)) satisfies that wπ ∼= π ◦ θ, then

Ω(wπ) ◦RP (w, π) = Ω(π).

This theorem is regarded as the local intertwining relation for generic tempered rep-
resentations. We will prove Theorem 1.8.1 in Section 2.

Note that the proof of [Ar3, Lemma 2.5.2] was also supposed to be included in [A27].
We will show it in Appendix D.

1.9. Main Theorem 2: [A26]. The second main theorem concerns G = GLN(E).
Recall that we have an involution θ on G. For a function f on G, define a new function
θ∗(f) on G by

θ∗(f)(g) = f(θ(g)).

Let P =MN be a standard parabolic subgroup of G. Note that θ(P ) = θ(M)θ(N) is
also a standard parabolic subgroup. Let ψ be an A-parameter for M , and let πψ be the
corresponding irreducible unitary representation of M . Suppose that the composition

LE × SL2(C)
ψ−→ M̂ ↪→ Ĝ

is conjugate-self-dual. Then the corresponding representation, which is the irreducible
induction IP (πψ), is an irreducible unitary conjugate-self-dual representation of G. For
the irreducibility of IP (πψ), see [Ber1]. Recall from Section 1.4 that we have a specific
linear isomorphism

θA : IP (πψ)
∼−→ IP (πψ).

More specifically, we assume that there is an element w ∈ W (θ(M),M) such that
w(πψ ◦ θ) ∼= πψ. Similar to the definition of θA, we have a normalized isomorphism

π̃ψ(w ⋊ θ) : w(πψ ◦ θ) ∼−→ πψ
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as representations of M by using wM -Whittaker functional on the standard module
Iπψ ∼= w(Iπψ ◦θ) ofM whose Langlands quotient is πψ ∼= w(πψ ◦θ). Then we can define
a self-intertwining operator

R̃P (θ ◦ w, π̃ψ) : IP (πψ) → IP (πψ)

by the composition

IP (πψ)
θ∗−→ Iθ(P )(πψ ◦ θ)

Rθ(P )(w,πψ◦θ,ψ)−−−−−−−−−→ IP (w(πψ ◦ θ))
IP (π̃ψ(w⋊θ))−−−−−−−→ IP (πψ).

If we write (h · f)(g) = f(gh) for g, h ∈ G, then we have

R̃P (θ ◦ w, π̃ψ)(h · f)(g) = R̃P (θ ◦ w, π̃ψ)f(g · θ(h)).

Hence R̃P (θ ◦ w, π̃ψ) is a constant multiple of θA.
The second main theorem, which was supposed to be proven in [A26], is now stated

as follows.

Theorem 1.9.1 (cf. [Ar3, Theorem 2.5.3], [Mok, Proposition 3.5.1 (b)]). Let P =MN
be a standard parabolic subgroup of G = GLN(E), and let ψ be an A-parameter for M .
Then for any w ∈ W (θ(M),M) with w(πψ ◦ θ) ∼= πψ, we have

R̃P (θ ◦ w, π̃ψ) = θA.

We can say that this theorem is the twisted local intertwining relation for GLN(E).
See also [Ar3, Corollary 2.5.4] for Arthur’s form of local intertwining relation for twisted
GLN(E). We will prove Theorem 1.9.1 in Section 3.

1.10. Main Theorem 3: [A25]. The third main theorem concerns classical groups
over a non-archimedean local field.

Assume that F is a non-archimedean local field of characteristic zero. Hence LE =
WE × SL2(C). For a representation ψ : WE × SL2(C) × SL2(C) → GLN(C), we define

its Aubert dual ψ̂ : WE × SL2(C)× SL2(C) → GLN(C) by

ψ̂(w, α1, α2) = ψ(w, α2, α1).

We say that ψ is co-tempered if ψ = ϕ̂ for some ϕ with ϕ|{1WF }×{1SL2(C)}×SL2(C) = 1.
Let G be one of the following quasi-split classical groups

SO2n+1(F ), Sp2n(F ), O2n(F ), Un.

Fix a standard parabolic subgroup P = MNP of G such that M ∼= GLkt(E) × · · · ×
GLk1(E)×G0, where G0 is a classical group of the same type as G. Let ψM = ψt⊕· · ·⊕
ψ1 ⊕ ψ0 be an A-parameter for M , where ψi (resp. ψ0) is an A-parameter for GLki(E)
for 1 ≤ i ≤ t (resp. G0). It gives the A-parameter

ψ = ψt ⊕ · · · ⊕ ψ1 ⊕ ψ0 ⊕ cψ∨
1 ⊕ · · · ⊕ cψ∨

t

for G. We assume that ψi = ρi ⊠ Sai ⊠ Sbi is irreducible and conjugate-self-dual.
Let V = CN and decompose

V = Vt ⊕ · · · ⊕ V1 ⊕ V0 ⊕ V−1 ⊕ · · · ⊕ V−t
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such that dim(Vi) = dim(ψi) for 0 ≤ i ≤ t, together with a fixed isomorphism Ii : Vi
∼−→

V−i for 1 ≤ i ≤ t. We regard ψi as a homomorphism ψi : WE × SL2(C) × SL2(C) →
GL(Vi). Let St be the symmetric group on {1, . . . , t}. We identify σ ∈ St with an

element in GL(Vt ⊕ · · · ⊕ V1) ⊂ M̂ with entries in {0, 1} such that σ−1(GL(Vt)× · · · ×
GL(V1))σ = GL(Vσ(t))× · · · ×GL(Vσ(1)). Via M̂ ↪→ Ĝ, we also identify σ ∈ St with an
element of GLN(C) = GL(V ). On the other hand, for 1 ≤ i ≤ t, we set

ui =

(
0 Ii
I−1
i 0

)
or ui =

(
0 Ii

−I−1
i 0

)
in GL(Vi ⊕ V−i) according to whether ψi is of the same type as ψ0 or not. We regard
ui as an element in GL(V ) by setting ui|Vj = idVj for j ̸= ±i.

Remark 1.10.1. When G = O2n(F ) and ki = dim(Vi) is odd, since ψi is an irreducible
self-dual representation of dimension ki, it must be of orthogonal type. Hence ui is

always

(
0 Ii
I−1
i 0

)
in GL(Vi ⊕ V−i) so that det(ui) = −1.

If G ̸= O2n(F ), following [Ar3, Section 2.4], we write Nψ = Nψ(G,M) for the nor-
malizer of AM̂◦ in Sψ, and define Nψ by

Nψ = π0(Nψ/Z(Ĝ◦)Γ).

When G = O2n(F ), we replace Sψ = Cent(Im(ψ), Ĝ◦) with Cent(Im(ψ),O2n(C)) to
define Nψ. Note that Nψ is generated by Aψ0 and

{uϵ11 . . . uϵtt | ϵi ∈ Z/2Z}⋊ {σ ∈ St |ψσ(i) ∼= ψi (1 ≤ i ≤ t)}.
See [Ar3, (2.4.3)]. We have two canonical mapsNψ → W (M◦) andNψ → Aψ, which are
denoted by by u 7→ wu and u 7→ su, respectively. More precisely, for u = s0u

ϵ1
1 . . . u

ϵt
t σ ∈

Nψ with s0 ∈ Aψ0 , letting Iu be the set of 1 ≤ i ≤ t such that ϵi = 1 and ϕi is of the
same type as ϕ0, we have

su = s0 +
∑
i∈Iu

e(ρi, ai, bi) ∈ Aψ.

Let u ∈ Nψ and let wu ∈ W (M◦) be its image. It satisfies that wuπM ∼= πM for any
πM ∈ Πψ. Moreover, as in [Ar3, Section 2.4] and [Mok, Section 3.4], there is a linear
isomorphism

⟨ũ, π̃M⟩π̃M(wu) : πM → πM
making the diagram

πM

πM (w̃−1
u mw̃u)

��

⟨ũ,π̃M ⟩π̃M (wu) // πM

πM (m)

��
πM

⟨ũ,π̃M ⟩π̃M (wu) // πM

commutative for anym ∈M . In this paper, we understand that the symbol ⟨ũ, π̃M⟩π̃M(wu)
denotes this map, and we do not separate it into two objects ⟨ũ, π̃M⟩ and π̃M(wu).
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We recall the definition of the operator ⟨ũ, π̃M⟩π̃M(wu) : πM → πM . Note that u ∈ Nψ

normalizes M̂◦. If we regard u as an element of W (M̂◦), then we have its Tits lifting

ũ. Conjugation by ũ normalizes M̂◦ and preserves the pinning inherited from Ĝ◦.

Write θ̂ for the resulting automorphism on M̂◦, and θ for its dual, an automorphism
of M◦. Write u = sũ. Then s lies in the θ-twisted centralizer of ψM . The pair
(s, ψM) determines a twisted endoscopic datum (M ′◦, s, ξ) and a parameter ψM ′ such
that ψM = ξ ◦ ψM ′ . The isomorphism ⟨ũ, π̃M⟩π̃M(wu) is normalized by requiring that
the twisted endoscopic identity∑
πM′∈ΠψM′

⟨sψM′ , πM ′⟩ψM′ΘπM′ (fM ′) =
∑

πM∈ΠψM

⟨sψM , πM⟩ψM tr(⟨ũ, π̃M⟩π̃M(wu) ◦ πM(fM))

holds whenever fM ∈ C∞
c (M) and fM ′ ∈ C∞

c (M ′) have matching orbital integrals.
We define the normalized self-intertwining operator

⟨ũ, π̃M⟩RP (wu, π̃M , ψM) : IP (πM) → IP (πM)

by
⟨ũ, π̃M⟩RP (wu, π̃M , ψM)f(g) = ⟨ũ, π̃M⟩π̃M(wu) (RP (wu, πM , ψM)f(g)) .

Now we assume that the (multi-)set Πψ of irreducible components of IP (πM) for
πM ∈ ΠψM is equipped with a pairing ⟨·, π⟩ψ satisfying (ECR1), (ECR2) and that

⟨·, π⟩ψ|Aψ0 = ⟨·, π0⟩ψ0

if π ⊂ IP (πM) where πM = πψt ⊠ · · · ⊠ πψ1 ⊠ π0 with π0 ∈ Πψ0 . See [Ar3, Proposition
2.4.3] and [Mok, Proposition 3.4.4]. Define a distribution fG(ψ, u) on G for u ∈ Nψ by

fG(ψ, u) =
1

(G : G◦)

∑
πM∈ΠψM

tr(⟨ũ, π̃M⟩RP (wu, π̃M , ψM)IP (πM , f))

for f ∈ C∞
c (G). Then Arthur’s local intertwining relation ([Ar3, Theorems 2.4.1, 2.4.4],

[Mok, Theorem 3.4.3]) states that the equation

(A-LIR) f ′
G(ψ, sψsu) = fG(ψ, u)

holds for u ∈ Nψ, where the left-hand side is defined in (ECR2) in Section 1.6. Notice
that if G = O2n(F ), then w̃u can be in G\G◦, in which case, (A-LIR) is [Ar3, Theorem
2.4.4].

On the other hand, in this paper, we consider the following statement for our local
intertwining relation. Fix an irreducible summand π ⊂ IP (πM). Then the equation

(LIR) ⟨ũ, π̃M⟩RP (wu, π̃M , ψM)|π = ⟨su, π⟩ψ · idπ
holds for any u ∈ Nψ. Notice that this statement is slightly different from (A-LIR).
We clarify the relation between (A-LIR) and our (LIR).

Lemma 1.10.2. Assume the existence of the A-packet Πψ together with the pairing
⟨·, π⟩ψ satisfying (ECR1) and (ECR2). We assume further that we know that

• IP (πM) is multiplicity-free for any πM ∈ ΠψM ; and
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• for πM , π
′
M ∈ ΠψM , if πM ̸∼= π′

M , then IP (πM) and IP (π
′
M) have no common

irreducible summand.

Then (A-LIR) holds if and only if our (LIR) holds for each irreducible summand
π ⊂ IP (πM) and πM ∈ ΠψM .

Proof. Note that we do not assume whether ΠψM is multiplicity-free. Only in this
proof, we denote the canonical map Πψ → Irrunit(G) by π 7→ [π], and the multiplicity
of σ ∈ Irrunit(G) in Πψ, i.e., the cardinality of the fiber of σ under this map, by mψ(σ).
By our assumptions, for any σ ∈ Irr(G) with mψ(σ) > 0, there exists exactly one
σM ∈ Irr(M) such that σ ⊂ IP (σM) and mψM (σM) > 0. Moreover, mψ(σ) = mψM (σM).

Fix u ∈ Nψ. By (ECR2), f ′
G(ψ, sψsu) is equal to

1

(G : G◦)

∑
π∈Πψ

⟨su, π⟩ψΘπ(fG) =
1

(G : G◦)

∑
σ∈Irr(G)
mψ(σ)>0

∑
π∈Πψ
[π]=σ

⟨su, π⟩ψ

Θσ(fG).

If π ⊂ IP (πM), since we assume that π appears in IP (πM) with multiplicity one,
⟨ũ, π̃M⟩RP (wu, π̃M , ψM) acts on π by a scalar c[π], which depends only on [π] and [πM ].
Then one can write fG(ψ, u) as

fG(ψ, u) =
1

(G : G◦)

∑
σ∈Irr(G)

 ∑
πM∈ΠψM

∃π⊂IP (πM ),[π]=σ

c[π]

Θσ(fG)

=
1

(G : G◦)

∑
σ∈Irr(G)
mψ(σ)>0

 ∑
πM∈ΠψM
[πM ]=σM

cσ

Θσ(fG)

=
1

(G : G◦)

∑
σ∈Irr(G)
mψ(σ)>0

mψ(σ)cσΘσ(fG).

By the linear independence of the characters Θσ, (A-LIR) holds if and only if

cσ =
1

mψ(σ)

∑
π∈Πψ
[π]=σ

⟨su, π⟩ψ.

Note that ⟨su, π⟩ψ ∈ {±1}, whereas c[π] is a root of unity since

Nψ ∋ u 7→ ⟨ũ, π̃M⟩RP (wu, π̃M , ψM)

is multiplicative by Proposition 1.7.2 and [KMSW, Lemma 2.5.3] (see also the paragraph
in [Ar3] containing (2.4.2)). Hence the above equation holds if and only if ⟨su, π⟩ψ = cσ
for all π ∈ Πψ with [π] = σ. This is our (LIR). □
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Remark 1.10.3. The multiplicity-free assumptions can be proven in generality using
Mœglin’s explicit construction of A-packets. However, when ψM is tempered or co-
tempered, one can argue more directly as follows. The co-tempered case will be deduced
from the tempered case by the construction (see Theorem 5.4.1), and for the tempered
case, the multiplicity-free assumptions are included in [Ar3, Theorem 1.5.1 (b)] and
[Mok, Theorem 2.5.1 (b)]. In Section 7.6 below, we will need the multiplicity-free
assumptions for slightly more general parameters, which we will prove in Lemma 7.6.1.
In this paper, except for Section 7.6, we may identify (A-LIR) with our (LIR).

In light of the inductive setting as in [Ar3, Chapter 7] in which [A25] is positioned,
as explained in Sections 0.1 and 0.2.3, we are free to assume the following.

Hypothesis 1.10.4. There are A-packets satisfying (ECR1), (ECR2) and (A-LIR)
associated to

• all tempered L-parameters for G;
• all A-parameters for G′ with G′ any classical group such that dim(St

Ĝ′) <
dim(StĜ).

In particular, we have the A-packet ΠψM for ψM ∈ Ψ(M), where M is an arbitrary
proper Levi subgroup of G.

We state the third main theorem, which was supposed to be proven in [A25].

Theorem 1.10.5 (cf. [Ar3, Section 7.1], [Mok, Section 8.2]). Assume Hypothesis
1.10.4.

(1) For any co-tempered A-parameter ψ = ϕ̂ ∈ Ψ(G), we can construct an A-packet
Πψ together with a pairing ⟨·, π⟩ψ for π ∈ Πψ which satisfies (ECR1) and
(ECR2). Moreover, Πψ is a (multiplicity-free) subset of Irr(G).

(2) Let P =MNP be a parabolic subgroup of G withM ∼= GLkt(E)×· · ·×GLk1(E)×
G0, and let ψM = ϕ̂M = ψt ⊕ · · · ⊕ ψ1 ⊕ ψ0 be a co-tempered A-parameter
for M such that ψi is irreducible and conjugate-self-dual for 1 ≤ i ≤ t. Set
ψ = ι ◦ ψM ∈ Ψ(G) with ι : LM ↪→ LG. Then (LIR) also holds for every
irreducible summand π ⊂ IP (πM) for any πM ∈ ΠψM .

Remark 1.10.6. The A-packet Πψ for a given co-tempered A-parameter ψ = ϕ̂ is
constructed by Aubert duality from the tempered L-packet Πϕ. To be precise, see
Theorem 5.4.1 below. At this stage, it is not known that each representation π ∈ Πψ

is unitary. The unitarity will be proven after establishing [Ar3, Proposition 7.4.3] and
[Mok, Proposition 8.4.2].

For co-tempered A-parameters we will establish (ECR1) and (ECR2) in Section
5, whereas (LIR) will be proven in Sections 6 and 7 using results in Section 4. As a
consequence of Theorem 1.10.5 together with Lemma 1.10.2, we have the following.

Corollary 1.10.7. Assume Hypothesis 1.10.4. For any co-tempered A-parameter ψ ∈
Ψ(G) and for any u ∈ Nψ, we have an identity

f ′
G(ψ, sψsu) = fG(ψ, u)
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of distributions on G.

2. Normalizations of intertwining operators

The purpose of this section is to prove Theorem 1.8.1. Notice that almost the same
assertion was already proven by Shahidi [Sha7], but he used his own normalization of
the intertwining operators. So what we have to do is to compare Arthur’s normalization
with Shahidi’s.

2.1. Local coefficients. Let w = (B◦, χ) be a Whittaker datum for G◦. We say that
an irreducible representation π◦ of G◦ is w-generic if

dimC HomU(π
◦, χ) ̸= 0,

in which case

dimC HomU(π
◦, χ) = 1

by the uniqueness of Whittaker functionals. For G = O2n(F ), we also say that an
irreducible representation π of G is w-generic if

dimCHomU(π, χ) ̸= 0,

but as we will see in the next lemma, the uniqueness of Whittaker functionals does not
necessarily hold. Recall that we have chosen an element ϵ ∈ T \ T ◦ ⊂ G \ G◦ with
ϵ2 = 1 such that ϵ preserves spl. In particular, χ ◦ Ad(ϵ) = χ. For any representation
π◦ of G◦, we define a representation ϵπ◦ of G◦ by ϵπ◦(g) = π◦(ϵ−1gϵ).

Lemma 2.1.1. Suppose that G = O2n(F ). Let π be an irreducible w-generic represen-
tation of G.

(a) If π|G◦ is irreducible, then π|G◦ is w-generic and we have

dimCHomU(π, χ) = 1.

(b) If π|G◦ is reducible, then any irreducible component of π|G◦ is w-generic and we
have

dimCHomU(π, χ) = 2.

Proof. Since

HomU(π, χ) = HomU(π|G◦ , χ),

the assertion (a) follows.
Assume that π|G◦ is reducible. Let π◦ be an irreducible component of π|G◦ . Then we

have π|G◦ ∼= π◦ ⊕ ϵπ◦ and

HomU(π, χ) ∼= HomU(π
◦, χ)⊕ HomU(ϵπ

◦, χ).

Since χ ◦ Ad(ϵ) = χ, we see that π◦ is w-generic if and only if ϵπ◦ is w-generic. This
implies the assertion (b). □
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Remark 2.1.2. In Lemma 2.1.1 (b), the multiplicity two statement may be a bit
disconcerting to the readers. While for connected reductive groups G◦, the stabilizer
of a Whittaker datum is the center of G◦, in the case of G = O2n(F ), the stabilizer of
a Whittaker datum contains an extra group, generated by ϵ. This group ⟨ϵ⟩ acts on
HomU(π, χ) with two possible eigenvalues and each eigenspace has dimension at most
1. In other words, the multiplicity one statement is restored if we take into account the
full symmetry of the situation.

Let P ◦ =M◦N be a standard parabolic subgroup of G◦. The heredity of Whittaker
functionals asserts that if π◦ is an irreducible essentially unitary representation of M◦,
then

dimCHomU(Ind
G◦

P ◦(π◦), χ) = dimC HomU∩M◦(π◦, χ).

(See [Rod], [CS, Corollary 1.7], [Wl1, Theorem 15.6.7], [Wl2, Theorem 40]; note that
this equality holds for all admissible representations π◦ when F is non-archimedean.)
In particular, this dimension is at most 1.

For G = O2n(F ), we modify this property as follows.

Lemma 2.1.3. Let G = O2n(F ), and let P =MN be a standard parabolic subgroup of
G. Set P ◦ = P ∩G◦ and M◦ = M ∩G◦, so that P = P ◦ ⇐⇒ M = M◦. Let π be an
irreducible essentially unitary representation of M .

(a) If M ̸=M◦, and π|M◦ is irreducible, then

IP (π)|G◦ ∼= IndG
◦

P ◦(π|M◦).

Moreover,

dimC HomU(IP (π), χ) = dimC HomU∩M(π, χ) ≤ 1.

(b) If M =M◦, or π|M◦ is reducible, then for any irreducible component π◦ of π|M◦,
we have

IP (π) ∼= IP ◦(π◦) = IndGP ◦(π◦).

Moreover,

1

(G : G◦)
dimC HomU(IP (π), χ) =

1

(M :M◦)
dimC HomU∩M(π, χ) ≤ 1.

(Note that the left-hand side is an integer.)

Proof. Suppose that P ̸= P ◦. Then G/G◦ ∼= M/M◦, and the restriction map gives an
isomorphism

IndGP (π)|G◦
∼−→ IndG

◦

P ◦(π|M◦).

This implies the assertion (a).
On the other hand, if P = P ◦, or if π|M◦ is reducible, for any irreducible component

π◦ of π|M◦ , we have π ∼= IndMM◦(π◦). Then IP (π) ∼= IP ◦(π◦). If we denote by I+P ◦(π◦)
(resp. I−P ◦(π◦)) the subspace of IP ◦(π◦) consisting of functions f on G whose supports
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are contained in G◦ (resp. G \G◦), then IP ◦(π◦)|G◦ = I+P ◦(π◦)⊕ I−P ◦(π◦). Moreover, we
have isomorphisms

I+P ◦(π◦)
∼−→ IndG

◦

P ◦(π◦), f 7→ f |G◦ ,

I−P ◦(π◦)
∼−→ ϵIndG

◦

P ◦(π◦), f 7→ (ϵ−1f)|G◦

as representations of G◦, where (ϵ−1f)(x) = f(xϵ−1). In particular, we have

IP (π)|G◦ ∼= IndG
◦

P ◦(π◦)⊕ ϵIndG
◦

P ◦(π◦).

Since χ ◦ Ad(ϵ) = χ, the following are equivalent:

• HomU∩M(π, χ) ̸= 0;
• HomU∩M◦(π◦, χ) ̸= 0;
• dimC HomU(Ind

G◦

P ◦(π◦), χ) ̸= 0;
• dimC HomU(ϵInd

G◦

P ◦(π◦), χ) ̸= 0.

Hence, in this case, we have

dimC HomU∩M(π, χ) = (M :M◦), dimC HomU(IP (π), χ) = 2.

This completes the proof. □
Fix two standard parabolic subgroups P = MNP and P ′ = M ′NP ′ of G such that

W (M◦,M ′◦) ̸= ∅, an element w ∈ W (M◦,M ′◦), and an irreducible unitary wM -generic
representation π of M . Choose a non-trivial wM -Whittaker functional ω on π. For
λ ∈ a∗M,C, define a w-Whittaker functional Ω(πλ) = Ωω(πλ) on IP (πλ) as in Section
1.8. Then Ω(πλ) is holomorphic and nonzero for all λ (see [CS], [Wl1, Theorem 15.6.7],
[Wl2, Theorem 40]). Similarly, define a w-Whittaker functional Ω(wπλ) = Ωω(wπλ)
on IP ′(wπλ), where we regard ω as a wM ′-Whittaker functional on wπ. When G =
G◦, following Shahidi [Sha2, p. 333, Theorem 3.1], we define a meromorphic function
CP (w, πλ) of λ, called the local coefficient, by the equation

CP (w, πλ) · Ωω(wπλ) ◦ JP (w, πλ) = Ωω(πλ).

Note that such a function exists and does not depend on the choice of ω by the unique-
ness of Whittaker functionals.

When G = O2n(F ), this uniqueness may fail, but we can define an analogous function
as follows.

Lemma 2.1.4. Suppose that G = O2n(F ). Then there exists a meromorphic function
CP (w, πλ) of λ such that

CP (w, πλ) · Ωω(wπλ) ◦ JP (w, πλ)

=

{
Ωω(πλ) if det(w) = 1,

Ωω(ϵπλ) ◦ L(ϵ) if det(w) = −1,

where L(ϵ) : IP (πλ) → IϵPϵ−1(ϵπλ) is given by (L(ϵ)f)(g) = f(ϵ−1g). Moreover, CP (w, πλ)
does not depend on the choice of ω.

To prove this, we need the following.
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Lemma 2.1.5. Suppose that G◦ = SO2n(F ), P ̸= P ◦ (and hence ϵP ◦ϵ−1 = P ◦), and
det(w) = 1. Let π◦ be an irreducible unitary wM -generic representation of M◦. Then
we have

CP ◦(w, ϵπ◦
λ) = CP ◦(w, π◦

λ).

Proof. Since P ̸= P ◦, we have

ϵNP ϵ
−1 = NP , ϵNP ′ϵ−1 = NP ′ , ϵwϵ−1 = w, ϵw0ϵ

−1 = w0

with w0 = wℓw
M
ℓ , where wℓ and wMℓ are the longest elements in WG◦

and WM◦
,

respectively. Fix a non-trivial wM -Whittaker functional ω◦ on π◦. Since χ ◦Ad(ϵ) = χ,
we may regard ω◦ as a wM -Whittaker functional on ϵπ◦. Then ω◦ induces w-Whittaker
functionals Ω(π◦

λ) and Ω(ϵπ◦
λ) on IndG

◦

P ◦(π◦
λ) and IndG

◦

P ◦(ϵπ◦
λ), respectively. By definition,

we have
Ω(ϵπ◦

λ) = Ω(π◦
λ) ◦ Ad(ϵ)∗,

where Ad(ϵ)∗ : IndG
◦

P ◦(ϵπ◦
λ) → IndG

◦

P ◦(π◦
λ) is the linear isomorphism given by Ad(ϵ)∗f(g) =

f(ϵgϵ−1). Similarly, we have

JP ◦(w, π◦
λ) ◦ Ad(ϵ)∗ = Ad(ϵ)∗ ◦ JP ◦(w, ϵπ◦

λ).

Hence we have

Ω(ϵπ◦
λ) = Ω(π◦

λ) ◦ Ad(ϵ)∗

= CP ◦(w, π◦
λ) · Ω(wπ◦

λ) ◦ JP ◦(w, π◦
λ) ◦ Ad(ϵ)∗

= CP ◦(w, π◦
λ) · Ω(wπ◦

λ) ◦ Ad(ϵ)∗ ◦ JP ◦(w, ϵπ◦
λ)

= CP ◦(w, π◦
λ) · Ω(ϵwπ◦

λ) ◦ JP ◦(w, ϵπ◦
λ)

= CP ◦(w, π◦
λ) · Ω(wϵπ◦

λ) ◦ JP ◦(w, ϵπ◦
λ).

This implies the lemma. □
Now we prove Lemma 2.1.4.

Proof of Lemma 2.1.4. First, we assume that M ̸= M◦, and π|M◦ is irreducible. Then
the existence of CP (w, πλ) follows from Lemma 2.1.3 (a). Moreover, since ω is unique
up to a scalar, CP (w, πλ) does not depend on the choice of ω.

Next, we assume that M = M◦, or π|M◦ is reducible. Fix an irreducible component
π◦ of π|M◦ . Note that π◦ is wM -generic. If M =M◦, then ω is unique up to a scalar. If
M ̸=M◦ (so that ϵ ∈M \M◦ and π|M◦ = π◦⊕ ϵπ◦), then by Lemma 2.1.1 (b), we may
take a basis ω, ω′ of HomU∩M(π, χ) such that ω|ϵπ◦ = 0, ω′|π◦ = 0. We identify π with
IndMM◦(π◦), so that π◦ (resp. ϵπ◦) is the subspace of IndMM◦(π◦) consisting of functions f
on M whose supports are contained in M◦ (resp. M \M◦). Then ω can be realized by
ω(f) = ω◦(f(1)) for f ∈ IndMM◦(π◦), where ω◦ is a non-trivial wM -Whittaker functional
on π◦. In both cases, we have IP (π) = IP ◦(π◦) and

IP (π)|G◦ = I+P ◦(π◦)⊕ I−P ◦(π◦)

as in the proof of Lemma 2.1.3. Then Ωω(πλ) (resp. Ωω(ϵπλ) ◦ L(ϵ)) is a nonzero
element in HomU(IP (πλ), χ) which is identically zero on I−P ◦(π◦) (resp. I+P ◦(π◦)). In
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particular, Ωω(πλ) and Ωω(ϵπλ) ◦L(ϵ) are linearly independent, and hence form a basis
of HomU(IP (πλ), χ) by Lemma 2.1.3 (b). On the other hand, Ωω(wπλ)◦JP (w, πλ) is also
an element in HomU(IP (πλ), χ) (provided that JP (w, πλ) is holomorphic at λ) which
is identically zero on I−P ◦(π◦) (resp. I+P ◦(π◦)) if det(w) = 1 (resp. det(w) = −1). This
proves the existence of the desired function CP,ω(w, πλ) with respect to ω. If M =M◦,
then CP,ω(w, πλ) does not depend on the choice of ω by the uniqueness of Whittaker
functionals.

Finally, we assume that M ̸= M◦, and π|M◦ is reducible. In particular, we have
ϵPϵ−1 = P . Recall the isomorphisms

I+P ◦(π◦)
∼−→ IndG

◦

P ◦(π◦), f 7→ f |G◦ ,

I−P ◦(π◦)
∼−→ IndG

◦

P ◦(ϵπ◦), f 7→ (L(ϵ)f)|G◦ .

If det(w) = 1, then the restriction to I+P ◦(π◦) of the equality in the statement of the
lemma yields

CP,ω(w, πλ) = CP ◦(w, π◦
λ).

Similarly, if det(w) = −1, then the restriction to I−P ◦(π◦) yields

CP,ω(w, πλ) = CP ◦(wϵ−1, ϵπ◦
λ),

noting that JP (w, πλ) = JP (wϵ
−1, ϵπλ) ◦ L(ϵ).

Now we switch the roles of π◦ and ϵπ◦, i.e., we identify π with IndMM◦(ϵπ◦), so that ϵπ◦

(resp. π◦) is the subspace of IndMM◦(ϵπ◦) consisting of functions f on M whose supports
are contained in M◦ (resp. M \M◦). Then ω′ can be realized by ω′(f) = ω◦(f(1)) for
f ∈ IndMM◦(ϵπ◦), where ω◦ is now a non-trivial wM -Whittaker functional on ϵπ◦. The
same argument proves the existence of the desired function CP,ω′(w, πλ) with respect
to ω′ and shows that

CP,ω′(w, πλ) =

{
CP ◦(w, ϵπ◦

λ) if det(w) = 1,

CP ◦(wϵ−1, π◦
λ) if det(w) = −1.

By Lemma 2.1.5, we have

CP,ω′(w, πλ) = CP,ω(w, πλ).

This shows that CP,ω(w, πλ) does not depend on the choice of ω and completes the
proof. □

In addition, from the proofs of Lemmas 2.1.3 and 2.1.4, we can deduce the following
relation between local coefficients for O2n(F ) and those for SO2n(F ).

Lemma 2.1.6. Suppose that G = O2n(F ) and det(w) = 1. Then we have

CP (w, πλ) = CP ◦(w, π◦
λ),

where π◦ is an arbitrary irreducible component of π|M◦.

Now we assume that π is tempered. Let ϕ be the tempered L-parameter of π. To
show Theorem 1.8.1, it suffices to prove the following.
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Proposition 2.1.7. In each situation in Theorem 1.8.1, the function CP (w, πλ)·rP (w, ϕλ)
is holomorphic and equal to 1 at λ = 0.

We will prove Proposition 2.1.7 in Sections 2.4 and 2.5. By the next lemma, which
follows from the definitions, it suffices to consider Proposition 2.1.7 in the following two
situations.

(1) G = G◦, or G = O2n(F ) and det(w) = 1, and wπ ∼= π;
(2) G = O2n(F ), det(w) = 1 and wϵπ ∼= π.

Lemma 2.1.8. Suppose that G = O2n(F ) and det(w) = −1.

• We have
JP (w, πλ) = JϵPϵ−1(wϵ−1, ϵπλ) ◦ L(ϵ)

so that CP (w, πλ) = CϵPϵ−1(wϵ−1, ϵπλ).
• We have rP (w, ϕλ) = rϵPϵ−1(wϵ−1, ϕλ).

2.2. The maximal case. Let P = MNP and P ′ = M ′NP ′ be standard maximal
parabolic subgroups of G such that W (M◦,M ′◦) ̸= ∅. From Lemma 2.1.8, we may
assume that

• if G = O2k(F ), M = GLk(F ), and k > 1 is odd, then P ′ = ϵPϵ−1 and M ′ =
ϵMϵ−1 so that W (M◦,M ′◦) ̸= ∅;

• otherwise, G = GLN(E), or M =M ′ so that W (M◦,M ′◦) ̸= {1}.
In either case, let w be the unique non-trivial element in W (M◦,M ′◦).

First suppose that G = GLN(E) and M = GLN1(E) × GLN2(E) so that M ′ =
GLN2(E)×GLN1(E). We write π = π1⊠π2 with irreducible tempered representations π1
and π2 of GLN1(E) and GLN2(E), respectively. If we denote the L-parameters of π1 and
π2 by ϕπ1 and ϕπ2 , respectively, then we denote by L(s, ϕπ1⊗ϕπ2) and ε(s, ϕπ1⊗ϕπ2 , ψE)
the Artin factors associated to the tensor product of the standard representations.

Lemma 2.2.1. The function CP (w, πλ) · rP (w, ϕλ) is holomorphic and equal to

L(1, ϕ∨
π1

⊗ ϕπ2)

L(1, ϕπ1 ⊗ ϕ∨
π2
)

at λ = 0.

Proof. If we write πλ = π1| · |s1E ⊠ π2| · |s2E with s1, s2 ∈ C and put s = s1 − s2, then we
have, by definition,

rP (w, ϕλ) =
L(s, ϕπ1 ⊗ ϕ∨

π2
)

ε(s, ϕπ1 ⊗ ϕ∨
π2
, ψE)L(1 + s, ϕπ1 ⊗ ϕ∨

π2
)
.

On the other hand, by [Sha7, Theorem 3.5] (see also Section 2.6 below), we have

CP (w, πλ) =
εSh(s, π1 × π∨

2 , ψE)L
Sh(1− s, π∨

1 × π2)

LSh(s, π1 × π∨
2 )

,

where the superscript Sh indicates Shahidi’s local factors. We know that

LSh(s, π1 × π∨
2 ) = L(s, ϕπ1 ⊗ ϕ∨

π2
), εSh(s, π1 × π∨

2 , ψE) = ε(s, ϕπ1 ⊗ ϕ∨
π2
, ψE)
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since these local factors agree with those of Jacquet–Piatetski-Shapiro–Shalika by [Sha4]
and the desiderata of the local Langlands correspondence. This implies the lemma. □

Next suppose that G is a classical group, and write M = GLk(E) × G0. Note
that M ′ = M unless G = O2k(F ), M = GLk(F ), and k > 1 is odd, in which case
M ′ = ϵMϵ−1. We write π = τ ⊠ π0 with irreducible tempered representations τ and
π0 of GLk(E) and G0, respectively. If we denote the L-parameters of τ and π0 by
ϕτ and ϕπ0 , respectively, we denote by L(s, ϕτ ⊗ ϕπ0) and ε(s, ϕτ ⊗ ϕπ0 , ψE) the Artin
factors over E associated to the tensor product of the standard representations. We
also denote by L(s, ϕτ , R) and ε(s, ϕτ , R, ψF ) the Artin factors over F associated to the
representation R of LGLk(E) given by

R =


Sym2 if G = SO2n+1(F ),

∧2 if G = Sp2n(F ), O2n(F ),

Asai+ if G = Un, n ≡ 0 mod 2,

Asai− if G = Un, n ≡ 1 mod 2.

(See [GGP, Section 7] for the definition of the Asai representations Asai+ and Asai−.)

Lemma 2.2.2. The function CP (w, πλ) · rP (w, ϕλ) is holomorphic and equal to

L(1, ϕ∨
τ ⊗ ϕπ0)

L(1, ϕτ ⊗ ϕ∨
π0
)

L(1, ϕ∨
τ , R)

L(1, ϕτ , R)

at λ = 0.

Proof. If we write πλ = τ | · |sE ⊠ π0 with s ∈ C, then we have by definition

rP (w, πλ) = λ(w)× L(s, ϕπ, St⊗ St∨)

ε(s, ϕπ, St⊗ St∨, ψF )L(1 + s, ϕπ, St⊗ St∨)

× L(2s, ϕτ , R)

ε(2s, ϕτ , R, ψF )L(1 + 2s, ϕτ , R)
.

Here L(s, ϕπ, St⊗St∨) and ε(s, ϕπ, St⊗St∨, ψF ) are the Artin factors associated to the
L-parameter ϕπ of π and the tensor product representation St ⊗ St∨, where St is the
standard representation of LGLN(E) or

LG◦
0. Note that

L(s, ϕπ, St⊗ St∨) = L(s, ϕτ ⊗ ϕ∨
π0
),

ε(s, ϕπ, St⊗ St∨, ψF ) = λ0 · ε(s, ϕτ ⊗ ϕ∨
π0
, ψE),

where λ0 = 1 unless [E : F ] = 2 (so that G = Un and M = GLk(E) × Un0), in which
case,

λ0 = λ(E/F, ψF )
kn0 .

See e.g., [D, Section 5.6]. On the other hand, by [Sha7, Theorem 3.5] (see also Section
2.6 below), we have

CP (w, πλ) = λ(w)−1 × εSh(s, π, St⊗ St∨, ψF )L
Sh(1− s, π∨, St⊗ St∨)

LSh(s, π, St⊗ St∨)
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× εSh(2s, τ, R, ψF )L
Sh(1− 2s, τ∨, R)

LSh(2s, τ, R)
,

where the superscript Sh indicates Shahidi’s local factors. Here, when G = O2n(F ), we
have det(w) = 1 by the assumption at the beginning of this subsection, and by Lemma
2.1.6, the above equality holds if we set

LSh(s, π, St⊗ St∨) = LSh(s, π◦, St⊗ St∨),

εSh(s, π, St⊗ St∨, ψF ) = εSh(s, π◦, St⊗ St∨, ψF ),

where π◦ is an arbitrary irreducible component of π|M◦ . Putting

LSh(s, τ × π∨
0 ) = LSh(s, π, St⊗ St∨),

εSh(s, τ × π∨
0 , ψE) = λ−1

0 · εSh(s, π, St⊗ St∨, ψF ),

by Proposition A.2.1 below, we have

LSh(s, τ × π∨
0 ) = L(s, ϕτ ⊗ ϕ∨

π0
), εSh(s, τ × π∨

0 , ψE) = ε(s, ϕτ ⊗ ϕ∨
π0
, ψE).

Also, by [He4], [CST], [Shan], [He5], we have

LSh(s, τ, R) = L(s, ϕτ , R), εSh(s, τ, R, ψF ) = ε(s, ϕτ , R, ψF ).

This implies the lemma. □
2.3. Preliminary to the general case. Now we consider the general case. Recall that
U is the unipotent radical of the Borel subgroup B◦. Let P = MNP and P ′ = M ′NP ′

be standard parabolic subgroups of G such that W (M◦,M ′◦) has an element w whose
representatives lie in G◦. Then by [Sha2, Lemma 2.1.2], we may take standard parabolic
subgroups Pi =MiNi of G for 1 ≤ i ≤ n+ 1 with the following properties:

• P = P1 and P ′ = Pn+1;
• for each 1 ≤ i ≤ n, there exists a semi-standard Levi subgroup Gi of G contain-
ing Mi such that Pi ∩Gi is a maximal parabolic subgroup of Gi and such that

the element wi = w
G◦
i

ℓ w
M◦
i

ℓ belongs to W (M◦
i ,M

◦
i+1), where w

•
ℓ is the longest

element in W •;
• w = wn · · ·w1;
• for each 1 ≤ i ≤ n, we have

nw′
i
= nwi ⊕ Ad(w̃i)

−1nw′
i+1
,

where nw is the Lie algebra of Nw = NP ∩ w̃−1Uw̃ for w ∈ WG◦
, and w′

i =
wn · · ·wi (with interpreting w′

n+1 = 1).

This gives rise to a factorization of the intertwining operator

JP (w, πλ) = JPn(wn, wn−1 · · ·w1πλ) ◦ · · · ◦ JP2(w2, w1πλ) ◦ JP1(w1, πλ)

(see [Sha2, Theorem 2.1.1]) and hence of the local coefficient

CP (w, πλ) =
n∏
i=1

CPi(wi, wi−1 · · ·w1πλ)
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(see [Sha2, Proposition 3.2.1]). This also gives rise to a factorization of the λ-factor

λ(w) =
n∏
i=1

λ(wi).

Moreover, since

n̂w = n̂w1 ⊕ Ad(w̃1)
−1n̂w2 ⊕ · · · ⊕ Ad(w̃n−1 · · · w̃1)

−1n̂wn ,

we have

L(s, πλ, ρw−1P ′|P ) =
n∏
i=1

L(s, wi−1 · · ·w1πλ, ρ
∨
w−1
i Pi+1|Pi

),

ε(s, πλ, ρw−1P ′|P , ψF ) =
n∏
i=1

ε(s, wi−1 · · ·w1πλ, ρ
∨
w−1
i Pi+1|Pi

, ψF ).

Hence we have

rP (w, πλ) =
n∏
i=1

rPi(wi, wi−1 · · ·w1πλ).

Since the local coefficient CPi(wi, wi−1 · · ·w1πλ) and the normalizing factor rPi(wi, wi−1 · · ·w1πλ)
agree with those for the intertwining operator

IndGiPi (wi−1 · · ·w1πλ) → IndGiPi+1
(wi · · ·w1πλ),

and Gi is the product of general linear groups and a (possibly trivial) classical group,
this allows us to use these computations to attack Proposition 2.1.7 in general. We will
see it in the next two subsections.

2.4. The case of general linear groups. Suppose that G = GLN(E) and M =
GLn1(E) × · · · × GLnm(E). Put I = {1, . . . ,m}. Write π = π1 ⊠ · · · ⊠ πm with
irreducible tempered representations π1, . . . , πm of GLn1(E), . . . ,GLnm(E), respectively.
We denote by ϕπi the L-parameter of πi. We regard w as an automorphism of I such
that wπ = πw−1(1) ⊠ · · ·⊠ πw−1(m). Then by Lemma 2.2.1 and Section 2.3, the function
CP (w, πλ) · rP (w, ϕλ) is holomorphic and equal to∏

(i,j)∈inv(w)

A(πi, πj)

at λ = 0, where we set

inv(w) = {(i, j) ∈ I × I | i < j, w(i) > w(j)}
and

A(πi, πj) =
L(1, ϕ∨

πi
⊗ ϕπj)

L(1, ϕπi ⊗ ϕ∨
πj
)
.

We may write ∏
(i,j)∈inv(w)

A(πi, πj) =
∏

(σ1,σ2)

A(σ1, σ2)
n(σ1,σ2),
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where (σ1, σ2) runs over ordered pairs of irreducible tempered representations of general
linear groups and

n(σ1, σ2) = |(I(σ1)× I(σ2)) ∩ inv(w)|
with I(σk) = {i ∈ I |πi ∼= σk}. Since A(σ1, σ2) = 1 if σ1 ∼= σ2 and A(σ1, σ2)A(σ2, σ1) =
1, we have ∏

(σ1,σ2)

A(σ1, σ2)
n(σ1,σ2) =

∏
{σ1,σ2}

A(σ1, σ2)
n(σ1,σ2)−n(σ2,σ1),

where {σ1, σ2} runs over unordered pairs.

Proof of Theorem 1.8.1 (1) for G = GLN(E). Assume that P = P ′ and wπ ∼= π. It
suffices to show that

n(σ1, σ2) = n(σ2, σ1).

We consider the set I0(σ1, σ2) = I1(σ1, σ2) ⊔ I2(σ1, σ2) with
I0(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i < j},
I1(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i < j, w(i) < w(j)},
I2(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i < j, w(i) > w(j)}.

Since wπ ∼= π, we have πw−1(i)
∼= πi for 1 ≤ i ≤ m. Hence the map (i, j) 7→

(w−1(i), w−1(j)) gives a bijection

I0(σ1, σ2)
1:1−→ I ′0(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) |w(i) < w(j)}.

Note that I ′0(σ1, σ2) = I1(σ1, σ2) ⊔ I ′2(σ1, σ2) with
I ′2(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i > j, w(i) < w(j)}.

Since the map (i, j) 7→ (j, i) gives a bijection I ′2(σ1, σ2)
1:1−→ I2(σ2, σ1), we have

n(σ1, σ2) = |I2(σ1, σ2)| = |I ′2(σ1, σ2)| = n(σ2, σ1).

This completes the proof of Proposition 2.1.7 in this case, and hence Theorem 1.8.1 (1)
for G = GLN(E). □

Next, we consider Theorem 1.8.1 (2). For a representation σ of GLN(E), define its
conjugate cσ by cσ(x) = σ(x). Hence σ ◦ θ ∼= cσ∨ if σ is irreducible. Since L(s, cϕσ1 ⊗
cϕ∨

σ2
) = L(s, ϕσ1 ⊗ ϕ∨

σ2
), we have A(cσ∨

2 ,
cσ∨

1 ) = A(σ1, σ2), so that∏
(σ1,σ2)

A(σ1, σ2)
n(σ1,σ2) =

∏
[σ1,σ2]

A(σ1, σ2)
n′(σ1,σ2)/e(σ1,σ2),

where [σ1, σ2] runs over orbits under the action (σ1, σ2) 7→ (cσ∨
2 ,

cσ∨
1 ) and

n′(σ1, σ2) = n(σ1, σ2) + n(cσ∨
2 ,

cσ∨
1 ),

e(σ1, σ2) =
2

|[σ1, σ2]|
.

Moreover, since

• A(σ1, σ2) = 1 if [σ1, σ2] = [σ2, σ1];
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• A(σ1, σ2)A(σ2, σ1) = 1;
• e(σ1, σ2) = e(σ2, σ1),

we have ∏
[σ1,σ2]

A(σ1, σ2)
n′(σ1,σ2)/e(σ1,σ2) =

∏
[[σ1,σ2]]

A(σ1, σ2)
(n′(σ1,σ2)−n′(σ2,σ1))/e(σ1,σ2),

where [[σ1, σ2]] runs over orbits under the action [σ1, σ2] 7→ [σ2, σ1].

Proof of Theorem 1.8.1 (2). Assume that wπ ∼= π ◦ θ. This is equivalent to saying that
πw−1(i)

∼= cπ∨
m+1−i for 1 ≤ i ≤ m. It suffices to show that

n′(σ1, σ2) = n′(σ2, σ1).

Put

I1(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i < j, w(i) < w(j)},
I2(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i < j, w(i) > w(j)},
I3(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i > j, w(i) < w(j)}.

Then the map (i, j) 7→ (i′, j′) = (w−1(m+ 1− j), w−1(m+ 1− i)) gives a bijection

{(i, j) ∈ I(σ1)× I(σ2) | i < j} 1:1−→{(i′, j′) ∈ I(cσ∨
2 )× I(cσ∨

1 ) |w(i′) < w(j′)}.

Note that the left-hand side is I1(σ1, σ2) ⊔ I2(σ1, σ2), whereas the right-hand side is
I1(

cσ∨
2 ,

cσ∨
1 ) ⊔ I3(cσ∨

2 ,
cσ∨

1 ). Hence

|I1(σ1, σ2)|+ |I2(σ1, σ2)| = |I1(cσ∨
2 ,

cσ∨
1 )|+ |I3(cσ∨

2 ,
cσ∨

1 )|.

This implies that

|I1(σ1, σ2)|+ |I2(σ1, σ2)|+ |I1(cσ∨
2 ,

cσ∨
1 )|+ |I2(cσ∨

2 ,
cσ∨

1 )|
= |I1(cσ∨

2 ,
cσ∨

1 )|+ |I3(cσ∨
2 ,

cσ∨
1 )|+ |I1(σ1, σ2)|+ |I3(σ1, σ2)|

so that

n′(σ1, σ2) = |I2(σ1, σ2)|+ |I2(cσ∨
2 ,

cσ∨
1 )|

= |I3(σ1, σ2)|+ |I3(cσ∨
2 ,

cσ∨
1 )| = n′(σ2, σ1),

where the last equation follows from the map (i, j) 7→ (j, i). This completes the proof
of Proposition 2.1.7 in this case, and hence Theorem 1.8.1 (2). □

2.5. The case of classical groups. We now consider Theorem 1.8.1 (1) for classical
groups. Suppose that G is a classical group andM = GLn1(E)×· · ·×GLnm(E)×G0. As
explained after Proposition 2.1.7, by Lemma 2.1.8, it suffices to consider the following
two situations.

(1) G = G◦, or G = O2n(F ) and det(w) = 1, and wπ ∼= π;
(2) G = O2n(F ), det(w) = 1 and wϵπ ∼= π.
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We consider the general situation for a moment. Put I+ = {1, . . . ,m}, I− =
{−1, . . . ,−m}, and I = I+ ⊔ I−. Write π = τ1 ⊠ · · · ⊠ τm ⊠ π0 with irreducible tem-
pered representations τ1, . . . , τm, π0 of GLn1(E), . . . ,GLnm(E), G0, respectively, and put
τ−i =

cτ∨i for i ∈ I+. We denote by ϕτi (resp. ϕπ0) the L-parameter of τi (resp. π0). We
regard w as an automorphism of I such that w(−i) = −w(i) for all i ∈ I and such that
wπ = τw−1(1) ⊠ · · · ⊠ τw−1(m) ⊠ π0. Then by Lemmas 2.2.1, 2.2.2 and Section 2.3, the
function CP (w, πλ) · rP (w, ϕλ) is holomorphic and equal to the product ∏

(i,j)∈inv1(w)

A(τi, τj)

 ∏
i∈inv2(w)

B(τi, π0)


at λ = 0, where

inv1(w) = {(i, j) ∈ I+ × I | i < |j|, w(i) > 0, w(j) > 0, w(i) > w(j)}
⊔ {(i, j) ∈ I+ × I | i < |j|, w(i) < 0, w(j) > 0}
⊔ {(i, j) ∈ I+ × I | i < |j|, w(i) < 0, w(j) < 0, |w(i)| < |w(j)|},

inv2(w) = {i ∈ I+ |w(i) < 0}
and

A(τi, τj) =
L(1, ϕ∨

τi
⊗ ϕτj)

L(1, ϕτi ⊗ ϕ∨
τj
)
, B(τi, π0) =

L(1, ϕ∨
τi
⊗ ϕπ0)

L(1, ϕτi ⊗ ϕ∨
π0
)

L(1, ϕ∨
τi
, R)

L(1, ϕτi , R)
.

First, we may write ∏
(i,j)∈inv1(w)

A(τi, τj) =
∏

(σ1,σ2)

A(σ1, σ2)
n1(σ1,σ2),

where (σ1, σ2) runs over pairs of irreducible tempered representations of general linear
groups and

n1(σ1, σ2) = |(I(σ1)× I(σ2)) ∩ inv1(w)|
with I(σ) = {i ∈ I | τi ∼= σ}. Since L(s, cϕσ1 ⊗ cϕ∨

σ2
) = L(s, ϕσ1 ⊗ ϕ∨

σ2
), we have

A(cσ∨
2 ,

cσ∨
1 ) = A(σ1, σ2), so that∏

(σ1,σ2)

A(σ1, σ2)
n1(σ1,σ2) =

∏
[σ1,σ2]

A(σ1, σ2)
n′
1(σ1,σ2)/e(σ1,σ2),

where [σ1, σ2] runs over orbits under the action (σ1, σ2) 7→ (cσ∨
2 ,

cσ∨
1 ) and

n′
1(σ1, σ2) = n1(σ1, σ2) + n1(

cσ∨
2 ,

cσ∨
1 ),

e(σ1, σ2) =
2

|[σ1, σ2]|
.

Moreover, since

• A(σ1, σ2) = 1 if [σ1, σ2] = [σ2, σ1];
• A(σ1, σ2)A(σ2, σ1) = 1;
• e(σ1, σ2) = e(σ2, σ1),
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we have ∏
[σ1,σ2]

A(σ1, σ2)
n′
1(σ1,σ2)/e(σ1,σ2) =

∏
[[σ1,σ2]]

A(σ1, σ2)
(n′

1(σ1,σ2)−n′
1(σ2,σ1))/e(σ1,σ2),

where [[σ1, σ2]] runs over orbits under the action [σ1, σ2] 7→ [σ2, σ1]. Similarly, we may
write ∏

i∈inv2(w)

B(τi, π0) =
∏
σ

B(σ, π0)
n2(σ),

where σ runs over irreducible tempered representations of general linear groups and

n2(σ) = |I(σ) ∩ inv2(w)|.

Since L(s, cϕσ⊗ϕπ0) = L(s, ϕσ⊗ϕ∨
π0
) and L(s, cϕσ, R) = L(s, ϕσ, R), we have B(σ, π0) =

1 if cσ∨ ∼= σ, and B(σ, π0)B(cσ∨, π0) = 1, so that∏
σ

B(σ, π0)
n2(σ) =

∏
[σ]

B(σ, π0)
n2(σ)−n2(cσ∨),

where [σ] runs over orbits under the action σ 7→ cσ∨.

Proof of Theorem 1.8.1 (1) for classical groups G. Assume that wπ ∼= π, or wϵπ ∼= π
(in which case, G = O2n(F )). It suffices to show that

n′
1(σ1, σ2) = n′

1(σ2, σ1), n2(σ) = n2(
cσ∨).

First we consider the set

Iδ(σ1, σ2) = {(i, j) ∈ I(σ1)× I(σ2) | i > 0, δj > 0, i < |j|} =
8⊔

k=1

Iδk(σ1, σ2)

for δ = ±, where

Iδ1(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) > 0, w(j) > 0, |w(i)| < |w(j)|},
Iδ2(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) > 0, w(j) > 0, |w(i)| > |w(j)|},
Iδ3(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) > 0, w(j) < 0, |w(i)| < |w(j)|},
Iδ4(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) > 0, w(j) < 0, |w(i)| > |w(j)|},
Iδ5(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) < 0, w(j) > 0, |w(i)| < |w(j)|},
Iδ6(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) < 0, w(j) > 0, |w(i)| > |w(j)|},
Iδ7(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) < 0, w(j) < 0, |w(i)| < |w(j)|},
Iδ8(σ1, σ2) = {(i, j) ∈ I+(σ1)× Iδ(σ2) | i < |j|, w(i) < 0, w(j) < 0, |w(i)| > |w(j)|}

with Iδ(σ) = Iδ ∩ I(σ). Since wπ ∼= π or wϵπ ∼= π, the map (i, j) 7→ (i′, j′) =

(w−1(i), w−1(j)) gives a bijection Iδ(σ1, σ2)
1:1−→ Jδ(σ1, σ2), where

Jδ(σ1, σ2) = {(i′, j′) ∈ I(σ1)× I(σ2) |w(i′) > 0, δw(j′) > 0, w(i′) < |w(j′)|}
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=
8⊔

k=1

Jδk(σ1, σ2)

with

Jδ1 (σ1, σ2) = {(i, j) ∈ I+(σ1)× I+(σ2) | |i| < |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|},
Jδ2 (σ1, σ2) = {(i, j) ∈ I+(σ1)× I+(σ2) | |i| > |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|},
Jδ3 (σ1, σ2) = {(i, j) ∈ I+(σ1)× I−(σ2) | |i| < |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|},
Jδ4 (σ1, σ2) = {(i, j) ∈ I+(σ1)× I−(σ2) | |i| > |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|},
Jδ5 (σ1, σ2) = {(i, j) ∈ I−(σ1)× I+(σ2) | |i| < |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|},
Jδ6 (σ1, σ2) = {(i, j) ∈ I−(σ1)× I+(σ2) | |i| > |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|},
Jδ7 (σ1, σ2) = {(i, j) ∈ I−(σ1)× I−(σ2) | |i| < |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|},
Jδ8 (σ1, σ2) = {(i, j) ∈ I−(σ1)× I−(σ2) | |i| > |j|, w(i) > 0, δw(j) > 0, w(i) < |w(j)|}.

Hence, noting that

J+
1 (σ1, σ2) = I+1 (σ1, σ2), J−

1 (σ1, σ2) = I+3 (σ1, σ2),

J+
3 (σ1, σ2) = I−1 (σ1, σ2), J−

3 (σ1, σ2) = I−3 (σ1, σ2),

we have ∑
k∈{2,4,5,6,7,8}

|Ik(σ1, σ2)| =
∑

k∈{2,4,5,6,7,8}

|Jk(σ1, σ2)|,

where Ik(σ1, σ2) = I+k (σ1, σ2) ⊔ I−k (σ1, σ2) and Jk(σ1, σ2) = J+
k (σ1, σ2) ⊔ J−

k (σ1, σ2).
Moreover, since the map (i, j) 7→ (−j,−i) gives bijections

J+
4 (σ1, σ2)

1:1−→ I−8 (
cσ∨

2 ,
cσ∨

1 ), J−
4 (σ1, σ2)

1:1−→ I−4 (
cσ∨

2 ,
cσ∨

1 ),

J+
8 (σ1, σ2)

1:1−→ I+8 (
cσ∨

2 ,
cσ∨

1 ), J−
8 (σ1, σ2)

1:1−→ I+4 (
cσ∨

2 ,
cσ∨

1 ),

we have

(♯)
∑

k∈{2,5,6,7}

(|Ik(σ1, σ2)|+ |Ik(cσ∨
2 ,

cσ∨
1 )|) =

∑
k∈{2,5,6,7}

(|Jk(σ1, σ2)|+ |Jk(cσ∨
2 ,

cσ∨
1 )|) .

Since

n1(σ1, σ2) =
∑

k∈{2,5,6,7}

|Ik(σ1, σ2)|,

the left-hand side of (♯) is equal to n′
1(σ1, σ2). On the other hand, noting that the map

(i, j) 7→ (j, i) gives bijections

J+
2 (σ1, σ2)

1:1−→ I+2 (σ2, σ1), J−
2 (σ1, σ2)

1:1−→ I+6 (σ2, σ1),

J+
6 (σ1, σ2)

1:1−→ I−2 (σ2, σ1), J−
6 (σ1, σ2)

1:1−→ I−6 (σ2, σ1),



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 47

and the map (i, j) 7→ (−i,−j) gives bijections

J+
5 (σ1, σ2)

1:1−→ I−7 (
cσ∨

1 ,
cσ∨

2 ), J−
5 (σ1, σ2)

1:1−→ I−5 (
cσ∨

1 ,
cσ∨

2 ),

J+
7 (σ1, σ2)

1:1−→ I+7 (
cσ∨

1 ,
cσ∨

2 ), J−
7 (σ1, σ2)

1:1−→ I+5 (
cσ∨

1 ,
cσ∨

2 ),

the right-hand side of (♯) is equal to n′
1(σ2, σ1). This proves

n′
1(σ1, σ2) = n′

1(σ2, σ1).

Next we consider the set

{i ∈ I(σ) | i > 0} = {i ∈ I+(σ) |w(i) > 0} ⊔ {i ∈ I+(σ) |w(i) < 0}.
The map i 7→ i′ = w−1(i) gives a bijection from this set to

{i′ ∈ I(σ) |w(i′) > 0} = {i′ ∈ I+(σ) |w(i′) > 0} ⊔ {i′ ∈ I−(σ) |w(i′) > 0}.
Hence we have

n2(σ) = |{i ∈ I+(σ) |w(i) < 0}| = |{i ∈ I−(σ) |w(i) > 0}| = n2(
cσ∨),

where the last equation follows from the map i 7→ −i. This completes the proof of
Proposition 2.1.7 in this case, and hence Theorem 1.8.1 (1) for the classical group
G. □

2.6. Shahidi’s formula for local coefficients. In a series of influential papers [Sha1,
Sha2, Sha3, Sha4, Sha5, KeSh, Sha6, Sha7] stretching over 12 years, Shahidi made a
deep study of local coefficients and developed a theory of γ-factors for generic repre-
sentations of connected reductive groups. In particular, as a culmination of this study,
he showed that local coefficients can be expressed in terms of these γ-factors. These
results play a key role in the study of automorphic forms, in particular in Arthur’s
theory of endoscopic classification.

The theory of γ-factors is very delicate because it requires a careful normalization
of various quantities (such as Weyl group representatives) and a careful evaluation of
pertinent integrals in the rank 1 case (i.e., for SL2 and SU(2, 1)). As the theory evolved
over a period of 12 years, and it was not a priori clear what the precise shape of the
final product should be, it is understandable that different normalizations may have
been preferred at different points in time, for different reasons. As a consequence,
various formulas (of the same quantity) which appeared in [Sha5, KeSh, Sha7] are not
consistent with each other. In this subsection, with the benefit of hindsight, we shall
explain and resolve these discrepancies so that one has a consistent story. We stress
that the discrepancies that we point out are mainly the results of different choices of
normalizations, and not of any conceptual flaws with Shahidi’s arguments.

We shall first review the key formula of Shahidi expressing local coefficients in terms
of gamma factors. Let F be a local field of characteristic zero. Fix a non-trivial unitary
character ψF of F . In this subsection, we consider an arbitrary quasi-split connected
reductive algebraic group G over F . Fix an F -splitting spl = (B, T, {Xα}) of G. Let
w be the Whittaker datum for G determined by spl and ψF .
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Let P = MN be a standard maximal parabolic subgroup of G. We denote by a the
simple root of AT that does not belong to the root system of M , where AT is the split
component of T . Following [Sha6, p. 552], we define ã as the restriction of ⟨ρ, α∨⟩−1ρ to
AT , where ρ is half the sum of the absolute roots of T in N , α is an absolute root which
restricts to a, and α∨ is the coroot associated to α. (Note that ã is the corresponding
fundamental weight when G is semisimple and split over F .) We may regard ã as
an element in a∗M . Let r be the adjoint representation of LM on n̂, where n̂ is the

Lie algebra of the unipotent radical of the dual parabolic subgroup P̂ . As in [Sha6,
p. 554], we decompose it as r =

⊕m
i=1 ri. Let P

′ =M ′N ′ be another standard maximal
parabolic subgroup of G and assume that W (M,M ′) ̸= {1} (resp. W (M,M ′) ̸= ∅) if
M = M ′ (resp. M ̸= M ′). Take the unique non-trivial element w in W (M,M ′). Let
λ(w,ψF ) be the λ-factor as in [KeSh, (4.1)] (see also Section 1.7).

Let π be an irreducible wM -generic representation of M , where wM is the Whittaker
datum for M induced by w. Recall that the local coefficient CP (w, πsã, ψF ) for s ∈ C
depends on the choice of the representative of w. We take the Langlands–Shelstad
representative w̃ of w with respect to spl as in Section 1.7. For example, if G = SL2

and spl is the standard splitting, then we have

w̃ =

(
0 1
−1 0

)
.

We write CP (w, πsã, ψF ) = CP (w̃, πsã, ψF ) to indicate this dependence. In [Sha7, The-
orem 3.5], Shahidi expressed local coefficients in terms of γ-factors, but (as Shahidi has
also informed us) the formula needs to be replaced by:

(S1) CP (w̃, πsã, ψF ) = λ(w,ψF )
−1

m∏
i=1

γSh(is, π, ri, ψF ),

where the superscript Sh indicates Shahidi’s γ-factors. In the rest of the section, we
shall explain through several remarks why such a revision is necessary.

Remark 2.6.1. The first remark concerns [Sha7]. We write w̃Sh for the representative
of w used in [Sha7]. As explained in the middle of [Sha7, p. 281], w̃Sh is the same
as the one given in [Sha5, p. 979] and [KeSh, p. 74]. Note that w̃Sh differs from
w̃ and is in fact the Langlands–Shelstad representative with respect to the splitting
spl− = (B, T, {−Xα}). For example, if G = SL2 and spl is the standard splitting,
then we have

w̃Sh =

(
0 −1
1 0

)
.

We write CP (w̃
Sh, πsã, ψF ) for the associated local coefficient. Since spl− and ψF give

rise to the Whittaker datum w, the equality (S1) is equivalent to

CP (w̃
Sh, πsã, ψF ) = λ(w,ψF )

−1

m∏
i=1

γSh(is, π, ri, ψF ).
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On the other hand, [Sha7, Theorem 3.5, (3.11)] states that

(S2) CP (w̃
Sh, πsã, ψF ) = λ(w,ψF )

−1

m∏
i=1

γSh(is, π, r∨i , ψF ).

Hence there is a discrepancy between (S1) and (S2), even after accounting for the
different choices of Weyl representatives. We will explain the reasons for this.

Before discussing the reasons, let us point out that the formula (S2) is not consistent
with the restriction of scalars. For simplicity, we assume that G is split over F . Let F0

be a subfield of F such that F/F0 has finite degree and assume that ψF = ψF0 ◦ trF/F0

for some non-trivial additive character ψF0 of F0. Put G0 = ResF/F0G, P0 = ResF/F0P ,
and M0 = ResF/F0M . Denote by a0 the simple root corresponding to M0. Let spl0 be
the F0-splitting of G0 induced by spl. Then w̃Sh (regarded as an element in G0(F0))
is the representative of w with respect to spl−0 , and we can define the local coefficient
CP0(w̃

Sh, πsã0 , ψF0), where π is regarded as a representation ofM0(F0). Since πsã0 = πsã
under the identification M0(F0) = M(F ), and spl0 and ψF0 give rise to the Whittaker
datum w, it follows from the definition that

CP0(w̃
Sh, πsã0 , ψF0) = CP (w̃

Sh, πsã, ψF ).

From this and (S2), we can deduce that

λ(w,ψF0)
−1

m∏
i=1

γSh(is, π, Ind
LM0
LM

r∨i , ψF0
) =

m∏
i=1

γSh(is, π, r∨i , ψF ),

noting that λ(w,ψF ) = 1. By the property of λ-factors (see [D, Section 5.6]), we should
have

γSh(is, π, Ind
LM0
LM

r∨i , ψF0
) = λ(F/F0, ψF0

)dim r∨i γSh(is, π, r∨i , ψF )

and hence

λ(w,ψF0)
−1λ(F/F0, ψF0

)dimN = 1.

However, this is not consistent with the definition of λ(w,ψF0):

λ(w,ψF0) = λ(F/F0, ψF0)
dimN .

This explains why one should expect to have ψF in the λ-factor in (S2) instead of ψF .
In [Sha7], Shahidi used a global argument to derive the formula for local coefficients at

all places, using as inputs his previous results for arbitrary generic representations in the
archimedean case in [Sha5] and principal series representations in the non-archimedean
case in [KeSh]. More precisely, these input formulas were used in the proof of [Sha7,
Propositions 3.2 and 3.4]. The input formulas stated in these propositions differ from the
ones in [Sha5, KeSh] but this difference is adequately explained by the use of different
normalizations in these papers. (Compare (S2) with (S3) and (S4) below.) However,
as we discuss below, it turns out that the input formulas from [Sha5, KeSh] are not
entirely accurate, and these are the sources of the eventual discrepancy between (S1)
and (S2). We shall explain in Remarks 2.6.2 and 2.6.3 below how these input formulas
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can be appropriately revised. Once these revisions are made, Shahidi’s arguments in
[Sha7] leads to the desired formula (S1).

Remark 2.6.2. The second remark concerns [Sha5]. Suppose that F is archimedean.
In [Sha5], the induced representation IP (π) was realized on the space of Vπ-valued
smooth functions f on G such that

f(gmn) = δP (m)−
1
2π(m)−1f(g)

for g ∈ G, m ∈ M , and n ∈ N , with associated intertwining operators, Whittaker
functionals, and local coefficients. By the isomorphism f 7→ [g 7→ f(g−1)] from this
realization to our realization, we see that the local coefficients defined in [Sha5] agree
with the ones defined in [Sha7]. Then [Sha5, Theorem 3.1] states that

(S3) CP (w̃
Sh, πsã, ψF ) = λ(w,ψF )

m∏
i=1

γ(is, π, ri, ψF ).

(Note that −2sρθ on the left-hand side of [Sha5, (3.1.1)] is a typo and should be 2sρθ.)
Observe that this is not consistent with (S2) or (S1). To reconcile (S3) with (S1), we
examine the following F -rank one cases (to which the general case can be reduced):

• When G = SL2, we shall explicitly compute the local coefficient in Proposition
2.6.6 below. As this proposition shows, the equality (S3) needs to be revised in
this case. Indeed, in the equality stated in [Sha5, Lemma 1.4 (a)], one has to use
the local coefficient associated to w̃. Thus one has to replace CP (w̃

Sh, πsã, ψF )
in (S3) by CP (w̃, πsã, ψF ). Note that λ(w,ψF ) = 1 in this case.

• When F = R and G = ResC/RSL2, one uses [Sha5, (3.10)] in the proof of [Sha5,
Theorem 3.1], but there is a typo in that the inverse is missing from λ(C/R, ψR)
on the right-hand side of [Sha5, (3.1.1)]. Thus one has to replace λ(w,ψF ) in
(S3) by λ(w,ψF )

−1.
• When F = R and G = SU(2, 1), the equality (S3) (and the one stated in
[Sha5, Lemma 1.4 (b)]) indeed holds. In this case, we have CP (w̃

Sh, πsã, ψF ) =
CP (w̃, πsã, ψF ) and λ(w,ψF ) = λ(w,ψF )

−1 since

w̃Sh = w̃ =

0 0 1
0 −1 0
1 0 0


and λ(w,ψF ) = λ(C/R, ψR)

2 = −1.

Consequently, (S1) is the correct formulation of [Sha5, Theorem 3.1].

Remark 2.6.3. The third remark concerns [KeSh]. Suppose that F is non-archimedean
and π is a principal series representation. Then [KeSh, Proposition 3.4] states that

(S4) CP (w̃
Sh, πsã, ψF ) = λ(w,ψF )

−1

m∏
i=1

γ(is, π, r∨i , ψF ).

Observe that this does not agree with (S2) or (S1). To reconcile this, note that:
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• When G = SL2, the equality (S4) does not hold by Proposition 2.6.6 below.
Again, one has to replace CP (w̃

Sh, πsã, ψF ) in (S4) by CP (w̃, πsã, ψF ) as in the
archimedean case.

• When G = SU(2, 1), the equality stated in [KeSh, Corollary 3.3] indeed holds.
In this case, we have CP (w̃

Sh, πsã, ψF ) = CP (w̃, πsã, ψF ) as in the archimedean
case.

• In addition, one has to replace γ(is, π, r∨i , ψF ) in (S4) by γ(is, π, ri, ψF ) for the
following reason. For simplicity, we assume that G is split over F .

– For a character χ of T , let ϕχ be the L-parameter of χ and regard it as a

homomorphism ϕχ : W
ab
F → T̂ . Recall that ϕχ is given by

ϕχ = ρχ ◦ Art−1,

where Art : F× ∼−→ W ab
F is the local reciprocity map, and ρχ : F

× → T̂ =
X∗(T )⊗C× is the homomorphism corresponding to χ : T = X∗(T )⊗F× →
C× by the natural isomorphism

Hom(X∗(T )⊗ F×,C×) ∼= Hom(F×, X∗(T )⊗ C×).

Let α∨ be a coroot of T , which is a root of T̂ . Here we regard µ ∈ X∗(T )

as a character of T̂ by

µ(t) = z⟨λ,µ⟩

for t = λ⊗ z ∈ T̂ = X∗(T )⊗ C×. Since the diagram

Hom(X∗(T )⊗ F×,C×)
∼ //

(α∨)∗

��

Hom(F×, X∗(T )⊗ C×)

(α∨)∗
��

Hom(F×,C×) Hom(F×,C×)

is commutative, we have χ ◦ α∨ = α∨ ◦ ρχ. Hence [KeSh, (2.1)] should be
read:

χ ◦ α∨ = α∨ ◦ ϕχ ◦ Art,
so that one has to replace r̃w̃ on the left-hand sides of [KeSh, (2.9), (2.10),
(2.13), (2.14)] by rw̃.

– At the bottom of [KeSh, p. 74], the authors mention that the equality
[KeSh, (2.2)] justifies the inverse on the left-hand side of [KeSh, (2.1)].
Unfortunately we do not comprehend this equality.

Consequently, (S1) is the correct formulation of [KeSh, Proposition 3.4].

In view of Remarks 2.6.1, 2.6.2 and 2.6.3, we have explained the reasons for the
discrepancy between (S1) and (S2), and why (S1) is the correct version.

Finally, we reconsider the rank 1 case. In Shahidi’s theory of γ-factors, it is important
to fix the choice of Weyl group representatives and compute local coefficients (with
respect to this choice) in the rank 1 case explicitly. In the case of SU(2, 1), our choice
is the same as Shahidi’s one and we refer the reader to [Sha5, Lemma 1.4 (b)], [KeSh,
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Corollary 3.3] for the explicit formula. On the other hand, in the case of SL2, we
take a different representative and the situation is more subtle. Thus, for the sake of
completeness, we include the computation of the local coefficient in this case, following
[Jac, Section 1], [Sha1, Lemma 4.4].

Suppose that G = SL2(F ). Let S(F ) be the space of Schwartz–Bruhat functions on

F . For ϕ ∈ S(F ), we define its Fourier transform ϕ̂ ∈ S(F ) by

ϕ̂(x) =

∫
F

ϕ(y)ψF (xy)dy,

where dy is the self-dual Haar measure on F with respect to ψF . For s ∈ C, ϕ ∈ S(F ),
and a character χ of F×, put

Z(s, χ, ϕ) =

∫
F×

ϕ(t)χ(t)|t|sFd×t,

where d×t = |t|−1
F dt. This integral is absolutely convergent for Re(s) ≫ 0 and admits a

meromorphic continuation to C. Moreover, the functional equation

Z(1− s, χ−1, ϕ̂) = γ(s, χ, ψF )Z(s, χ, ϕ)

holds, where

γ(s, χ, ψF ) = ε(s, χ, ψF )
L(1− s, χ−1)

L(s, χ)
.

We consider the normalized parabolically induced representation I(s, χ) = IndGB(χ| ·
|sF ) of G on the space of smooth functions f on G such that

f

((
a b
0 a−1

)
g

)
= χ(a)|a|s+1

F f(g)

for all a ∈ F×, b ∈ F , and g ∈ G. For φ ∈ S(F 2) (where we regard F 2 as the space of
row vectors), we define fφ,s,χ ∈ I(s, χ) by (the meromorphic continuation of)

fφ,s,χ(g) = Z(s+ 1, χ, ϕr(g)φ) =

∫
F×

r(g)φ(0, t)χ(t)|t|s+1
F d×t,

where ϕφ(x) = φ(0, x) and r(g)φ(x1, x2) = φ((x1, x2)g). For φ ∈ S(F 2), we define its
Fourier transform Fφ ∈ S(F 2) by

Fφ(x1, x2) =
∫
F 2

φ(y1, y2)ψF (x2y1 − x1y2) dy1 dy2.

Note that F ◦ r(g) = r(g) ◦ F for all g ∈ G. Recall that the intertwining operator

J(s, χ) = JB(w, χ| · |sF ) : I(s, χ) → I(−s, χ−1)

is given by (the meromorphic continuation of)

J(s, χ)f(g) =

∫
F

f(w̃−1n(y)g)dy,
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where

w̃ =

(
0 1
−1 0

)
, n(y) =

(
1 y
0 1

)
.

Lemma 2.6.4. For φ ∈ S(F 2), we have

J(s, χ)fφ,s,χ = γ(s, χ, ψF )
−1fFφ,−s,χ−1 .

Proof. For Re(s) ≫ 0, we have

J(s, χ)fφ,s,χ(g) =

∫
F

∫
F×

r(w̃−1n(y)g)φ(0, t)χ(t)|t|s+1
F d×t dy

=

∫
F

∫
F×

r(g)φ(t, ty)χ(t)|t|s+1
F d×tdy

=

∫
F×

∫
F

r(g)φ(t, y)χ(t)|t|sF dy d×t = Z(s, χ, ϕ),

where

ϕ(x) =

∫
F

r(g)φ(x, y)dy.

Hence, by the functional equation, we have

J(s, χ)fφ,s,χ(g) = γ(s, χ, ψF )
−1Z(1− s, χ−1, ϕ̂).

However, we have

ϕ̂(x) = (F ◦ r(g)φ)(0, x) = (r(g) ◦ Fφ)(0, x) = ϕr(g)Fφ(x).

Since fFφ,−s,χ−1(g) = Z(1− s, χ−1, ϕr(g)Fφ), this completes the proof. □
For φ ∈ S(F 2), we also define its partial Fourier transform F ′φ ∈ S(F 2) by

F ′φ(x1, x2) =

∫
F

φ(x1, y2)ψF (−x2y2)dy2.

Recall that the Whittaker functional Ω(s, χ) = Ω(χ| · |sF ) on I(s, χ) is given by (the
holomorphic continuation of)

Ω(s, χ)f =

∫
F

f(w̃−1n(y))ψF (−y)dy.

Lemma 2.6.5. For φ ∈ S(F 2), we have

Ω(s, χ)fφ,s,χ =

∫
F×

F ′φ(t, t−1)χ(t)|t|sFd×t.

(Note that the right-hand side is absolutely convergent for all s.)

Proof. For Re(s) ≫ 0, we have

Ω(s, χ)fφ,s,χ =

∫
F

∫
F×

r(w̃−1n(y))φ(0, t)χ(t)|t|s+1
F ψF (−y)d×tdy
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=

∫
F

∫
F×

φ(t, ty)χ(t)|t|s+1
F ψF (−y)d×tdy

=

∫
F×

∫
F

φ(t, y)χ(t)|t|sFψF (−t−1y)dyd×t

=

∫
F×

F ′φ(t, t−1)χ(t)|t|sFd×t.

This completes the proof. □

Finally, recall that the local coefficient C(s, χ, ψF ) = CB(w̃, χ| · |sF , ψF ) is given by

Ω(s, χ) = C(s, χ, ψF ) · Ω(−s, χ−1) ◦ J(s, χ)

(see [Sha2, p. 333, Theorem 3.1]).

Proposition 2.6.6. We have

C(s, χ, ψF ) = γ(s, χ, ψF ).

Proof. By Lemmas 2.6.4 and 2.6.5, we have

γ(s, χ, ψF ) · Ω(−s, χ−1)J(s, χ)fφ,s,χ = Ω(−s, χ−1)fFφ,−s,χ−1

=

∫
F×

F ′Fφ(t, t−1)χ(t)−1|t|−sF d×t

=

∫
F×

F ′Fφ(t−1, t)χ(t)|t|sFd×t

for φ ∈ S(F 2). Since F ′Fφ(x1, x2) = F ′φ(x2, x1), the right-hand side is equal to∫
F×

F ′φ(t, t−1)χ(t)|t|sFd×t = Ω(s, χ)fφ,s,χ

by Lemma 2.6.5. This completes the proof. □

3. The twisted local intertwining relation

The purpose of this section is to prove Theorem 1.9.1. This theorem is stated in [Ar3,
Theorem 2.5.3] and [Mok, Proposition 3.5.1 (b)]. Arthur expected that this theorem (for
non-tempered representations) would be proven by an argument “based on some version
of minimal K-types”. However, this idea might require a huge amount of computation
even if F is non-archimedean and πψ is unramified.

To show Theorem 1.9.1, we shall use a new approach. The difficulty of this theorem
is that the linear isomorphism θA : πψ

∼−→ πψ is defined through the Langlands quotient
map from the standard module of πψ. Our idea is to realize this Langlands quotient
map as a composition of normalized intertwining operators (see Lemma 3.3.1 below).
Then we can show Theorem 1.9.1 by the multiplicativity of normalized intertwining
operators (Proposition 1.7.2).
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3.1. Representations of general linear groups. Throughout this section, we write
G = GLN(E). For τ ∈ Rep(G) and for a character χ of E×, we define τχ by (τχ)(g) =
τ(g)χ(det(g)).

Let P = MN be a standard parabolic subgroup of G with Levi subgroup M ∼=
GLk1(E)× · · · ×GLkt(E). For τi ∈ Rep(GLki(E)), we denote the normalized parabolic
induction by

τ1 × · · · × τt = IndGP (τ1 ⊠ · · ·⊠ τt).

It is known by Bernstein [Ber1] that if πM ∈ Irr(M) is unitary, then IP (πM) = IndGP (πM)
is an irreducible unitary representation of G.

Recall that a standard module of G is an induced representation of the form

τ1| · |e1E × · · · × τt| · |etE ,

where τi is an irreducible tempered representation of GLki(E) and ei ∈ R such that
e1 > · · · > et. It has a unique irreducible quotient, called the Langlands quotient. For
example, if ψ = ϕ⊠Sa is an A-parameter for G with ϕ an irreducible representation of
LE with ϕ(WE) bounded, then πϕ is discrete series, and πψ is the Langlands quotient
of the standard module

IGψ = πϕ| · |
a−1
2

E × πϕ| · |
a−3
2

E × · · · × πϕ| · |
−a−1

2
E .

In this situation, we write

πψ = Speh(πϕ, a)

and call it a Speh representation. More generally, if ψ = ⊕t
i=1ϕi ⊠ Sai is an irreducible

decomposition of an A-parameter for G, then

πψ =
t×
i=1

Speh(πϕi , ai)

and its standard module is

IGψ =
t×
i=1

ai×
ei=1

πϕi | · |
ai+1

2
−ei

E ,

where the product is taken in decreasing order of the exponents.

Lemma 3.1.1. Let Π be a standard module of G. Then

dimC(EndG(Π)) = 1.

Proof. This is a consequence of the famous fact that the Langlands quotient π of Π
appears in Π as subquotients with multiplicity one (See e.g., [BW, Chapter XI, Lemma
2.13]). This fact induces an injective linear map

EndG(Π) → EndG(π).

Since dimC(EndG(π)) = 1 by Schur’s lemma, we obtain the assertion. □
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For the rest of this subsection, we assume that E is non-archimedean. We will identify
an irreducible unitary supercuspidal representation ρ of GLd(E) with the irreducible
d-dimensional bounded representation of WE by the LLC for GLd(E).

Recall that a segment is a set of the form

[x, y]ρ = {ρ| · |xE, ρ| · |x+1
E , . . . , ρ| · |yE},

where ρ is an irreducible unitary supercuspidal representation of GLd(E) and x ≤ y
are real numbers such that x ≡ y mod Z. One can attach to it two irreducible repre-
sentations ∆([x, y]ρ) and Z([x, y]ρ) of GLd(y−x+1)(E), which are the unique irreducible
subrepresentation and the unique irreducible quotient of the standard module

ρ| · |yE × · · · × ρ| · |x+1
E × ρ| · |xE,

respectively. We call ∆([x, y]ρ) a (generalized) Steinberg representation. Note that
∆([x, y]ρ) is an essentially discrete series representation, and all essentially discrete
series representations are of this form (see [Z, Theorem 9.3]). Similarly, any irreducible
tempered representation is a product of representations of the form ∆([−x, x]ρ). On
the other hand, by definition, we have Z([−x, x]ρ) = πρ⊠S1⊠S2x+1 if 2x ∈ Z. Recall from
[Z, Theorem 9.7] that the following are equivalent:

• The induction ∆([x, y]ρ)×∆([x′, y′]ρ′) is reducible;
• ∆([x, y]ρ)×∆([x′, y′]ρ′) ̸∼= ∆([x′, y′]ρ′)×∆([x, y]ρ);
• the two segments [x, y]ρ and [x′, y′]ρ′ are linked, i.e., [x, y]ρ ∪ [x′, y′]ρ′ is also a
segment, and [x, y]ρ ̸⊂ [x′, y′]ρ′ and [x, y]ρ ̸⊃ [x′, y′]ρ′ .

A multi-segment is a formal finite sum of segments. For a multi-segment m, writing
m = [x1, y1]ρ1 + · · ·+ [xr, yr]ρr with x1 + y1 ≥ · · · ≥ xr + yr, we set

I(m) = ∆([x1, y1]ρ1)× · · · ×∆([xr, yr]ρr).

This is a standard module. For example, let ψ = ρ⊠ S2α+1 ⊠ S2β+1 be an A-parameter
for G = GLN(E). If we set

m = [−α + β, α + β]ρ + [−α + β − 1, α + β − 1]ρ + · · ·+ [−α− β, α− β]ρ,

then the standard module IGψ of πψ is equal to I(m).

Lemma 3.1.2. Let ψ be an A-parameter for G = GLN(E). Then the standard module
IGψ of πψ contains an irreducible tempered representation πψD as a subrepresentation,

where ψD : WE×SL2(C) → GLN(C) is given by ψD(w, α) = ψ(w, α, α). Moreover, πψD
appears in IGψ as a subquotient with multiplicity one.

Proof. By [JS], the unique irreducible subrepresentation of IGψ is generic. By [Z, The-
orem 9.7], it is an irreducible product of generalized Steinberg representations. In
particular, it is determined uniquely by its cuspidal support. As this cuspidal support
is the same as the one of πψ, we deduce that the unique irreducible subrepresentation of
IGψ is πψD . Finally, the multiplicity one statement follows from [Z, Proposition 8.4]. □
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3.2. The tempered case. Let G = GLN(E) with an involution θ defined in Section
1.4. Fix a standard parabolic subgroup P = MNP . In this subsection, we will prove
Theorem 1.9.1 for tempered representations, i.e., for generic (or tempered) ψ. Thus we
consider an irreducible tempered representation π of M , and w ∈ W (θ(M),M) such
that w(π ◦ θ) ∼= π.

Since π is tempered, it is wM -generic. Fix a non-trivial wM -Whittaker functional ω
on π. Then IP (π) is an irreducible w-generic representation of G with the w-Whittaker
functional Ω(π) induced by ω as in Section 1.8. By definition (see Section 1.4), θA = θW
is the unique linear isomorphism θA : IP (π)

∼−→ IP (π) such that

θA ◦ IP (π)(h) = IP (π)(θ(h)) ◦ θA, h ∈ GLN(E),

Ω(π) ◦ θA = Ω(π).

In Section 1.9, we already argued that R̃P (θ ◦w, π̃) is a constant multiple of θA, so the

equation R̃P (θ ◦ w, π̃) = θA would follow from Ω(π) ◦ R̃P (θ ◦ w, π̃) = Ω(π).
Recall from Section 1.9 that

R̃P (θ ◦ w, π̃) = IP (π̃(w ⋊ θ)) ◦Rθ(P )(w, π ◦ θ) ◦ θ∗.

So it suffices to check that the three squares in the diagram

IP (π)
θ∗−−−→ Iθ(P )(π ◦ θ)

Rθ(P )(w,π◦θ)−−−−−−−→ IP (w(π ◦ θ)) IP (π̃(w⋊θ))−−−−−−−→ IP (π)

Ω(π)

y Ω(π◦θ)
y yΩ(w(π◦θ))

yΩ(π)

C C C C
are all commutative. Here, we note that all these Ω are induced by the same linear
functional ω. The commutativity of the middle square is nothing but Theorem 1.8.1
(2), whereas the one for the right square follows from ω ◦ π̃(w ⋊ θ) = ω, which is the
definition of the normalization of π̃(w ⋊ θ).

We show the commutativity of the left square.

Lemma 3.2.1. For w ∈ WG, we have

θ(w̃) = θ̃(w).

Proof. We recall the definition of the Tits lifting w̃ ∈ G of w ∈ WG. If w = wα1 · · ·wαk
is a reduced decomposition relative to the simple roots of (G, T ), where wα is a simple
reflection with respect to a simple root α, then w̃ is defined by w̃ = w̃α1 · · · w̃αk . Hence
we may assume that w = wα for some simple root α. Then w̃α is defined by

w̃α = exp(Xα) exp(−X−α) exp(Xα),

where Xα is already given as we fix a splitting spl, and X−α is the root vector for
−α such that Hα = [Xα, X−α] is the coroot for α. Since spl is θ-stable, the claim
follows. □
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Recall that Ω(π) is defined by the holomorphic continuation of the Jacquet integral

Ω(πλ)f =

∫
N ′
ω(f(w̃−1

0 n′))χ(n′)−1dn′.

Here N ′ = w̃0Nw̃
−1
0 with w0 = wℓw

M
ℓ , where wℓ and w

M
ℓ are the longest elements inWG

and WM , respectively, and χ is (the restriction of) the non-degenerate character of the
unipotent radical U of the Borel subgroupB given by spl and ψF . Note that θ(wℓ) = wℓ,

θ(wMℓ ) = w
θ(M)
ℓ and χ ◦ θ = χ. Hence, Lemma 3.2.1 implies that Ω(π ◦ θ) ◦ θ∗ = Ω(π).

This completes the proof of Theorem 1.9.1 for tempered representations.

3.3. Construction of the Langlands quotient map. Fix a standard parabolic
subgroup P = MNP of G = GLN(E). Let ψ be an A-parameter for M , and let
πψ be the associated irreducible unitary representation of M . Assume that there is
w ∈ W (θ(M),M) such that w(πψ ◦ θ) ∼= πψ, and we fix such an element w in this and
next subsections.

Note that IP (πψ) is irreducible. Let IGψ be a standard module of G whose Langlands

quotient is IP (πψ). Recall from Section 1.4 that a Whittaker functional Ω on IGψ defines

a linear isomorphism θW : IGψ
∼−→ IGψ , which induces θA : πψ

∼−→ πψ. To show Theorem

1.9.1 for πψ, we shall carefully construct IGψ .
Set V = EN so that G = GL(V ). Decompose V into a direct sum

V = V (1) ⊕ · · · ⊕ V (t)

such that M is the subgroup of G stabilizing V (i) for i = 1, . . . , t. Hence M ∼= G(1) ×
· · · ×G(t), where G(i) = GL(V (i)).

Recall that ψ is an A-parameter for M . It can be decomposed as

ψ = ψ(1) ⊕ · · · ⊕ ψ(t),

where ψ(i) is an A-parameter forG(i). Consider the decomposition of ψ(i) into irreducible
representations:

ψ(i) =

mi⊕
j=1

ψ
(i)
j .

Corresponding to this decomposition, we can also decompose V (i) as

V (i) =

mi⊕
j=1

V
(i)
j

such that dimC(ψ
(i)
j ) = dimE(V

(i)
j ).

Define a representation ϕ
ψ
(i)
j

of LE by

ϕ
ψ
(i)
j
(w) = ψ

(i)
j

(
w,

(
|w|

1
2
E 0

0 |w|−
1
2

E

))
.
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If we write ψ
(i)
j = ϕ

(i)
j ⊠ Sd, where ϕ

(i)
j is an irreducible representation of LE with

ϕ
(i)
j (WE) bounded, and d = d

(i)
j ≥ 1, then we have

ϕ
ψ
(i)
j

=
d⊕

k=1

ϕ
(i)
j | · |

d+1
2

−k
E .

Corresponding to this decomposition, we can decompose V
(i)
j as

V
(i)
j =

d⊕
k=1

V
(i)
j

(
d+ 1

2
− k

)
such that dimE(V

(i)
j (d+1

2
− k)) = dimC(ϕ

(i)
j | · |

d+1
2

−k
E ) = dimC(ϕ

(i)
j ). Fix a linear isomor-

phism V
(i)
j (d+1

2
− k) ∼= V

(i)
j (d+1

2
− k′) for 1 ≤ k, k′ ≤ d. When α ∈ (1/2)Z satisfies

α ̸≡ d+1
2

mod Z or |α| ≥ d+1
2
, we formally set V

(i)
j (α) = 0.

Finally, we define

V (i)(α) =

mi⊕
j=1

V
(i)
j (α).

After all, we obtain a decomposition

V =
t⊕
i=1

⊕
α∈(1/2)Z

V (i)(α).

Consider the finite set

V =
{
V (i)(α)

∣∣ 1 ≤ i ≤ t, α ∈ (1/2)Z such that V (i)(α) ̸= 0
}
.

We can define two total orders ≺1 and ≺2 on V as follows. Firstly, V (i)(α) ≺1 V
(i′)(α′)

if and only if

• i < i′; or
• i = i′ and α > α′.

Secondly, V (i)(α) ≺2 V
(i′)(α′) if and only if

• α > α′; or
• α = α′ and i < i′.

If we write V = {V1, . . . , Vr} = {V ′
1 , . . . , V

′
r} with V1 ≺1 · · · ≺1 Vr and V

′
1 ≺2 · · · ≺2 V

′
r ,

we define two parabolic subgroups P1 = M1NP1 and P ′
1 = M1NP ′

1
as the stabilizers of

the flags
V1 ⊂ V1 ⊕ V2 ⊂ · · · ⊂ V1 ⊕ · · · ⊕ Vr

and
V ′
1 ⊂ V ′

1 ⊕ V ′
2 ⊂ · · · ⊂ V ′

1 ⊕ · · · ⊕ V ′
r ,

respectively. Here, M1 is the stabilizer of elements Vi ∈ V , which is a common Levi
subgroup of P1 and P ′

1. Note that P1 is contained in P . We may assume that P1 is
standard, but P ′

1 is not standard in general. Let w2 ∈ WG be such that w̃−1
2 P ′

1w̃2 =
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P2 = M2NP2 is a standard parabolic subgroup, where w̃2M2w̃
−1
2 = M1. We regard w2

as an element in W (M2,M1).

Let τ
(i)
j be the irreducible discrete series representation corresponding to ϕ

(i)
j . We

regard τ
(i)
j | · |αE as a representation of GL(V

(i)
j (α)) if V

(i)
j (α) ̸= 0. (If V

(i)
j (α) = 0, then

we interprete τ
(i)
j | · |αE to be the trivial representation of the trivial group GL(V

(i)
j (α)) =

GL0(E).) By induction, we obtain an essentially tempered representation

τ (i)| · |αE =
mi×
j=1

τ
(i)
j | · |αE

of GL(V (i)(α)). We consider an essentially tempered representation

τ1 =
⊗
i,α

τ (i)| · |αE

of M1, and set

τ2 = w−1
2 τ1,

which is an essentially tempered representation of M2.
Note that P1 ⊂ P and M1 ⊂ M . Recall that πψ ∈ Irr(M) is the representation

corresponding to ϕψ via the LLC for M . It is the Langlands quotient of the standard
module

IMψ = IndMP1∩M (τ1)

of M . In particular, IP (πψ) is a quotient of IP (IMψ ) = IP1(τ1). Moreover, there is
w1 ∈ W (M1) with w̃1 ∈M such that the image of the normalized intertwining operator

RP1(w1, τ1) : IP1(τ1) → IP1(w1τ1)

is isomorphic to IP (πψ). Hereafter, we identify IP (πψ) with this subspace, i.e., IP (πψ)
is realized as the image of RP1(w1, τ1). Hence we obtain a surjection

RP1(w1, τ1) : IP1(τ1) ↠ IP (πψ) ⊂ IP1(w1τ1).

On the other hand, as the unitary induction preserves the irreducibility for general
linear groups, we see that IP (πψ) is the irreducible representation of G, which corre-
sponds to ϕψ, regarded as an L-parameter of G, via the LLC for G. It is the Langlands
quotient of the standard module IGψ = IP2(τ2). Since τ1 = w2τ2, we have a normalized
intertwining operator

RP2(w2, τ2) : IP2(τ2) → IP1(τ1).

Lemma 3.3.1. The composition

IP2(τ2)
RP2 (w2,τ2)−−−−−−→ IP1(τ1)

RP1 (w1,τ1)−−−−−−→ IP (πψ)

is well-defined and nonzero. In particular, this composition realizes the Langlands quo-
tient map. Namely, IP2(τ2) is the standard module of IP (πψ), and the above composition
is surjective.
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Proof. Recall that the normalized intertwining operators are defined by the meromor-
phic continuation of certain (normalized) integrals. Note that the operators RP1(w1, τ1)
and RP2(w2, τ2) are compositions of normalized intertwining operators of the form

τ
(i)
j | · |αE × τ

(i′)
j′ | · |α′

E → τ
(i′)
j′ | · |α′

E × τ
(i)
j | · |αE

with α ≥ α′. These displayed operators are regular and nonzero at the relevant points.
Hence, RP1(w1, τ1) and RP2(w2, τ2) are well-defined.

We now verify that the composite RP1(w1, τ1) ◦RP2(w2, τ2) is nonzero. Since IP (πψ)
is the unique irreducible quotient of IP2(τ2), and since RP2(w2, τ2) is nonzero, IP (πψ)
appears in the image of RP2(w2, τ2). If RP1(w1, τ1) ◦ RP2(w2, τ2) = 0, then we would
conclude that IP (πψ) appears in IP1(τ1) as subquotients with multiplicity greater than
one. Since the semisimplification of IP1(τ1) is the same as the one of the standard
module IP2(τ2), this contradicts the fact that the Langlands quotient IP (πψ) appears
in IP2(τ2) with multiplicity one. □
3.4. The main diagram. Recall that we have fixed an element w ∈ W (θ(M),M)
such that w(πψ ◦ θ) ∼= πψ. As in Section 1.7, we regard w as an element of WG. By
construction, wθ(M1)w

−1 = M1 and w(τ1 ◦ θ) ∼= τ1. Since w1 is the longest element
in the subset of W (M1) consisting of elements whose representatives are in M , we see
that θ(w1) = w−1w1w in W (θ(M)). Set

w′ = w−1
2 w−1

1 wθ(w1)θ(w2) = w−1
2 wθ(w2).

Lemma 3.4.1. With the above notations, we have the following.

(1) The canonical inclusion NP ↪→ NP1 induces a homeomorphism

NP ∩ w̃Nθ(P )w̃
−1\NP

∼= NP1 ∩ w̃Nθ(P1)w̃
−1\NP1 .

(2) We have w′θ(M2)w
′−1 =M2 and w′(τ2 ◦ θ) ∼= τ2. Let τ̃2(w

′⋊ θ) : w′(τ2 ◦ θ)
∼−→ τ2

be the isomorphism normalized by using a Whittaker functional on τ2.

(3) The normalized intertwining operator R̃P2(θ ◦ w′, τ̃2) : IP2(τ2) → IP2(τ2) defined
by the composition

IP2(τ2)
θ∗−→ Iθ(P2)(τ2 ◦ θ)

Rθ(P2)(w
′,τ2◦θ)−−−−−−−−−→ IP2(w

′(τ2 ◦ θ))
IP2 (τ̃2(w

′⋊θ))
−−−−−−−−→ IP2(τ2)

is bijective.

Proof. Assertion (1) follows from the equation w̃Nθ(P1)w̃
−1 ∩M = NP1 ∩M .

For (2), the first assertion follows by direct computation

w′θ(M2)w
′−1 = w−1

2 wθ(w2)θ(M2)θ(w2)
−1w−1w2

= w−1
2 wθ(M1)w

−1w2

= w−1
2 M1w2 =M2.

The second assertion is proven similarly.
For (3), it is obvious that θ∗ : IP2(τ2) → Iθ(P2)(τ2◦θ) is bijective. Note that Iθ(P2)(τ2◦θ)

is a standard module of G whose Langlands quotient is Iθ(P )(πψ ◦ θ) ∼= IP (πψ). Hence
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Iθ(P2)(τ2◦θ) and IP2(τ2) are standard modules whose Langlands quotients are isomorphic
to each other.

Since τ2 ◦ θ and w′(τ2 ◦ θ) ∼= τ2 are essentially tempered representations of θ(M2)
and M2, respectively, such that two inductions Iθ(P2)(τ2 ◦ θ) and IP2(w

′(τ2 ◦ θ)) are
both standard modules, we see that Rθ(P2)(w

′, τ2 ◦ θ) is nonzero. Since IP2(τ̃2(w
′ ⋊

θ)) ◦Rθ(P2)(w
′, τ2 ◦ θ) is a nonzero element in HomG(Iθ(P2)(τ2 ◦ θ), IP2(τ2)), which is one

dimensional by Lemma 3.1.1, it must be bijective. □

Now we will prove a key result:

Theorem 3.4.2. The “main diagram”

IP2(τ2)
R̃P2 (θ◦w

′,τ̃2)−−−−−−−→ IP2(τ2)

RP2 (w2,τ2)

y yRP2 (w2,τ2)

IP1(τ1) IP1(τ1)

RP1 (w1,τ1)

y yRP1 (w1,τ1)

IP (πψ)
R̃P (θ◦w,π̃ψ)−−−−−−−→ IP (πψ)

is commutative.

Admitting this result, we can complete the proof of Theorem 1.9.1 as follows. Recall
that IGψ = IP2(τ2) is the standard module of IP (πψ). Moreover, by Theorem 1.9.1 for
the tempered case together with analytic continuation, we have

R̃P2(θ ◦ w′, τ̃2) = θW .

By the definition of θA (see Section 1.4), Theorem 3.4.2 together with Lemma 3.3.1
implies that

R̃P (θ ◦ w, π̃ψ) = θA.

This completes the proof of Theorem 1.9.1 in general.
Now we show Theorem 3.4.2.

Proof of Theorem 3.4.2. Recall that the top and bottom maps of the main diagram are
composites of three maps:

R̃P2(θ ◦ w′, τ̃2) = IP2(τ̃2(w
′ ⋊ θ)) ◦Rθ(P2)(w

′, τ2 ◦ θ) ◦ θ∗

and

R̃P (θ ◦ w, π̃ψ) = IP (π̃ψ(w ⋊ θ)) ◦Rθ(P )(w, πψ ◦ θ, ψ) ◦ θ∗.



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 63

Hence the main diagram written in its full glory has the form

IP2(τ2)
θ∗−−−→ Iθ(P2)(τ2 ◦ θ)

Rθ(P2)(w
′,τ2◦θ)−−−−−−−−−→ IP2(w

′(τ2 ◦ θ))
IP2 (τ̃2(w

′⋊θ))
−−−−−−−−→ IP2(τ2)yRP2 (w2,τ2) RP2 (w2,τ2)

y
IP1(τ1) IP1(τ1)yRP1 (w1,τ1) RP1 (w1,τ1)

y
IP (πψ)

θ∗−−−→ Iθ(P )(πψ ◦ θ)
Rθ(P )(w,πψ◦θ,ψ)−−−−−−−−−→ IP (w(πψ ◦ θ))

IP (π̃ψ(w⋊θ))−−−−−−−→ IP (πψ).

We shall enhance this diagram by introducing additional stepping stones in the second
row, namely by introducing the representations

Iθ(P1)(τ1 ◦ θ) and IP1(w(τ1 ◦ θ)),

and additional maps connecting them to their neighbors. Hence the enhanced diagram
has the form:

IP2(τ2)
θ∗−−−→ Iθ(P2)(τ2 ◦ θ)

Rθ(P2)(w
′,τ2◦θ)−−−−−−−−−→ IP2(w

′(τ2 ◦ θ))
IP2 (τ̃2(w

′⋊θ))
−−−−−−−−→ IP2(τ2)y y y y

IP1(τ1)
θ∗−−−→ Iθ(P1)(τ1 ◦ θ) IP1(w(τ1 ◦ θ))

IP1 (τ̃1(w⋊θ))−−−−−−−→ IP1(τ1)y y y y
IP (πψ)

θ∗−−−→ Iθ(P )(πψ ◦ θ)
Rθ(P )(w,πψ◦θ,ψ)−−−−−−−−−→ IP (w(πψ ◦ θ))

IP (π̃ψ(w⋊θ))−−−−−−−→ IP (πψ).

Here, the vertical maps are of the form RP∗(w∗, τ∗), see below for the details. To prove
the commutativity of the main diagram, we shall show that the three vertical rectangles
are commutative.

The commutativity of the left rectangle

IP2(τ2)
θ∗−−−→ Iθ(P2)(τ2 ◦ θ)

RP2 (w2,τ2)

y yRθ(P2)(θ(w2),τ2◦θ)

IP1(τ1)
θ∗−−−→ Iθ(P1)(τ1 ◦ θ)

RP1 (w1,τ1)

y yRθ(P1)(θ(w1),τ1◦θ)

IP (πψ)
θ∗−−−→ Iθ(P )(πψ ◦ θ)

follows easily from Lemma 3.2.1.
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Now let us consider the right rectangle:

IP2(w
′(τ2 ◦ θ))

IP2 (τ̃2(w
′⋊θ))

−−−−−−−−→ IP2(τ2)

RP2 (w2,w′(τ2◦θ))
y yRP2 (w2,τ2)

IP1(w(τ1 ◦ θ))
IP1 (τ̃1(w⋊θ))−−−−−−−→ IP1(τ1)

RP1 (w1,w(τ1◦θ))
y yRP1 (w1,τ1)

IP (w(πψ ◦ θ))
IP (π̃ψ(w⋊θ))−−−−−−−→ IP (πψ).

If we realize w′(τ2 ◦ θ), τ2, w(τ1 ◦ θ) and τ1 on the same vector space, say V , then
τ̃2(w

′ ⋊ θ) is a linear isomorphism Φ: V → V satisfying

Φ ◦ τ2(θ(w̃′−1m2w̃
′)) = τ2(m2) ◦ Φ, m2 ∈M2.

Since τ2 = w−1
2 τ1, w = w2w

′θ(w2)
−1 and M1 = w2M2w

−1
2 , by Lemma 1.7.1, the above

property of Φ can be rewritten as

Φ ◦ τ1(θ(w̃−1m1w̃)) = τ1(m1) ◦ Φ, m1 ∈M1.

Since τ̃2(w
′⋊θ) and τ̃1(w⋊θ) are both normalized using a Whittaker functional, we see

that τ̃2(w
′ ⋊ θ) = τ̃1(w⋊ θ) as linear isomorphisms on V . It implies the commutativity

of the top square. On the other hand, notice that IndMP1∩M(τ1) is the standard module
of πψ. By the definition of π̃ψ(w⋊ θ) and the functoriality of IP , we have the following
commutative diagram

IP (w(Ind
M
P1∩M(τ1) ◦ θ)) −−−→ IP (Ind

M
P1∩M(τ1))

IP (RP1∩M (w1,w(τ1◦θ)))
y yIP (RP1∩M (w1,τ1))

IP (w(πψ ◦ θ))
IP (π̃ψ(w⋊θ))−−−−−−−→ IP (πψ)

where the top map is induced from the isomorphism w(IndMP1∩M(τ1)◦θ)
∼−→ IndMP1∩M(τ1)

normalized by using a Whittaker functional. We shall show that this commutative
diagram is canonically isomorphic to the bottom square of the right rectangle under
consideration. To see this, note that we can realize IP (w(Ind

M
P1∩M(τ1)◦θ)) as a subspace

of two-variable functions f : G×M → V satisfying

f(m′g,m) = δ
1
2
P (m

′)f(g,mθ(w̃−1m′w̃))

for m,m′ ∈M and g ∈ G. We have a canonical isomorphism

IP (w(Ind
M
P1∩M(τ1) ◦ θ))

∼−→ IP1(w(τ1 ◦ θ)), f(g,m) 7→ f(g,1).

Via this isomorphism, IP (RP1∩M(w1, w(τ1 ◦ θ))) corresponds to

RP1(w1, w(τ1 ⋊ θ)) : IP1(w(τ1 ◦ θ)) → IP (w(πψ ◦ θ)).
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Similarly, we have a canonical isomorphism IP (Ind
M
P1∩M(τ1)) ∼= IP1(τ1). Via these canon-

ical isomorphisms, the above commutative diagram is rewritten as

IP1(w(τ1 ◦ θ))
IP1 (τ̃1(w⋊θ))−−−−−−−→ IP1(τ1)

RP1 (w1,w(τ1◦θ))
y yRP1 (w1,τ1)

IP (w(πψ ◦ θ))
IP (π̃ψ(w⋊θ))−−−−−−−→ IP (πψ).

Since this is exactly the bottom square of the right rectangle under consideration, we
have shown the desired commutativity of the bottom square.

To prove Theorem 3.4.2, it remains to show that the middle rectangle

Iθ(P2)(τ2 ◦ θ)
Rθ(P2)(w

′,τ2◦θ)−−−−−−−−−→ IP2(w
′(τ2 ◦ θ))

Rθ(P2)(θ(w2),τ2◦θ)
y yRP2 (w2,w′(τ2◦θ))

Iθ(P1)(τ1 ◦ θ) IP1(w(τ1 ◦ θ))

Rθ(P1)(θ(w1),τ1◦θ)
y yRP1 (w1,w(τ1◦θ))

Iθ(P )(πψ ◦ θ)
Rθ(P )(w,πψ◦θ,ψ)−−−−−−−−−→ IP (w(πψ ◦ θ))

commutes. The proof of this commutativity will be carried out in four steps below.
Roughly speaking, we will embed this diagram into a meromorphic family of diagrams.
Working in the context of this meromorphic family of diagrams, we will complete the
diagram by extending the last row of the diagram as

Iθ(P )(πψ ◦ θ)
Rθ(P )(w,πψ◦θ,ψ) //

� _

��

IP (w(πψ ◦ θ))
� _

��
Iθ(P1)(w1τ1 ◦ θ)

Rθ(P1)(w,w1τ1◦θ)
// IP1(w(w1τ1 ◦ θ)).

Then the commutativity of the meromorphic family of diagrams is a consequence of the
multiplicativity property in Proposition 1.7.2. We will then deduce the commutativity
of the desired diagram by specializing at the point of interest. Note however that the
additional normalized intertwining operator will generally have a singularity at the point
of interest (which is the reason why we use the dotted arrow), so its purpose is only to
help prove the commutativity of the whole meromorphic family, before specialization.

Let us start the proof of the commutativity of the middle diagram.

Step 1: Recall that

τ1 =
⊗

α∈(1/2)Z

t⊗
i=1

τ (i)| · |αE.
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For tuples of complex numbers

λ = (λ(i))i ∈
t⊕
i=1

C,

µ = (µ(i)(α))α,i ∈
⊕

α∈(1/2)Z

t⊕
i=1

C,

we set

τ1,(λ,µ) =
⊗

α∈(1/2)Z

t⊗
i=1

τ (i)| · |α+λ
(i)+µ(i)(α)

E .

We define τ2,(λ,µ) similarly. Hence

τ1,(λ,µ) = w2τ2,(λ,µ).

Note that

w2w
′(τ2,(λ,µ) ◦ θ) = w−1

1 wθ(w1)θ(w2)(τ2,(λ,µ) ◦ θ)
= w−1

1 w(w1w2τ2,(λ,µ) ◦ θ)
= w−1

1 w(w1τ1,(λ,µ) ◦ θ).
We can consider the following diagram of meromorphic families of operators:

Iθ(P2)(τ2,(λ,µ) ◦ θ)
Rθ(P2)(w

′,τ2,(λ,µ)◦θ)−−−−−−−−−−−−→ IP2(w
′(τ2,(λ,µ) ◦ θ))

Rθ(P2)(θ(w2),τ2,(λ,µ)◦θ)
y yRP2 (w2,w′(τ2,(λ,µ)◦θ))

Iθ(P1)(τ1,(λ,µ) ◦ θ) IP1(w(τ1,(λ,µ) ◦ θ))

Rθ(P1)(θ(w1),τ1,(λ,µ)◦θ)
y yRP1 (w1,w(τ1,(λ,µ)◦θ))

Iθ(P1)(w1τ1,(λ,µ) ◦ θ)
Rθ(P1)(w,w1τ1,(λ,µ)◦θ)−−−−−−−−−−−−−→ IP1(w(w1τ1,(λ,µ) ◦ θ)).

By Proposition 1.7.2, this diagram commutes whenever α + λ(i) + µ(i)(α) ∈√
−1R for all α, i. Hence, by analytic continuation, we see that this diagram is

commutative for all (λ, µ) at which all operators are regular.

Step 2: In the diagram in Step 1, we will specialize at µ = 0. We claim that all of
six intertwining operators are well-defined as meromorphic families of operators
in λ.

In fact, the bottom arrow Rθ(P1)(w,w1τ1,(λ,0) ◦ θ) is a composition of inter-
twining operators of the form

τ (i)| · |α+λ(i)E × τ (i
′)| · |α′+λ(i

′)

E → τ (i
′)| · |α′+λ(i

′)

E × τ (i)| · |α+λ(i)E

for some i ̸= i′. Hence the subset {(λ, 0)} ⊂ {(λ, µ)} is not contained in the
subset consisting of (λ, µ) at which Rθ(P1)(w,w1τ1,(λ,µ) ◦ θ) is singular. Here, we
notice that Rθ(P1)(w,w1τ1,(λ,µ) ◦ θ) can have a singularity at (λ, µ) = (0, 0). On
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the other hand, as we have seen in the proofs of Lemmas 3.3.1 and 3.4.1 (3),
the other five operators are indeed regular even at (λ, µ) = (0, 0).
Hence we can evaluate at µ = 0 in the diagram in Step 1, and get the following

commutative diagram:

Iθ(P2)(τ2,(λ,0) ◦ θ)
Rθ(P2)(w

′,τ2,(λ,0)◦θ)−−−−−−−−−−−→ IP2(w
′(τ2,(λ,0) ◦ θ))

Rθ(P2)(θ(w2),τ2,(λ,0)◦θ)
y yRP2 (w2,w′(τ2,(λ,0)◦θ))

Iθ(P1)(τ1,(λ,0) ◦ θ) IP1(w(τ1,(λ,0) ◦ θ))

Rθ(P1)(θ(w1),τ1,(λ,0)◦θ)
y yRP1 (w1,w(τ1,(λ,0)◦θ))

Iθ(P1)(w1τ1,(λ,0) ◦ θ)
Rθ(P1)(w,w1τ1,(λ,0)◦θ)−−−−−−−−−−−−−→ IP1(w(w1τ1,(λ,0) ◦ θ)).

Step 3: Recall that Speh(τ
(i)
j , d

(i)
j ) is the unique irreducible quotient of

τ
(i)
j | · |

d−1
2

E × τ
(i)
j | · |

d−3
2

E × · · · × τ
(i)
j | · |−

d−1
2

E

with d = d
(i)
j . Note that

IP (πψ) =
t×
i=1

mi×
j=1

Speh(τ
(i)
j , d

(i)
j ), ψ =

t⊕
i=1

mi⊕
j=1

ψ
(i)
j .

Set

IP (πψ,λ) =
t×
i=1

mi×
j=1

Speh(τ
(i)
j , d

(i)
j )| · |λ(i)E ,

and

ψλ =
t⊕
i=1

mi⊕
j=1

ψ
(i)
j | · |λ(i)E .

Note that IP (πψ,λ) is an irreducible subrepresentation of IP1(w1τ1,(λ,0)). More-
over, it is equal to the image of RP1(w1, τ1,(λ,0))◦RP2(w2, τ2,(λ,0)) by Lemma 3.3.1.
We have now the diagram

Iθ(P )(πψ,λ ◦ θ)
Rθ(P )(w,πψ,λ◦θ,ψλ)−−−−−−−−−−−→ IP (w(πψ,λ ◦ θ))y y

Iθ(P1)(w1τ1,(λ,0) ◦ θ)
Rθ(P1)(w,w1τ1,(λ,0)◦θ)−−−−−−−−−−−−−→ IP1(w(w1τ1,(λ,0) ◦ θ))

where the vertical maps are the canonical inclusions. We claim that this diagram
is commutative. Indeed, the defining integrals are the same by Lemma 3.4.1 (1),
and the normalizing factors also agree by definition. In conclusion, we obtain
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the following commutative diagram of meromorphic families of operators:

Iθ(P2)(τ2,(λ,0) ◦ θ)
Rθ(P2)(w

′,τ2,(λ,0)◦θ)−−−−−−−−−−−→ IP2(w
′(τ2,(λ,0) ◦ θ))

Rθ(P2)(θ(w2),τ2,(λ,0)◦θ)
y yRP2 (w2,w′(τ2,(λ,0)◦θ))

Iθ(P1)(τ1,(λ,0) ◦ θ) IP1(w(τ1,(λ,0) ◦ θ))

Rθ(P1)(θ(w1),τ1,(λ,0)◦θ)
y yRP1 (w1,w(τ1,(λ,0)◦θ))

Iθ(P )(πψ,λ ◦ θ)
Rθ(P )(w,πψ,λ◦θ,ψλ)−−−−−−−−−−−→ IP (w(πψ,λ ◦ θ)).

Step 4: In this last step, we would like to specialize the commutative diagram
above at λ = 0. As we have seen in Step 2, the five operators that appear in
the top, left and right of the last diagram are regular at λ = 0. Especially, the
composition

RP1(w1, w(τ1,(λ,0) ◦ θ)) ◦RP2(w2, w
′(τ2,(λ,0) ◦ θ)) ◦Rθ(P2)(w

′, τ2,(λ,0) ◦ θ)
is regular at λ = 0, and so is

Rθ(P )(w, πψ,λ ◦ θ, ψλ) ◦Rθ(P1)(θ(w1), τ1,(λ,0) ◦ θ) ◦Rθ(P2)(θ(w2), τ2,(λ,0) ◦ θ).
Moreover, since the composition Rθ(P1)(θ(w1), τ1,(λ,0)◦θ)◦Rθ(P2)(θ(w2), τ2,(λ,0)◦θ)
is surjective if λ is sufficiently close to 0 by Lemma 3.3.1, the operator

Rθ(P )(w, πψ,λ ◦ θ, ψλ) : Iθ(P )(πψ,λ ◦ θ) → IP (w(πψ,λ ◦ θ))
is also regular at λ = 0.

Therefore, we can specialize the last diagram in Step 3 at λ = 0, and obtain
the following commutative diagram.

Iθ(P2)(τ2 ◦ θ)
Rθ(P2)(w

′,τ2◦θ)−−−−−−−−−→ IP2(w
′(τ2 ◦ θ))

Rθ(P2)(θ(w2),τ2◦θ)
y yRP2 (w2,w′(τ2◦θ))

Iθ(P1)(τ1 ◦ θ) IP1(w(τ1 ◦ θ))

Rθ(P1)(θ(w1),τ1◦θ)
y yRP1 (w1,w(τ1◦θ))

Iθ(P )(πψ ◦ θ)
Rθ(P )(w,πψ◦θ,ψ)−−−−−−−−−→ IP (w(πψ ◦ θ)).

Hence we obtain the claim.

This completes the proof of Theorem 3.4.2. □
The following example may help the reader to understand the argument.

Example 3.4.3. Let us suppose that M = GL3(E) × GL1(E) ⊂ P = MNP ⊂ G =
GL4(E), and let us consider

ψ = 1LE ⊠ S3 ⊕ 1LE ⊠ S1 ∈ Ψ(M).
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Then
πψ = 1GL3(E) ⊠ 1GL1(E) ∈ Irr(M)

is the corresponding representation. Note that IP (πψ) = 1GL3(E) × 1GL1(E) ∈ Irr(G).
We realize it as a subrepresentation of

| · |−1
E × | · |0E × | · |1E × | · |0E.

In what follows, for simplicity, we denote the normalized intertwining operatorRP (w, π)
by w ∈ WG. The main diagram becomes:

| · |1E × | · |0E × | · |0E × | · |−1
E

θ∗ //

( 1
1

0 1
1 0

)

��

| · |1E × | · |0E × | · |0E × | · |−1
E

( 1
0 1
1 0

1

)
//

( 0 1
1 0

1
1

)

��

| · |1E × | · |0E × | · |0E × | · |−1
E

( 1
1

0 1
1 0

)

��
| · |1E × | · |0E × | · |−1

E × | · |0E
θ∗ //

( 1
1

1
1

)

����

| · |0E × | · |1E × | · |0E × | · |−1
E

( 1
1

1
1

)

����

| · |1E × | · |0E × | · |−1
E × | · |0E

( 1
1

1
1

)

����
1GL3(E) × 1GL1(E)

θ∗ // 1GL1(E) × 1GL3(E)� _

��

( 1
1

1
1

)
// 1GL3(E) × 1GL1(E)� _

��
| · |0E × | · |−1

E × | · |0E × | · |1E

( 1
1

1
1

)
// | · |−1

E × | · |0E × | · |1E × | · |0E

Notice that we have added a bottom “map”

| · |0E × | · |−1
E × | · |0E × | · |1E

( 1
1
1

1

)
// | · |−1

E × | · |0E × | · |1E × | · |0E
that is actually a singularity of a meromorphic operator. Hence this “map” is not
well-defined so that we cannot consider it.

3.5. Remark on the untwisted case. Note that the argument for Theorem 1.9.1
works when we replace θ with the identity map on G. We state the analogue of Theorem
1.9.1 as in [Mok, Proposition 3.5.1 (a)].

Theorem 3.5.1. Let P =MNP be a standard parabolic subgroup of G = GLN(E), and
let ψ be an A-parameter for M . Then for any w ∈ W (M) with wπψ ∼= πψ, we have

IP (π̃ψ(w)) ◦RP (w, πψ, ψ) = id,

where π̃ψ(w) : wπψ → πψ is the isomorphism normalized by using a Whittaker functional
on the standard module IMψ of πψ.
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When G is a unitary group UN , this theorem is needed as a local input at split places
for the global argument.

4. Characters of component groups vs. Aubert duality

In this and the next two sections, we assume that F is non-archimedean. Fix a
non-trivial additive character ψF : F → C×. Let oE be the ring of integers of E.

In this section, assuming Arthur’s theory (Hypothesis 4.4.2), we provide a formula
for the action of Aubert duality on the characters of component groups in certain cases
(Corollaries 4.4.5 and 4.5.3). These results will be applied to tempered L-parameters
for a given classical group G, and to certain A-parameters for a proper Levi subgroupM
of G: in both cases, Hypothesis 4.4.2 is known in the framework of Arthur’s inductive
argument.

4.1. Twisted Aubert duality for GLN(E). In this and next subsections, we consider
twisted Aubert duality for GLN(E). For a preview of the general theory of twisted
Aubert duality, see Sections B.4 and B.5.

Let Rep(G̃LN(E)) be the category of smooth finite length representations of the non-

connected group G̃LN(E) = GLN(E) ⋊ ⟨θ⟩, and let R(G̃LN(E)) be its Grothendieck

group. For π̃ ∈ R(G̃LN(E)), one can consider its character Θπ̃, which is a linear form

on C∞
c (G̃LN(E)). For π̃1, π̃2 ∈ R(G̃LN(E)), we write

π̃1
θ
= π̃2

if
Θπ̃1(f̃) = Θπ̃2(f̃)

for any f̃ ∈ C∞
c (GLN(E)⋊ θ). For example, if π ∈ Irr(GLN(E)), then

Ind
G̃LN (E)
GLN (E)(π)

θ
= 0.

Let
Rep(G̃LN(E)) → Rep(G̃LN(E)), π̃ 7→ ̂̃π

be the functor given by Definition B.4.6.

Proposition 4.1.1. The functor π̃ 7→ ̂̃π satisfies the following properties.

(1) The restriction ̂̃π|GLN (E) is equal to Aubert dual of π̃|GLN (E).

(2) If π̃ is an irreducible representation of G̃LN(E), then so is ̂̃π.
(3) For π̃ ∈ R(G̃LN(E)), set

DG̃LN (E)(π̃) =
∑

P=θ(P )

(−1)dim(AθM )Ind
G̃LN (E)

P̃
(JacP̃ (π̃)),

where P runs over the set of standard parabolic subgroups of GLN(E) which are

stable under θ and set P̃ = P ⋊ ⟨θ⟩. Then

DG̃LN (E)(π̃)
θ
= (−1)dim(AM0

/AGLN (E))̂̃π
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for π̃ ∈ Irr(G̃LN(E)), where P0 = M0NP0 is a minimal standard parabolic sub-
group of GLN(E) such that JacP0(π̃|GLN (E)) ̸= 0. Note that such a P0 is not

unique but the sign (−1)dim(AM0
/AGLN (E)) is well-defined.

Proof. These properties are proven in Propositions B.4.7 and B.5.1. For the nota-
tions of parabolic inductions and Jacquet modules, see Section B.5. Here, note that
dim((AM/AGLN (E))

θ) = dim(AθM). □

We call ̂̃π the Aubert dual of π̃. We remark that π̃ 7→ ̂̃π is expected to be an involution,
but we do not prove it and we will not use this property.

Let ψ : WE × SL2(C) × SL2(C) → GLN(C) be an A-parameter for GLN(E) and
let πψ be the corresponding irreducible representation of GLN(E). Suppose that ψ
(or equivalently, πψ) is conjugate-self-dual. Then, as in Section 1.4, we have Arthur’s

extension π̃ψ = πψ⊠ θA of πψ to G̃LN(E). The Aubert dual of πψ is equal to πψ̂, where

ψ̂ is defined by ψ̂(w, g1, g2) = ψ(w, g2, g1). However, ̂̃πψ is not necessarily equal to π̃ψ̂.

Namely, if we write ̂̃πψ = πψ̂ ⊠ θ̂A, then θ̂A is not necessarily equal to θA as linear

operators on πψ̂. Since θ2 = 1, we have θ̂A = ±θA. Hence DG̃LN (E)(π̃ψ)
θ
= ±π̃ψ̂. We

define β(ψ) ∈ {±1} such that

DG̃LN (E)(π̃ψ)
θ
= β(ψ)π̃ψ̂.

Lemma 4.1.2. Let ψ be as above, and let η be a conjugate-self-dual character of E×,
which is regarded as a character of WE by the local class field theory. Then β(ψ⊗ η) =
β(ψ).

Proof. Since η is conjugate-self-dual, we have η(det(θ(g))) = η(det(g)) for g ∈ GLN(E).
This implies that π̃ψ⊗η = π̃ψ ⊗ η, i.e., Arthur’s action of θ on πψ⊗η is the same as the

one of πψ as a linear operator on the same vector space. By Lemma B.4.9, ̂̃πψ⊗η =̂̃πψ ⊗ η
θ
= β(ψ)πψ̂ ⊗ η. Hence we have β(ψ ⊗ η) = β(ψ). □

On the other hand, since ψ is conjugate-self-dual, we can decompose the representa-
tion

WE ∋ w 7→ ψ

(
w,

(
|w|

1
2
E 0

0 |w|−
1
2

E

)
,

(
|w|

1
2
E 0

0 |w|−
1
2

E

))
∈ GLN(C)

of WE into irreducible representations as

ρ−r ⊕ · · · ⊕ ρ−1 ⊕ ρ′1 ⊕ · · · ⊕ ρ′t ⊕ ρ1 ⊕ · · · ⊕ ρr,

where

• ρi is an irreducible representation of WE;
• ρ−i ∼= cρ∨i is the conjugate-dual of ρi;
• ρ′i is an irreducible conjugate-self-dual representation of WE such that ρ′i ̸∼= ρ′j
for 1 ≤ i < j ≤ t.
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Note that such a labeling of irreducible components is not unique, but the non-negative
integer r is uniquely determined from ψ. We write r(ψ) = r.

Proposition 4.1.3. Suppose that ψ = ϕ is tempered and conjugate-self-dual. Then

β(ϕ) = β(ϕ̂) = (−1)r(ϕ).

Proof. A more general assertion was stated by Mœglin–Waldspurger ([MW3, Lemma
3.2.2]). However, they gave a proof only when every irreducible component of ϕ|SL2(C)
is even dimensional. Here, we will give a proof for the general case.

Let Iϕ̂ be the standard module whose Langlands quotient is πϕ̂. If we denote by
θW the action of θ on Iϕ̂ fixing a nonzero Whittaker functional, then the action θA
on πϕ̂ is induced from θW by definition. On the other hand, by Lemma 3.1.2, we see
that Iϕ̂ contains the tempered representation πϕ as a subrepresentation. Moreover, the
restriction of θW on πϕ gives Arthur’s action θA on πϕ since the restriction of a nonzero

Whittaker functional on Iϕ̂ to πϕ is also nonzero. Thus, as representations of G̃LN(E),
we have

πϕ ⊠ θA ↪→ Iϕ̂ ⊠ θW ↠ πϕ̂ ⊠ θA.

Applying the duality functor π̃ 7→ ̂̃π, we see that (πϕ⊠θA)̂ = πϕ̂⊠ θ̂A and (πϕ̂⊠θA)̂ =

πϕ⊠θ̂A are contained in (Iϕ̂⊠θW )̂ = Îϕ̂⊠θ̂W as irreducible subquotients. By Proposition

4.1.1 (3), they satisfy

DG̃LN (E)(Iϕ̂ ⊠ θW )
θ
= ε · Îϕ̂ ⊠ θ̂W ,

DG̃LN (E)(πϕ ⊠ θA)
θ
= ε · πϕ̂ ⊠ θ̂A,

DG̃LN (E)(πϕ̂ ⊠ θA)
θ
= ε · πϕ ⊠ θ̂A

for some common sign ε ∈ {±1} since all irreducible subquotients of Iϕ̂ share the same
cuspidal support. Since Iϕ̂ is an induction from a cuspidal representation, its Aubert

dual Îϕ̂ is equal to Iϕ̂ in R(GLN(E)). Moreover, as dimC(EndGLN (E)(Iϕ̂)) = 1 by

Lemma 3.1.1, we can find δ ∈ {±1} such that θ̂W = δθW so that Îϕ̂⊠ θ̂W = δ · Iϕ̂⊠ θW

in R(G̃LN(E)). Hence

DG̃LN (E)(Iϕ̂ ⊠ θW )
θ
= εδ · Iϕ̂ ⊠ θW .

Since πϕ and πϕ̂ appear in Iϕ̂ as subquotients with multiplicity one, by Proposition

4.1.1 (1), we see that Îϕ̂ ⊠ θ̂W contains only one irreducible representation of the form

πϕ̂ ⊠ θ (resp. πϕ ⊠ θ) as subquotients. In particular, we get

DG̃LN (E)(πϕ ⊠ θA)
θ
= εδ · πϕ̂ ⊠ θA, DG̃LN (E)(πϕ̂ ⊠ θA)

θ
= εδ · πϕ ⊠ θA.

This means that εδ = β(ϕ) = β(ϕ̂). Therefore, what we have to show is εδ = (−1)r(ϕ),
which we will prove in the next lemma. □
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Lemma 4.1.4. With the above notation, we have

DG̃LN (E)(Iϕ̂ ⊠ θW )
θ
= (−1)r(ϕ)Iϕ̂ ⊠ θW .

4.2. An example. The proof of Lemma 4.1.4 is complicated. Before giving the proof
generally, let us discuss a simple but non-trivial case. This example showcases the
strategy of the general proof.

Suppose that E = F . Let χ1, χ2 be two quadratic characters of F×, and consider
ϕ = χ1 ⊕ χ2. Then

πϕ = πϕ̂ = Iϕ̂ = χ1 × χ2 ∈ Irr(GL2(F )).

We denote the upper triangular Borel subgroup of GL2(F ) by B = TU , where T is the

diagonal torus. If we set B̃ = B ⋊ ⟨θ⟩ and T̃ = T ⋊ ⟨θ⟩, then by definition

DG̃L2(F )(πϕ ⊠ θA) = πϕ ⊠ θA − Ind
G̃L2(F )

B̃
(JacB̃(πϕ ⊠ θA))

in the Grothendieck group R(G̃L2(F )). Since

(−1)r(ϕ) =

{−1 if χ1 = χ2,

1 if χ1 ̸= χ2,

the desired equation DG̃L2(F )(πϕ ⊠ θA)
θ
= (−1)r(ϕ)πϕ ⊠ θA is equivalent to

Ind
G̃L2(F )

B̃
(JacB̃(πϕ ⊠ θA))

θ
=

{
2 · πϕ ⊠ θA if χ1 = χ2,

0 if χ1 ̸= χ2.

Note that JacB̃(πϕ ⊠ θA)|T = JacB(πϕ). By the Geometric Lemma [BZ, Theorem
5.2], we have an exact sequence

0 −−−→ χ2 ⊠ χ1 −−−→ JacB(πϕ) −−−→ χ1 ⊠ χ2 −−−→ 0

and hence Ind
GL2(F )
B (JacB(πϕ)) = 2 · πϕ in R(GL2(F )). To understand the induced

action of θ on JacB(πϕ), we recall the details for this exact sequence. The surjection
JacB(πϕ) ↠ χ1 ⊠ χ2 is induced by the evaluation map

πϕ = χ1 × χ2 ∋ f 7→ f(1) ∈ χ1 ⊠ χ2.

The kernel of this map is

F = {f ∈ χ1 × χ2 | Supp(f) ⊂ Bw−1
0 B},

where w0 = ( 0 1
−1 0 ) ∈ GL2(F ). We identify w0 with its image in the Weyl groupWGL2(F ).

Then for f ∈ F , the evaluation of the integral

JB(w0, χ1 ⊠ χ2)f(1) =

∫
U

f(w−1
0 u)du

converges absolutely. Moreover, the map F ∋ f 7→ JB(w0, χ1 ⊠ χ2)f(1) induces an

isomorphism JacB(πϕ) ⊃ JacB(F)
∼−→ χ2 ⊠ χ1.

However, this description of JacB(πϕ) does not seem convenient for us. We give
another description. Let F ′ be the subspace of πϕ = χ1×χ2 consisting of functions f ∈
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χ1×χ2 such that JB(w0, χ1⊠χ2)f(1) is well-defined. This means that the meromorphic
continuation of

C2 ∋ λ = (λ1, λ2) 7→ JB(w0, χ1| · |λ1F ⊠ χ2| · |λ2F )fλ(1)

is holomorphic at λ = (0, 0), where fλ ∈ χ1| · |λ1F ⊠χ2| · |λ2F is such that fλ|K = f |K with
K = GL2(oF ). Then F ⊂ F ′, and the map F ′ ∋ f 7→ JB(w0, χ1 ⊠ χ2)f(1) also induces
a surjection

JacB(πϕ) ⊃ JacB(F ′) ↠ χ2 ⊠ χ1.

We set F ′′ = {f ∈ F ′ | JB(w0, χ1⊠χ2)f(1) = 0} so that JacB(F ′)/JacB(F ′′) ∼= χ2⊠χ1.
Now we consider two cases separately.

Case 1: Suppose that χ1 = χ2. Then the action θA on πϕ = χ1 × χ2 is given by

f 7→ f ◦ θ.

Since (f ◦ θ)(1) = f(1), the induced action on JacB(πϕ) preserves the quotient
χ1 ⊠ χ2 and acts on it trivially. Similarly, since θ(w0) = w0 and θ(U) = U , the
same holds for the subrepresentation χ2 ⊠ χ1 of JacB(πϕ). Hence by inducing

these two pieces, we obtain that Ind
G̃L2(F )

B̃
(JacB̃(πϕ ⊠ θA)) = 2 · πϕ ⊠ θA.

Case 2: Suppose that χ1 ̸= χ2. Then the map f 7→ f ◦ θ is no longer an action
of θ on πϕ. Instead of this map, we use Theorem 1.9.1. Namely, the action θA
on πϕ = χ1 × χ2 can be realized by the normalized intertwining operator

RB(w0, χ2 ⊠ χ1) ◦ θ∗ = θ∗ ◦RB(w0, χ1 ⊠ χ2).

Since χ1 ̸= χ2, we see that the normalizing factor

γA(s, χ1 ⊗ χ2, ψF )

is holomorphic and nonzero at s = 0. Hence this action can be written as

θA = γA(0, χ1 ⊗ χ2, ψF ) · θ∗ ◦ JB(w0, χ1 ⊠ χ2).

In particular, the map

F ′ ∋ f 7→ θA(f)(1) = γA(0, χ1 ⊗ χ2, ψF ) · JB(w0, χ1 ⊠ χ2)f(1)

factors through f 7→ JB(w0, χ1 ⊠ χ2)f(1), and hence, this map is zero on F ′′.
Conversely, for f ∈ χ1 × χ2, since RB(w0, χ1 ⊠ χ2) ◦ RB(w0, χ2 ⊠ χ1) = id and
θ(1) = 1, we have

JB(w0, χ1 ⊠ χ2)θA(f)(1) = γA(0, χ1 ⊗ χ2, ψF )
−1 · f(1).

Hence θA(f) ∈ F ′ and the map f 7→ JB(w0, χ1 ⊠ χ2)θA(f)(1) factors through
f 7→ f(1). In particular, if f(1) = 0, then JB(w0, χ1 ⊠ χ2)θA(f)(1) = 0. (Here,
it is not true in general that θA(f) ∈ F .) Therefore, the induced action on
JacB(πϕ) swaps χ2 ⊠ χ1 and χ1 ⊠ χ2. By inducing these two pieces, we obtain

that Ind
G̃L2(F )

B̃
(JacB̃(πϕ ⊠ θA))

θ
= 0.
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Note that Theorem 1.9.1 can be used even when χ1 = χ2. However, in this case,
γA(0, χ1 ⊗ χ2, ψF ) = 0 and so that θA(f)(1) = 0 for f ∈ F ′. Hence the argument in
Case 2 does not work for Case 1. In Case 2, it is trivial that the induced action swaps
χ2 ⊠ χ1 and χ1 ⊠ χ2 since (χ1 ⊠ χ2) ◦ θ ̸= χ1 ⊠ χ2. However, this idea would not work
in general, e.g., for ϕ = χ⊕3

1 ⊕ χ2 with χ1 ̸= χ2. On the other hand, the analysis using
intertwining operators can be generalized.

4.3. Proof of Lemma 4.1.4. Now we prove Lemma 4.1.4 generally.

Proof of Lemma 4.1.4. One can write Iϕ̂ = Ind
GLN (E)
P0

(πM0) with

πM0 = ρ−r ⊠ · · ·⊠ ρ−1 ⊠ ρ′1 ⊠ · · ·⊠ ρ′t ⊠ ρ1 ⊠ · · ·⊠ ρr,

where

• P0 corresponds to a partition (dr, . . . , d1, d
′
1, . . . , d

′
t, d1, . . . , dr) of N ;

• ρi is an irreducible cuspidal representation of GLdi(E);
• ρ−i ∼= cρ∨i is the conjugate-dual of ρi;
• ρ′i is an irreducible conjugate-self-dual cuspidal representation of GLd′j(E) such

that ρ′i ̸∼= ρ′j for 1 ≤ i < j ≤ t.

Then r(ϕ) = r.
Set W = WGLN (E). For a θ-stable parabolic subgroup P = MNP , by the geometric

lemma ([BZ, Theorem 5.2]), up to a semisimplification, we can write

JacP (Iϕ̂) =
⊕

w∈WM\W/WM0

Jw
ϕ̂

for some representation Jw
ϕ̂

(possibly zero). We recall the relation between JacP (Iϕ̂)
and Jw

ϕ̂
more precisely. Fix a total order ≥ on WM\W/WM0 such that w′ ≥ w =⇒

dim(P0w
′−1P ) ≥ dim(P0w

−1P ). For w ∈ WM\W/WM0 , we define Fw as the subspace
of Iϕ̂ consisting of functions f such that

Supp(f) ⊂
∪

w′∈WM\W/WM0

w′≥w

P0w
′−1P.

For w ∈ WM\W/WM0 and λ ∈ a∗M0,C, let

JP0(w, πM0,λ) : IP0(πM0,λ) → IPw0 (wπM0,λ)

be the unnormalized intertwining operator defined in Section 1.7, where Pw
0 is the

standard parabolic subgroup of GLN(E) such that wM0w
−1 is its Levi subgroup. If

f ∈ Fw and λ = 0, then the integral (JP0(w, πM0)f)(1) converges absolutely. Moreover,
the map Fw ∋ f 7→ (JP0(w, πM0)f)(1) gives a surjection

JacP (Iϕ̂) ⊃ JacP (Fw) ↠ Jw
ϕ̂
.

By varying w, we obtain a filtration of JacP (Iϕ̂). For details, see [BZ, Section 5].
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We modify this description for JacP (Iϕ̂). Set K = GLN(oE) to be the standard

maximal compact open subgroup of GLN(E). Then for f ∈ Iϕ̂ = IP0(πM0), one can

define fλ ∈ IP0(πM0,λ) by requiring fλ|K = f |K . Let F ′
w be the subspace of Iϕ̂ =

IP0(πM0) consisting of functions f such that the meromorphic function

λ 7→ JP0(w, πM0,λ)fλ(1)

is holomorphic at λ = 0. Then Fw ⊂ F ′
w so that we obtain a well-defined surjection

JacP (Iϕ̂) ⊃ JacP (F ′
w) ↠ Jw

ϕ̂
.

Its kernel is of the form JacP (F ′′
w), where F ′′

w = {f ∈ F ′
w | JP0(w, πM0)f(1) = 0}.

Using Theorem 1.9.1, we realize an action θW on Iϕ̂ by a twisted intertwining oper-

ator. Set N ′ = d′1 + · · · + d′t. Consider GLN ′(E) and its standard parabolic subgroup
P ′
0 =M ′

0NP ′
0
corresponding to the partition (d′1, . . . , d

′
t). Define

πM ′
0
= ρ′1 ⊠ · · ·⊠ ρ′t.

Then Ind
GLN′ (E)

P ′
0

(πM ′
0
) is an irreducible conjugate-self-dual representation of GLN ′(E).

Let w0 ∈ W (θ(M ′
0),M

′
0) be the unique element such that w0(πM ′

0
◦θ) ∼= πM ′

0
. We regard

w0 as an element in W (θ(M0),M0). By Theorem 1.9.1 for πM ′
0
, we have

θW = IP0(π̃M0(w0 ⋊ θ)) ◦Rθ(P0)(w0, πM0 ◦ θ) ◦ θ∗

= IP0(π̃M0(w0 ⋊ θ)) ◦ θ∗ ◦RP0(θ(w0), πM0).

Now the map w 7→ θ(ww0) gives a well-defined involutive action of θ onWM\W/WM0

since w−1
0 WM0w0 = W θ(M0) = θ(WM0) and w0θ(w0) ∈ WM0 . Since Pw

0 contains
wM0w

−1, we see that θ(Pw
0 ) contains θ(ww0)M0θ(ww0)

−1 as a Levi subgroup. One
can check that

γA(0, πM0,λ, ρ
∨
θ(ww0)−1θ(Pw0 )|P0

, ψF )

γA(0, θ(w0)πM0,λ, ρ
∨
θ(w)−1θ(Pw0 )|θ(P0)

, ψF )

∣∣∣∣∣
λ=0

=
∏

1≤i<j≤t

γA(0, ρ
′
i ⊗ ρ′j

∨
, ψE)

mi,j

for some mi,j ∈ Z. Since ρ′i ̸∼= ρ′j for 1 ≤ i < j ≤ t, the right-hand side is in C×.

We denote the evaluation map f 7→ f(1) by ev1. For w ∈ WM\W/WM0 , we claim
that

(ev1 ◦ JP0(w, πM0)) ◦ (IP0(π̃M0(w0 ⋊ θ)) ◦ θ∗ ◦RP0(θ(w0), πM0))

factors through ev1◦JP0(θ(ww0), πM0). For simplicity, let V be the space of πM0 , and we
regard π̃M0(w0 ⋊ θ) as a linear isomorphism Φ: V → V . Since Rθ(P0)(θ(w), θ(w0)πM0) ◦
RP0(θ(w0), πM0) = RP0(θ(ww0), πM0) by Proposition 1.7.2, as linear maps, we have

(ev1 ◦ JP0(w, πM0)) ◦ (IP0(π̃M0(w0 ⋊ θ)) ◦ θ∗ ◦RP0(θ(w0), πM0))

= Φ ◦ (ev1 ◦ JP0(w,w0(πM0 ◦ θ))) ◦ (θ∗ ◦RP0(θ(w0), πM0))

= Φ ◦ (ev1 ◦ Jθ(P0)(θ(w), θ(w0)πM0)) ◦RP0(θ(w0), πM0)

=
∏

1≤i<j≤t

γA(0, ρ
′
i ⊗ ρ′j

∨
, ψE)

mi,j · Φ ◦ (ev1 ◦ JP0(θ(ww0), πM0)).
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This implies that θW (F ′
θ(ww0)

) ⊂ F ′
w and θW (F ′′

θ(ww0)
) ⊂ F ′′

w, which are the advantage

of F ′
w over Fw. Hence the induced action θW on JacP (Iϕ̂) sends J

θ(ww0)

ϕ̂
to Jw

ϕ̂
. Since

w 7→ θ(ww0) is an involution on WM\W/WM0 , we see that θW swaps Jw
ϕ̂

and J
θ(ww0)

ϕ̂
.

Hence if θ(ww0) ̸= w, then we have(
Ind

GLN (E)
P (Jw

ϕ̂
) + Ind

GLN (E)
P (J

θ(ww0)

ϕ̂
)
)
⊠ θW

θ
= 0.

On the other hand, if θ(ww0) = w, then θW preserves Jw
ϕ̂
. Moreover, the same argument

as above shows that Ind
G̃LN (E)

P̃
(Jw
ϕ̂
⊠ θW ) = Iϕ̂ ⊠ θW in R(G̃LN(E)). Therefore

Ind
G̃LN (E)

P̃
(JacP̃ (Iϕ̂ ⊠ θW ))

θ
=

⊕
w∈(WM\W/WM0 )θ

Jw
ϕ̂
̸=0

Iϕ̂ ⊠ θW ,

where (WM\W/WM0)θ is the subset of the double coset space fixed by the action
w 7→ θ(ww0).

Suppose that P =MNP corresponds to a partition (nm, . . . , n1, n0, n1, . . . , nm) of N .
Here, we assume that ni > 0 for i > 0, but n0 is possibly zero. Note that dim(AθM) = m.
As in [Z, Section 1.6], the double coset spaceWM\W/WM0 is canonically identified with
the set of matrices of the form

A =

a−m,−r . . . a−m,−1 a′−m,1 . . . a′−m,t a−m,1 . . . a−m,r
...

. . .
...

...
. . .

...
...

. . .
...

am,−r . . . am,−1 a′m,1 . . . a′m,t am,1 . . . am,r

 ∈ M2m+1,2r+t(Z)

such that

(1) all entries are non-negative integers;
(2)

∑m
i=−m ai,±j = dj for 1 ≤ j ≤ r;

(3)
∑m

i=−m a
′
i,j = d′j for 1 ≤ j ≤ t;

(4)
∑r

j=1(ai,−j + ai,j) +
∑t

j=1 a
′
i,j = n|i| for −m ≤ i ≤ m.

Since ρ±i and ρ
′
j are cuspidal, we see that Jw

ϕ̂
̸= 0 if and only if

(5) ai,±j ∈ {0, dj} for −m ≤ i ≤ m and 1 ≤ j ≤ r; and
(6) a′i,j ∈ {0, d′j} for −m ≤ i ≤ m and 1 ≤ j ≤ t.

In particular, for each ±j (resp. j), there exists unique i such that ai,±j = dj (resp. a
′
i,j =

dj). Let XP be the set of matrices A as above satisfying the conditions (1)–(6). For
A ∈ XP , the corresponding Jw

ϕ̂
is given by

Jw
ϕ̂
=

m⊗
i=−m


×

1≤j≤r
ai,j ̸=0

ρj

×

×
1≤j≤t
a′i,j ̸=0

ρ′j

×

×
1≤j≤r
ai,−j ̸=0

ρ−j


 ∈

m⊗
i=−m

R(GLni(E)).
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The action w 7→ θ(ww0) on W
M\W/WM0 gives an action of θ on XP . This is given by{

ai,j 7→ a−i,−j (−m ≤ i ≤ m, 1 ≤ j ≤ r),

a′i,j 7→ a′−i,j (−m ≤ i ≤ m, 1 ≤ j ≤ t).

Therefore, A is fixed by this action if and only if

(7) a−i,−j = ai,j for −m ≤ i ≤ m and 1 ≤ j ≤ r; and
(8) a′−i,j = a′i,j for −m ≤ i ≤ m and 1 ≤ j ≤ t.

Since for each 1 ≤ j ≤ t, there is only one i such that a′i,j ̸= 0, we must have a′i,j = 0
for i ̸= 0 and a′0,j = d′j.

Therefore, for a fixed 0 ≤ m ≤ r, there is a bijection between{
(P,w)

∣∣∣P = θ(P ) =MNP , dim(AθM) = m, w ∈ (WM\W/WM0)θ, Jw
ϕ̂
̸= 0
}

and

{({Ii}mi=1, ϵ) | ∅ ̸= Ii ⊂ {1, . . . , r}, Ii ∩ Ii′ = ∅ (i ̸= i′), ϵ : I1 ⊔ · · · ⊔ Im → {±1}} .

If (P,w) corresponds to ({Ii}mi=1, ϵ), then the corresponding matrix A ∈ XP is given
such that

• if 1 ≤ j ≤ r and j ∈ Ii for some 1 ≤ i ≤ m, then aϵ(j)i,j = dj and ai′,j = 0 for
i′ ̸= ϵ(j)i;

• if 1 ≤ j ≤ r and j ̸∈ Ii for all 1 ≤ i ≤ m, then a0,j = dj and ai′,j = 0 for i′ ̸= 0;
• if 1 ≤ j ≤ t, then a′0,j = d′j and a

′
i′,j = 0 for i′ ̸= 0.

Moreover, Jw
ϕ̂
is equal to(

×
j∈Im

ρϵ(j)j

)
⊠ · · ·⊠

(
×
j∈I1

ρϵ(j)j

)
⊠ σ0 ⊠

(
×
j∈I1

ρ−ϵ(j)j

)
⊠ · · ·⊠

(
×
j∈Im

ρ−ϵ(j)j

)
for some σ0 ∈ Irr(GLn0(E)). In particular, P corresponds to the partition(∑

j∈Im

dj, . . . ,
∑
j∈I1

dj, n0,
∑
j∈I1

dj, . . . ,
∑
j∈Im

dj

)
.

By setting ki = |Ii|, we see that

|{({Ii}mi=1, ϵ) | ∅ ̸= Ii ⊂ {1, . . . , r}, Ii ∩ Ii′ = ∅ (i ̸= i′), ϵ : I1 ⊔ · · · ⊔ Im → {±1}}|

=
∑

k1,...,km≥1
k1+···+km≤r

2k1+···+km r(r − 1) · · · (r − k1 − · · · − km + 1)

k1! · · · km!

=

(
d

dx

)r
ex(e2x − 1)m

∣∣∣∣
x=0

.
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Therefore, we have

DG̃LN (E)(Iϕ̂ ⊠ θW )
θ
=

(
r∑

m=0

(−1)m
(
d

dx

)r
ex(e2x − 1)m

∣∣∣∣
x=0

)
Iϕ̂ ⊠ θW

=

((
d

dx

)r
e−x(1− (1− e2x)r+1)

∣∣∣∣
x=0

)
Iϕ̂ ⊠ θW

=

((
d

dx

)r
e−x
∣∣∣∣
x=0

)
Iϕ̂ ⊠ θW = (−1)rIϕ̂ ⊠ θW .

Here, we use the fact that e−x(1− e2x)r+1 has a zero at x = 0 with order r + 1. Since
r(ϕ) = r, we obtain the assertion. □

4.4. ECR vs. Aubert duality. Next, we consider Aubert duality for classical groups.
We will use the notations in Section 1.2.

Let G be one of the following quasi-split classical groups

SO2n+1(F ), Sp2n(F ), O2n(F ), Un.

For π ∈ Rep(G◦), its Aubert dual is defined by

DG◦(π) =
∑
P ◦

(−1)dim(AM◦ )IndG
◦

P ◦(JacP ◦(π))

in the Grothendieck group R(G◦), where P ◦ = M◦NP runs over the set of standard
parabolic subgroups of G◦. Note that AG◦ = {1} unless G◦ = SO2(F ). If π ∈ Irr(G◦),
then DG◦(π) = β(π)π̂ for an irreducible representation π̂ with a sign β(π) ∈ {±1}
(see Theorem B.2.3 (2), (3)). As in Theorem B.2.3 (2), this sign is given by β(π) =
(−1)dim(AM◦ ), where P ◦ = M◦NP is a minimal standard parabolic subgroup of G◦

such that JacP ◦(π) ̸= 0. Such a P ◦ may not be unique, but the sign (−1)dim(AM◦ ) is
well-defined.

When G = O2n(F ), we also consider twisted Aubert duality defined in Definition
B.4.6. Fix a Borel subgroup B◦ = T ◦U of G◦ = SO2n(F ). If we denote the normalizer
of (T ◦, B◦) in G by T , then T ∩G◦ = T ◦ and T/T ◦ ∼= G/G◦. Fix a representative ϵ ∈ T
of the non-trivial coset in T/T ◦ as in Section 1.2. For π ∈ Rep(G), we define

DG(π) =
∑
P ◦

(−1)dim(Aϵ
M◦ )IndGP (JacP (π)),

where

• P ◦ = M◦NP now runs over the set of standard parabolic subgroups of G◦ =
SO2n(F ) which are stable under the conjugate action of ϵ;

• P = P ◦ · T ⊂ G;
• AϵM◦ is the subgroup of AM◦ fixed by the action of ϵ.

The Jacquet module JacP (π) is defined as usual (see Section 1.3). It is a representation
of M =M◦ · T and satisfies

JacP (π)|M◦ = JacP ◦(π|G◦).
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By Propositions B.4.7 (3) and B.5.1, for π ∈ Irr(G), one can find π̂ ∈ Irr(G) such that
the trace of DG(π)− β(π)π̂ is zero on fG ∈ C∞

c (G \G◦). Here

β(π) =

{
β(π1) = β(π2) if π|G◦ = π1 ⊕ π2,

β(π|G◦) if π|G◦ is irreducible.

Note that when π|G◦ = π1 ⊕ π2, if JacP (π1) ̸= 0, then JacP ′(π2) ̸= 0 with P ′ the
conjugate of P by ϵ.

Example 4.4.1. Let us consider G = O2(F ). Then G
◦ = SO2(F ) is a torus so that it

has only one parabolic subgroup P ◦ = G◦. For π ∈ Irr(G), we have

β(π) = (−1)dim(AG◦ ) =

{−1 if G◦ = SO2(F ) is split,

1 otherwise,

(−1)dim(Aϵ
G◦ ) = 1.

Hence DG(π) = π. Since π̂ is equal to β(π)DG(π) on O2(F ) \ SO2(F ), we see that
π̂ ̸= π if and only if G◦ = SO2(F ) is split.

Now we compare Aubert duality for G with twisted Aubert duality for G̃LN(E). To
do this, we consider the following hypothesis.

Hypothesis 4.4.2. Fix an A-parameter ψ for G. Then there exist multi-sets Πψ and
Πψ̂ over Irr(G) equipped with ⟨·, π⟩ψ and ⟨·, π′⟩ψ̂ satisfying (ECR1) and (ECR2) in
Section 1.6. Moreover, we assume that for any proper Levi subgroup M of G and
any A-parameter ψM for M , there exists a multi-set ΠψM over Irr(M) equipped with
⟨·, πM⟩ψM satisfying (ECR1) and (ECR2) in Section 1.6.

Remark 4.4.3. Notice that Hypothesis 4.4.2 does not require members in A-packets to
be unitary. For a proper Levi subgroup M , Hypothesis 4.4.2 assumes Arthur’s results
for all A-parameters ψM , whereas, for G, it assumes only for a fixed A-parameter ψ and

its dual ψ̂. In particular, if ψ = ϕ is a tempered L-parameter for G, after establishing

(ECR1) and (ECR2) for ϕ̂ in the next section, one can use results in this section for

ϕ and ϕ̂.

Lemma 4.4.4. Fix ψ ∈ Ψ(G). Assume Hypothesis 4.4.2.

(1) The A-packet Πψ̂ is given by

Πψ̂ = {π̂ |π ∈ Πψ}.
Moreover, for π ∈ Πψ, we have β(ψ)⟨sψ̂, π̂⟩ψ̂ = ⟨sψ, π⟩ψβ(π).

(2) For π ∈ Πψ and s ∈ Aψ, we have

⟨ŝ, π̂⟩ψ̂
⟨s, π⟩ψ

=
β(ψ)

β(ψ+)β(ψ−)
,

where ŝ ∈ Aψ̂ is the element corresponding to s via the canonical identification

Aψ
∼−→ Aψ̂, e(ρ, a, b) 7→ e(ρ, b, a),
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and ψ± is given by s as in (ECR2) in Section 1.6.

Proof. We show (1). Since (twisted) Aubert duality commutes with the twisted endo-

scopic character identity (see [X2, (A.1)]), when f̃ ∈ C∞
c (GLN(E)⋊θ) and fG ∈ C∞

c (G◦)
have matching orbital integrals, we have

β(ψ)
∑
π̂∈Π

ψ̂

⟨sψ̂, π̂⟩ψ̂Θπ̂(fG) = β(ψ)(G : G◦)Θπ̃
ψ̂
(f̃)

= (G : G◦)ΘD
G̃LN (E)

(π̃ψ)(f̃)

=
∑
π∈Πψ

⟨sψ, π⟩ψΘDG◦ (π)(fG)

=
∑
π∈Πψ

⟨sψ, π⟩ψβ(π)Θπ̂(fG).

By the linear independence of the characters Θπ together with the surjectivity of f̃ 7→
fG, we see that Πψ̂ = {π̂ | π ∈ Πψ}. Moreover, comparing the coefficients, we have

β(ψ)⟨sψ̂, π̂⟩ψ̂ = ⟨sψ, π⟩ψβ(π).
Next, we show (2). Similar to (1), by [Hi, Theorem 1.5] or [X2, (A.1)], when fG ∈

C∞
c (G) and fG+ ⊗ fG− ∈ C∞

c (G◦
+ ×G◦

−) have matching orbital integrals, we have

1

(G : G◦)

∑
π∈Πψ

⟨s · sψ, π⟩ψβ(π)Θπ̂(fG)

=
1

(G : G◦)

∑
π∈Πψ

⟨s · sψ, π⟩ψΘDG• (π)(fG)

=
∏
κ∈{±}

1

(Gκ : G◦
κ)

∑
πκ∈Πψκ⊗ηκ

⟨sψκ⊗ηκ , πκ⟩ψκ⊗ηκΘDG◦
κ
(πκ)(fGκ)

=
∏
κ∈{±}

1

(Gκ : G◦
κ)

∑
πκ∈Πψκ⊗ηκ

⟨sψκ⊗ηκ , πκ⟩ψκβ(πκ)Θπ̂κ(fGκ).

Here, we set

DG• =

{
DG if G = O2n(F ) and s ̸∈ A+

ψ ,

DG◦ otherwise,

and we assume that fG|G◦ = 0 if G = O2n(F ) and s ̸∈ A+
ψ , whereas fG ∈ C∞

c (G◦)
otherwise. Using (1) and Lemma 4.1.2, we have

β(ψ)

(G : G◦)

∑
π∈Πψ

⟨s, π⟩ψ⟨sψ̂, π̂⟩ψ̂Θπ̂(fG)

=
∏
κ∈{±}

β(ψκ ⊗ ηκ)

(Gκ : G◦
κ)

∑
πκ∈Πψκ⊗ηκ

⟨sψ̂κ⊗ηκ , π̂κ⟩ψ̂κ⊗ηκΘπ̂κ(fGκ)
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=
β(ψ+)β(ψ−)

(G : G◦)

∑
π̂∈Π

ψ̂

⟨ŝ · sψ̂, π̂⟩ψ̂Θπ̂(fG).

Comparing the coefficients, we have β(ψ)⟨s, π⟩ψ = β(ψ+)β(ψ−)⟨ŝ, π̂⟩ψ̂, as desired. □

By Proposition 4.1.3, we know β(ψ) for tempered parameters ψ = ϕ. It is useful to
state the following result.

Corollary 4.4.5. Let ϕ be a tempered L-parameter for G. Assume the existence of

A-packets Πϕ and Πϕ̂ associated to ϕ and ϕ̂ which satisfy (ECR1) and (ECR2). Then
we have

⟨ŝ, π̂⟩ϕ̂
⟨s, π⟩ϕ

= (−1)r(ϕ)−r(ϕ+)−r(ϕ−).

In particular, if s = e(ρ, d, 1), then

⟨e(ρ, 1, d), π̂⟩ϕ̂
⟨e(ρ, d, 1), π⟩ϕ

=

{
1 if d ≡ 0 mod 2,

−(−1)m if d ≡ 1 mod 2,

where m is the number of irreducible constituents of ϕ of the form ρ⊠Sa for some a ≥ 1
(counting with multiplicity).

Proof. The first assertion follows from Lemma 4.4.4 (2) and Proposition 4.1.3. Suppose
that s = e(ρ, d, 1) ∈ Aϕ. If we write

ϕ = ϕ′ ⊕
t⊕
i=1

ρ⊠ Sdi

such that di ≡ d mod 2 and ϕ′ ̸⊃ ρ⊠ Sa for any a ≡ d mod 2, then by definition

r(ϕ) = r(ϕ′) +



t∑
i=1

di
2

if d ≡ 0 mod 2,

t∑
i=1

di − 1

2
+
[m
2

]
if d ≡ 1 mod 2,

where [x] denotes the largest integer not greater than x. Hence

r(ϕ)− r(ϕ+)− r(ϕ−) =


0 if d ≡ 0 mod 2,[m
2

]
−
[
m− 1

2

]
if d ≡ 1 mod 2.

This is equal to 1 if and only if d is odd and m is even. □
Remark 4.4.6. Notice that the same proof shows the converse of Lemma 4.4.4 in the
following sense. Namely, if we assume (ECR1) and Lemma 4.4.4 (1) (resp. (ECR2)
and Lemma 4.4.4 (2)) for an A-parameter ψ, then we obtain (ECR1) (resp. (ECR2))

for the dual A-parameter ψ̂. In fact, (ECR1) and (ECR2) for A-parameters of the
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form ψ = ϕ̂, where ϕ is a tempered L-parameter, will be proven in this way. See
Theorem 5.4.1 below.

Note that the same statement as Corollary 4.4.5 was recently given by Liu–Lo–Shahidi
[LLS, Theorem 5.9].

We shall give some example of this corollary for G = O4(F ). In this example, for
A,B ∈ R(G0), we write A ≤ B if B − A is a non-negative combination of irreducible
representations.

Example 4.4.7. Write G = O4(F ). We denote by B◦ = T ◦U the standard Borel
subgroup of G◦ so that its Levi is isomorphic to T ◦ = GL1(F ) × SO2(F ). This is the
unique proper standard parabolic subgroup which is stable under the conjugate action
of T = GL1(F ) × O2(F ). Set B = TU . For simplicity, write eχ = e(χ, 1, 1) ∈ Aϕ for
some ϕ containing χ.

(1) Let χ and χ′ be quadratic characters of F× with χ ̸= χ′. Consider

ϕ = χ⊕ χ⊕ χ′ ⊕ χ′ ∈ Φ(G)

so that G◦ = SO4(F ) is split. Then |Aϕ| = 4 and |Sϕ| = 2. We can write
Πϕ = {π, π ⊗ det, π′, π′ ⊗ det} such that

⟨eχ, π⟩ϕ = 1, ⟨eχ′ , π⟩ϕ = 1,

⟨eχ, π ⊗ det⟩ϕ = −1, ⟨eχ′ , π ⊗ det⟩ϕ = −1,

⟨eχ, π′⟩ϕ = −1, ⟨eχ′ , π′⟩ϕ = 1,

⟨eχ, π′ ⊗ det⟩ϕ = 1, ⟨eχ′ , π′ ⊗ det⟩ϕ = −1.

Similarly, write Πχ⊕χ = {πχ, πχ ⊗ det} and Πχ′⊕χ′ = {πχ′ , πχ′ ⊗ det} such that
⟨·, πχ⟩χ⊕χ = 1 and ⟨·, πχ′⟩χ′⊕χ′ = 1. Then

IndGB(χ⊠ πχ′) = π ⊕ π′, IndGB(χ
′ ⊠ πχ) = π ⊕ (π′ ⊗ det).

Hence, in the Grothendieck group R(T ), we have

JacB(π) ≤ 2χ⊗ πχ′ + χ′ ⊗ πχ + χ′ ⊗ (πχ ⊗ det),

JacB(π) ≤ 2χ′ ⊗ πχ + χ⊗ πχ′ + χ⊗ (πχ′ ⊗ det)

so that
JacB(π) = χ⊗ πχ′ + χ′ ⊗ πχ.

Since β(π) = 1, we have

π̂
θ
= DG(π) = π − (π + π′)− (π + (π′ ⊗ det))

θ
= π ⊗ det .

One can check that

⟨eχ, π ⊗ det⟩ϕ
⟨eχ, π⟩ϕ

=
⟨eχ′ , π ⊗ det⟩ϕ

⟨eχ′ , π⟩ϕ
= −1,

which is the statement of Corollary 4.4.5. Similarly, we have π̂′ = π′ ⊗ det, and
one can also check Corollary 4.4.5 for this case.
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(2) Let χ, χ′ and χ′′ be distinct quadratic characters of F×. Consider

ϕ = χ⊕ χ⊕ χ′ ⊕ χ′′ ∈ Φ(G)

so that G◦ = SO4(F ) is not split. Then |Aϕ| = 4 and |Sϕ| = 2. We can write
Πϕ = {π, π ⊗ det, π′, π′ ⊗ det} such that

⟨eχ, π⟩ϕ = 1, ⟨eχ′ , π⟩ϕ = 1, ⟨eχ′′ , π⟩ϕ = 1

⟨eχ, π′⟩ϕ = −1, ⟨eχ′ , π′⟩ϕ = 1, ⟨eχ′′ , π′⟩ϕ = 1.

Similarly, write Πχ′⊕χ′′ = {π0, π0 ⊗ det} with ⟨·, π0⟩χ′⊕χ′′ = 1. Then IndGB(χ ⊠
π0) = π ⊕ π′ so that JacB(π) = χ⊗ π0. Since β(π) = −1, we have

π̂
θ
= −DG(π) = −π + (π + π′) = π′.

On the other hand, since

(−1)r(ϕ)−r(ϕ+)−r(ϕ−) =

{−1 if s = eχ,

1 if s = eχ′ , eχ′′ ,

we get Corollary 4.4.5 for π.
(3) Let χ and χ′ be quadratic characters of F× with χ ̸= χ′. Consider

ϕ = χ⊕ χ⊕ χ⊕ χ′ ∈ Φ(G)

so that G◦ = SO4(F ) is not split. Then |Aϕ| = 2 and |Sϕ| = 1. We can write
Πϕ = {π, π⊗det} such that ⟨·, π⟩ϕ = 1. Then π = IndGB(χ⊠π0) with π0 ∈ Πχ⊕χ′

such that ⟨·, π0⟩χ⊕χ′ = 1. Hence JacB(π) = 2χ⊗ π0. Since β(π) = −1, we have

π̂
θ
= −DG(π) = −π + 2π = π.

On the other hand, since

(−1)r(ϕ)−r(ϕ+)−r(ϕ−) = 1

for s = eχ and e′χ, we obtain Corollary 4.4.5 for π.
(4) Let χ be a quadratic character of F×. Consider

ϕ = χ⊕ χ⊕ χ⊕ χ ∈ Φ(G)

so that G◦ = SO4(F ) is split. Then |Aϕ| = 2 and |Sϕ| = 1. We can write
Πϕ = {π, π⊗det} such that ⟨·, π⟩ϕ = 1. Then π = IndGB(χ⊠πχ) with πχ ∈ Πχ⊕χ
such that ⟨·, πχ⟩χ⊕χ = 1. Note that

JacB(π) = 3χ⊗ πχ + χ⊗ (πχ ⊗ det).

Since β(π) = 1, we have

π̂
θ
= DG(π) = π − (3π + (π ⊗ det))

θ
= −π θ

= π ⊗ det .

On the other hand, since

(−1)r(ϕ)−r(ϕ+)−r(ϕ−) = −1

for s = eχ, we get Corollary 4.4.5 for π.
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4.5. Computation of β(ψ). To show Theorem 1.10.5 (2), we need to compare ⟨ŝ, π̂⟩ψ̂
with ⟨s, π⟩ψ in a little more general situation than the tempered case. The results in
this subsection will only be used in the proof of Lemma 7.6.2.

In the next proposition, we compute β(ψ) when ψ is irreducible as a representation
of WF × SL2(C)× SL2(C) assuming Hypothesis 4.4.2.

Proposition 4.5.1. Assume Hypothesis 4.4.2. If ψ is irreducible and conjugate-self-
dual, then β(ψ) = (−1)r(ψ).

Proof. Using Lemma 4.1.2, up to replacing ψ with ψ ⊗ η for some η if necessary, we
may assume that ψ ∈ Ψ(G) for some classical group G.

Since ψ is irreducible, we have Aψ
∼= Aψ̂ = {1}. By Lemma 4.4.4 (1), we have

β(ψ) = β(π) for every π ∈ Πψ. By [Ar3, Proposition 7.4.1] and [Mok, Proposition
8.4.1] which we can use because we are assuming Hypothesis 4.4.2, we can take π to be
an element in the associated L-packet Πϕψ . If π is the unique element in this L-packet
corresponding to the trivial character of Aϕψ , and if we write ψ = ρ⊠ Sa⊠ Sb, then by
Theorem C.4.3, we have

π ↪→ ρ| · |x1E × · · · × ρ| · |xnE ⋊ σ

for some supercuspidal representation σ and real numbers x1, . . . , xn ∈ R, where n =
[ab
2
]. For the notion of the parabolically induced representations, see Section C.2. Since

r(ψ) = [ab
2
], we have β(ψ) = β(π) = (−1)r(ψ). □

By Propositions 4.1.3 and 4.5.1, we know β(ψ) = (−1)r(ψ) when ψ is irreducible
or (co-)tempered. We will need a few more cases. In the following proposition, for
ψ : WE × SL2(C)× SL2(C) → GLN(C), we define ψD and ψA by

ψD(w, g1, g2) = ψ(w, g1, g1), ψA(w, g1, g2) = ψ(w, g2, g2).

Recall that Sa is the unique a-dimensional irreducible algebraic representation of SL2(C).

Proposition 4.5.2. Fix an A-parameter ψ of G of good parity, and assume Hypothesis
4.4.2. Suppose that ψ = ϕ1⊠S1⊕ϕ2⊠S2 for some representations ϕ1, ϕ2 ofWE×SL2(C)
(which can be zero). If we decompose ψ = ⊕t

i=1ψi into irreducible representations, then
we have

β(ψ) = (−1)r(ψ)
∏

1≤i<j≤t

γA(s, ψ
A
i ⊗ cψAj , ψE)

γA(s, ψ̂i ⊗ cψ̂j, ψE)

∣∣∣∣∣
s=0

.

Proof. Note that the product of gamma factors is independent of the order of the
irreducible components of ψ by Proposition A.1.2.

We prove the assertion by induction on dim(ϕ2). If ϕ2 = 0, then ψ = ϕ1 is tempered

and the assertion is Proposition 4.1.3 since ψAi = ψ̂i for any 1 ≤ i ≤ t in this case.
Suppose that ϕ2 ̸= 0. Choose an irreducible subrepresentation ϕ0 ⊂ ϕ2. Set ψ0 =

ϕ0 ⊠S2 and ψ
′ = ψ− ϕ0 ⊠S2. Hence πψ = πψ′ × πψ0 . We denote the standard modules
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of πψ0 and πψ′ by Iψ0 and Iψ′ , respectively. By Lemma 3.1.2, we have the following
diagram

Iψ′ × πψD0

����

� � // Iψ′ × Iψ0

����
0 // πψ′ × πψD0

// πψ′ × Iψ0
// πψ′ × πψ0

// 0.

Here, the bottom sequence is exact since Iψ0 = πϕ0 | · |
1
2
E × πϕ0| · |

− 1
2

E is of length two. By
the same argument as Lemma 3.1.1, we have

dimC(EndGLN (E)(πψ′ × Iψ0)) = 1.

Indeed, the canonical map

EndGLN (E)(πψ′ × Iψ0) → EndGLN (E)(πψ′ × πψ0)
∼= C

is injective since πψ′ × πψ0 is the unique irreducible quotient of πψ′ × Iψ0 and appears
in πψ′ × Iψ0 as a subquotient with multiplicity one. By the functoriality of the Aubert

involution (Theorem B.2.3 (1)), we see that EndGLN (E)(π̂ψ′ × Îψ0) is also one dimen-
sional.

The action θW of θ on the standard module Iψ′ × Iψ0 which fixes a Whittaker func-
tional gives an action θW on πψ′ × Iψ0 . This is the unique action inducing Arthur’s

actions θA both on πψ′ × πψD0 and on πψ′ × πψ0 . If we denote by θ̂W and θ̂A the actions

induced by π̃ 7→ ̂̃π, then by Proposition B.4.7 (2) and Theorem B.2.3 (4), we see that

(πψ̂′ × Îψ0)⊠ θ̂W = (πψ̂′ × πψ̂0
)⊠ θ̂A + (πψ̂′ × πψA0 )⊠ θ̂A

in the Grothendieck group R(G̃LN(E)). Since DG̃LN (E)(πψ ⊠ θA)
θ
= β(ψ)πψ̂ ⊠ θA, if we

take an action θ′W of θ on π̂ψ′ × Îψ0 such that

(πψ̂′ × Îψ0)⊠ θ′W = (πψ̂′ × πψ̂0
)⊠ θA + (πψ̂′ × πψA0 )⊠ θ′A

in R(G̃LN(E)) for some θ′A, then we have

θ′A =
β(ψ′ ⊕ ψD0 )

β(ψ)
θA.

We realize this action θ′W on π̂ψ′ × Îψ0 using Theorem 1.9.1. Namely, if we let
P =MNP be the standard maximal parabolic subgroup of GLN(E) such that πψ̂′ ⊠πψ̂0

is an irreducible representation of M , and if we let w ∈ W (θ(M),M) be the unique
non-trivial element, then we have w(πψ̂′ ⊠ πψ̂0

◦ θ) ∼= πψ̂′ ⊠ πψ̂0
, and the normalized

intertwining operator R̃P (θ◦w, π̃ψ̂′ ⊠ π̃ψ̂0
) realizes Arthur’s action θA on πψ̂ = πψ̂′ ×πψ̂0

.
Recall that

R̃P (θ ◦ w, π̃ψ̂′ ⊠ π̃ψ̂0
) = IP (π̃ψ̂′ ⊠ π̃ψ̂0

(w ⋊ θ)) ◦ θ∗ ◦RP (θ(w), πψ̂′ ⊠ πψ̂0
, ψ).
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The operator RP (θ(w), πψ̂′ ⊠ πψ̂0
, ψ) can be extended to a meromorphic family of nor-

malized intertwining operators on πψ̂′|·|s
′
E×Îψ0 |·|sE for (s, s′) ∈ C. It can be decomposed

into the composition of the normalized intertwining operators

π̂ψ′ | · |s′E × π̂ϕ0| · |
s− 1

2
E × π̂ϕ0| · |

s+ 1
2

E → π̂ϕ0| · |
s− 1

2
E × π̂ψ′ | · |s′E × π̂ϕ0| · |

s+ 1
2

E

→ π̂ϕ0| · |
s− 1

2
E × π̂ϕ0| · |

s+ 1
2

E × π̂ψ′ | · |s′E
up to a scalar valued meromorphic function which is holomorphic at (s, s′) = (0, 0) (see
Lemma 1.7.3). Since these two intertwining operators are holomorphic at (s, s′) = (0, 0)
by [MW2, I.6.3, Lemma (ii)], we see that RP (θ(w), πψ̂′ ⊠ πψ̂0

, ψ) can be considered as

a well-defined operator on πψ̂′ × Îψ0 . On the other hand, the linear isomorphism

π̃ψ̂′ ⊠ π̃ψ̂0
(w ⋊ θ) : w(πψ̂′ ⊠ πψ̂0

◦ θ) ∼−→ πψ̂′ ⊠ πψ̂0

can be extended to a linear isomorphism

w(πψ̂′ ⊠ Îψ0 ◦ θ)
∼−→ πψ̂′ ⊠ Îψ0 .

Therefore, the action θ′W on πψ̂′ × Îψ0 can be realized by R̃P (θ ◦ w, π̃ψ̂′ ⊠ π̃ψ̂0
).

By Propositions 4.1.3 and 4.5.1 together with r(ψD0 ) = r(ψ0), if we apply the functor

π̃ 7→ ̂̃π to the equation

Iψ0 ⊠ θW = πψD0 ⊠ θA + πψ0 ⊠ θA

in R(G̃LN(E)), then we obtain

Îψ0 ⊠ θ̂W = πψA0 ⊠ θA + πψ̂0
⊠ θA

for some θ̂W . Hence the above isomorphism w(πψ̂′ ⊠ Îψ0 ◦ θ)
∼−→ πψ̂′ ⊠ Îψ0 induces

π̃ψ̂′ ⊠ π̃ψA0 (w ⋊ θ) : w(πψ̂′ ⊠ πψA0 ◦ θ) ∼−→ πψ̂′ ⊠ πψA0 .

Therefore the normalized intertwining operator R̃P (θ◦w, π̃ψ̂′⊠ π̃ψ̂0
) on πψ̂′×Îψ0 induces

R̃P (θ ◦ w, π̃ψ̂′ ⊠ π̃ψA0 )×
γA(s, ψ̂

′ ⊗ cψ̂0, ψE)

γA(s, ψ̂′ ⊗ cψA0 , ψE)

∣∣∣∣∣
s=0

on πψ̂′ × πψA0 . This means that

β(ψ′ ⊕ ψD0 )

β(ψ)
=

γA(s, ψ̂
′ ⊗ cψ̂0, ψE)

γA(s, ψ̂′ ⊗ cψA0 , ψE)

∣∣∣∣∣
s=0

.

Now, we write ψ′ = ⊕t
i=1ψi for the irreducible decomposition. Then by induction, we

see that β(ψ′ ⊕ ψD0 ) is equal to

(−1)r(ψ
′⊕ψD0 )

( ∏
1≤i<j≤t

γA(s, ψ
A
i ⊗ cψAj , ψE)

γA(s, ψ̂i ⊗ cψ̂j, ψE)

∣∣∣∣∣
s=0

)(
γA(s, ψ

′A ⊗ cψA0 , ψE)

γA(s, ψ̂′ ⊗ cψA0 , ψE)

∣∣∣∣∣
s=0

)
.
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Since r(ψ′ ⊕ ψD0 ) = r(ψ), we have

β(ψ) = (−1)r(ψ)

( ∏
0≤i<j≤t

γA(s, ψ
A
i ⊗ cψAj , ψE)

γA(s, ψ̂i ⊗ cψ̂j, ψE)

∣∣∣∣∣
s=0

)(
γA(s, ψ

′A ⊗ cψA0 , ψE)

γA(s, ψ̂′ ⊗ cψ̂0, ψE)

∣∣∣∣∣
s=0

)
.

This completes the proof. □
Corollary 4.5.3. Fix an A-parameter ψ of G of good parity, and assume Hypothesis
4.4.2. Suppose that ψ = ϕ1⊠S1⊕ϕ2⊠S2 for some representations ϕ1, ϕ2 ofWE×SL2(C).
For s =

∑
i∈I− e(ρi, ai, bi) ∈ Aψ, define ψ± by

ψ− =
⊕
i∈I−

ρi ⊠ Sai ⊠ Sbi , ψ+ = ψ − ψ−

as in Section 1.6. Then

⟨ŝ, π̂⟩ψ̂
⟨s, π⟩ψ

= (−1)r(ψ)−r(ψ+)−r(ψ−) γA(s, ψ
A
+ ⊗ cψA−, ψE)

γA(s, ψ̂+ ⊗ cψ̂−, ψE)

∣∣∣∣∣
s=0

.

Proof. This follows from Lemma 4.4.4 (2) and Proposition 4.5.2. □

5. Endoscopic character relations for co-tempered parameters

The purpose of this section is to prove Theorem 1.10.5 (1). In this section, we do not
impose Hypothesis 4.4.2.

5.1. Equation (∗). Let ψ = ϕ̂ be a co-tempered A-parameter for G. We will construct
the A-packet Πψ together with the pairing ⟨·, π⟩ψ for π ∈ Πψ. According to Lemma
4.4.4 and Corollary 4.4.5, the correct definitions should be as follows:

• Πϕ̂ = {π̂ |π ∈ Πϕ};
• ⟨ŝ, π̂⟩ϕ̂ = (−1)r(ϕ)−r(ϕ+)−r(ϕ−)⟨s, π⟩ϕ for s ∈ Aϕ corresponding to ŝ ∈ Aϕ̂.

As explained in Remark 4.4.6, to show (ECR1) for this packet Πϕ̂, we need Lemma

4.4.4 (1), i.e., the equation β(ϕ)⟨sϕ̂, π̂⟩ϕ̂ = ⟨sϕ, π⟩ϕβ(π). It is not trivial that this

equation is compatible with the definition of ⟨ŝ, π̂⟩ϕ̂ above.

If s = ŝϕ̂ ∈ Aϕ corresponds to ŝ = sϕ̂ ∈ Aϕ̂, we see that r(ϕ) = r(ϕ+) + r(ϕ−).

Hence our definition shows that ⟨sϕ̂, π̂⟩ϕ̂ = ⟨ŝϕ̂, π⟩ϕ. Using this together with sϕ = 1,

the equation β(ϕ)⟨sϕ̂, π̂⟩ϕ̂ = ⟨sϕ, π⟩ϕβ(π) can be rewritten as

β(ϕ)β(π) = ⟨ŝϕ̂, π⟩ϕ.

In this section, we only assume Hypothesis 4.4.2 for tempered L-parameters. To
clarify our situation, we state this hypothesis explicitly.

Hypothesis 5.1.1. For any quasi-split classical group G′ with dim(St
Ĝ′) ≤ dim(StĜ),

and for any tempered L-parameter ϕ′ for G′, there exists a subset Πϕ′ of Irrtemp(G
′)

equipped with ⟨·, π′⟩ϕ′ satisfying (ECR1) and (ECR2) of Section 1.6.
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This hypothesis is the same as Hypothesis C.0.1 and hence, we can use the results in
Appendix C. We also notice that the proof of Proposition 4.1.3 did not use Hypothesis
4.4.2. Therefore we know that β(ϕ) = (−1)r(ϕ) even now.

Now we can state what we have to show in this section.

Proposition 5.1.2. Assume Hypothesis 5.1.1 (but not 4.4.2). Let ϕ be a tempered
L-parameter for G. Then for π ∈ Πϕ, we have

(∗) β(ϕ)β(π) = ⟨ŝϕ̂, π⟩ϕ.

Remark 5.1.3. This statement was recently proven by Liu–Lo–Shahidi [LLS]. How-
ever, it is not obvious to us whether they use any results that are unavailable in the
setting we need, i.e., at the point of Arthur’s argument in [Ar3, Section 7.1]. For safety,
we will give a proof of Proposition 5.1.2.

Let us explain our strategy for the proof of Proposition 5.1.2. One can check that both
β(ϕ) and β(π) depend only on the cuspidal support of π. However, it is complicated to
list the cuspidal support of π for all π ∈ Πϕ. Instead of this, we give several reductions
by using Theorem C.4.3. The final case is where π is supercuspidal, which we can treat
by a direct computation.

Let P = MNP be a standard parabolic subgroup of G with Levi subgroup M ∼=
GLk1(E)× · · · × GLkt(E)× G0. For τi ∈ Rep(GLki(E)) and π0 ∈ Rep(G0), we denote
the normalized parabolic induction by

τ1 × · · · × τt ⋊ π0 = IndGP (τ1 ⊠ · · ·⊠ τt ⊠ π0).

5.2. Reductions. As the first reduction, we assume that we can decompose ϕ as

ϕ = ϕ1 ⊕ ϕ0 ⊕ cϕ∨
1 .

Then we have a canonical inclusion Aϕ0 ↪→ Aϕ, which satisfies ŝϕ̂0 7→ ŝϕ̂. If we denote

by τ the irreducible tempered representation of GLm(E) corresponding to ϕ1 with
m = dim(ϕ1), then we have

• τ ⋊ π0 is semisimple and multiplicity-free for π0 ∈ Πϕ0 ;
• π ∈ Πϕ if and only if π ↪→ τ ⋊ π0 for some π0 ∈ Πϕ0 ;
• if π ↪→ τ ⋊ π0, then

⟨·, π⟩ϕ|Aϕ0 = ⟨·, π0⟩ϕ0 .
For these statements, see the proofs of [Ar3, Proposition 2.4.3] and [Mok, Proposition
3.4.4]. For such π ↪→ τ ⋊ π0, by definition of β(ϕ) and β(π), we have

β(ϕ)

β(ϕ0)
= (−1)r =

β(π)

β(π0)
,

where r is the length of

WE ∋ w 7→ ϕ1

(
w,

(
|w|

1
2
E 0

0 |w|−
1
2

E

))
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as a representation of WE. Hence if we knew (∗) for π0, we would have

β(ϕ)β(π) = β(ϕ0)β(π0) = ⟨ŝϕ̂0 , π0⟩ϕ0 = ⟨ŝϕ̂, π⟩ϕ,

which is (∗) for π. Therefore we may assume that:

(1) ϕ is a discrete parameter, i.e., ϕ is of good parity and multiplicity-free.

When ϕ is a discrete parameter for G, we write

ϕ =
⊕
ρ

t⊕
i=1

ρ⊠ S2aρ,i+1,

where aρ,i ∈ (1/2)Z and 0 ≤ aρ,1 < · · · < aρ,t with t = tρ ≥ 0. Then ρ is conjugate-
self-dual, and the parity of 2aρ,i + 1 depends only on the sign of ρ. Recall that Aϕ is a
quotient of

Aϕ =
⊕
ρ

t⊕
i=1

Z/2Ze(ρ, 2aρ,i + 1).

Here, as we abbreviated ρ⊠Sd⊠S1 to ρ⊠Sd, we write e(ρ, d) = e(ρ, d, 1) for simplicity.
Moreover, ŝϕ̂ ∈ Aϕ is the image of

∑
ρ

aρ,1 ̸∈Z

t∑
i=1

e(ρ, 2aρ,i + 1).

Let π ∈ Πϕ. As the second reduction, we assume that one can find ρ and 1 < i ≤ tρ
such that

⟨e(ρ, 2aρ,i + 1), π⟩ϕ = ⟨e(ρ, 2aρ,i−1 + 1), π⟩ϕ.
In this case, by applying Theorem C.4.3 repeatedly together with [Ar3, Proposition
2.4.3] and [Mok, Proposition 3.4.4], we have

π ↪→ ρ| · |aρ,iE × ρ| · |aρ,i−1
E × · · · × ρ| · |−aρ,i−1

E ⋊ π0,

where π0 ∈ Πϕ0 with

ϕ0 = ϕ− ρ⊠ (S2aρ,i+1 ⊕ S2aρ,i−1+1),

and

⟨·, π⟩ϕ|Aϕ0 = ⟨·, π0⟩ϕ0 .
Hence

β(ϕ)

β(ϕ0)
= (−1)aρ,i+aρ,i−1+1 =

β(π)

β(π0)
.

Note that via the canonical inclusion Aϕ0 ↪→ Aϕ, we have

ŝϕ̂0 7→

{
ŝϕ̂ if aρ,i ∈ Z,
ŝϕ̂ − (e(ρ, 2aρ,i + 1) + e(ρ, 2aρ,i−1 + 1)) if aρ,i ̸∈ Z.
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Hence if we knew (∗) for π0, using ⟨e(ρ, 2aρ,i+1), π⟩ϕ = ⟨e(ρ, 2aρ,i−1+1), π⟩ϕ, we would
have

β(ϕ)β(π) = β(ϕ0)β(π0) = ⟨ŝϕ̂0 , π0⟩ϕ0 = ⟨ŝϕ̂, π⟩ϕ,

which is (∗) for π. Therefore, we may assume that:

(2) ⟨e(ρ, 2aρ,i + 1), π⟩ϕ ̸= ⟨e(ρ, 2aρ,i−1 + 1), π⟩ϕ for any ρ and 1 < i ≤ tρ.

As the third reduction, we assume that one can find ρ with tρ ≥ 1 and aρ,1 ̸∈ Z such
that

⟨e(ρ, 2aρ,1 + 1), π⟩ϕ = 1.

In this case, by applying Theorem C.4.3 repeatedly, we have

π ↪→ ρ| · |aρ,1E × ρ| · |aρ,1−1
E × · · · × ρ| · |

1
2
E ⋊ π0,

where π0 ∈ Πϕ0 with

ϕ0 = ϕ− ρ⊠ S2aρ,1+1,

and

⟨·, π⟩ϕ|Aϕ0 = ⟨·, π0⟩ϕ0 .
Hence

β(ϕ)

β(ϕ0)
= (−1)aρ,1+

1
2 =

β(π)

β(π0)
.

Note that via the canonical inclusion Aϕ0 ↪→ Aϕ, we have

ŝϕ̂0 7→ ŝϕ̂ − e(ρ, 2aρ,1 + 1).

Hence the equation (∗) for π0 implies (∗) for π. Therefore we may assume that:

(3) ⟨e(ρ, 2aρ,1 + 1), π⟩ϕ = −1 if aρ,1 ̸∈ Z.
Note that an irreducible tempered representation π satisfying (1), (2) and (3) is called
strongly positive discrete series in Mœglin–Tadić’s terminology.

Let π ∈ Πϕ be a strongly positive discrete series representation, i.e., it satisfies the
conditions (1)–(3). Write again

ϕ =
⊕
ρ

t⊕
i=1

ρ⊠ S2aρ,i+1,

where aρ,i ∈ (1/2)Z and 0 ≤ aρ,1 < · · · < aρ,t with t = tρ ≥ 0.
As the fourth reduction, we assume that one can find ρ with tρ ≥ 1 such that

aρ,i − aρ,i−1 > 1 for some 1 ≤ i ≤ tρ. Here, formally we set aρ,0 = −1
2
. In this case, by

applying Theorem C.4.3, we have

π ↪→ ρ| · |aρ,iE ⋊ π0,

where π0 ∈ Πϕ0 with

ϕ0 = ϕ− ρ⊠ S2aρ,i+1 ⊕ ρ⊠ S2aρ,i−1,
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and ⟨·, π⟩ϕ = ⟨·, π0⟩ϕ0 via the canonical identification Aϕ
∼= Aϕ0 (see Proposition C.4.1).

Hence
β(ϕ)

β(ϕ0)
= −1 =

β(π)

β(π0)
.

Note that ŝϕ̂0 = ŝϕ̂ via Aϕ0
∼= Aϕ. Hence if we knew (∗) for π0, we would have

β(ϕ)β(π) = β(ϕ0)β(π0) = ⟨ŝϕ̂0 , π0⟩ϕ0 = ⟨ŝϕ̂, π⟩ϕ,

which is (∗) for π.
Therefore, we may finally assume that

(1) ϕ is a discrete parameter;
(2) ⟨e(ρ, 2aρ,i + 1), π⟩ϕ ̸= ⟨e(ρ, 2aρ,i−1 + 1), π⟩ϕ for any ρ and 1 < i ≤ tρ;
(3) ⟨e(ρ, 2aρ,1 + 1), π⟩ϕ = −1 if aρ,1 ̸∈ Z;
(4) aρ,1 = 0 or aρ,1 =

1
2
;

(5) aρ,i = aρ,i−1 + 1 for i > 1.

Such a representation π is supercuspidal by Corollary C.4.5.

5.3. The case of supercuspidal representations. Now we assume that π ∈ Πϕ is
supercuspidal, i.e., it satisfies the conditions (1)–(5) in the last subsection. We check
(∗) for π directly.

Write

ϕ =
⊕
ρ

t⊕
i=1

ρ⊠ S2aρ,i+1,

where aρ,i ∈ (1/2)Z and 0 ≤ aρ,1 < · · · < aρ,t with t = tρ ≥ 0. Then

ϕ

(
w,

(
|w|

1
2
E 0

0 |w|−
1
2

E

))
∼=
⊕
ρ

t⊕
i=1

ρ⊗ (| · |aρ,iE ⊕ | · |aρ,i−1
E ⊕ · · · ⊕ | · |−aρ,iE ).

Note that if aρ,1 ∈ Z, then ρ appears in the right-hand side with multiplicity t = tρ.
Hence,

r(ϕ) =
∑
ρ

aρ,1 ̸∈Z

t∑
i=1

(
aρ,i +

1

2

)
+
∑
ρ

aρ,1∈Z

([
t

2

]
+

t∑
i=1

aρ,i

)
,

where [x] denotes the largest integer not greater than x. By the conditions (4) and (5)
in the last subsection, we note that when aρ,1 ∈ Z, we have aρ,i = i− 1 so that[

t

2

]
+

t∑
i=1

aρ,i =

[
t

2

]
+

t∑
i=1

(i− 1) =

[
t

2

]
+
t(t− 1)

2
≡ 0 mod 2.

Similarly, when aρ,1 ̸∈ Z, we have aρ,i +
1
2
= i so that

t∑
i=1

(
aρ,i +

1

2

)
=

t∑
i=1

i =
t(t+ 1)

2
.
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Hence
β(ϕ) = (−1)r(ϕ) =

∏
ρ

aρ,1 ̸∈Z

(−1)
t(t+1)

2 .

On the other hand, since π is supercuspidal, we have β(π) = 1. Finally, by the condi-
tions (2) and (3), we have

⟨ŝϕ̂, π⟩ϕ =
∏
ρ

aρ,1 ̸∈Z

t∏
i=1

⟨e(ρ, 2aρ,i + 1), π⟩ϕ =
∏
ρ

aρ,1 ̸∈Z

t∏
i=1

(−1)i =
∏
ρ

aρ,1 ̸∈Z

(−1)
t(t+1)

2 .

Therefore, we conclude that
β(ϕ)β(π) = ⟨ŝϕ̂, π⟩ϕ,

as desired. We obtain (∗) for π, and hence we complete the proof of Proposition 5.1.2.

5.4. ECR for co-tempered A-parameters. Now we can prove Theorem 1.10.5 (1).
More precisely, we have the following:

Theorem 5.4.1. Assume Hypothesis 5.1.1 (but not 4.4.2). Let ϕ be a tempered L-
parameter for G. Define Πϕ̂ and ⟨ŝ, π̂⟩ϕ̂ for ŝ ∈ Aϕ̂ by

Πϕ̂ = {π̂ |π ∈ Πϕ}
and

⟨ŝ, π̂⟩ϕ̂ = (−1)r(ϕ)−r(ϕ+)−r(ϕ−)⟨s, π⟩ϕ.

Then ⟨·, π̂⟩ϕ̂ factors through Aϕ̂ ↠ Aϕ̂. Moreover, (ECR1) and (ECR2) hold for ϕ̂.

Proof. Since r(ϕ) = r(ϕ+) + r(ϕ−) if s = ŝϕ̂, we have ⟨sϕ̂, π̂⟩ϕ̂ = ⟨ŝϕ̂, π⟩ϕ = β(ϕ)β(π) by

Proposition 5.1.2. Hence, when f̃ ∈ C∞
c (GLN(E)⋊θ) and fG ∈ C∞

c (G◦) have matching
orbital integrals, by [X2, (A.1)], we have∑

π̂∈Π
ϕ̂

⟨sϕ̂, π̂⟩ϕ̂Θπ̂(fG) = β(ϕ)
∑
π̂∈Π

ϕ̂

β(π)Θπ̂(fG)

= β(ϕ)
∑
π∈Πϕ

ΘDG◦ (π)(fG)

= (G : G◦)β(ϕ)ΘD
G̃LN (E)

(π̃ϕ)(f̃)

= (G : G◦)Θπ̃
ϕ̂
(f̃).

This shows (ECR1).
Similarly, since β(ϕ) = (−1)r(ϕ) and β(ϕ±) = β(ϕ± ⊗ η±) by Proposition 4.1.3 and

Lemma 4.1.2, when fG ∈ C∞
c (G) and fG+ ⊗fG− ∈ C∞

c (G◦
+×G◦

−) have matching orbital
integrals, by [Hi, Theorem 1.5] or [X2, (A.1)], we have

1

(G : G◦)

∑
π̂∈Π

ϕ̂

⟨ŝ · sϕ̂, π̂⟩ϕ̂Θπ̂(fG)
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=
1

(G : G◦)

∑
π̂∈Π

ϕ̂

(−1)r(ϕ)−r(ϕ+)−r(ϕ−)⟨s, π⟩ϕ · β(ϕ)β(π)Θπ̂(fG)

=
1

(G : G◦)
β(ϕ+)β(ϕ−)

∑
π∈Πϕ

⟨s, π⟩ϕΘDG• (π)(fG)

=
∏
κ∈{±}

1

(Gκ : G◦
κ)
β(ϕκ ⊗ ηκ)

∑
πκ∈Πϕκ⊗ηκ

ΘDG◦
κ
(πκ)(fGκ)

=
∏
κ∈{±}

1

(Gκ : G◦
κ)

∑
π̂κ∈Πϕ̂κ⊗ηκ

β(ϕκ ⊗ ηκ)β(πκ)Θπ̂κ(fGκ)

=
∏
κ∈{±}

1

(Gκ : G◦
κ)

∑
π̂κ∈Πϕ̂κ⊗ηκ

⟨sϕ̂κ⊗ηκ , π̂κ⟩sϕ̂κ⊗ηκΘπ̂κ(fGκ).

Here, the definition of DG• and the assumption on fG are the same as in the proof of
Lemma 4.4.4 (2). This shows (ECR2). □

6. Local intertwining relations for classical groups

The purpose of this and next sections is to prove Theorem 1.10.5 (2). This is a
key result that is essential in the global method for establishing Arthur’s theory of
endoscopic classification. Arthur’s initial approach was to prove some special cases of
Theorem 1.10.5 (2), which would suffice for the global method, by an argument based on
Hecke algebras. However, our attempts to realize this approach led to very complicated
computations.

To show Theorem 1.10.5 (2), we will instead adapt the method for Theorem 1.9.1 to
the case of classical groups. However, unlike the GLN(E) case, the unitary parabolic
inductions of classical groups are not necessarily irreducible. Because of this fact, we
can apply our method only to “half” of the cases. The final key ingredient is Corollary
B.3.3, which was obtained in an arXiv version of [KMSW]. This result tells us that
“half” of the cases is enough.

6.1. Hypothesis. Let F be a non-archimedean local field of characteristic zero. Fix
a non-trivial character ψF : F → C×. Recall that G is one of the following quasi-split
classical groups

SO2n+1(F ), Sp2n(F ), O2n(F ), Un.

In this section, we assume Hypothesis 1.10.4, which we restate here for the reader’s
convenience.

Hypothesis 6.1.1. We assume (ECR1), (ECR2) and (A-LIR) for

• all tempered L-parameters ϕ for G;
• all A-parameters ψ for G′ with G′ any classical group such that dim(St

Ĝ′) <
dim(StĜ).
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In particular, we have the A-packet ΠψM for ψM ∈ Ψ(M) for any proper Levi subgroup
M of G, since M is a product of such a G′ and general linear groups.

Remark 6.1.2. (1) By Theorem 5.4.1, one has an A-packet Πϕ̂ associated to co-

tempered A-parameters ϕ̂ for G, satisfying (ECR1) and (ECR2).
(2) For any proper Levi subgroup M of G, Hypothesis 6.1.1 is stronger than Hy-

potheses 4.4.2 and B.3.1. Hence we can use Corollaries 4.5.3 and B.3.3 for
ψM ∈ Ψ(M).

(3) Note that we assume (ECR1) and (ECR2) not only for proper Levi subgroups
M of G, but also for any classical group G′ with dim(St

Ĝ′) < dim(StĜ). Hence
Hypothesis 6.1.1 contains Hypothesis C.0.1 so that we can use Theorems C.4.3,
C.4.4 and Corollary C.4.5.

6.2. Reduction to the maximal parabolic case. Let P = MNP be a standard
parabolic subgroup of G. Write M = GLkt(E) × · · · × GLk1(E) × G0. Let ψM =

ϕ̂M = ψt ⊕ · · · ⊕ ψ1 ⊕ ψ0 be a co-tempered A-parameter for M such that ψi is an
A-parameter for GLki(E) for 1 ≤ i ≤ t, and ψ0 ∈ Ψ(G0). Suppose that ψi is irreducible
and conjugate-self-dual for any 1 ≤ i ≤ t.

In this subsection, we reduce Theorem 1.10.5 (2) to the case where t = 1. Namely,
we prove the following.

Lemma 6.2.1. Assume Hypothesis 6.1.1. We further assume that (LIR) holds for any
irreducible components π ⊂ IP ′(πM ′), where

• P ′ =M ′NP ′ is a maximal parabolic subgroup of G so that M ′ ∼= GLk(E)×G′
0;

• ψM ′ = ϕ̂M ′ = ψGL⊕ψ′
0 is a co-tempered A-parameter forM ′ with ψGL irreducible

and conjugate-self-dual;
• πM ′ ∈ ΠψM′ .

Then (LIR) holds for any irreducible components π ⊂ IP (πM) for πM ∈ ΠψM .

Proof. By Proposition 1.7.2 and [KMSW, Lemma 2.5.3], the map

Nψ ∋ u 7→ ⟨ũ, π̃M⟩RP (wu, π̃M , ψM)

is multiplicative. (See also the paragraph in [Ar3] containing (2.4.2).) Hence we may
assume one of the following:

• u = s0 ∈ Aψ0 ;
• u = ui for 1 ≤ i ≤ t; or
• u = σ ∈ St such that ψσ(i) ∼= ψi for 1 ≤ i ≤ t,

since Nψ is generated by these elements. See Section 1.10.
First, we assume that u = s0 ∈ Aψ0 . Then w̃u = 1 or w̃u = ϵ (which occurs only

when G = O2n(F )), and

⟨ũ, π̃M⟩RP (wu, π̃M , ψM) = (⟨ũ, π̃M⟩π̃M(wu)) ◦ πM(w̃u)
−1.
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By the definition of the operator ⟨ũ, π̃M⟩π̃M(wu) recalled in Section 1.10 together with
(ECR2), we see that the right hand side is equal to ⟨s0, π0⟩ψ0 = ⟨s0, π⟩ψ. Hence we
obtain (LIR) for this case.

Next, we assume that u = σ ∈ St such that ψσ(i) ∼= ψi for 1 ≤ i ≤ t. Let P ′ =M ′NP ′

be a maximal parabolic subgroup of G such that M ′ ∼= GLk1+···+kt(E) × G0, and let
ψM ′ = (ψt ⊕ · · · ⊕ ψ1)⊕ ψ0 be the A-parameter for M ′ given by ψM . Then

ΠψM′ =
{
IndM

′

P∩M ′(πM)
∣∣∣ πM ∈ ΠψM

}
.

By [KMSW, Lemma 2.7.2], ⟨ũ, π̃M⟩RP (wu, π̃M , ψM) descends to the normalized inter-
twining operator for GLk1+···+kt(E). (See also the proof of Lemma 2.4.2 in [Ar3].) Hence
by Theorem 3.5.1, this operator must be the identity map. Since su = 1 in this case,
we obtain (LIR).

Finally, we assume that u = ui for 1 ≤ i ≤ t. We will prove the assertion by induction
on t. We can assume that t > 1. Let P ′ =M ′NP ′ be a maximal parabolic subgroup of
G such that M ′ ∼= GLkt(E)×G′

0, and let

ψM ′ = ψt ⊕ (ψt−1 ⊕ · · · ⊕ ψ1 ⊕ ψ0 ⊕ cψ∨
1 ⊕ · · · ⊕ cψ∨

t−1)

be the A-parameter for M ′ given by ψM . Then for any πM ∈ ΠψM and any irreducible

component π ⊂ IP (πM), there is a unique πM ′ ∈ ΠψM′ such that πM ′ ⊂ IndM
′

P∩M ′(πM)
and π ⊂ IP ′(πM ′). Moreover, there is a canonical injection AψM′ ↪→ Aψ and we have

⟨·, π⟩ψ|AψM′
= ⟨·, πM ′⟩ψM′ .

These facts follow from the tempered case by taking Aubert duality and using Corollary
4.4.5.

Suppose that u = ui with i ̸= t so that sui ∈ AψM′ . Then by [KMSW, Lemma 2.7.2],
⟨ũ, π̃M⟩RP (wu, π̃M , ψM) descends to the normalized intertwining operator for G′

0, i.e.,

⟨ũi, π̃M⟩RP (wui , π̃M , ψM) = IndGP ′

(
idπψt ⊗ ⟨ũi, π̃M ′

0
⟩RP∩G′

0
(wui , π̃M ′

0
, ψM ′

0
)
)
,

where M ′
0 = M ∩ G′

0, ψM ′
0
= ψM − ψt ∈ Ψ(M ′

0) and we write πM = πψt ⊠ πM ′
0
with

πM ′
0
∈ ΠψM′

0
. By the induction hypothesis, (LIR) is known for G′

0 in place of G, so

this operator acts on IP ′(πM ′) by the scalar ⟨sui , πM ′⟩ψM′ = ⟨sui , π⟩ψ. Hence we obtain
(LIR) for this case.

Suppose finally that u = ut. Then by [KMSW, Lemma 2.7.2],

⟨ũt, π̃M⟩RP (wut , π̃M , ψM)|IP ′ (πM′ ) = ⟨ũt, π̃M ′⟩RP ′(wut , π̃M ′ , ψM ′).

Since we are assuming (LIR) for the maximal parabolic case, we know that

⟨ũt, π̃M ′⟩RP ′(wut , π̃M ′ , ψM ′)|π = ⟨sut , π⟩ψ.

Hence we obtain (LIR) for this case. This completes the proof. □
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6.3. Halving the problem. In the rest of this section, we will focus on the maximal
parabolic case.

Fix a standard maximal parabolic subgroup P =MNP of G withM ∼= GLk(E)×G0.
Let ψM = ψGL ⊕ ψ0 be an A-parameter for M , and let ψ = ψGL ⊕ ψ0 ⊕ cψ∨

GL be the A-
parameter for G given by ψM . Suppose that ψGL is irreducible and conjugate-self-dual.
The A-packet Πψ is given by the (multi-)set of irreducible components of IP (πM) for
πM ∈ ΠψM . Let u ∈ Nψ. Recall that the normalized self-intertwining operator

⟨ũ, π̃M⟩RP (wu, π̃M , ψM) : IP (πM) → IP (πM)

is defined by

⟨ũ, π̃M⟩RP (wu, π̃M , ψM)f(g) = ⟨ũ, π̃M⟩π̃M(wu) (RP (wu, πM , ψM)f(g))

with a linear isomorphism

⟨ũ, π̃M⟩π̃M(wu) : πM
∼−→ πM

satisfying that the diagram

πM

πM (w̃−1
u mw̃u)

��

⟨ũ,π̃M ⟩π̃M (wu) // πM

πM (m)

��
πM

⟨ũ,π̃M ⟩π̃M (wu) // πM

is commutative for any m ∈ M . The definition of this isomorphism will be recalled in
the proof of the next lemma.

We can write πM = πGL ⊠ π0, where πGL is an irreducible conjugate-self-dual repre-
sentation of GLk(E). Recall that Nψ is generated by Aψ0 and an element u1. When
u = u1, similar to the definition of θA in Section 1.4, by using a Whittaker functional on
the standard module of πGL, one can normalize a linear isomorphism Awu : πGL

∼−→ πGL

such that the diagram

πM

πM (w̃−1
u mw̃u)

��

Awu⊗idπ0 // πM

πM (m)

��
πM

Awu⊗idπ0 // πM

is commutative for any m ∈M .

Lemma 6.3.1. Let u ∈ Nψ.

(1) If u = s0 ∈ Aψ0, then ⟨ũ, π̃M⟩π̃M(wu) = ⟨s0, π0⟩ψ0πM(w̃u).
(2) If u = u1, then ⟨ũ, π̃M⟩π̃M(wu) = Awu ⊗ idπ0.

Proof. Recall in Section 1.10 that the operator ⟨ũ, π̃M⟩π̃M(wu) is defined by a twisted en-
doscopic identity. We will check that this identify also holds after replacing ⟨ũ, π̃M⟩π̃M(wu)
with ⟨s0, π0⟩ψ0πM(w̃u) or Awu ⊗ idπ0 according to u = s0 ∈ Aψ0 or u = u1.

First, we assume that u = s0 ∈ Aψ0 . Then the required identity follows from the
standard (or twisted) endoscopic character identity (ECR2) for ψ0.
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Next we assume that u = u1. Since the conjugation action of ũ on M̂◦ preserves
the standard pinning, and it acts on GLk(C) by the pinned outer automorphism and

on Ĝ◦
0 by the identity, we see that s ∈ Z(M̂◦) and M ′◦ = G1 × G◦

0 with G1 a twisted
endoscopic datum for GLk(E).

We may assume that fM = fGL ⊗ f0 and fM ′ = f1 ⊗ f0. Then∑
πM∈ΠψM

⟨sψM , πM⟩ψM tr(Awu ⊗ idπ0 ◦ πM(fM))

= tr(Awu ◦ πGL(fGL))
∑

π0∈Πψ0

⟨sψ0 , π0⟩ψ0Θπ0(f0),

whereas ∑
πM′∈ΠψM′

⟨sψM′ , πM ′⟩ψM′ΘπM′ (fM ′)

=

 ∑
π1∈Πψ1

⟨sψ1 , π1⟩ψ1Θπ1(f1)

 ∑
π0∈Πψ0

⟨sψ0 , π0⟩ψ0Θπ0(f0)

 ,

where we write ψM ′ = ψ1 ⊕ ψ0 ∈ Ψ(G1 × G0). Since ψGL = ξ ◦ ψ1 and dim(StĜ1
) <

dim(StĜ), by (ECR1) for ψ1, we have

tr(Awu ◦ πGL(fGL)) =
∑

π1∈Πψ1

⟨sψ1 , π1⟩ψ1Θπ1(f1).

Therefore, we obtain the desired identity. □

Lemma 6.3.1 (1) immediately implies (LIR) for u = s0 ∈ Aψ0 . In the rest of this
and next sections, we assume that u = u1.

By Lemma 6.2.1, we may assume that ψM = ϕ̂M where ϕM = ϕGL⊕ϕ0 is a tempered
L-parameter for M such that ϕGL = ρGL ⊠S2α+1 is irreducible and conjugate-self-dual.
Then ΠψM is given by Aubert duality from ΠϕM . In particular, for πM ∈ ΠψM , the
parabolically induced representation IP (πM) = IndGP (πM) is a direct sum of at most
two irreducible unitary representations. Indeed, by taking Aubert duality, this fact is
reduced to the tempered case, which follows from [Ar3, Theorem 1.5.1], [Mok, Theorem
2.5.1] and [Aϕ : Aϕ0 ] ≤ 2.

Lemma 6.3.2. Assume Hypothesis 6.1.1. Let ψM = ϕ̂M be as above, and πM ∈ ΠψM .
Assume that IP (πM) is reducible, hence IP (πM) = π1 ⊕ π2. Write

⟨ũ, π̃M⟩RP (wu, π̃M , ψM)|πi = εi · idπi
for εi ∈ C×. Then we have ε2 = −ε1.

Proof. Let P be the parabolic subgroup of G opposite to P . If we set σM = π̂M and
σi = π̂i, then IP (σM) = σ1⊕σ2 is a direct sum of irreducible tempered representations.
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Moreover, we have a normalized intertwining operator

⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM) : IP (σM) → IP (σM).

If we write ⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM)|σi = ε′i · idσi , then by (LIR) for the tempered case,
we know that ε′2 = −ε′1.

Recall that Aubert duality is a functor. We claim that the two intertwining operators

⟨ũ, π̃M⟩RP (wu, π̃M , ψM) and ⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM)

are dual to each other up to a nonzero constant c ∈ C×. This means that εi = cε′i for
i = 1, 2. Therefore, we have ε2 = cε′2 = −cε′1 = −ε1.

This claim is Corollary B.3.3 (1) in almost all cases. The exceptional case is where
G = O2n(F ) and IP (πM) = IndGP ◦(π◦

M) for some irreducible representation π◦
M of M◦.

Then we can write IP (πM) = I+P ◦(π◦
M)⊕ I−P ◦(π◦

M), where I+P ◦(π◦
M) (resp. I−P ◦(π◦

M)) is the
subspace of IndGP ◦(π◦

M) consisting of functions f on G whose supports are contained in
G◦ (resp. G \G◦). Corollary B.3.3 (2) says that

⟨ũ, π̃M⟩RP (wu, π̃M , ψM)|I±
P◦ (πM◦ ) and ⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM)|(I±

P◦ (πM◦ ))̂
are dual to each other up to a nonzero constant c± ∈ C×.

Now for f ∈ πi, write f = f+ + f− with f± ∈ I±P ◦(π◦
M). Then

⟨ũ, π̃M⟩RP (wu, π̃M , ψM)f

= c+(⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM))̂ f+ + c−(⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM))̂ f−

= c+(⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM))̂ f + (c− − c+)(⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM))̂ f−.

Since Aubert duality is a functor, we have

⟨ũ, π̃M⟩RP (wu, π̃M , ψM)f, c+(⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM))̂ f ∈ πi

so that

(c− − c+)(⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM))̂ f− ∈ πi ∩ IδP ◦(π◦
M),

where δ = − det(w̃u).
Suppose for the sake of contradiction that c+ ̸= c−. Then the above argument shows

that f± ∈ πi for any f = f+ + f− ∈ πi. It implies that πi ∩ I±P ◦(π◦
M) ̸= {0}. By looking

at the actions of ⟨ũ, π̃M⟩RP (wu, π̃M , ψM) and the dual of ⟨ũ, σ̃M⟩RP (wu, σ̃M , ϕM) on
this subspace, we have εi = c±ε

′
i. This shows that c+ε

′
i = c−ε

′
i and hence ε′i = 0. This

contradicts that ε′i ∈ {±1}. Hence we obtain that c+ = c−, which shows the claim. □

Lemma 6.3.2 is a key step to prove Theorem 1.10.5 (2). It “halves” the problem, i.e.,
by this lemma, it is enough to prove (LIR) for only one direct summand π ⊂ IP (πM)
for each πM ∈ ΠψM .
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6.4. Highly non-tempered summands. In the previous subsection, we showed that
it is enough to prove (LIR) for one irreducible summand of IP (πM). Here, we introduce
a notion that will isolate a suitable summand.

Let P =MNP be a standard maximal parabolic subgroup of G withM ∼= GLk(E)×
G0, and let ψM = ψGL⊕ψ0 be an A-parameter for M . In this and next subsections, we
only assume that ψGL is irreducible and conjugate-self-dual. Namely, ψM is not neces-
sarily co-tempered here. Note that then IP (πM) could have more than two irreducible
summands for πM ∈ ΠψM .

Recall from Section 3.1 that for a multi-segment m, we denote by I(m) the standard
module associated to m. For a segment s = [x, y]ρ with ρ unitary supercuspidal, we
call the value x+y

2
the midpoint of s. The Langlands classification for G0 says that for

π0 ∈ Irr(G0), one has a multi-segment m0 and an irreducible tempered representation
τ0 such that every segment s ∈ m0 has a positive midpoint, and I(m0) ⋊ τ0 is the
standard module of π0. Thus, π0 is the unique irreducible quotient of I(m0) ⋊ τ0.
When G0 = O2n0(F ), it follows from the Langlands classification for SO2n0(F ). Note
that if π0 ∈ Irr(O2n0(F )) is the Langlands quotient of I(m0)⋊τ0 with τ0 ∈ Irr(O2n′

0
(F )),

then τ0|SO2n′0
(F ) is reducible if and only if n′

0 > 0 and π0|SO2n0 (F ) is reducible.

Recall that ψGL is assumed to be irreducible. We write ψGL = ρGL ⊠ S2α+1 ⊠ S2β+1,
and set

mGL = [−α + β, α + β]ρGL
+ [−α + β − 1, α + β − 1]ρGL

+ · · ·+ [−α− β, α− β]ρGL
.

Then the Langlands quotient πGL of I(mGL) is the representation corresponding to ψGL.

Definition 6.4.1. Define κ ∈ {1, 1
2
} such that β − κ ∈ Z. For πM = πGL ⊠ π0 ∈ ΠψM ,

write I(m0) ⋊ τ0 for the standard module of π0. We say that an irreducible summand
π of IP (πM) is highly non-tempered if there is a tempered representation τ withτ = τ0 if κ =

1

2
,

τ ↪→ ∆([−α, α]ρGL
)⋊ τ0 if κ = 1

such that I(m)⋊ τ is the standard module of π, where

m = m0 +2[−α+ β, α+ β]ρGL
+2[−α+ β− 1, α+ β− 1]ρGL

+ · · ·+2[−α+ κ, α+ κ]ρGL
.

Lemma 6.4.2. For any πM = πGL ⊠ π0 ∈ ΠψM , there exists a highly non-tempered
summand π of IP (πM). Moreover, it is unique if κ = 1

2
, and there are at most two such

summands if κ = 1.

Proof. The lemma is a special case of [Tad2, Proposition 1.3]. But for completeness,
we give a proof.

We use the notations as above. Write I(m) = τ1| · |s1E × · · · × τr| · |srE with τi being
tempered and s1 > · · · > sr > 0. By Tadić’s formula (Theorem C.1.1), with a suitable
parabolic subgroup P ′ =M ′NP ′ and an irreducible tempered representation τ , we have

JacP ′(IP (πM)) ≥ cτ∨1 | · |
−s1
E ⊗ · · · ⊗ cτ∨r | · |−srE ⊗ τ
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in the Grothendieck group R(M ′). Here, for A,B ∈ R(M ′), we write A ≤ B if
B − A is a non-negative combination of irreducible representations. Conversely, if
JacP ′(IP (πM)) ≥ τ ′1|·|

−s1
E ⊗· · ·⊗τ ′r|·|−srE ⊗τ for some irreducible tempered representations

τ ′1, . . . , τ
′
r and τ , then we must have τ ′i

∼= cτ∨i for i = 1, . . . , r, and τ = τ0 if κ = 1
2
,

whereas τ ↪→ ∆([−α, α]ρGL
)⋊ τ0 if κ = 1. Moreover, such an irreducible representation

appears in JacP ′(IP (πM)) with multiplicity one.
Suppose that an irreducible subquotient π of IP (πM) satisfies that JacP ′(π) ≥ cτ∨1 | ·

|−s1E ⊗ · · · ⊗ cτ∨r | · |−srE ⊗ τ . Then by looking at the central character, (after replacing τ
if necessary) we see that the right-hand side is a quotient of JacP ′(π) in the category
Rep(M ′), which is equivalent by Frobenius reciprocity to saying that

π ↪→ cτ∨1 | · |
−s1
E × · · · × cτ∨r | · |−srE ⋊ τ.

By [AG2, Lemma 2.2], one can see that the standard module of π is I(m) ⋊ τ . In
particular, since IP (πM) is semisimple, we conclude that π is a highly non-tempered
summand.

On the other hand, JacP ′(IP (πM)) contains cτ∨1 | · |
−s1
E ⊗ · · · ⊗ cτ∨r | · |−srE ⊗ τ with

multiplicity at most one for each τ . The number of highly non-tempered summands
are at most the number of the choices of τ . By definition of τ , this number is 1 or 2
according to κ = 1

2
or κ = 1. □

For the rest of this subsection, we fix a highly non-tempered summand π ⊂ IP (πM).
Let I(mGL), I(m)⋊ τ and I(m0)⋊ τ0 be as above. Write

I(mGL) = ∆([−α, α]ρGL
)| · |βE ×∆([−α, α]ρGL

)| · |β−1
E × · · · ×∆([−α, α]ρGL

)| · |−βE ,

I(m0) = τr| · |erE × · · · × τ1| · |e1E ,
where τi is an irreducible tempered representation of GLki(E) and er > · · · > e1 > 0.

To define several objects, we realize G as an isometry group G(W ) (or its identity
component) of a vector space W over E equipped with a non-degenerate sesquilinear
form. We write

W = V+ ⊕W0 ⊕ V−,

where V± is a totally isotropic subspace with V+⊕V− non-degenerate, and where W0 is
the orthogonal complement of V+⊕V−. Suppose that the standard parabolic subgroup
P =MNP is the stabilizer of V+, and the Levi subgroup M of P is the stabilizer of V+
and V−. Hence M = GL(V+)×G(W0). We decompose

V± = V
(β)
± ⊕ V

(β−1)
± ⊕ · · · ⊕ V

(−β)
± ,

W0 =

(
r⊕
i=1

W
(ei)
0

)
⊕W

(0)
0 ⊕

(
r⊕
i=1

W
(−ei)
0

)
such that

• dim(V
(b)
± ) = d0 with d0 = dim(ρGL ⊠ S2α+1) for b ∈ {β, β − 1, . . . ,−β};

• V (b)
+ ⊕ V

(−b)
− is non-degenerate for b ∈ {β, β − 1, . . . ,−β};

• W (±ei)
0 is a totally isotropic subspace of dimension ki for 1 ≤ i ≤ r;
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• W (ei)
0 ⊕W

(−ei)
0 is non-degenerate for 1 ≤ i ≤ r.

For j = 0, 1, 2, we define a total order ≺j on the set

V =
{
V

(b)
+ , V

(b)
−

}
−β≤b≤β

∪
{
W

(ei)
0 ,W

(−ei)
0

}
1≤i≤r

∪ {W (0)
0 }

as follows.

(0) When j = 0,

• V (b)
+ ≺0 W

(e)
0 ≺0 V

(b)
− ;

• if b > b′, then V
(b′)
± ≺0 V

(b)
± ;

• if e > e′, then W
(e′)
0 ≺0 W

(e)
0 .

(1) When j = 1,

• V (b)
+ ≺1 W

(e)
0 ≺1 V

(b)
− ;

• if b > b′, then V
(b)
± ≺1 V

(b′)
± ;

• if e > e′, then W
(e)
0 ≺1 W

(e′)
0 .

(2) When j = 2,
• for X,Y ∈ {V±,W0}, if b > b′, then X(b) ≺2 Y

(b′);

• if b = e, then V
(b)
+ ≺2 W

(e)
0 ≺2 V

(b)
− .

For j = 0, 1, 2, if we write

{V ∈ V | V ≺j W
(0)
0 } = {V1, . . . , Vt}

with V1 ≺j · · · ≺j Vt ≺j W
(0)
0 , then we define a parabolic subgroup P ′

j =M1NP ′
j
as the

stabilizer of the flag

V1 ⊂ V1 ⊕ V2 ⊂ · · · ⊂ V1 ⊕ · · · ⊕ Vt,

where M1 is the common Levi subgroup of G stabilizing all V ∈ V . We may assume
that P1 = P ′

1 is a standard parabolic subgroup. Note that P ′
1 ⊂ P . Let w1, w2 ∈ WG be

such that w̃1P1w̃
−1
1 = P ′

0 and such that w̃−1
2 P ′

2w̃2 = P2 =M2NP2 is a standard parabolic
subgroup. We may regard w1 and w2 as

w1 ∈ W (M◦
1 ), w2 ∈ W (M◦

2 ,M
◦
1 ).

Note that M1 ⊂M , and the adjoint action of wu preserves M1. Since w1 is the longest
element in the subset of W (M1) consisting of elements whose representatives are in M ,
we see that wuw1w

−1
u = w1 in W (M1), and hence w−1

1 wuw1 = wu.
If we consider that

• GL(V
(b)
± ) acts on ∆([−α, α]ρGL

)| · |bE;
• GL(W

(ei)
0 ) acts on τi| · |eiE if ei > 0 (resp. cτ∨i | · |

ei
E if ei < 0);

• G(W (0)
0 ) acts on τ0,

then we obtain irreducible representations πM0 , πM1 of M1 and πM2 of M2 such that

IP0(πM0) =
cI(mGL)

∨ × cI(m0)
∨ ⋊ τ0,

IP1(πM1) = I(mGL)× I(m0)⋊ τ0,
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IP2(πM2) =

{I(m)×∆([−α, α]ρGL
)⋊ τ0 if 2β + 1 ≡ 1 mod 2,

I(m)⋊ τ0 if 2β + 1 ≡ 0 mod 2,

respectively, where P0 = P1 is the standard parabolic subgroup with Levi subgroup
w̃1M1w̃

−1
1 . Here, we note that ρGL is conjugate-self-dual. Then we have

w2πM2 = πM1 , w1πM1 = πM0 .

See Section 1.7 for these notations.
Recall that

πM1 =
(
∆([−α, α]ρGL

)| · |βE × · · · ×∆([−α, α]ρGL
)| · |−βE

)
× (τr| · |erE × · · · × τ1| · |e1E ⋊ τ0) .

For λ = (λβ, λβ−1 . . . , λ−β) ∈ C2β+1 and µ = (µ1, . . . , µr) ∈ Cr, we set

πM1,(λ,µ) =
(
∆([−α, α]ρGL

)| · |λβE × · · · ×∆([−α, α]ρGL
)| · |λ−βE

)
× (τr| · |µrE × · · · × τ1| · |µ1E ⋊ τ0) .

We define πM0,(λ,µ) and πM2,(λ,µ) similarly. Let ϕMj ,(λ,µ) be the L-parameter of πMj ,(λ,µ).
Recall that the intertwining operators

RP1(w1, πM1,(λ,µ), ϕM1,(λ,µ)) : IP1(πM1,(λ,µ)) → IP0(πM0,(λ,µ)),

RP2(w2, πM2,(λ,µ), ϕM2,(λ,µ)) : IP2(πM2,(λ,µ)) → IP1(πM1,(λ,µ))

are defined by the meromorphic continuation of

RPj(wj, πMj ,(λ,µ), ϕMj ,(λ,µ))fj,(λ,µ)(g) = γA(0, ϕMj ,(λ,µ), ρ
∨
w−1
j Pj−1|Pj

, ψF )

× λ(wj)
−1

∫
NPj−1

∩w̃jNPj w̃
−1
j \NPj−1

fj,(λ,µ)(w̃
−1
j ng)dn

for j = 1, 2. As in [BW, Chapter XI, Proposition 2.6 (1)], this integral converges
when we specialize it at λ = (β, β − 1, . . . ,−β) and µ = (e1, . . . , er). Hence R(w1) =
RP1(w1, πM1 , ϕM1) and R(w2) = RP2(w2, πM2 , ϕM2) are well-defined and nonzero. More-
over, the image of R(w1) is exactly equal to IP (πM).

Set w′
u = w−1

2 w−1
1 wuw1w2 = w−1

2 wuw2. Since wu and w′
u preserve the Levi subgroups

M0 and M2, respectively, we obtain normalized intertwining operators

RP0(wu, πM0,(λ,µ), ϕM0,(λ,µ)) : IP0(πM0,(λ,µ)) → IP0(wuπM0,(λ,µ)),

RP2(w
′
u, πM2,(λ,µ), ϕM2,(λ,µ)) : IP2(πM2,(λ,µ)) → IP2(w

′
uπM2,(λ,µ)).

We will show in Lemma 6.4.3 (2) and (3) below that RP2(w
′
u, πM2,(λ,µ), ϕM2,(λ,µ)) is

holomorphic at λ = (β, . . . ,−β) and µ = (e1, . . . , er). Moreover, since wuπM0
∼= πM0

and hence w′
uπM2

∼= πM2 , one can normalize isomorphisms

Awu ⊗ id : wuπM0

∼−→ πM0 , Aw′
u
⊗ id : w′

uπM2

∼−→ πM2
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by Whittaker functionals on standard modules of general linear groups. By composing
IP2(Aw′

u
⊗ id), we have a self-intertwining operator

RP2(w
′
u, π̃M2 , ϕM2) : IP2(πM2) → IP2(πM2).

On the other hand, RP0(wu, πM0 , ϕM0) might be a singularity of the meromorphic family
RP0(wu, πM0,(λ,µ), ϕM0,(λ,µ)) at λ = (β, . . . ,−β) and µ = (e1, . . . , er). Hence we just write

IP0(πM0)
RP0 (wu,π̃M0

,ϕM0
)
// IP0(πM0).

Lemma 6.4.3. Notations are as above.

(1) The image of the map R(w1)◦R(w2) : I(m)⋊ τ → IP (πM) is exactly equal to π.
(2) If 2β + 1 is even, then RP2(w

′
u, π̃M2 , ϕM2) is the identity map.

(3) If 2β + 1 is odd, then

RP2(w
′
u, π̃M2 , ϕM2) = ⟨e(ρGL, 2α + 1, 1), τ⟩ϕτ · id

on I(m)⋊ τ , where ϕτ is the L-parameter of τ .

Proof. For (1), we claim that π appears in IP1(πM1) as a subquotient with multiplic-
ity one. Since the Jordan–Hölder series of IP1(πM1) and IP2(πM2) are the same, it is
enough to consider IP2(πM2). If IP2(πM2) is a standard module, then the claim follows
from the famous fact that the Langlands quotient appears in its standard module with
multiplicity one (See e.g., [BW, Chapter XI, Lemma 2.13]). Otherwise, 2β + 1 is odd
and IP2(πM2) is a direct sum of two standard modules. Since the general linear parts
of these two standard modules are the same, by computing Jacquet modules, one sees
that π appears only in one of them. Hence π must appear in IP1(πM1) with multiplicity
one.

Now, since IP (πM) is a unitary induction, and hence semisimple, the image of R(w1)◦
R(w2) is isomorphic to a subrepresentation of the maximal semisimple quotient of
I(m)⋊ τ . Since this maximal semisimple quotient is equal to π, we see that the image
is equal to π, or R(w1) ◦ R(w2) = 0. Since R(w2) is nonzero, π appears in its image.
Hence if R(w1) ◦ R(w2) were to be zero, then π would appear in the kernel of R(w1).
On the other hand, since the image of R(w1) is equal to IP (πM), which contains π, it
would imply that π must appear in IP1(πM1) with multiplicity greater than one. This
contradicts the claim. Therefore we obtain (1).

Next, we prove (2) and (3). For b ∈ R, set

V (b) =
⊕

X∈{V+,V−,W0}

X(b).

Since πM2 and w′
uπM2 are essentially tempered and since IP2(πM2) and IP2(w

′
uπM2) are

standard modules, we see that w′
u preserves V

(b) for each b ∈ R. We write {b > 0 |V (b) ̸=
0} = {b1, . . . , bt} with b1 < · · · < bt. For i = 1, . . . , t, we set wi to be w

′
u on V

(bi)⊕V (−bi),
and trivial on V (b) for b ̸= ±bi. Similarly, we define wu0 by w

′
u on V

(0), and trivial on V (b)

for b ̸= 0. Then w′
u = wt · · ·w1·wu0 . According to this decomposition, we can decompose

R(w′
u) = RP2(w

′
u, π̃M2 , ϕM2) into a product R(w′

u) = R(wt) ◦ · · · ◦ R(w1) ◦ R(wu0) by
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the multiplicativity of the normalized intertwining operators. For i = 1, . . . , t, since the
operator R(wi) is induced from a normalized intertwining operator for GL(V (bi)), we
can apply Theorem 3.5.1 and obtain that R(wi) = id. In particular, if we are in the

case (2), we have V (0) = W
(0)
0 so that wu0 = 1, and hence R(w′

u) = R(wu0) = id. On
the other hand, if 2β + 1 is odd, by (LIR) for the tempered representation τ , we see
that

R(wu0) = ⟨e(ρGL, 2α + 1, 1), τ⟩ϕτ · id

on I(m)⋊ τ . This proves (3). □

6.5. The main diagram. Using the notations in the previous subsection, with a con-
stant c ∈ C×, we now consider the following main diagram. When κ = 1, it is:

I(m)⋊ τ
_�

��

RP2 (w
′
u,π̃M2

,ϕM2
)

// I(m)⋊ τ
_�

��
I(m)×∆([−α, α]ρGL

)⋊ τ0

R(w2)

��

RP2 (w
′
u,π̃M2

,ϕM2
)

// I(m)×∆([−α, α]ρGL
)⋊ τ0

R(w2)

��
I(mGL)× I(m0)⋊ τ0

R(w1)

��

I(mGL)× I(m0)⋊ τ0

R(w1)

��
IP (πM)

_�

��

c−1⟨ũ,π̃M ⟩RP (wu,π̃M ,ψM )
// IP (πM)

_�

��
cI(mGL)

∨ × cI(m0)
∨ ⋊ τ0

RP0 (wu,π̃M0
,ϕM0

)
// cI(mGL)

∨ × cI(m0)
∨ ⋊ τ0.

When κ = 1
2
, we replace ∆([−α, α]ρGL

)× τ0 with τ0 in the second line, or equivalently,
we remove the second line. The following is the main result in this section.

Theorem 6.5.1. The main diagram is commutative with

c =
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

∣∣∣∣
s=0

,

where we write πM = πGL ⊠ π0, and ϕπ0 is the L-parameter of π0.

Proof. As in the proof of Theorem 3.4.2, we will prove the assertion in five steps.
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Step 1: With complex parameters λ ∈ C2β+1 and µ ∈ Cr, we can consider the
following diagram of meromorphic families of operators:

IP2(πM2,(λ,µ))

RP2 (w2,πM2,(λ,µ)
)

��

RP2 (w
′
u,πM2,(λ,µ)

)
// IP2(w

′
uπM2,(λ,µ))

RP2 (w2,w′
uπM2,(λ,µ)

)

��
IP1(πM1,(λ,µ))

RP1 (w1,πM1,(λ,µ)
)

��

IP1(wuπM1,(λ,µ))

RP1 (w1,wuπM1,(λ,µ)
)

��
IP0(πM0,(λ,µ))

RP0 (wu,πM0,(λ,µ)
)

// IP0(wuπM0,(λ,µ)).

Here, we omit the L-parameters in the notations of the normalized intertwining
operators. If λ ∈ (

√
−1R)2β+1 and µ ∈ (

√
−1R)r, then by Proposition 1.7.2, all

maps in this diagram are regular and the diagram is commutative. By analytic
continuation, we see that this diagram is commutative whenever all maps are
regular.

Step 2: Let s ∈ C be a new complex parameter. We will specialize the diagram
in Step 1 at λ = (s+β, s+β−1, . . . , s−β) and µ = (e1, . . . , er). We write πMi,s

for the corresponding πMi,(λ,µ). We claim that all operators in the diagram are
well-defined as meromorphic families of operators in s.

In fact, the bottom operator RP0(wu, πM0,s) is not always a pole of the family
of the operators RP0(wu, πM0,(λ,µ)) (but might be a pole at s = 0). On the other
hand, as we have seen in Lemma 6.4.3, the other five operators are still regular
at s = 0.

Hence we can specialize the diagram in Step 1 at λ = (s+β, s+β−1, . . . , s−β)
and µ = (e1, . . . , er), and obtain the following commutative diagram:

IP2(πM2,s)

RP2 (w2,πM2,s
)

� �

RP2 (w
′
u,πM2,s

)
// IP2(w

′
uπM2,s)

RP2 (w2,w′
uπM2,s

)

��
IP1(πM1,s)

RP1 (w1,πM1,s
)

��

IP1(wuπM1,s)

RP1 (w1,wuπM1,s
)

��
IP0(πM0,s)

RP0 (wu,πM0,s
)

// IP0(wuπM0,s).

Step 3: Note that the image of RP1(w1, πM1,s) : IP1(πM1,s) → IP0(πM0,s) is equal
to IP (πM,s) = IP (πGL| · |sE ⊠ π0). If we set

c(s) =
γA(0, ψM,s, ρ

∨
w−1
u P |P , ψF )

γA(0, ϕM0,s, ρ
∨
w−1
u P0|P0

, ψF )
,
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then using a canonical homeomorphism

NP ∩ w̃uNP w̃
−1
u \NP

∼= NP0 ∩ w̃uNP0w̃
−1
u \NP0 ,

we obtain a commutative diagram of meromorphic families of operators

IP (πM,s)
_�

��

c(s)−1RP (wu,πM,s,ψM,s) // IP (wuπM,s)
_�

��
IP0(πM0,s)

RP0 (wu,πM0,s
)

// IP0(wuπM0,s)

where the vertical maps are the canonical inclusions. Here, we explain this
canonical inclusions more precisely. The representation πM,s is realized as the
unique irreducible subrepresentation of IndMP0∩M(πM0,s), and the functor IP in-

duces a canonical inclusion IP (wuπM,s) ↪→ IP (wuInd
M
P0∩M(πM0,s)). The letter

induced representation can be realized as a subspace of two-variable functions
f : G×M → V , where V is a space of πM0,s, satisfying

f(m′g,m) = δ
1
2
P (m

′)f(g,mw̃−1
u m′w̃u)

for m,m′ ∈ M and g ∈ G. Now the right inclusion in the diagram is induced
from the isomorphism

IP (wuInd
M
P0∩M(πM0,s))

∼−→ IP0(wuπM0,s), f(g,m) 7→ f(g,1).

The left inclusion is similar.
Combining the above diagram with the one in Step 2, we obtain the following

commutative diagram:

IP2(πM2,s)

RP2 (w2,πM2,s
)

��

RP2 (w
′
u,πM2,s

)
// IP2(w

′
uπM2,s)

RP2 (w2,w′
uπM2,s

)

��
IP1(πM1,s)

RP1 (w1,πM1,s
)

��

IP1(wuπM1,s)

RP1 (w1,wuπM1,s
)

��
IP (πM,s)

c(s)−1RP (wu,πM,s,ψM,s) // IP (wuπM,s).

We note that

c(s) =
γA(s, ψGL ⊗ ψ∨

0 , ψE)

γA(s, ψGL ⊗ ϕ∨
π0
, ψE)

so that c(0) = c by Proposition A.1.2. We will see that c(s) is regular and
nonzero at s = 0 in the next step.

Step 4: We would like to specialize the commutative diagram above at s = 0. As
we have noted in Step 2, the five operators appearing in the top, left and right
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of the last diagram are regular at s = 0. In particular, the composition

RP1(w1, wuπM1,s) ◦RP2(w2, w
′
uπM2,s) ◦RP2(w

′
u, πM2,s),

and hence

c(s)−1RP (wu, πM,s, ψM,s) ◦RP1(w1, πM1,s) ◦RP2(w2, πM2,s)

are regular and nonzero at s = 0. We can specialize the last diagram at s = 0,
and obtain the commutative diagram

IP2(πM2)

RP2 (w2,πM2
)

��

RP2 (w
′
u,πM2

)
// IP2(w

′
uπM2)

RP2 (w2,w′
uπM2

)

��
IP1(πM1)

RP1 (w1,πM1
)

��

IP1(wuπM1)

RP1 (w1,wuπM1
)

��
IP (πM)

c−1RP (wu,πM ,ψM )
// IP (wuπM).

Note that RP (wu, πM , ψM) is well-defined and nonzero by [Ar3, Proposition
2.3.1] and [Mok, Proposition 3.3.1]. Since c−1RP (wu, πM , ψM) is nonzero, we
conclude that c(s) is regular and nonzero at s = 0.

Step 5: If we realize w′
uπM2 , πM2 , wuπM1 and πM1 on the same vector space, say

V , then Aw′
u
⊗ id is a linear isomorphism Φ: V → V satisfying

Φ ◦ πM2(w̃
′−1
u m2w̃

′
u) = πM2(m2) ◦ Φ, m2 ∈M2.

Since w′
u = w−1

2 wuw2, by Lemma 1.7.1, the above property of Φ can be rewritten
as

Φ ◦ πM1(w̃
−1
u m1w̃u) = πM1(m1) ◦ Φ, m1 ∈M1.

Therefore, Φ is also equal to the normalized isomorphism Awu ⊗ id : wuπM1

∼−→
πM1 , and hence the diagram

IP2(w
′
uπM2)

RP2 (w2,w′
uπM2

)

��

IP2 (Aw′
u
⊗id)

// IP2(πM2)

RP2 (w2,πM2
)

��
IP1(wuπM1)

IP1 (Awu⊗id)
// IP1(πM1)

is commutative. On the other hand, since IndMP1∩M(πM1) is the standard module
of πM , by the definition of Awu together with the functoriality of IP , we have
the following commutative diagram

IP (wuInd
M
P1∩M(πM1))

IP (RP1∩M (w1,πM1
))

��

// IP (Ind
M
P1∩M(πM1))

IP (RP1∩M (w1,πM1
))

��
IP (wuπM)

IP (Awu⊗id)
// IP (πM).
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Here the top map is induced from the isomorphism

A⊗ id : wuInd
M
P1∩M(πM1)

∼−→ IndMP1∩M(πM1),

where A is the isomorphism of standard modules of GLk(E) normalized by using
a Whittaker functional. Via the analogous identification IP (Ind

M
P1∩M(πM1))

∼=
IP1(πM1) (resp. IP (wuInd

M
P1∩M(πM1))

∼= IP1(wuπM1)) in Step 3, the above com-
mutative diagram is rewritten as

IP1(wuπM1)

RP1 (w1,wuπM1
)

��

IP1 (Awu⊗id)
// IP1(πM1)

RP1 (w1,πM1
)

��
IP (wuπM)

IP (Awu⊗id)
// IP (πM).

Combining this with the first diagram in Step 5, and using Lemma 6.3.1, we
obtain the commutative diagram

IP2(w
′
uπM2)

RP2 (w2,w′
uπM2

)

��

IP2 (Aw′
u
⊗id)

// IP2(πM2)

RP2 (w2,πM2
)

��
IP1(wuπM1)

RP1 (w1,wuπM1
)

��

IP1(πM1)

RP1 (w1,πM1
)

��
IP (wuπM)

IP (⟨ũ,π̃M ⟩π̃M (wu)) // IP (πM).

This together with the diagram obtained in Step 4 implies that the main diagram
is commutative.

This completes the proof of Theorem 6.5.1. □
By the commutativity of the main diagram together with Lemma 6.4.3, we have

⟨ũ, π̃M⟩RP (wu, π̃M , ψM)|π =

{
c · idπ if 2β + 1 ≡ 0 mod 2,

c⟨e(ρGL, 2α + 1, 1), τ⟩ϕτ · idπ if 2β + 1 ≡ 1 mod 2.

Therefore, we obtain the following summary.

Corollary 6.5.2. Assume Hypothesis 6.1.1. Let ψM = ψGL ⊕ ψ0 be an A-parameter
for M such that ψGL = ρGL ⊠ S2α+1 ⊠ S2β+1 is irreducible and conjugate-self-dual.
We assume further the existence of the A-packet Πψ together with the pairing ⟨·, π⟩ψ
satisfying (ECR1) and (ECR2). For πM ∈ ΠψM , let π ⊂ IP (πM) be a highly non-
tempered summand, with the standard module I(m) ⋊ τ . Then (LIR) holds for π ⊂
IP (πM) if and only if the equation

(⋆)
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

∣∣∣∣
s=0

=


⟨su, π⟩ψ if 2β + 1 ≡ 0 mod 2,

⟨su, π⟩ψ
⟨e(ρGL, 2α + 1, 1), τ⟩ϕτ

if 2β + 1 ≡ 1 mod 2
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holds, where ϕπ0 (resp. ϕτ) is the L-parameter of π0 (resp. τ).

Remark 6.5.3. We will apply this corollary to co-tempered A-parameters ψ for G,
and certain A-parameters ψ′ for G′ with dim(St

Ĝ′) < dim(StĜ). Hence we have A-
packets Πψ and Πψ′ together with their pairings by Hypothesis 6.1.1 and Theorem
5.4.1. However, Hypothesis 6.1.1 includes not (LIR) but (A-LIR) for ψ′. To deduce
(LIR) for a certain ψ′ which is not co-tempered, we need Lemma 7.6.1 below. We
also notice that we cannot use Mœglin’s result claiming that Πψ′ is multiplicity-free
because Mœglin’s explicit construction of A-packets uses endoscopic character relations
for higher rank cases.

7. Computations of local factors

This section continues the work of Section 6. Our goal is to show (LIR) for each
irreducible summand π ⊂ IP (πM) and each πM ∈ ΠψM , where P =MNP is a standard
parabolic subgroup of a classical group G, and ψM is an arbitrary co-tempered A-
parameter for M (Theorem 1.10.5 (2)). Lemma 6.2.1 reduces the problem to the case
where P is maximal so that M ∼= GLk(E)×G0. By the key lemma (Lemma 6.3.2), we
may then assume that π ⊂ IP (πM) is a highly non-tempered summand, which exists
by Lemma 6.4.2. For such a representation, (LIR) is equivalent to the scalar equation
(⋆) in Corollary 6.5.2. In this section, we check by hand the validity of the equation
(⋆) for our case.

7.1. Preliminaries. Let P = MN be a standard maximal parabolic subgroup of G,

and let ψM = ϕ̂M = ψGL ⊕ ψ0 be a co-tempered A-parameter for M . Write ϕM =

ϕGL ⊕ ϕ0 so that ϕ̂GL = ψGL and ϕ̂0 = ψ0. By Lemma 6.2.1, we may assume that ϕGL

is irreducible and conjugate-self-dual. Let ϕ (resp. ψ) be the L-parameter (resp. A-
parameter) for G given by ϕM (resp. ψM).

First, we reduce the problem to the case of good parity.

Lemma 7.1.1. Write

ϕ0 = ϕ0,bad ⊕ ϕ0,good ⊕ cϕ∨
0,bad,

where ϕ0,good is the sum of irreducible conjugate-self-dual representations of the same
type as ϕ0, and ϕ0,bad is a sum of irreducible representations of other types. Set ψ0 =

ϕ̂0 and ψ0,good = ϕ̂0,good. For π0 ∈ Πψ0, let π0,good ∈ Πψ0,good
be the representation

determined by ⟨·, π0⟩ψ0 = ⟨·, π0,good⟩ψ0,good
via the canonical identification Aψ0 = Aψ0,good

.
Then we have

ϕψ0 − ϕψ0,good
= ϕπ0 − ϕπ0,good .

On the other hand, if we take ψgood and πgood similarly, then ⟨su, π⟩ψ = ⟨su, πgood⟩ψgood
.

In particular, the equation (⋆) holds for πGL⊠π0 if and only if (⋆) holds for πGL⊠π0,good.

Proof. By applying Aubert duality to the tempered case, we see that

π0 = τ0,bad ⋊ π0,good,
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where τ0,bad is the representation of a general linear group corresponding to ψ0,bad =

ϕ̂0,bad. Since it is an irreducible parabolic induction, by [Tad2, Proposition 1.3], one can
describe the Langlands data of π0 using the ones of π0,good similar to Definition 6.4.1.
It shows that (ϕπ0 − ϕπ0,good)(w, α) is equal to

(ϕψ0 − ϕψ0,good
)(w, α) = (ϕ0,bad ⊕ ϕ∨

0,bad)

(
w,

(
|w|

1
2
E 0

0 |w|−
1
2

E

))
for (w, α) ∈ WE × SL2(C).

On the other hand, note that ⟨·, π⟩ψ = ⟨·, πgood⟩ψgood
via the canonical identification

Aψ = Aψgood
. Since su ∈ Aψ is the same as su ∈ Aψgood

via this identification, we
conclude that ⟨su, π⟩ψ = ⟨su, πgood⟩ψgood

. This implies the last assertion. □
Hereafter, we always assume that ϕ0 is of good parity, i.e., ϕ0 = ϕ0,good.
To show the equation (⋆), we need to know the pairing ⟨su, π⟩ψ for π ∈ Πψ. Since

ψ = ϕ̂ is co-tempered, this pairing is defined such that the statement of Corollary 4.4.5
holds. For convenience, we write this corollary once more.

Lemma 7.1.2. Let ϕ = ⊕t
j=1ρj ⊠ Sdj be a tempered L-parameter for G of good parity,

where ρj is an irreducible representation of WF . Set ψ = ϕ̂. Then for π ∈ Πψ and
σ = π̂ ∈ Πϕ, we have

⟨e(ρ, 1, d), π⟩ψ
⟨e(ρ, d, 1), σ⟩ϕ

=

{
1 if d ≡ 0 mod 2,

−(−1)|{j | ρj
∼=ρ}| if d ≡ 1 mod 2.

In particular, if d ≡ d′ mod 2, then we have

⟨e(ρ, 1, d), π⟩ψ
⟨e(ρ, 1, d′), π⟩ψ

=
⟨e(ρ, d, 1), σ⟩ϕ
⟨e(ρ, d′, 1), σ⟩ϕ

.

Proof. This follows from Corollary 4.4.5. □
We write ϕGL = ρGL ⊠ S2α+1. Then su = e(ρGL, 1, 2α+ 1) ∈ Aψ if ϕGL is of the same

type as ϕ0. We compute ⟨su, π⟩ψ for a highly non-tempered summand π ⊂ IP (πM).

Lemma 7.1.3. Suppose that ϕGL = ρGL⊠S2α+1 is of the same type as ϕ0. Set ψM = ϕ̂M
with ϕM = ϕGL ⊕ ϕ0. For πM = πGL ⊠ π0 ∈ ΠψM , let π ⊂ IP (πM) be a highly non-
tempered summand, and let I(m)⋊ τ be its standard module.

(1) If ϕ0 contains ρGL ⊠ Sd with d ≥ 2α + 1, then

⟨su, π⟩ψ = ⟨e(ρGL, 1, d+), π0⟩ψ0 ,

where d+ = min{d ≥ 2α + 1 | ρGL ⊠ Sd ⊂ ϕ0}.
(2) Otherwise, if ϕ0 contains ρGL ⊠ Sd with d < 2α + 1, then

⟨su, π⟩ψ = ⟨e(ρGL, 1, d−), π0⟩ψ0 ,

where d− = max{d < 2α + 1 | ρGL ⊠ Sd ⊂ ϕ0}. Here, when 2α + 1 ≡ 0 mod 2,
we formally understand that ρGL ⊠ S0 ⊂ ϕ0 and ⟨e(ρGL, 1, 0), π0⟩ψ0 = 1.
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(3) Otherwise, i.e., if 2α + 1 ≡ 1 mod 2 and if ϕ0 does not contain ρGL ⊠ Sd for
any d ≥ 1, then there are precisely two choices of π, and ⟨su, π⟩ψ can take any
values in {±1} depending on this choice.

Proof. Write π̂M = σM = σGL ⊠ σ0 ∈ ΠϕM and π̂ = σ. Recall that if I(m0)⋊ τ0 is the
standard module of π0, then the standard module of π is I(m)⋊ τ , where

m = m0 + 2[α, α]ρGL
+ 2[α− 1, α− 1]ρGL

+ · · ·+ 2[κ, κ]ρGL

with κ ∈ {1, 1
2
} such that α− κ ∈ Z. By [AG2, Lemma 2.2], we have

π ↪→ cL(m)∨ ⋊ τ, π0 ↪→ cL(m0)
∨ ⋊ τ0,

where L(m) (resp. L(m0)) is the Langlands quotient of I(m) (resp. I(m0)). Set d =
dim(ρGL). For k > 0, we denote by Pdk (resp. Pdk,0) the standard maximal parabolic
subgroup of G (resp. G0) with Levi subgroup of the form GLdk(E)×G′ (resp. GLdk(E)×
G′

0).
Suppose that we are in the case (1). If d+ = 2α + 1, then σ = IP (σM) is irreducible

and ⟨e(ρGL, 2α + 1, 1), σ⟩ϕ = ⟨e(ρGL, d+, 1), σ0⟩ϕ0 . If d+ > 2α + 1, then by Theorem

C.4.3, with x = d+−1
2

, we have

JacPdkl,0(σ0) ≥ (ρGL| · |xE)k × · · · × (ρGL| · |α+1
E )k ⊗ (nonzero) ≥ 0

in the appropriate Grothendieck group with k being the multiplicity of ρGL ⊠ Sd+ in
ϕ0, and l = x − α. By a property of Aubert duality (Lemma C.2.3), it implies that
JacPdkl,0(π0) and hence JacPdkl,0(

cL(m0)
∨ ⋊ τ0) contain

(ρGL| · |−xE )k × · · · × (ρGL| · |−(α+1)
E )k ⊗ (nonzero).

By Tadić’s formula and Casselman’s criterion (Theorems C.1.1 and C.1.3), we see that

JacRdkl,0(
cL(m0)

∨) ≥ (ρGL| · |−xE )k × · · · × (ρGL| · |−(α+1)
E )k ⊗ (nonzero) ≥ 0,

where Rdkl,0 is a suitable standard maximal parabolic subgroup of a general linear group.
Then by the definition of m together with [Jan, Theorem 2.2.1, Proposition 2.1.4], we
have

JacRdkl(
cL(m)∨) ≥ (ρGL| · |−xE )k × · · · × (ρGL| · |−(α+1)

E )k ⊗ (nonzero) ≥ 0

with analogous notations. By reversing the analogous argument as above, we have

JacPdkl(π) ≥ (ρGL| · |−xE )k × · · · × (ρGL| · |−(α+1)
E )k ⊗ (nonzero) ≥ 0

and hence

JacPdkl(σ) ≥ (ρGL| · |xE)k × · · · × (ρGL| · |α+1
E )k ⊗ (nonzero) ≥ 0

in the appropriate Grothendieck group. By Theorem C.4.3, this happens exactly when

⟨e(ρGL, 2α + 1, 1), σ⟩ϕ = ⟨e(ρGL, d+, 1), σ0⟩ϕ0 .
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If we are in the case (2) or (3), then by [Jan, Theorem 2.2.1, Proposition 2.1.4], with

y = d−−1
2

, we have

JacR2dl
(cL(m)∨) ≥ (ρGL| · |−αE )2 × · · · × (ρGL| · |−(y+1)

E )2 ⊗ (nonzero) ≥ 0

in the appropriate Grothendieck group with l = α − y. Here, in the case (3), we set
d− = 1 so that y = 0. Then we have

JacP2dl
(π) ≥ (ρGL| · |−αE )2 × · · · × (ρGL| · |−(y+1)

E )2 ⊗ (nonzero) ≥ 0

and hence

JacP2dl
(σ) ≥ (ρGL| · |αE)2 × · · · × (ρGL| · |y+1

E )2 ⊗ (nonzero) ≥ 0

by Lemma C.2.3. By Theorem C.4.3, this occurs exactly when we are in the case (3),
or

⟨e(ρGL, 2α + 1, 1), σ⟩ϕ = ⟨e(ρGL, d−, 1), σ0⟩ϕ0 .
Hence we obtain (1)–(3) by Lemma 7.1.2. □

7.2. Strategy of the proof. We will prove (⋆) in Corollary 6.5.2 for πM = πGL⊠π0 ∈
ΠψM with ψM = ϕ̂M a co-tempered A-parameter. Notice that the left-hand side of
(⋆) involves the L-parameter ϕπ0 of π0. In general, it is very difficult to list ϕπ0 for
π0 ∈ Πψ0 . Instead of computing ϕπ0 explicitly, we will give an inductive argument as
follows.

The initial case is where π0 is almost supercuspidal, which is defined as follows.

Definition 7.2.1. We say that an irreducible representation π0 of G0 is almost super-
cuspidal if the following condition holds for every maximal parabolic subgroup P0 of G0.
If JacP0(π0) contains an irreducible subquotient of the form ρ⊠σ with ρ a supercuspidal
representation of GLk(E), then ρ is unitary.

Note that π0 is almost supercuspidal if and only if so is π̂0 by Lemma C.2.3. The
assumption that π0 is almost supercuspidal implies the following strong properties.

Lemma 7.2.2. Let ψ0 = ϕ̂0 be a co-tempered A-parameter of good parity for a classical
group G0. Suppose that π0 ∈ Πψ0 is almost supercuspidal.

(1) The following conditions hold:
• If we denote the multiplicity of ρ⊠Sd in ϕ0 by mϕ0(ρ, d), then mϕ0(ρ, d) ≤ 1
for any d ≥ 2;

• if ρ⊠ Sd ⊂ ϕ0 with d > 2, then ρ⊠ Sd−2 ⊂ ϕ0 and

⟨e(ρ, 1, d), π0⟩ψ0 = −⟨e(ρ, 1, d− 2), π0⟩ψ0 ;

• if ρ⊠ S2 ⊂ ϕ0, then

⟨e(ρ, 1, 2), π0⟩ψ0 = −1.
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(2) Let {ρ′1⊠S1, . . . , ρ
′
r⊠S1} be the set of irreducible representations of WE×SL2(C)

appearing in ϕ0 with even multiplicity, and set

2yi + 1 = max{d ≥ 1 | ρ′i ⊠ Sd ⊂ ϕ0}.

Then the L-parameter ϕπ0 of π0 is given by

ϕπ0 = ϕ0 −
r⊕
i=1

ρ′i ⊠ (S1 ⊕ S2yi+1)⊕
r⊕
i=1

ρ′i(| · |
yi
2
E ⊕ | · |−

yi
2

E )⊠ Syi+1.

(3) Suppose that ϕGL = ρGL ⊠ S2α+1 is of the same type as ϕ0, and that 2α + 1 ≡
1 mod 2. Set πM = πGL ⊠ π0 and let π ⊂ IP (πM) be a highly non-tempered
summand. We denote by I(m)⋊ τ the standard module of π. Then

⟨e(ρGL, 1, 1), τ⟩ϕτ = ⟨e(ρGL, 1, d0), π⟩ψ,

where ψ = ϕ̂ is the A-parameter for G given by the dual of ϕ = ϕGL⊕ϕ0⊕ cϕ∨
GL,

and d0 = max{d ≥ 1 | ρGL ⊠ Sd ⊂ ϕ}.

Proof. (1) Recall that π̂0 is tempered since it is in Πϕ0 . Since π0 is almost su-
percuspidal, so is π̂0. Hence by Corollary C.4.5, we obtain several properties
of mϕ0(ρ, d) and ⟨·, π̂0⟩ϕ0 . Then Lemma 7.1.2 implies the desired properties of
⟨·, π0⟩ψ0 .

(2) As in [AM, Proposition 5.4], Aubert duality together with Theorem C.4.3 and
Remark C.4.6 shows that if we write y1 ≥ · · · ≥ yt > 0 = yt+1 = · · · = yr, then
the standard module of π0 is

I([0, y1]ρ′1 + · · ·+ [0, yt]ρ′t)⋊ τ0

where τ0 ∈ Πϕτ0
with

ϕτ0 = ϕ0 −
t⊕
i=1

ρ′i ⊠ (S1 ⊕ S2yi+1)

and

⟨e(ρ, d, 1), τ0⟩ϕτ0 =

{
−⟨e(ρ, d, 1), π̂0⟩ϕ0 if ρ ∈ {ρ′1, . . . , ρ′r},
⟨e(ρ, d, 1), π̂0⟩ϕ0 otherwise.

Here, we notice that [AM, Proposition 5.4] does not use Mœglin’s construction
of A-packets. From this, we obtain the description for ϕπ0 in (2).

(3) If π ⊂ IP (πM) is a highly non-tempered summand, then by Theorems C.4.3,
C.4.4 and Lemma 7.1.3, we see that

π̂ ↪→ (ρGL| · |αE)2 × · · · × (ρGL| · |1E)2 ⋊ π̂′,

where π̂′ ∈ Πϕ′ with ϕ
′ = ϕ0 ⊕ (ρGL ⊠ S1)

⊕2, and ⟨·, π̂′⟩ϕ′ is determined by

⟨·, π̂′⟩ϕ′ |Aϕ0 = ⟨·, π̂0⟩ϕ0 ,
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⟨e(ρGL, 1, 1), π̂
′⟩ϕ′ =

{⟨e(ρGL, 1, 1), π̂⟩ϕ if ρGL ⊠ S1 ⊂ ϕ0,

⟨e(ρGL, d0, 1), π̂⟩ϕ otherwise.

Hence π′ is almost supercuspidal, and if we denote by I(m′) ⋊ τ ′ its standard
module, then m = m′ + 2([α, α]ρGL

+ · · · + [1, 1]ρGL
) and τ ′ = τ . In particular,

by the proof of (2), we have

⟨e(ρGL, 1, 1), τ⟩ϕτ =

{
−⟨e(ρGL, 1, 1), π̂

′⟩ϕ′ if mϕ′(ρGL) ≡ 0 mod 2,

⟨e(ρGL, 1, 1), π̂
′⟩ϕ′ if mϕ′(ρGL) ≡ 1 mod 2,

where mϕ′(ρGL) is the multiplicity of ρGL ⊠ S1 in ϕ′.
If ρGL ⊠ S1 ̸⊂ ϕ0, then ρGL ⊠ Sd ̸⊂ ϕ0 for any d ≥ 1, and by Lemma 7.1.2, we

have

⟨e(ρGL, 1, 1), τ⟩ϕτ = −⟨e(ρGL, 1, 1), π̂
′⟩ϕ′ = −⟨e(ρGL, d0, 1), π̂⟩ϕ = ⟨e(ρGL, 1, d0), π⟩ψ.

From now we suppose that ρGL ⊠ S1 ⊂ ϕ0. Assume first that ρGL ⊠ Sd0 ⊂ ϕ0

so that 2α + 1 ≤ d0. In this case, by assertion (1), we have ρGL ⊠ (S1 ⊕ S3 ⊕
· · · ⊕ Sd0) ⊂ ϕ0, and mϕ0(ρGL ⊠ Sd) = 1 for 3 ≤ d ≤ d0 with d odd. If we write
m = mϕ0(ρGL), then mϕ′(ρGL) = m+ 2, and by Lemma 7.1.2, we have

⟨e(ρGL, 1, 1), τ⟩ϕτ = (−1)m−1⟨e(ρGL, 1, 1), π̂
′⟩ϕ′

= (−1)m−1⟨e(ρGL, 1, 1), π̂⟩ϕ

= (−1)m−1 · (−1)
d0−1

2
+m+1⟨e(ρGL, 1, 1), π⟩ψ

= ⟨e(ρGL, 1, d0), π⟩ψ.

Next, assume that ρGL ⊠ Sd0 ̸⊂ ϕ0 so that d0 = 2α+ 1. If we set d′0 = max{d ≥
1 | ρGL ⊠ Sd ⊂ ϕ0}, by the same argument as above, we have

⟨e(ρGL, 1, 1), τ⟩ϕτ = (−1)m−1⟨e(ρGL, 1, 1), π̂
′⟩ϕ′

= (−1)m−1⟨e(ρGL, 1, 1), π̂⟩ϕ
= (−1)m−1⟨e(ρGL, 1, 1), π̂0⟩ϕ0

= (−1)m−1 · (−1)
d′0−1

2
+m−1⟨e(ρGL, 1, 1), π0⟩ψ0

= ⟨e(ρGL, 1, d
′
0), π0⟩ψ0 .

By Lemma 7.1.3, we have

⟨e(ρGL, 1, d
′
0), π0⟩ψ0 = ⟨su, π⟩ψ = ⟨e(ρGL, 1, d0), π⟩ψ.

This completes the proof of Lemma 7.2.2. □
By this lemma, we can compute all terms of (⋆) when π0 is almost supercuspidal.

The details are given in Section 7.3.
For the general case, suppose that π0 is not almost supercuspidal. Then using

Corollary C.5.2, we will find a classical group G′
0 with dim(St

Ĝ′
0
) < dim(StĜ0

), an
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A-parameter ψ′
0 for G′

0, and π
′
0 ∈ Πψ′

0
such that the difference

ϕπ0 − ϕπ′
0

is explicitly known (although we might not know ϕπ0 nor ϕπ′
0
themselves). By the

induction hypothesis, we can assume (LIR), equivalently equation (⋆), for π′
M ′ = πGL⊠

π′
0. Therefore, what we have to check is the equation

(⋆⋆)

(
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

)(
γA(s,

cψGL ⊗ ψ′
0, ψE)

γA(s, cψGL ⊗ ϕπ′
0
, ψE)

)−1
∣∣∣∣∣
s=0

=
⟨su, π⟩ψ
⟨su, π′⟩ψ′

,

where π ⊂ IP (πM) and π′ ⊂ IP ′(π′
M ′) are highly non-tempered summands.

To give π′
0, we consider Jacquet modules of the tempered representation π̂0.

Lemma 7.2.3. Let ψ0 = ϕ̂0 be a co-tempered A-parameter of good parity for a classical
group G0. Suppose that π0 ∈ Πψ0 is not almost supercuspidal. Then one can find an
irreducible conjugate-self-dual representation ρ1 of WE and positive half-integers x ≤ y
with x ≡ y mod Z such that

(1) ρ1 ⊠ (S2x+1 ⊕ S2x+3 ⊕ · · · ⊕ S2y+1) ⊂ ϕ0;
(2) if we denote the multiplicity of ρ⊠ Sd in ϕ0 by mϕ0(ρ, d), then

mϕ0(ρ1, 2i+ 1) =

{
1 if x < i ≤ y,

0 if i > y

for i ∈ (1/2)Z with i ≡ x mod Z;
(3) ⟨e(ρ1, 1, 2i+1), π0⟩ψ0 = −⟨e(ρ1, 1, 2i− 1), π0⟩ψ0 for x < i ≤ y with i ≡ x mod Z;
(4) one of the following holds:

(a) ρ1⊠S2x−1 ̸⊂ ϕ0, or ρ1⊠S2x−1 ⊂ ϕ0 and ⟨e(ρ1, 1, 2x+1), π0⟩ψ0 = ⟨e(ρ1, 1, 2x−
1), π0⟩ψ0;

(b) ρ1 ⊠ S2x−1 ⊂ ϕ0, ⟨e(ρ1, 1, 2x + 1), π0⟩ψ0 = −⟨e(ρ1, 1, 2x − 1), π0⟩ψ0 and
m = mϕ0(ρ1, 2x+ 1) > 1 is odd;

(c) ρ1 ⊠ S2x−1 ⊂ ϕ0, ⟨e(ρ1, 1, 2x + 1), π0⟩ψ0 = −⟨e(ρ1, 1, 2x − 1), π0⟩ψ0 and
m = mϕ0(ρ1, 2x+ 1) > 1 is even.

Here, when x = 1/2, we formally understand that ρ1⊠S0 ⊂ ϕ0 and ⟨e(ρ1, 1, 0), π0⟩ψ0 =
1.

Proof. Since π0 is not almost supercuspidal, in the appropriate Grothendieck group,
JacP (π0) contains a representation of the form ρ1| · |−xE ⊗π′

0 for some parabolic subgroup
P , some irreducible bounded representation ρ1 of WE and some real number x > 0.
Since ϕ0 is of good parity, ρ1 must be conjugate-self-dual and x must be a half-integer.
Fix such a ρ1, and take the maximal x with this condition. Then by Theorems C.4.3
and C.4.4, we have ρ1 ⊠ S2x+1 ⊂ ϕ0. Moreover, if we set

2y + 1 = max{d | ρ1 ⊠ Sd ⊂ ϕ0},
then the same theorems together with Lemma 7.1.2 imply the desired conditions (1)–
(4). □
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We will treat the cases (a), (b) and (c) in Sections 7.4, 7.5 and 7.6, respectively. In
the cases (a) and (b), the new A-parameter ψ′

0 is also co-tempered. However, in the
case (c), ψ′

0 is no longer co-tempered, and it is more difficult to compute ⟨su, π′⟩ψ′ .
This is where Corollary 4.5.3 will be used, and where we have to separate (A-LIR) and
(LIR).

7.3. The initial case. Let ψM = ϕ̂M be a co-tempered A-parameter for M , where
ϕM = ϕGL ⊕ ϕ0. Fix π0 ∈ Πψ0 . In this subsection, we assume that π0 ∈ Πψ0 is almost
supercuspidal (see Definition 7.2.1). Write

ϕGL = ρGL ⊠ S2α+1, ϕ0 =
t⊕
i=1

ρi ⊠ S2βi+1,

where ρi is an irreducible conjugate-self-dual representation ofWE. As in Lemma 7.2.2,
write {ρ′1, . . . , ρ′r} for the subset of {ρ1, . . . , ρt} consisting of ρi’s such that ρi ⊠ S1

appears in ϕ0 with even multiplicity. Set 2yi + 1 = max{d ≥ 1 | ρ′i ⊠ Sd ⊂ ϕ0}.
Let us check the equation (⋆) for π. By Lemma 7.2.2 (2), the left-hand side of (⋆) is

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)
·

r∏
i=1

γA(s,
cϕ̂GL ⊗ (ρ′i ⊠ (S1 ⊕ S2yi+1)), ψE)

γA(s, cϕ̂GL ⊗ (ρ′i(| · |
yi
2
E ⊕ | · |−

yi
2

E )⊠ Syi+1), ψE)

∣∣∣∣∣
s=0

.

In the rest of this section, we write
∏

−α≤a≤α for the product with respect to a =
−α,−α + 1, . . . , α (even if α ∈ (1/2)Z \ Z). First, we compute the quotient involving
ρ′i. To simplify the notation, we drop the subscript i. Then by the formulas for local
factors in Section A.1, we have

γA(s,
cϕ̂GL ⊗ (ρ′ ⊠ (S1 ⊕ S2y+1)), ψE)

γA(s, cϕ̂GL ⊗ (ρ′(| · |
y
2
E ⊕ | · |−

y
2

E )⊠ Sy+1), ψE)

=
∏

−α≤a≤α

γA(s, (
cρGL ⊗ ρ′)| · |aE ⊠ (S1 ⊕ S2y+1), ψE)

γA(s, (cρGL ⊗ ρ′)(| · |a+
y
2

E ⊕ | · |a−
y
2

E )⊠ Sy+1, ψE)
= 1.

On the other hand, using the notations and the formulas for local factors in Section
A.1, we have

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)

=
t∏
i=1

∏
−α≤a≤α

γA(s,
cρGL| · |aE ⊗ (ρi| · |βiE ⊕ · · · ⊕ ρi| · |−βiE ), ψE)

γA(s, (cρGL| · |aE ⊗ ρi)⊠ S2βi+1, ψE)

=
t∏
i=1

∏
−α≤a≤α

∏
µ∈X(cρGL⊗ρi)

(−q−( 1
2
−s−µ−a)

E )2βi
∏

−βi≤b≤βi−1

ζE(s+ µ+ a+ b+ 1)

ζE(s+ µ+ a+ b)
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=
t∏
i=1

∏
−α≤a≤α

∏
µ∈X(cρGL⊗ρi)

(−q−( 1
2
−s−µ−a)

E )2βi
ζE(s+ µ+ a+ βi)

ζE(s+ µ+ a− βi)

=
t∏
i=1

∏
−α≤a≤α

∏
µ∈X(cρGL⊗ρi)

(−q−( 1
2
−s−µ−a)

E )2βi
ζE(s+ µ− a+ βi)

ζE(s+ µ+ a− βi)
.

Lemma 7.3.1. For µ ∈ C/2π
√
−1(log qE)

−1Z and a, β ∈ (1/2)Z, set

fµ,a,β(s) = (−q−( 1
2
−s−µ−a)

E )2β
ζE(s+ µ− a+ β)

ζE(s+ µ+ a− β)
.

(1) If Re(µ) = 0 and µ ̸= −µ, then

fµ,a,β(s)f−µ,a,β(s)|s=0 = q
2a(2β−1)
E .

(2) Let µ0 ∈ C/2π
√
−1(log qE)

−1Z be the unique nonzero element such that µ0 =
−µ0. Then

fµ0,a,β(s)|s=0 = q
a(2β−1)
E .

(3) If µ = 0, then

f0,a,β(s)|s=0 =

{
(−1)2βq

a(2β−1)
E if a = β,

(−1)2β+1q
a(2β−1)
E if a ̸= β.

Proof. If Re(µ) = 0 and µ ̸= −µ, then

fµ,a,β(s)f−µ,a,β(s)|s=0 = q
−2(1−2a)β
E

1− q−µ−a+βE

1− qµ+a−βE

1− qµ−a+βE

1− q−µ+a−βE

= q
−2(1−2a)β
E · (−q−µ−a+βE ) · (−qµ−a+βE ) = q

2a(2β−1)
E .

Similarly, if µ = µ0, then q
−µ0
E = −1 so that

fµ0,a,β(s)|s=0 = q
−(1−2a)β
E

1 + q−a+βE

1 + qa−βE

= q
a(2β−1)
E .

Finally, suppose that µ = 0. If a ̸= β, then

f0,a,β(s)|s=0 = (−1)2βq
−(1−2a)β
E

1− q−a+βE

1− qa−βE

= (−1)2β+1q
a(2β−1)
E .

On the other hand, if a = β, then

f0,a,β(s)|s=0 = (−1)2βq
−(1−2s−2a)a
E

1− q−sE
1− q−sE

∣∣∣∣
s=0

= (−1)2βq
a(2β−1)
E .

This completes the proof. □
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We have proven that

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)

∣∣∣∣∣
s=0

=
t∏
i=1

∏
−α≤a≤α

∏
µ∈X(cρGL⊗ρi)

fµ,a,βi(s)|s=0 .

Note that for µ ∈ X(cρGL ⊗ ρi), if µ ̸= −µ, then −µ appears in X(cρGL ⊗ ρi) with the

same multiplicity as µ. Since
∏

−α≤a≤α q
a(2βi−1)
E = 1, by Lemma 7.3.1, only µ = 0 can

contribute. Note that 0 ∈ X(cρGL ⊗ ρi) if and only if ρi ∼= cρ∨GL
∼= ρGL. In this case, 0

appears in X(cρGL ⊗ ρi) with multiplicity one. Hence

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)

∣∣∣∣∣
s=0

=
∏

1≤i≤t
ρi∼=ρGL

∏
−α≤a≤α

f0,a,βi(s)|s=0 ,

and by Lemma 7.3.1, we have∏
−α≤a≤α

f0,a,βi(s)|s=0 =

{
(−1)(2α+1)(2βi+1)−1 if βi ≤ α, βi ≡ α mod Z,

(−1)(2α+1)(2βi+1) otherwise.

Suppose first that ϕGL = ρGL⊠S2α+1 is not of the same type as ϕ0. Then if ρi ∼= ρGL,
then βi ̸≡ α mod Z so that (2α + 1)(2βi + 1) ∈ 2Z. Hence

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)

∣∣∣∣∣
s=0

=
∏

1≤i≤t
ρi∼=ρGL

(−1)(2α+1)(2βi+1) = 1.

Since ⟨su, π⟩ψ = 1 in this case, we obtain the equation (⋆). In the rest of this subsection,
we assume that ϕGL = ρGL ⊠ S2α+1 is of the same type as ϕ0 so that βi ≡ α mod Z if
ρi ∼= ρGL.

Suppose that 2α + 1 is even. Then we conclude that

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)

∣∣∣∣∣
s=0

= (−1)|{i | ρi
∼=ρGL, βi≤α}|.

If ρGL ⊠ S2α+1 ⊂ ϕ0, then

• ρGL ⊠ (S2 ⊕ S4 ⊕ · · · ⊕ S2α+1) ⊂ ϕ0; and
• mϕ0(ρGL ⊠ S2x) = 1 and ⟨e(ρGL, 1, 2x), π0⟩ψ0 = (−1)x for 1 ≤ x ≤ α + 1

2
.

In particular,

⟨su, π⟩ψ = ⟨e(ρGL, 1, 2α + 1), π0⟩ψ0 = (−1)α+
1
2 = (−1)|{i | ρi

∼=ρGL, βi≤α}|.

On the other hand, if ρGL⊠S2α+1 ̸⊂ ϕ0, then setting d− = max{d ≥ 0 | ρGL⊠Sd ⊂ ϕ0},
we have

⟨su, π⟩ψ = ⟨e(ρGL, 1, d−), π0⟩ψ0 = (−1)
d−
2 = (−1)|{i | ρi

∼=ρGL, βi≤α}|.

Therefore, we obtain the equation (⋆) when 2α + 1 is even.
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Next, we suppose that 2α + 1 is odd. If ρGL ⊠ Sd ̸⊂ ϕ0 for any d ≥ 1, then noting
that ⟨su, π⟩ψ = ⟨e(ρGL, 1, 1), τ⟩ϕτ by Lemma 7.2.2 (3), both sides of (⋆) are equal to 1.
Hence we assume that ρGL ⊠ Sd ⊂ ϕ0 for some d ≥ 1. Set

d0 = max{d ≥ 1 | ρGL ⊠ Sd ⊂ ϕ0},

and write d0 = 2β0 + 1. If α > β0, then since ⟨su, π⟩ψ = ⟨e(ρGL, 1, d0), π0⟩ψ0 =
⟨e(ρGL, 1, 1), τ⟩ϕτ , we have

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)

∣∣∣∣∣
s=0

= 1 =
⟨su, π⟩ψ

⟨e(ρGL, 1, 1), τ⟩ϕτ
.

If α ≤ β0, then

γA(s,
cϕ̂GL ⊗ ϕ̂0, ψE)

γA(s, cϕ̂GL ⊗ ϕ0, ψE)

∣∣∣∣∣
s=0

= (−1)β0−α.

On the other hand, we note that

• ρGL ⊠ (S1 ⊕ S3 ⊕ · · · ⊕ S2β0+1) ⊂ ϕ0; and
• ⟨e(ρGL, 1, 2x+ 1), π0⟩ψ0 = −⟨e(ρ, 1, 2x− 1), π0⟩ψ0 for 1 ≤ x ≤ β0.

Hence
⟨su, π⟩ψ

⟨e(ρ, 1, 1), τ⟩ϕτ
=

⟨e(ρGL, 1, 2α + 1), π0⟩ψ0

⟨e(ρGL, 1, 2β0 + 1), π0⟩ψ0

= (−1)β0−α.

Therefore, we obtain the equation (⋆) when 2α+ 1 is odd. This completes the proof of
(⋆) when π0 ∈ Πψ0 is almost supercuspidal.

7.4. The inductive case (a). Let ϕ0 be a tempered L-parameter forG0 of good parity,

and set ψ0 = ϕ̂0. Fix π0 ∈ Πψ0 . In this subsection, we assume the conditions (1)–(3)
and (4a) in Lemma 7.2.3. Set m = mϕ0(ρ1, 2x+ 1) > 0.

In this case, by applying Lemma C.2.3 and Theorem C.4.3 repeatedly, we see that

π0 ↪→ (ρ1| · |−xE )m × ρ1| · |−(x+1)
E × · · · × ρ1| · |−yE ⋊ π′

0,

where π′
0 ∈ Πψ′

0
is characterized such that

• ψ′
0 = ϕ̂′

0 is a co-tempered A-parameter with

ϕ′
0 = ϕ0 − ρ1 ⊠ (S⊕m−1

2x+1 ⊕ S2y+1)⊕ ρ1 ⊠ S⊕m
2x−1;

• the character ⟨·, π′
0⟩ψ′

0
is given by

⟨e(ρ, 1, 2i− 1), π′
0⟩ψ′

0
=

{⟨e(ρ1, 1, 2i+ 1), π0⟩ψ0 if ρ ∼= ρ1, x ≤ i ≤ y,

⟨e(ρ, 1, 2i− 1), π0⟩ψ0 otherwise.

Moreover, since π0 and π′
0 are in the situation in Section C.5, by Corollary C.5.2, the

L-parameters ϕπ0 and ϕπ′
0
are related by

ϕπ0 = ϕπ′
0
⊕ ρ1(| · |

x+y
2

E ⊕ | · |−
x+y
2

E )⊠ Sy−x+1 ⊕ (ρ1(| · |xE ⊕ | · |−xE )⊠ S1)
⊕m−1.
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Set ϕGL = ρGL ⊠ S2α+1 and ψGL = ϕ̂GL. We denote the irreducible representation
of GLk(E) corresponding to ψGL by πGL. Taking a suitable classical group G′ (with
dim(St

Ĝ′) < dim(StĜ)) and its maximal parabolic subgroup P ′ = M ′NP ′ , write ψ′
M ′ =

ψGL ⊕ ψ′
0. By the induction hypothesis, we may assume that the equation (⋆) holds

for a highly non-tempered representation π′ ⊂ IP ′(π′
M ′) with π′

M ′ = πGL ⊠ π′
0. Take a

highly non-tempered representation π ⊂ IP (πM) such that the tempered part τ of the
Langlands data of π coincides with the one for π′.

By Lemma 7.1.3, we see that

⟨su, π⟩ψ
⟨su, π′⟩ψ′

=

{−1 if ρGL
∼= ρ1, x ≤ α < y, α ≡ x mod Z,

1 otherwise.

Note that if there is a choice of τ , then ρGL ̸∼= ρ1 by Lemma 7.1.3 (3). We will check
the left-hand side of (⋆⋆) is equal to the right-hand side of this equation.

Since γA(s, ϕ, ψE) is multiplicative, we have

(
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

)(
γA(s,

cψGL ⊗ ψ′
0, ψE)

γA(s, cψGL ⊗ ϕπ′
0
, ψE)

)−1

=
γA(s,

cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x+1), ψE)
m−1γA(s,

cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2y+1), ψE)

γA(s, cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x−1), ψE)m

×
∏

ϵ∈{±1}

γA(s,
cψGL ⊗ (ρ1| · |

ϵx+y
2

E ⊠ Sy−x+1), ψE)
−1γA(s,

cψGL ⊗ ρ1| · |ϵxE , ψE)−(m−1)

=
∏

−α≤a≤α

∏
−x≤b≤x

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)m−1

×
∏

−α≤a≤α

∏
−y≤b≤y

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)

×
∏

−α≤a≤α

∏
−x+1≤b≤x−1

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)−m

×
∏

−α≤a≤α

∏
ϵ∈{±1}

γA(s, (
cρGL| · |aE ⊗ ρ1| · |

ϵx+y
2

E )⊠ Sy−x+1, ψE)
−1

×
∏

−α≤a≤α

∏
ϵ∈{±1}

γA(s,
cρGL| · |aE ⊗ ρ1| · |ϵxE , ψE)−(m−1)

=
∏

−α≤a≤α

∏
−y≤b≤−x

or
x≤b≤y

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)

×
∏

−α≤a≤α

∏
ϵ∈{±1}

γA(s, (
cρGL| · |aE ⊗ ρ1| · |

ϵx+y
2

E )⊠ Sy−x+1, ψE)
−1
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=
∏

µ∈X(cρGL⊗ρ1)

∏
−α≤a≤α

q
−(1−2s−2µ−2a)(y−x)
E

∏
−y≤b≤−x−1

or
x≤b≤y−1

ζE(s+ µ+ a+ b+ 1)

ζE(s+ µ+ a+ b)

=
∏

µ∈X(cρGL⊗ρ1)

∏
−α≤a≤α

q
−(1−2s−2µ−2a)(y−x)
E

ζE(s+ µ+ a− x)

ζE(s+ µ+ a− y)

ζE(s+ µ+ a+ y)

ζE(s+ µ+ a+ x)

=
∏

µ∈X(cρGL⊗ρ1)

∏
−α≤a≤α

q
−(1−2s−2µ−2a)(y−x)
E

ζE(s+ µ+ a− x)

ζE(s+ µ+ a− y)

ζE(s+ µ− a+ y)

ζE(s+ µ− a+ x)

=
∏

µ∈X(cρGL⊗ρ1)

∏
−α≤a≤α

fµ,a,y(s)

fµ,a,x(s)
.

As in the previous subsection, Lemma 7.3.1 implies that only µ = 0 can contribute to
this product after evaluating at s = 0. Hence it is 1 unless ρGL

∼= ρ1. Moreover, since

f0,a,y(s)

f0,a,x(s)

∣∣∣∣
s=0

=

{
−q2a(y−x)E if a = x ̸= y or a = y ̸= x,

q
2a(y−x)
E otherwise

by Lemma 7.3.1, we conclude that(
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

)(
γA(s,

cψGL ⊗ ψ′
0, ψE)

γA(s, cψGL ⊗ ϕπ′
0
, ψE)

)−1
∣∣∣∣∣
s=0

=

{−1 if ρGL
∼= ρ1, x ≤ α < y, α ≡ x mod Z,

1 otherwise,

as desired.

7.5. The inductive case (b). We use the same notation as in the previous subsection.
In this subsection, we assume (1)–(3) and (4b) in Lemma 7.2.3. Set m = mϕ0(ρ1, 2x+
1) > 1.

In this case, by Lemma C.2.3 and Theorems C.4.3, C.4.4 (1), we see that

π0 ↪→ (ρ1| · |−xE )m−1 ⋊ π′
0,

where π′
0 ∈ Πψ′

0
is characterized such that

• ψ′
0 = ϕ̂′

0 is a co-tempered A-parameter with

ϕ′
0 = ϕ0 − ρ1 ⊠ S⊕m−1

2x+1 ⊕ ρ1 ⊠ S⊕m−1
2x−1 ;

• ⟨·, π′
0⟩ψ′

0
= ⟨·, π0⟩ψ0 via the canonical identification Aψ′

0

∼= Aψ0 .

Moreover, since π0 and π′
0 are in the situation in Section C.5, by Corollary C.5.2, the

L-parameters ϕπ0 and ϕπ′
0
are related by

ϕπ0 = ϕπ′
0
⊕ (ρ1(| · |xE ⊕ | · |−xE )⊠ S1)

⊕m−1.



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 123

We take highly non-tempered summands π ⊂ IP (πM) and π′ ⊂ IP ′(π′
M ′) as in the

previous subsection. By Lemma 7.1.3, we have ⟨su, π⟩ψ = ⟨su, π′⟩ψ′ . On the other hand,
by the multiplicativity of γA-factors, we have(

γA(s,
cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

)(
γA(s,

cψGL ⊗ ψ′
0, ψE)

γA(s, cψGL ⊗ ϕπ′
0
, ψE)

)−1

=

γA(s, cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x+1), ψE)

γA(s, cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x−1), ψE)

∏
ϵ∈{±1}

γA(s,
cψGL ⊗ ρ1| · |ϵxE , ψE)−1

m−1

= 1.

Therefore, we conclude that(
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

)(
γA(s,

cψGL ⊗ ψ′
0, ψE)

γA(s, cψGL ⊗ ϕπ′
0
, ψE)

)−1
∣∣∣∣∣
s=0

=
⟨su, π⟩ψ
⟨su, π′⟩ψ′

.

7.6. The inductive case (c). We continue to consider the inductive case. Let ϕ0

be a tempered L-parameter for G0 of good parity, and set ψ0 = ϕ̂0. Fix π0 ∈ Πψ0 .
In this subsection, we assume the conditions (1)–(3) and (4c) in Lemma 7.2.3. Set
m = mϕ0(ρ1, 2x+ 1) > 1.

In this case, by Theorems C.4.3 and C.4.4 (2), we see that

π̂0 ↪→ (ρ1| · |xE)m−1 ×∆([−x, x− 1]ρ1)× ρ1| · |x+1
E × · · · × ρ1| · |yE ⋊ σ′

0

∼= (ρ1| · |xE)m−1 × ρ1| · |x+1
E × · · · × ρ1| · |yE ×∆([−x, x− 1]ρ1)⋊ σ′

0,

where σ′
0 is tempered, and its L-parameter is given by

ϕσ′
0
= ϕ0 − ρ1 ⊠ (S⊕m−1

2x+1 ⊕ S2y+1)⊕ ρ1 ⊠ S⊕m−2
2x−1

and

⟨e(ρ, 2i− 1, 1), σ′
0⟩ϕσ′0 =

{⟨e(ρ1, 2i+ 1, 1), π̂0⟩ϕ0 if ρ ∼= ρ1, x < i ≤ y,

⟨e(ρ, 2i− 1, 1), π̂0⟩ϕ0 otherwise.

This inclusion factors through

π̂0 ↪→ (ρ1| · |xE)m−1 × ρ1| · |x+1
E × · · · × ρ1| · |yE ⋊ π̂′

0

where π̂′
0 is the unique irreducible subrepresentation of ∆([−x, x − 1]ρ1) ⋊ σ′

0, i.e., the
Langlands quotient of ∆([−(x−1), x]ρ1)⋊σ′

0. In particular, π̂′
0 belongs to the L-packet

associated to the A-parameter

ψ̂′
0 = ϕσ′

0
⊕ ρ1 ⊠ S2x ⊠ S2,

and the character ⟨·, π̂′
0⟩ψ̂′

0
is given by

⟨e(ρ, 2i− 1, 1), π̂′
0⟩ψ̂′

0
=

{
⟨e(ρ1, 2i+ 1, 1), π̂0⟩ψ̂0

if ρGL
∼= ρ1, x < i ≤ y,

⟨e(ρ1, 2i− 1, 1), π̂0⟩ψ̂0
otherwise,
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⟨e(ρ1, 2x, 2), π̂′
0⟩ψ̂′

0
= 1.

Taking the Aubert dual, we obtain

π0 ↪→ (ρ1| · |−xE )m−1 × ρ1| · |−(x+1)
E × · · · × ρ1| · |−yE ⋊ π′

0,

where π′
0 ∈ Πψ′

0
with

ψ′
0 = ψ0 − ρ1 ⊠ S1 ⊠ (S⊕m−1

2x+1 ⊕ S2y+1)⊕ ρ1 ⊠ S1 ⊠ S⊕m−2
2x−1 ⊕ ρ1 ⊠ S2 ⊠ S2x.

Since π0 and π
′
0 are in the situation in Section C.5, by Corollary C.5.2, the L-parameters

ϕπ0 and ϕπ′
0
are related by

ϕπ0 = ϕπ′
0
⊕ ρ1(| · |

x+y
2

E ⊕ | · |−
x+y
2

E )⊠ Sy−x+1 ⊕ (ρ1(| · |xE ⊕ | · |−xE )⊠ S1)
⊕m−2.

We take π ⊂ IP (πM) and π′ ⊂ IP ′(π′
M ′) as in the previous subsections. By Hypothesis

6.1.1, we know the local intertwining relation for ψM ′ = ψGL ⊕ ψ′
0. However, it is

(A-LIR). To deduce our (LIR) for π′ ⊂ IP ′(π′
M ′), we need to check the conditions

in Lemma 1.10.2. We can check them by using the next lemma together with Aubert
duality. In this lemma, for simplicity, we refresh the notations for parameters.

Lemma 7.6.1. Assume Hypothesis 6.1.1. Let ψM = ϕGL ⊕ ψ0 be an A-parameter for
M = GLd(E)×G0 such that

• ϕGL = ρGL ⊠ S2α+1 is a discrete L-parameter for GLd(E);
• ψ0 is an A-parameter for G0 of the form

ψ0 = ϕ0 ⊕ ρ1 ⊠ S2x ⊠ S2

where ϕ0 is tempered and ρ1 is irreducible (and conjugate-self-dual).

Then

• IP (πM) is multiplicity-free for any πM ∈ ΠψM ; and
• for πM , π

′
M ∈ ΠψM , if πM ̸∼= π′

M , then IP (πM) and IP (π
′
M) have no common

irreducible summand.

Proof. This is a special case of Mœglin’s multiplicity one theorem (see [X2, Theorem
8.12]). However, her proof relies on (ECR1) and (ECR2) for all classical groups, and
hence we cannot use this result. We shall give another proof.

Note that we can use Arthur’s theory for ψ0 by Hypothesis 6.1.1. We apply the
formal construction of the A-packets in [Ar3, p. 416–417] to ψ0 and sψ0 . See also the
proof of [Ar3, Lemma 2.2.2]. Since ψ0 = ϕ0 ⊕ ψ1 with ψ1 = ρ1 ⊠ S2x ⊠ S2, we have an
exact sequence

0 −−−→ πϕ0 ⊠ πψD1 −−−→ πϕ0 ⊠ Iψ1 −−−→ πϕ0 ⊠ πψ1 −−−→ 0.

If we denote the standard module for π0 ∈ Irr(G) by Iπ0 , then the twisted and ordinary
endoscopic transfers of this exact sequence show that∑

π0∈Πϕψ0

Iπ0 =
∑

π0∈Πψ0

π0 +
∑

π′
0∈ΠψD0

⟨s′, π′
0⟩ψD0 π

′
0
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in the Grothendieck group R(G0), where s′ = e(ρ1, 2x − 1, 1) + e(ρ1, 2x + 1, 1) (or
s′ = e(ρ1, 2, 1) if x = 1/2). Hence every π0 ∈ Πψ0 is

(1) tempered (with L-parameter ψD0 ); or
(2) an irreducible subquotient of the standard module Iπ0 = ∆([−(x−1), x]ρ1)⋊σ0

for σ0 ∈ Πϕ0 .

If σ0 ∈ Πϕ0 , then by Casselman’s criterion (Theorem C.1.3), we see that all irreducible
constituents of ∆([−(x−1), x]ρ1)⋊σ0 other than the Langlands quotient are tempered.
(See the proof of [At, Proposition 5.2].) Hence every π0 ∈ Πψ0 is

(1) tempered; or
(2’) the Langlands quotient of ∆([−(x− 1), x]ρ1)⋊ σ0 for σ0 ∈ Πϕ0 .

We denote by πGL the irreducible discrete series representation of GLd(E) correspond-
ing to ϕGL, and set πM = πGL⊠π0. If π0 is tempered, then IP (πM) is a multiplicity-free
sum of irreducible tempered representations by [Ar3, Theorem 1.5.1] and [Mok, The-
orem 2.5.1]. Suppose that π0 is in the case (2’) so that ∆([−(x − 1), x]ρ1) ⋊ σ0 ↠ π0
for some σ0 ∈ Πϕ0 . Since πGL × ∆([−(x − 1), x]ρ1)

∼= ∆([−(x − 1), x]ρ1) × πGL by [Z,
Theorem 9.7], we have

∆([−(x− 1), x]ρ1)× πGL ⋊ σ0 ↠ IP (πM).

Since πGL⋊σ0 is a multiplicity-free sum of irreducible tempered representations, ∆([−(x−
1), x]ρ1)×πGL⋊σ0 is a sum of standard modules of the form ∆([−(x− 1), x]ρ1)⋊πi for
tempered representations πi which are not isomorphic to each other. Therefore, IP (πM)
is a semisimple quotient of a sum of distinct standard modules, and hence IP (πM) is
multiplicity-free. Moreover, all irreducible summands of IP (πM) are non-tempered.

Next, let πM = πGL ⊠ π0 and π′
M = πGL ⊠ π′

0 be in ΠψM . Suppose that πM ̸∼= π′
M .

Note that all irreducible summands of IP (πM) are tempered (resp. non-tempered) if
π0 is tempered (resp. non-tempered). Hence if IP (πM) and IP (π

′
M) have a common

irreducible summand, then both of π0 and π′
0 are tempered, or both of them are non-

tempered.
In the former case, we denote the tempered L-parameters of π0 and π′

0 by ϕπ0 and
ϕπ′

0
, respectively. If IP (πM) and IP (π

′
M) have a common irreducible summand, then

denoting by ϕ the L-parameter of this summand, we have

ϕ = ϕGL ⊕ ϕπ0 ⊕ cϕ∨
GL = ϕGL ⊕ ϕπ′

0
⊕ cϕ∨

GL

and hence ϕπ0 = ϕπ′
0
. Moreover, since πM ̸∼= πM ′ , by [Ar3, Proposition 2.4.3] and [Mok,

Proposition 3.4.4], we have

IP (πM)⊕ IP (π
′
M) ⊂

⊕
π∈Πϕ

π.

By [Ar3, Theorem 1.5.1] and [Mok, Theorem 2.5.1], the right-hand side, and hence the
left-hand side are multiplicity-free. This is a contradiction. In other words, IP (πM) and
IP (π

′
M) have no common irreducible summand.
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Now we assume that both of π0 and π
′
0 are in the case (2’). We denote by σ0, σ

′
0 ∈ Πϕ0

the tempered representations corresponding to π0, π
′
0 as in (2’), respectively. Since

π0 ̸∼= π′
0, we have σ0 ̸∼= σ′

0. Moreover, since tempered L-packets are multiplicity-free
([Ar3, Theorem 1.5.1], [Mok, Theorem 2.5.1]), we see that πGL⋊σ0 and πGL⋊σ′

0 have no
common irreducible summand. Hence IP (πM) and IP (π

′
M) are semisimple quotients of

sums of standard modules which have no common standard module. Therefore, IP (πM)
and IP (π

′
M) have no common irreducible summand. □

Let us go back to the situation at the beginning of this subsection. We have defined

ϕσ′
0
= ϕ0 − ρ1 ⊠ (S⊕m−1

2x+1 ⊕ S2y+1)⊕ ρ1 ⊠ S⊕m−2
2x−1 ,

ψ̂′
0 = ϕσ′

0
⊕ ρ1 ⊠ S2x ⊠ S2.

Set

ψ′ = ψGL ⊕ ψ′
0 ⊕ cψ∨

GL ∈ Ψ(G′),

where G′ is a classical group such that dim(St
Ĝ′) < dim(StĜ). Using Corollary 4.5.3,

we compare ⟨su, π⟩ψ with ⟨s′u, π′⟩ψ′ .

Lemma 7.6.2. Write ϕGL = ρGL ⊠ S2α+1 and ψGL = ϕ̂GL. If ψGL is of the same type
as ψ0, then we have

⟨su, π⟩ψ
⟨su, π′⟩ψ′

=
γA(s,

cψGL ⊗ (ρ1 ⊠ S2 ⊠ S2x), ψE)

γA(s, cψGL ⊗ (ρ1 ⊠ S1 ⊠ (S2x−1 ⊕ S2x+1)), ψE)

∣∣∣∣
s=0

×
{−1 if ρGL

∼= ρ1, x ≤ α < y, α ≡ x mod Z,
1 otherwise.

Otherwise, ⟨su, π⟩ψ = ⟨su, π′⟩ψ′ = 1.

Proof. Since ϕ = ψ̂ is tempered, we can apply Corollary 4.4.5 and get

⟨su, π⟩ψ
⟨ŝu, π̂⟩ϕ

= (−1)r(ϕ)−r(ϕ+)−r(ϕ−).

Note that ψ̂′ satisfies the assumption of Corollary 4.5.3. Since dim(ψ̂′) < dim(ϕ), we

can use (ECR1) and (ECR2) for ψ̂′, and hence we can apply Corollary 4.5.3 to ψ̂′.

Since ψGL = ϕ̂GL = ϕAGL and

ψ̂′
+ = ϕGL ⊕ ϕσ′

0
⊕ ρ1 ⊠ S2x ⊠ S2, ψ̂′

− = ϕGL,

we have

⟨su, π′⟩ψ′

⟨ŝu, π̂′⟩ψ̂′
= (−1)r(ψ̂

′)−r(ψ̂′
+)−r(ψ̂′

−) γA(s,
cψGL ⊗ (ρ1 ⊠ S1 ⊠ (S2x−1 ⊕ S2x+1)), ψE)

γA(s, cψGL ⊗ (ρ1 ⊠ S2 ⊠ S2x), ψE)

∣∣∣∣
s=0

.

By a similar argument to the proof of Corollary 4.4.5, we have

(−1)r(ϕ)−r(ϕ+)−r(ϕ−) = (−1)r(ψ̂
′)−r(ψ̂′

+)−r(ψ̂′
−).
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Therefore, the assertion is reduced to show

⟨ŝu, π̂⟩ϕ
⟨ŝu, π̂′⟩ψ̂′

=

{−1 if ρGL
∼= ρ1, x ≤ α < y, α ≡ x mod Z,

1 otherwise.

Recall that ∆([−(x−1), x]ρ1)×π̂GL⋊σ′
0 ↠ IP ′(π̂′

M ′), where ∆([−(x−1), x]ρ1)⋊σ′
0 ↠ π̂′

0.
In particular, if ρGL

∼= ρ1, x ≤ α < y and α ≡ x mod Z, then ϕGL ⊂ ϕσ′
0
so that

⟨ŝu, π̂′⟩ψ̂′ = ⟨e(ρGL, 2α + 1, 1), σ′
0⟩ϕσ′0

= ⟨e(ρGL, 2α + 3, 1), π̂0⟩ϕ0
= −⟨e(ρGL, 2α + 1, 1), π̂0⟩ϕ0 = −⟨ŝu, π̂⟩ϕ.

Otherwise, the same proof of Lemma 7.1.3 works, and we obtain that ⟨ŝu, π̂′⟩ψ̂′ =

⟨ŝu, π̂⟩ϕ. This completes the proof. □
Now, what we have to show is that

⟨su, π⟩ψ
⟨su, π′⟩ψ′

(
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

)(
γA(s,

cψGL ⊗ ψ′
0, ψE)

γA(s, cψGL ⊗ ϕπ′
0
, ψE)

)−1
∣∣∣∣∣
s=0

= 1.

Since(
γA(s,

cψGL ⊗ ψ0, ψE)

γA(s, cψGL ⊗ ϕπ0 , ψE)

)(
γA(s,

cψGL ⊗ ψ′
0, ψE)

γA(s, cψGL ⊗ ϕπ′
0
, ψE)

)−1

=
γA(s,

cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x+1), ψE)
m−1γA(s,

cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2y+1), ψE)

γA(s, cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x−1), ψE)m−2γA(s, cψGL ⊗ (ρ1 ⊠ S2 ⊠ S2x), ψE)

×
∏

ϵ∈{±1}

γA(s,
cψGL ⊗ (ρ1| · |

ϵx+y
2

E ⊠ Sy−x+1), ψE)
−1γA(s,

cψGL ⊗ ρ1| · |ϵxE , ψE)−(m−2),

it is equivalent to checking that

γA(s,
cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x+1), ψE)

m−2γA(s,
cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2y+1), ψE)

γA(s, cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x−1), ψE)m−1

×
∏

ϵ∈{±1}

γA(s,
cψGL ⊗ (ρ1| · |

ϵx+y
2

E ⊠ Sy−x+1), ψE)
−1γA(s,

cψGL ⊗ ρ1| · |ϵxE , ψE)−(m−2)

∣∣∣∣∣∣
s=0

=

{−1 if ρGL
∼= ρ1, x ≤ α < y, α ≡ x mod Z,

1 otherwise.

Let us check this equation. We have

γA(s,
cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x+1), ψE)

m−2γA(s,
cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2y+1), ψE)

γA(s, cψGL ⊗ (ρ1 ⊠ S1 ⊠ S2x−1), ψE)m−1

×
∏

ϵ∈{±1}

γA(s,
cψGL ⊗ (ρ1| · |

ϵx+y
2

E ⊠ Sy−x+1), ψE)
−1γA(s,

cψGL ⊗ ρ1| · |ϵxE , ψE)−(m−2)
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=
∏

−α≤a≤α

∏
−x≤b≤x

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)m−2

×
∏

−α≤a≤α

∏
−y≤b≤y

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)

×
∏

−α≤a≤α

∏
−x+1≤b≤x−1

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)−(m−1)

×
∏

−α≤a≤α

∏
ϵ∈{±1}

γA(s, (
cρGL| · |aE ⊗ ρ1| · |

ϵx+y
2

E )⊠ Sy−x+1, ψE)
−1

×
∏

−α≤a≤α

∏
ϵ∈{±1}

γA(s,
cρGL| · |aE ⊗ ρ1| · |ϵxE , ψE)−(m−2)

=
∏

−α≤a≤α

∏
−y≤b≤y

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)

×
∏

−α≤a≤α

∏
−x+1≤b≤x−1

γA(s,
cρGL| · |aE ⊗ ρ1| · |bE, ψE)−1

×
∏

−α≤a≤α

∏
ϵ∈{±1}

γA(s, (
cρGL| · |aE ⊗ ρ1| · |

ϵx+y
2

E )⊠ Sy−x+1, ψE)
−1

=
∏

µ∈X(cρGL⊠ρ1)

∏
−α≤a≤α

q
−(1−2s−2µ−2a)(y−x)
E

∏
−y≤b≤−x−1

or
x≤b≤y−1

ζE(s+ µ+ a+ b+ 1)

ζE(s+ µ+ a+ b)

=
∏

µ∈X(cρGL⊠ρ1)

∏
−α≤a≤α

q
−(1−2s−2µ−2a)(y−x)
E

ζE(s+ µ+ a− x)

ζE(s+ µ+ a− y)

ζE(s+ µ− a+ y)

ζE(s+ µ− a+ x)

=
∏

µ∈X(cρGL⊠ρ1)

∏
−α≤a≤α

fµ,a,y(s)

fµ,a,x(s)
.

By the same argument as in Section 7.4, this is equal to{−1 if ρGL
∼= ρ1, x ≤ α < y, α ≡ x mod Z,

1 otherwise

after evaluating at s = 0. This completes the case (c), and the proof of Theorem 1.10.5
(2).

Appendix A. Local factors

In this appendix, we recall some facts about local factors. In particular, we shall show
that the local Langlands correspondence for classical groups G0 identifies the standard
Shahidi local factors for irreducible generic representations of GLk(E) × G0 with the
tensor product Artin local factors of the corresponding L-parameters. This result was
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used in Lemma 2.2.2, which is for the first main theorem (Theorem 1.8.1). We also give
a proof of Proposition 1.7.2.

A.1. Formulas for Artin local factors. We use the notation in Section 1.1. Assume
that E is non-archimedean, and write qE for the cardinality of the residue field of E.

Let IE be the inertia subgroup of the Weil group WE. For a representation (ϕ, V ) of
WE, we write

ϕIE = {v ∈ V |ϕ(w)v = v, ∀w ∈ IE}.
This is a subrepresentation of ϕ. Moreover, any irreducible component of ϕIE is unram-
ified so that there is a finite multi-set

X(ϕ) ⊂ C/2π
√
−1(log qE)

−1Z
such that

ϕIE ∼=
⊕

µ∈X(ϕ)

| · |µE.

Note that

• X(ϕ| · |s0E ) = {µ+ s0 |µ ∈ X(ϕ)};
• if ϕ(WE) is bounded, then Re(µ) = 0 for any µ ∈ X(ϕ);
• if ϕ is conjugate-self-dual, then X(ϕ) is invariant under µ 7→ −µ.

We denote by µ0 ∈ C/2π
√
−1(log qE)

−1Z the unique nonzero element such that µ0 =
−µ0. It satisfies that q

−µ0
E = −1.

We recall the formulas for the local factors. Let ϕ be a representation ofWE×SL2(C),
and decompose it as

ϕ ∼=
⊕
d≥1

ϕd ⊠ Sd

with ϕd a representation of WE. Let ζE(s) = (1 − q−sE )−1 be the local zeta function
associated to E. Then there are constants ε(ϕd) ∈ C× and c(ϕd) = c(ϕd, ψE) ∈ Z such
that

L(s, ϕ) =
∏
d≥1

∏
µ∈X(ϕd)

ζE

(
s+ µ+

d− 1

2

)
,

ε(s, ϕ, ψE) =
∏
d≥1

(
ε(ϕd)q

c(ϕd)(
1
2
−s)

E

)d ∏
µ∈X(ϕd)

(−q
1
2
−s−µ

E )d−1.

In particular, we have

γA(s, ϕ, ψE) = ε(s, ϕ, ψE)
L(1 + s, ϕ)

L(s, ϕ)

=
∏
d≥1

(
ε(ϕd)q

c(ϕd)(
1
2
−s)

E

)d ∏
µ∈X(ϕd)

(−q(
1
2
−s−µ)

E )d−1 ζE(s+ µ+ d+1
2
)

ζE(s+ µ+ d−1
2
)
.

Moreover, L(s, ϕ| · |s0E ) = L(s+ s0, ϕ) and ε(s, ϕ| · |s0E , ψE) = ε(s+ s0, ϕ, ψE) hold. Hence

we have c(ϕd| · |s0E ) = c(ϕd) and ε(ϕd| · |s0E ) = ε(ϕd)q
−c(ϕd)s0
E .



130 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MÍNGUEZ, S. W. SHIN

When [E : F ] = 2, we denote by cϕ the conjugate of ϕ. We note that X(cϕ) = X(ϕ)
and c(cϕ) = c(ϕ) for any representation ϕ of WE.

Lemma A.1.1. Suppose that [E : F ] = 2. Let ψ′
E be a non-trivial additive character

of E which is trivial on F . If ϕ is a conjugate-self-dual representation of WE×SL2(C),
then we have

γA(s,
cϕ, ψ′

E)

γA(s, ϕ, ψ′
E)

= detϕ(−1).

Proof. Since X(cϕ) = X(ϕ), we have L(s, cϕ) = L(s, ϕ). On the other hand, since

ε(s, ϕ∨, ψ′
E)ε(1− s, ϕ, ψ′

E) = detϕ∨(−1) = detϕ(−1),

by using cϕ ∼= ϕ∨, we see that

ε(s, cϕ, ψ′
E)

ε(s, ϕ, ψ′
E)

=
ε(s, cϕ, ψ′

E)ε(1− s, ϕ, ψ′
E)

ε(s, ϕ, ψ′
E)ε(1− s, ϕ, ψ′

E)
=

detϕ(−1)

ε(1
2
, ϕ, ψ′

E)
2
.

Since ϕ is conjugate-self-dual, by [GGP, Proposition 5.1 (2)], we know that ε(1
2
, ϕ, ψ′

E)
2 =

1. Hence we obtain the assertion. □
Proposition A.1.2. Suppose that [E : F ] = 2. Let ϕ1 and ϕ2 be two conjugate-self-dual
representations of WE × SL2(C). If detϕ1 = detϕ2, then we have

γA(s, ϕ1, ψE)

γA(s, ϕ2, ψE)
=
γA(s,

cϕ1, ψE)

γA(s, cϕ2, ψE)
.

Proof. For a ∈ E×, define an additive character aψE of E by (aψE)(x) = ψE(ax). Then

ε(s, ϕi, aψE) = det(ϕi)(a)|a|
dim(ϕi)(s− 1

2
)

E ε(s, ϕi, ψE)

holds. Hence we may replace ψE by any non-trivial additive character ψ′
E of E. If we

use ψ′
E such that ψ′

E|F = 1, then the assertion follows from the previous lemma. □

A.2. Comparison of γ-factors. Now we drop the assumption that E is non-archimedean.
Let G◦ be a connected quasi-split classical group. Fix a Whittaker datum w for
G◦. Let P ◦ = M◦NP be a standard maximal parabolic subgroup of G◦ so that
M◦ = GLk(E)×G◦

0. Consider irreducible w-generic representations τ and σ of GLk(E)
and G◦

0, respectively. (By abuse of language, we say that τ or σ is w-generic if it is
generic with respect to the Whittaker datum induced by w.) We denote by

γSh(s, τ × σ, ψE) = εSh(s, τ × σ, ψE)
LSh(1− s, τ∨ × σ∨)

LSh(s, τ × σ)

the associated γ-factor of Shahidi [Sha7]. On the other hand, let ϕτ and ϕσ be the
L-parameters associated to τ and σ, respectively, and define the Artin γ-factor over E
associated to ϕτ ⊗ ϕσ by

γ(s, ϕτ ⊗ ϕσ, ψE) = ε(s, ϕτ ⊗ ϕσ, ψE)
L(1− s, ϕ∨

τ ⊗ ϕ∨
σ)

L(s, ϕτ ⊗ ϕσ)
.
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Here, we assume the local classification theorem for G◦
0 by the induction hypothesis, so

that there is a commutative diagram

Irr(G◦
0) −−−→ Φ(G◦

0)y y
Irr(GLN0(E)) −−−→ Φ(GLN0(E))

where the horizontal arrows are the local Langlands correspondence with Φ(H) the set
of L-parameters for H, the left vertical arrow is the twisted endoscopic transfer (for
tempered representations), and the right vertical arrow is the natural map. In other
words, if π is the functorial lift of σ to GLN0(E) (in terms of the twisted endoscopic
character relations), then ϕσ (regarded as a representation of LE) is defined as the
L-parameter ϕπ of π. In particular, we have

γ(s, ϕτ ⊗ ϕσ, ψE) = γ(s, ϕτ ⊗ ϕπ, ψE).

Proposition A.2.1. For any irreducible w-generic representation τ ⊠ σ of M◦, we
have

γSh(s, τ × σ, ψE) = γ(s, ϕτ ⊗ ϕσ, ψE).

In particular, if τ and σ are tempered, then the equalities

LSh(s, τ × σ) = L(s, ϕτ ⊗ ϕσ), εSh(s, τ × σ, ψE) = ε(s, ϕτ ⊗ ϕσ, ψE)

also hold.

The desired equality of γ-factors in Proposition A.2.1 seems to be well-known to
experts, but we briefly review the argument in Section A.4 below. Before it, we give
realizations of our quasi-split groups and splittings.

A.3. Groups and splittings. We denote by Ei,j the square matrix (of a certain size)
with 1 at the (i, j)-th entry and 0 elsewhere. Define an n× n anti-diagonal matrix Jn
by

Jn =

(
1

. .
.

1

)
.

For reductive algebraic groups G, T, . . . over F , we use the corresponding Gothic
letters g, t, . . . for the associated Lie algebras. We consider the following quasi-split
reductive algebraic group G over F and the F -splitting spl = (B◦, T ◦, {Xα}) of G◦.

Symplectic groups: Suppose that E = F . Let G = Sp2n(F ) be the symplectic
group defined by

Sp2n(F ) = {g ∈ GL2n(F ) | tgJ ′
2ng = J ′

2n}, J ′
2n =

(
Jn

−Jn

)
.

Take the Borel subgroup B of G consisting of upper triangular matrices and the
maximal torus T of G consisting of diagonal matrices. Then the corresponding
positive simple roots are given by αi = ei− ei+1 for 1 ≤ i ≤ n− 1 and αn = 2en,
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where {e1, . . . , en} is the standard basis of X∗(T ). Take the root vectors given
by Xαi = Ei,i+1 − E2n−i,2n+1−i for 1 ≤ i ≤ n− 1 and Xαn = En,n+1.

Odd special orthogonal groups: Suppose that E = F . For an extension K of
F , let ON(K) be the orthogonal group defined by

ON(K) = {g ∈ GLN(K) | tgJNg = JN}.

Take the Borel subgroup B◦ of SON(F ) consisting of upper triangular matrices
and the maximal torus T ◦ of SON(F ) consisting of diagonal matrices.

Suppose that N = 2n + 1 and consider G = SO2n+1(F ). Then the corre-
sponding positive simple roots are given by αi = ei − ei+1 for 1 ≤ i ≤ n − 1
and αn = en, where {e1, . . . , en} is the standard basis of X∗(T ). Take the root
vectors given by Xαi = Ei,i+1 − E2n+1−i,2n+2−i for 1 ≤ i ≤ n.

Even special orthogonal groups: Suppose that E = F . Let ON(F ) be the
orthogonal group as above. Suppose that N = 2n and consider SO2n(F ). Then
the corresponding positive simple roots are given by αi = ei − ei+1 for 1 ≤ i ≤
n − 1 and αn = en−1 + en, where {e1, . . . , en} is the standard basis of X∗(T ).
Take the root vectors given by Xαi = Ei,i+1−E2n−i,2n+1−i for 1 ≤ i ≤ n− 1 and
Xαn = En−1,n+1 − En,n+2. For example, if n = 2, then

Xαn−1 =

 0 1

0
0 −1

0

 , Xαn =

 0 1

0 −1
0

0

 .

Now for a (possibly trivial) quadratic character η of F×, we define a form
G = Oη

2n(F ) as follows. When η is trivial, we put Oη
2n(F ) = O2n(F ) as above.

When η is non-trivial, we denote by K the quadratic extension of F associated
to η by the local class field theory. Then we define Oη

2n(F ) as the subgroup
O2n(K) consisting of matrices g such that

g = ϵgρϵ−1, ϵ =

(
1n−1

0 1
1 0

1n−1

)
,

where ρ is the non-trivial element in Gal(K/F ). Note that B◦ and T ◦ are defined
over F , and Ad(ϵ)(Xαi) = Xαi for 1 ≤ i ≤ n − 2 and Ad(ϵ)(Xαn−1) = Xαn . In
particular, ϵ fixes the F -splitting spl = (B◦, T ◦, {Xα}).

We remark that any F -splitting of G◦ is conjugate to the splitting spl′ =
(B◦, T ◦, {X ′

α}), where X ′
αi

= Xαi for 1 ≤ i ≤ n− 2 and

(X ′
αn−1

, X ′
αn) =

{
(Xαn−1 , aXαn) if η = 1,

(bXαn−1 , b
ρXαn) if η ̸= 1
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for some a ∈ F× and b ∈ K×. Then spl′ is fixed by ϵ′ = ϵt0 with

t0 =

{
diag(1n−1, a

−1, a,1n−1) if η = 1,

diag(1n−1, b(b
ρ)−1, b−1bρ,1n−1) if η ̸= 1.

Finally, we notice that g = Lie(G) = Lie(G◦).

Unitary groups: Suppose that [E : F ] = 2. Let G = Un be the unitary group
defined by

Un = {g ∈ GLn(E) | tgJ ′′
ng = J ′′

n}, J ′′
n = diag(1,−1, . . . , (−1)n−1) · Jn.

Take the Borel subgroup B of G consisting of upper triangular matrices and the
maximal torus T of G consisting of diagonal matrices. Then the corresponding
positive simple roots are given by αi = ei − ei+1 for 1 ≤ i ≤ n − 1, where
{e1, . . . , en} is the standard basis of X∗(T ). Take the root vectors given by
Xαi = Ei,i+1 for 1 ≤ i ≤ n− 1.

A.4. Proof of Proposition A.2.1. Now we shall prove Proposition A.2.1.

Proof of Proposition A.2.1. If τ and σ are tempered, then the L-factors and the ε-
factors are uniquely determined by the corresponding γ-factors. Hence the equations
for the L-factors and the ε-factors are derived by the one for the γ-factors. Moreover,
since ϕσ = ϕπ as representations of LE, where π is the functorial lift of σ, it suffices to
show that

γSh(s, τ × σ, ψE) = γ(s, ϕτ ⊗ ϕπ, ψE).

The equation for the γ-factors easily follows from the characterizing properties of
γSh(s, τ × σ, ψE), proved in [Sha7, Theorem 3.5], which are some of the “Ten Com-
mandments” given in [LR]. For the convenience of the readers, we recall the properties
we need.

(1) (unramified twisting) For s0 ∈ C, we have

γSh(s, τ | · |s0E × σ, ψE) = γSh(s+ s0, τ × σ, ψE).

(2) (dependence on ψF ) Let ψ
′
F be another non-trivial additive character of F , so

that ψ′
F (x) = ψF (ax) for some a ∈ F×, and put ψ′

E = ψ′
F ◦ trE/F . Then we have

γSh(s, τ × σ, ψ′
E) = η(a)kωτ (a)

N0|a|kN0(s− 1
2
)

E γSh(s, τ × σ, ψE),

where η is the trivial character of F× unless G◦ is an even special orthogo-
nal group, in which case η is the (possibly trivial) quadratic character of F×

associated to the splitting field of G◦, ωτ is the central character of τ , and
N0 = dim(StĜ0

). See Section A.5.
(3) (multiplicativity) Assume that τ is a subrepresentation of IP1(τ1⊠ τ2), where P1

is a standard parabolic subgroup of GLk(E) with Levi component GLk1(E) ×
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GLk2(E), and τ1 and τ2 are irreducible w-generic representations of GLk1(E)
and GLk2(E), respectively. Then we have

γSh(s, τ × σ, ψE) = γSh(s, τ1 × σ, ψE) · γSh(s, τ2 × σ, ψE).

Similarly, assume that σ is a subrepresentation of IP0(τ0 ⊠ σ0), where P0 is
a standard parabolic subgroup of G◦

0 with Levi component GLk0(E) × G◦
00,

and τ0 and σ0 are irreducible w-generic representations of GLk0(E) and G◦
00,

respectively. Then we have

γSh(s, τ × σ, ψE) = γ(s, τ × τ0, ψE) · γ(s, τ × cτ∨0 , ψE) · γSh(s, τ × σ0, ψE).

Here, γ(s, τ × τ0, ψE) is the Rankin–Selberg γ-factor which is equal to the Artin
γ-factor γ(s, ϕτ ⊗ ϕτ0 , ψE).

(4) (unramified factors) Assume that F is non-archimedean, and τ and σ are spheri-
cal (in the sense that they have nonzero fixed vectors under good special maximal
compact subgroups). Then we have

γSh(s, τ × σ, ψE) = γ(s, ϕτ ⊗ ϕσ, ψE).

(5) (archimedean property) Assume that F is archimedean. Then we have

γSh(s, τ × σ, ψE) = γ(s, ϕτ ⊗ ϕσ, ψE).

(6) (global property) Let Ḟ be a number field with ring of adèles Ȧ = ȦḞ , and let Ė

be either Ḟ or a quadratic field extension of Ḟ . Fix a non-trivial additive charac-
ter ψḞ of Ȧ/Ḟ and put ψĖ = ψḞ ◦ trĖ/Ḟ . Let Ġ◦ be a quasi-split classical group

defined over Ḟ , and let Ṁ◦ = ResĖ/ḞGLk × Ġ◦
0 be a maximal semi-standard

Levi subgroup of Ġ◦. We denote by ẇ the Whittaker datum induced by the
Ḟ -splitting of Ġ◦ and ψḞ . Let τ̇ and σ̇ be irreducible globally ẇ-generic cuspi-

dal automorphic representations of GLk(ȦĖ) and Ġ
◦
0(Ȧ), respectively. Then we

have

LS(s, τ̇ × σ̇) =
∏
v∈S

γSh(s, τ̇v × σ̇v, ψĖ,v) · L
S(1− s, τ̇∨ × σ̇∨),

where S is a sufficiently large finite set of places of Ḟ and LS(s, τ̇ × σ̇) =∏
v/∈S L(s, ϕτ̇v ⊗ ϕσ̇v) is the partial L-function (for Re(s) sufficiently large).

By (5), we may assume that F is non-archimedean. By the Langlands classification,
we may write τ and σ as unique irreducible subrepresentations of the duals of standard
modules. Since τ and σ are w-generic, the inducing data of these standard modules are
also w-generic. (See cf., [AG2, Lemma 2.2].) Hence, by (1), (3), and the definition of
L-parameters, we may assume that τ and σ are tempered. In this case, we may write τ
and σ as subrepresentations of parabolic inductions of square-integrable representations.
By the same argument, we may assume that τ and σ are square-integrable.

First we treat the case where τ and σ are supercuspidal. Choose Ḟ , Ė, Ġ◦, Ṁ◦, ψḞ as

in (6) such that Ḟv0 = F, Ėv0 = E, Ġ◦
v0

= G◦, Ṁ◦
v0

= M◦ for some finite place v0 of Ḟ .
Note that it is not always possible to find ψḞ such that ψḞ ,v0 = ψF . By the Poincaré
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series argument [He1, Appendice 1], [Sha7, Proposition 5.1], we can find τ̇ and σ̇ as
in (6) such that τ̇v0

∼= τ and σ̇v0
∼= σ, and such that τ̇v and σ̇v are spherical for all

finite places v ̸= v0. Moreover, by [CKPSS1, CKPSS2], [KK1, KK2] and [CPSS], the
functorial lift π̇ of σ̇ is cuspidal. In other words, by the global classification theorem
for Ġ◦

0 (which we assume by the induction hypothesis), the global A-parameter of σ̇ is
generic and π̇v is the functorial lift of σ̇v for all places v. Then the global functional
equation says that

LS(s, τ̇ × π̇) =
∏
v∈S

γ(s, τ̇v × π̇v, ψĖ,v) · L
S(1− s, τ̇∨ × π̇∨),

where S is a sufficiently large finite set of places of Ḟ , LS(s, τ̇×π̇) =
∏

v ̸∈S L(s, ϕτ̇v⊗ϕπ̇v)
is the partial L-function (for Re(s) sufficiently large), and γ(s, τ̇v × π̇v, ψĖ,v) is the

Rankin–Selberg γ-factor. Since LS(s, τ̇ × π̇) = LS(s, τ̇ × σ̇) and γ(s, τ̇v × π̇v, ψĖ,v) =
γ(s, ϕτ̇v ⊗ ϕπ̇v , ψĖ,v) (which is a desideratum of the local Langlands correspondence for
general linear groups), we may write this equality as

LS(s, τ̇ × σ̇) =
∏
v∈S

γ(s, ϕτ̇v ⊗ ϕπ̇v , ψĖ,v) · L
S(1− s, τ̇∨ × σ̇∨).

On the other hand, by (4), (5), we have

γSh(s, τ̇v × σ̇v, ψĖ,v) = γ(s, ϕτ̇v ⊗ ϕσ̇v , ψĖ,v) = γ(s, ϕτ̇v ⊗ ϕπ̇v , ψĖ,v)

for all places v ̸= v0. From this and (6), we can deduce that

γSh(s, τ × σ, ψ̇E,v0) = γ(s, ϕτ ⊗ ϕπ, ψ̇E,v0).

If we write ψḞ ,v0(x) = ψF (ax) for some a ∈ F×, then the left-hand side is equal to

η(a)kωτ (a)
N0 |a|kN0(s− 1

2
)

E γSh(s, τ × σ, ψE)

by (2), whereas the right-hand side is equal to

det(ϕτ ⊗ ϕπ)(a)|a|
dim(ϕτ⊗ϕπ)(s− 1

2
)

E γ(s, ϕτ ⊗ ϕπ, ψE)

(see [Tate2, Section 3.6]). This implies the desired equation for the γ-factors.
Now suppose that τ and σ are square-integrable. Choose Ḟ , Ė, Ġ◦, Ṁ◦, ψḞ as above

and fix an auxiliary finite place v1 ̸= v0 of Ḟ such that v1 does not split in Ė when
[Ė : Ḟ ] = 2. By the Poincaré series argument [He1, Appendice 1] for a central division
algebra over Ė of degree k ramified precisely at v0, v1 (where we regard vi for i = 0, 1 as
the unique place of Ė lying over vi when [Ė : Ḟ ] = 2), and the global Jacquet–Langlands
correspondence [Bad], we can find τ̇ as in (6) such that τ̇v0 ≃ τ , τ̇v1 is supercuspidal,
and τ̇v is spherical for all finite places v ≠ v0, v1. Also, by [ILM, Appendix A], [GI3,
Appendix A], we can find σ̇ as in (6) such that σ̇v0 ≃ σ, σ̇v1 is supercuspidal, and σ̇v
is spherical for all finite places v ̸= v0, v1. (Note that [GI3] only treats the case of
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metaplectic groups, but the same argument goes through for other classical groups.)
Since we already know that

γSh(s, τ̇v1 × σ̇v1 , ψĖ,v1) = γ(s, ϕτ̇v1 ⊗ ϕπ̇v1 , ψĖ,v1),

where π̇v1 is the functorial lift of σ̇v1 , the above argument proves the analogous equation
for v0 and hence the desired equation for the γ-factors. □
Remark A.4.1. Recently, Cai–Friedberg–Ginzburg–Kaplan [CFGK], [Cai], [CFK1]
introduced a new family of zeta integrals, which generalizes the doubling zeta integrals
of Piatetski-Shapiro–Rallis [PSR], [LR], and established an analytic theory of γ-factors

γCFGK(s, τ × σ, ψE)

for all irreducible representations τ and σ of GLk(E) and G◦
0, respectively. In par-

ticular, when G◦
0 is a split special orthogonal group or a symplectic group, the “Ten

Commandments” were proved in [CFK1, Theorem 4.2]. In this case, we can modify the
above argument and show that

γCFGK(s, τ × σ, ψE) = γ(s, ϕτ ⊗ ϕσ, ψE)

as follows: To globalize an irreducible square-integrable representation σ of G◦
0, we can

use [Ar3, Lemma 6.2.2] to find an irreducible cuspidal automorphic representation σ̇ of

Ġ◦
0(Ȧ) with a generic global A-parameter such that σ̇v0

∼= σ and σ̇v is spherical for all
finite places v ̸= v0.

Remark A.4.2. The second and third authors would like to take this opportunity
to remark that the various desiderata of the local Langlands correspondence used in
[GI1, GI2] are now supplied by the results of this paper in the case of quasi-split classical
groups. Namely, in the proofs of [GI1, Theorem C.5] and [GI2, Proposition B.1], they
assumed the following hypothesis:

(1) the equality between the local γ-factors of Shahidi and the corresponding Artin
γ-factors;

(2) the equality between the local γ-factors of Piatetski-Shapiro–Rallis and the cor-
responding Artin γ-factors;

(3) the formula for the Plancherel measures in terms of Artin γ-factors.

(See [GI1, Section C.2] and [GI2, Section B.2] for details.) Now (1) follows from Propo-
sition A.2.1 and [He4], [CST], [Shan], [He5], (2) can be verified as in Remark A.4.1
(where the “Ten Commandments” in this case were proved in [LR, Theorem 4]), and
(3) is a consequence of the multiplicative property of the normalized intertwining op-
erators (see Proposition 1.7.2). They would also like to point out that the reason they
gave for the correct formulation of Shahidi’s formula at the end of the proof of [GI2,
Lemma B.2] is not accurate: the proper justifications for the reformulation of Shahidi’s
results are given in Section 2.6 of this paper.

Remark A.4.3. As our argument above uses globalization, this may be a good chance
to comment on the globalization for unitary groups in [Mok]. We were unable to verify
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Lemma 7.2.1 therein when E/F is a ramified quadratic extension of p-adic fields in
that it is not obvious to keep the global extension Ė/Ḟ unramified at all finite places
away from the place of interest (denoted u); if this were true, one could globalize a local
unitary group with respect to E/F to a global unitary group that is unramified outside
u. Nevertheless this does not affect the globalization argument for unitary groups in
that it is unnecessary to make Ė/Ḟ unramified outside u, just like it was unnecessary
in Arthur’s globalization for (non-split) quasi-split SO2n. The basic reason is that one
can prescribe a spherical parameter or a spherical representation (in the sense recalled
in [Ar3, Section 6.1]) at ramified finite places as in [Mok, Lemma 7.2.3, Corollary 7.2.7],
cf. [Ar3, Lemma 6.2.2, Corollary 6.2.4].

A.5. Dependence on ψF for Shahidi’s gamma factors. The property (2) in the
proof of Proposition A.2.1 is not stated in this form in [Sha7] but can be derived as
follows. We use the notation in Section 2.2 for the classical group G. Suppose first that
we are not in the case where G = Oη

2k(F ) with η = 1, M = GLk(F ), and k > 1 is odd.
Put π = τ ⊠ σ∨

0 (regarded as a representation of M) and write πλ = τ | · |sE ⊠ σ∨
0 with

s ∈ C. Recall that the local coefficient CP (w, πλ) is given by

Ω(πλ) = CP (w, πλ) · Ω(wπλ) ◦ JP (w, πλ)

as in Section 2.1 and depends on the following choices:

• the Whittaker datum w determined by spl and ψF ;
• the Weyl group representative w̃ = w̃spl of w determined by spl;
• the Haar measure du = duspl,ψF on NP determined by spl and ψF .

To indicate this dependence, we write

CP (w, πλ) = CP (w, πλ, spl, ψF ),

JP (w, πλ) = JP (w, πλ, spl, ψF ),

Ω(πλ) = Ω(πλ, spl, ψF ).

For another additive character ψ′
F given by ψ′

F (x) = ψF (ax) with a ∈ F×, we take
the splitting spl′ = (B, T, {X ′

α}) such that X ′
α = aXα for all α. Then spl′ and ψ′

F give
rise to the Whittaker datum w. We may write X ′

α = Ad(t0)(Xα), where t0 ∈ AT (F ) is
given by

t0 =


diag(an−

1
2 , an−

3
2 , . . . , a

1
2 , a−

1
2 , . . . , a−n+

3
2 , a−n+

1
2 ) if G = Sp2n(F ),

diag(an, an−1, . . . , a, 1, a−1, . . . , a−n+1, a−n) if G = SO2n+1(F ),

diag(an−1, an−2, . . . , a, 1, 1, a−1, . . . , a−n+2, a−n+1) if G = Oη
2n(F ),

diag(a
n−1
2 , a

n−3
2 , . . . , a−

n−3
2 , a−

n−1
2 ) if G = Un.

Note that the image of t0 in the adjoint group of G is an F -rational point, so that
Ad(t0) is an automorphism of G defined over F . Then we have w̃spl′ = Ad(t0)(w̃spl).
Set z0 = w̃−1

spl′
· w̃spl. Recall that w̃spl is a representative of wT ∈ N(M◦,M◦)/T ◦. It is
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easy to see that a representative of wT is given by 1k
1G0

±1k


for some sign. Hence

z0 = Ad(t0)(w̃spl)
−1 · w̃spl

= t0 · Ad(w̃−1
spl)(t0)

−1

= diag(aN0+k+δ1k,1G0 , a
−(N0+k+δ)1k),

where N0 = dim(StĜ0
) and

δ =


1 if G = SO2n+1(F ),

−1 if G = Sp2n(F ), O
η
2n(F ),

0 if G = Un.

In particular, z0 belongs to the center of M . Moreover, if we set l = dim(NP ), then

duspl′,ψ′
F
= δP (t0)

−1 duspl,ψ′
F
= δP (t0)

−1|a|
l
2
F duspl,ψF .

Since w̃−1
spl′

= z0w̃
−1
spl and δP (t0) = δP (z0)

1
2 , we obtain that

JP (w, πλ, spl
′, ψ′

F ) = ωπλ(z0)δP (z0)
1
2 · δP (t0)−1|a|

l
2
F · JP (w, πλ, spl, ψF )

= ωπλ(z0)|a|
l
2
F · JP (w, πλ, spl, ψF ).

Similarly, we have

Ω(πλ, spl
′, ψ′

F ) = ωπλ(z0)|a|
l
2
F · Ω(πλ, spl, ψF ),

Ω(wπλ, spl
′, ψ′

F ) = ωwπλ(z0)|a|
l
2
F · Ω(wπλ, spl, ψF ).

This implies that

ωπλ(z0)|a|
l
2
F · Ω(πλ, spl, ψF ) = ωwπλ(z0)|a|

l
2
F · ωπλ(z0)|a|

l
2
F · CP (w, πλ, spl′, ψ′

F )

× Ω(wπλ, spl, ψF ) ◦ JP (w, πλ, spl, ψF ),

so that

CP (w, πλ, spl
′, ψ′

F ) = ωwπλ(z0)
−1|a|−

l
2

F · CP (w, πλ, spl, ψF ).

Recall from Section 2.6 that Shahidi’s formula says that

CP (w, πλ, spl, ψF ) = λ(w,ψF )
−1λ(E/F, ψF )

kN0γSh(s, τ × σ, ψE)γ
Sh(2s, τ, R, ψF )
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with

R =


Sym2 if G = SO2n+1(F ),

∧2 if G = Sp2n(F ), O
η
2n(F ),

Asai+ if G = Un, n ≡ 0 mod 2,

Asai− if G = Un, n ≡ 1 mod 2.

Note that

λ(w,ψF ) =



λ(K/F, ψF )
k if G = Oη

2n(F ),

λ(E/F, ψF )
kN0+

k(k−1)
2 if G = Un, n ≡ 0 mod 2,

λ(E/F, ψF )
kN0+

k(k+1)
2 if G = Un, n ≡ 1 mod 2,

1 otherwise,

where K/F is the abelian extension corresponding to η. Since

λ(K/F, ψF ) =
ε(s, IndWF

WK
(1WK

), ψF )

ε(s,1WK
, ψF ◦ trK/F )

which does not depend on s, we have

λ(K/F, ψ′
F )

λ(K/F, ψF )
= det(IndWF

WK
(1K))(a) = η(a).

Hence

λ(w,ψ′
F )

λ(w,ψF )
=



η(a)k if G = Oη
2n(F ),

η′(a)kN0+
k(k−1)

2 if G = Un, n ≡ 0 mod 2,

η′(a)kN0+
k(k+1)

2 if G = Un, n ≡ 1 mod 2,

1 otherwise,

where, if G = Un, we set η′ to be the quadratic character of F× associated to E/F by
the class field theory. If G ̸= Oη

2n(F ) (resp. G ̸= Un), we simply set η = 1 (resp. η′ = 1).

Since ωwπλ(z0)
−1 = ωτ (a

N0+k+δ)|a|(N0+k+δ)ks
E , we obtain

γSh(s, τ × σ, ψ′
E)γ

Sh(2s, τ, R, ψ′
F ) = η(a)kη′(a)

k(k±1)
2 · ωτ (aN0+k+δ)|a|(N0+k+δ)ks

E · |a|−
l
2

F

× γSh(s, τ × σ, ψE)γ
Sh(2s, τ, R, ψF ),

where the exponent of η′(a) is k(k−1)
2

(resp. k(k+1)
2

) for G = Un with n even (resp. n
odd).

If G = Oη
2k(F ) with η = 1, M = GLk(F ), and k > 1 is odd, then we take

w ∈ W (M◦, ϵM◦ϵ−1) such that det(w) = 1. Since t0 commutes with ϵ, the above
computation works after replacing ωwπλ(z0) with ωwπλ(ϵz0ϵ

−1). Hence we obtain the
same formula for γSh(s, τ × σ, ψ′

E)γ
Sh(2s, τ, R, ψ′

F ).
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In particular, if we take (G,M) = (SO2k+1(F ),GLk(F )), (Oη
2k(F ),GLk(F )) with

η = 1, and (U2k,GLk(E)), then we obtain

γSh(2s, τ, R, ψ′
F ) = η′(a)

k(k−1)
2 ωτ (a)

k+δ(R)|a|(2s−
1
2
)d(R)

F γSh(2s, τ, R, ψF ),

where

δ(R) =


1 if R = Sym2,

−1 if R = ∧2,

0 if R = Asai+,

d(R) =


k(k + 1)

2
if R = Sym2,

k(k − 1)

2
if R = ∧2,

k2 if R = Asai+.

Moreover, in the last case, it follows from the definition (see [Sha7, p. 304]) that

γSh(2s, τ,Asai−, ψF ) = γSh(2s, τ ⊗ (µ ◦ det),Asai+, ψF ),
where µ is a character of E× such that µ|F× = η′. Since k2 ≡ k mod 2, we obtain that

γ(2s, τ,Asai−, ψ′
F ) = η′(a)

k(k+1)
2 ωτ (a)

k|a|(2s−
1
2
)k2

F γSh(2s, τ,Asai−, ψF ).

This implies that

γSh(s, τ × σ, ψ′
E) = η(a)kωτ (a)

N0|a|kN0(s− 1
2
)

E γSh(s, τ × σ, ψE),

as desired.

Remark A.5.1. In the above argument, we have used Shahidi’s formula

CP (w, πsã, spl, ψF ) = λ(w,ψF )
−1

m∏
i=1

γSh(is, π, ri, ψF )

for s ∈ C (see Section 2.6). This formula implies that the local coefficient is independent
of spl in the following sense. We consider an arbitrary quasi-split connected reductive
algebraic group G over F . Let spl = (B, T, {Xα}) and spl′ = (B, T, {X ′

α}) be two
F -splittings of G which have a common Borel pair. We denote by w = (B,χ) and
w′ = (B,χ′) the Whittaker data for G determined by spl and spl′, respectively, and a
fixed additive character ψF . Let P = MN be a standard maximal parabolic subgroup
of G, and let π be an irreducible representation of M(F ) which is wM -generic and
w′
M -generic. Then Shahidi’s formula implies that

CP (w, πλ, spl, ψF ) = CP (w, πλ, spl
′, ψF )

for λ ∈ a∗M,C. In fact, this equality can be proven directly as follows. Let Gad = G/Z be

the adjoint group of G, where Z is the center of G. Choose an induced torus Z̃ equipped

with an embedding Z ↪→ Z̃. For example, since Z is a subgroup of the maximal torus

T , we may take an induced torus Z̃ such that there is a surjection X∗(Z̃) ↠ X∗(T ) of
Γ-modules. We denote the pushout of the short exact sequence

1 −−−→ Z −−−→ G −−−→ Gad −−−→ 1
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via this embedding by

1 −−−→ Z̃ −−−→ G̃ −−−→ Gad −−−→ 1.

Note that if G is a classical group and Z̃ = ResE/FGm, then G̃ may be taken to be the

corresponding similitude group. For any subgroup H of G containing Z, we write H̃ for

the associated subgroup of G̃. Then s̃pl = (B̃, T̃ , {Xα}) is the F -splitting of G̃ induced

by spl and w̃ = (B̃, χ) is the Whittaker datum for G̃ determined by s̃pl and ψF .

Choose an irreducible representation π̃ of M̃(F ) such that π̃|M(F ) contains π. (To find
such a π̃, we first extend the central character of π restricted to Z(F ) to a character of

Z̃(F ), and use this to extend π to an irreducible representation π+ of Z̃(F )M(F ). Note

that Z̃(F )M(F ) is a subgroup of M̃(F ) of finite index since F is of characteristic zero.

Then we can take π̃ to be a suitable irreducible constituent of Ind
M̃(F )

Z̃(F )M(F )
(π+).) Note

that π̃ is w̃M̃ -generic since π is wM -generic. Moreover, by the uniqueness of Whittaker
functionals, π̃|M(F ) has a unique wM -generic constituent, so that π appears in π̃|M(F )

with multiplicity one. In particular, for any non-trivial w̃M̃ -Whittaker functional on π̃,
its restriction to π is also a non-trivial wM -Whittaker functional on π. Hence it follows
from the definition that

CP̃ (w, π̃λ, s̃pl, ψF ) = CP (w, πλ, spl, ψF ),

noting that

• w in the left-hand side is regarded as a Weyl element of G̃;

• the Weyl group representative of w in G̃ determined by s̃pl agrees with the one
w̃spl in G determined by spl;

• the Haar measures used to define intertwining operators and Jacquet integrals

for G̃ determined by s̃pl and ψF agree with the ones duspl,ψF for G determined
by spl and ψF ;

• the restriction of IndG̃
P̃
(π̃λ) to G as functions contains IP (πλ).

Similarly, we have

CP̃ (w, π̃λ, s̃pl
′, ψF ) = CP (w, πλ, spl

′, ψF ).

Thus, it remains to show that

CP̃ (w, π̃λ, s̃pl, ψF ) = CP̃ (w, π̃λ, s̃pl
′, ψF ).

Since the natural map G̃(F ) → Gad(F ) is surjective, the set of F -splittings of G̃ con-

sists of a single G̃(F )-conjugacy class, so that there is t̃0 ∈ T̃ (F ) such that s̃pl′ =

Ad(t̃0)(s̃pl). Then we have χ′ = χ ◦ Ad(t̃0)
−1, w̃spl′ = Ad(t̃0)(w̃spl), and du′spl′,ψF =

duspl,ψF for u′ = Ad(t̃0)(u). Put π̃′ = π̃ ◦ Ad(t̃0)
−1. We may regard a w̃M̃ -Whittaker

functional on π̃ as a w̃′
M̃
-Whittaker functional on π̃′. Then by definition, we have

Ω(π̃′
λ, s̃pl

′, ψF ) = Ω(π̃λ, s̃pl, ψF ) ◦ Ad(t̃0)∗,
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where Ad(t̃0)
∗ : IndG̃

P̃
(π̃′

λ) → IndG̃
P̃
(π̃λ) is the linear isomorphism given by Ad(t̃0)

∗f(g) =

f(Ad(t̃0)(g)). Similarly, we have

JP̃ (w, π̃λ, s̃pl, ψF ) ◦ Ad(t̃0)
∗ = Ad(t̃0)

∗ ◦ JP̃ (w, π̃
′
λ, s̃pl

′, ψF ).

Hence we have

Ω(π̃′
λ, s̃pl

′, ψF ) = Ω(π̃λ, s̃pl, ψF ) ◦ Ad(t̃0)∗

= CP̃ (w, π̃λ, s̃pl, ψF ) · Ω(wπ̃λ, s̃pl, ψF ) ◦ JP̃ (w, π̃λ, s̃pl, ψF ) ◦ Ad(t̃0)
∗

= CP̃ (w, π̃λ, s̃pl, ψF ) · Ω(wπ̃λ, s̃pl, ψF ) ◦ Ad(t̃0)
∗ ◦ JP̃ (w, π̃

′
λ, s̃pl

′, ψF )

= CP̃ (w, π̃λ, s̃pl, ψF ) · Ω(wπ̃
′
λ, s̃pl

′, ψF ) ◦ JP̃ (w, π̃
′
λ, s̃pl

′, ψF ).

Since π̃′ ∼= π̃, this implies the desired equality.

A.6. Proof of Proposition 1.7.2. Here, we give a proof of Proposition 1.7.2 for
classical groups in general. Recall the setting. Let G be a quasi-split classical group.
For i = 1, 2, 3, consider a standard parabolic subgroup Pi = MiNi of G. Assume
that W (M◦

1 ,M
◦
2 ) ̸= ∅ and W (M◦

2 ,M
◦
3 ) ̸= ∅. Then for w1 ∈ W (M◦

1 ,M
◦
2 ) and w2 ∈

W (M◦
2 ,M

◦
3 ), and for an irreducible tempered representation π of M1, Proposition 1.7.2

asserts that
RP1(w2w1, πλ) = RP2(w2, w1πλ) ◦RP1(w1, πλ).

Set w−1
1 P2 = w̃−1

1 P2w̃1. Following [Ar3, Section 2.3], we decomposeRP1(w1, πλ) : IP1(πλ) →
IP2(w1πλ) as

RP1(w1, πλ) = ℓ(w1, πλ) ◦Rw−1
1 P2|P1

(πλ),

where Rw−1
1 P2|P1

(πλ) : IP1(πλ) → Iw−1
1 P2

(πλ) is given by (the meromorphic continuation

of) the integral

(Rw−1
1 P2|P1

(πλ)fλ)(g) =
γA(0, πλ, ρ

∨
w−1

1 P2|P1
, ψF )

ε(1/2, πλ, ρ∨w−1
1 P2|P1

, ψF )

∫
(N1∩w̃−1

1 N2w̃1)\w̃−1
1 N2w̃1

fλ(ug)du

and ℓ(w1, πλ) : Iw−1
1 P2

(πλ) → IP2(w1πλ) is defined by

ℓ(w1, πλ) = λ(w1)
−1ε(1/2, πλ, ρ

∨
w−1

1 P2|P1
, ψF )L(w̃1)

with L(w̃1)f
′
λ(g) = f ′

λ(w̃
−1
1 g). The key property of ℓ(w1, πλ) is as follows.

Lemma A.6.1. The operator ℓ(w1, πλ) satisfies the condition

ℓ(w2w1, πλ) = ℓ(w2, w1πλ) ◦ ℓ(w1, πλ).

Before showing this lemma, we prove Proposition 1.7.2.

Proof of Proposition 1.7.2. By [Ar3, Proposition 2.3.1], [Mok, Proposition 3.3.1] and
Lemma A.6.1, we have

RP2(w2, w1πλ) ◦RP1(w1, πλ)
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=
(
ℓ(w2, w1πλ) ◦Rw−1

2 P3|P2
(w1πλ)

)
◦
(
ℓ(w1, πλ) ◦Rw−1

1 P2|P1
(πλ)

)
= ℓ(w2, w1πλ) ◦ ℓ(w1, πλ) ◦Rw−1

1 w−1
2 P3|w−1

1 P2
(πλ) ◦Rw−1

1 P2|P1
(πλ)

= ℓ(w2w1, πλ) ◦R(w2w1)−1P3|P1
(πλ) = RP1(w2w1, πλ).

This completes the proof of Proposition 1.7.2. □
Therefore, Lemma A.6.1 is the missing part for Proposition 1.7.2. For the proof of

Lemma A.6.1, we need the following elementary fact.

Lemma A.6.2. Let V be a finite dimensional real vector space. For i = 1, 2, 3, let
Pi ⊂ V be a finite subset such that the union Ri = Pi ∪ −Pi is disjoint. For βi ∈ Ri,
write βi > 0 (resp. βi < 0) if βi ∈ Pi (resp. −βi ∈ Pi). Fix two automorphisms w1 and
w2 on V such that w1(R1) = R2 and w2(R2) = R3. Then for a function f : R1 → C×,
we have∏

β1>0
w1β1<0

f(β1) ·
∏

w1β1>0
w2w1β1<0

f(β1) ·
∏
β1>0

w2w1β1<0

f(β1)
−1 =

∏
β1>0

w1β1<0, w2w1β1>0

f(β1)f(−β1).

Proof. We write R1 = ⊔8
k=1Ik, where

I1 = {β1 ∈ R1 | β1 > 0, w1β1 > 0, w2w1β1 > 0},
I2 = {β1 ∈ R1 | β1 > 0, w1β1 > 0, w2w1β1 < 0},
I3 = {β1 ∈ R1 | β1 > 0, w1β1 < 0, w2w1β1 > 0},
I4 = {β1 ∈ R1 | β1 > 0, w1β1 < 0, w2w1β1 < 0},
I5 = {β1 ∈ R1 | β1 < 0, w1β1 > 0, w2w1β1 > 0},
I6 = {β1 ∈ R1 | β1 < 0, w1β1 > 0, w2w1β1 < 0},
I7 = {β1 ∈ R1 | β1 < 0, w1β1 < 0, w2w1β1 > 0},
I8 = {β1 ∈ R1 | β1 < 0, w1β1 < 0, w2w1β1 < 0}.

Then ∏
β1>0
w1β1<0

f(β1) =
∏

β1∈I3⊔I4

f(β1),
∏

w1β1>0
w2w1β1<0

f(β1) =
∏

β1∈I2⊔I6

f(β1),

∏
β1>0

w2w1β1<0

f(β1) =
∏

β1∈I2⊔I4

f(β1),
∏
β1>0

w1β1<0, w2w1β1>0

f(β1)f(−β1) =
∏

β1∈I3⊔I6

f(β1).

This implies the lemma. □
Now we prove Lemma A.6.1.

Proof of Lemma A.6.1. When G = G◦ andM1 =M2 =M3, the lemma is [Ar3, Lemma
2.3.4] and [Mok, Lemma 3.3.4]. The proof of the general case is essentially the same as
these lemmas.
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Since w̃2w̃1 and w̃2w1 are two representatives of w2w1 ∈ W (M◦
1 ,M

◦
3 ), we can write

w̃2w̃1 = w̃2w1 · z(w2, w1)

for some z(w2, w1) ∈M◦
1 . By Lemma 1.7.1, we see that z(w2, w1) is in the center of M1

so that

L(w̃2w1) = ωπλ(z(w2, w1))L(w̃2) ◦ L(w̃1),

where ωπλ is the central character of πλ. Our goal is to show that ωπλ(z(w2, w1)) is
equal to the product of

ε(1/2, πλ, ρ
∨
w−1

1 P2|P1
, ψF )ε(1/2, w1πλ, ρ

∨
w−1

2 P3|P2
, ψF )ε(1/2, πλ, ρ

∨
(w2w1)−1P3|P1

, ψF )
−1

and

λ(w1)
−1λ(w2)

−1λ(w2w1).

First, we consider the central character. Let R(T ◦, G◦) be the set of roots of T ◦ in
G◦. As in the proofs of [Ar3, Lemma 2.3.4] and [Mok, Lemma 3.3.4], by [LSh, Lemma
2.1.A], we have

z(w2, w1) = (−1)λ
∨(w2,w1),

where λ∨(w2, w1) =
∑

α∈RB(w2,w1)
α∨ with

RB(w2, w1) = {α ∈ R(T ◦, G◦) |α > 0, w1α < 0, w2w1α > 0}.

Moreover, z(w2, w1) is in the split part AM◦
1
of the center of M◦

1 , i.e., λ
∨(w2, w1) ∈

X∗(AM◦
1
).

For i = 1, 2, 3, we set Ri = R(A
M̂◦
i
, Ĝ◦). For βi ∈ Ri, we denote by βi > 0 if the

weight space ĝβi lies in n̂i. Via the isomorphism X∗(AM◦
1
) ∼= X∗(M̂◦

1 )F in [Ar3, Section

2.3], we can identify λ∨ ∈ X∗(AM◦) with a character of LM◦
1 which is trivial on the

semi-direct factor WF of LM◦
1 . Then by the description of central characters in terms

of the LLC for general linear groups, we have

ωπλ(z
λ∨) = λ∨(ϕλ(uz)) = λ∨(m(uz))

for λ∨ ∈ X∗(AM◦
1
) ∼= X∗(M̂◦

1 )F and uz ∈ WF whose image in W ab
F

∼= F× is equal to
z ∈ F×, where ϕλ is the L-parameter for πλ, and we write ϕλ(uz) = m(uz) ⋊ uz with

m(uz) ∈ M̂◦
1 . If λ

∨ = λ∨(w2, w1), then we can write

λ∨(w2, w1) =
∑
β1>0

w1β1<0, w2w1β1>0

λ∨β1 ,

where β1 runs over the elements of R1 satisfying the specified conditions, and

λ∨β1 =
∑
α∈Rβ1

α∨
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with Rβ1 being the set of roots α of T ◦ in G◦ such that α∨|AM◦
1
is a positive multiple of

β. Hence, fixing an arbitrary element u ∈ WF whose image in F× ∼= W ab
F is equal to

−1, we have

ωπλ(z(w2, w1)) =
∏
β1>0

w1β1<0, w2w1β1>0

λ∨β1(m(u)).

Next, we consider the ε-factors. For simplicity, we write ε(πλ, ρ) for ε(1/2, πλ, ρ, ψF ).
The adjoint representation ρw−1

1 P2|P1
of LM◦

1 on

w̃−1
1 n̂2w̃1/(w̃

−1
1 n̂2w̃1 ∩ n̂1) ∼= w̃−1

1 n̂2w̃1 ∩ n̂1

decomposes as the direct sum ⊕
β1<0
w1β1>0

ĝβ1 ,

where β1 runs over the elements of R1 satisfying the specified conditions. If we denote
the adjoint action of LM◦

1 on ĝβ1 by ρβ1 , then we obtain that

ε(πλ, ρ
∨
w−1

1 P2|P1
) =

∏
β1>0
w1β1<0

ε(πλ, ρβ1).

In particular, by applying Lemma A.6.2 to the function f(β1) = ε(πλ, ρβ1) together
with [Tate2, (3.6.8)], we see that

ε(πλ, ρ
∨
w−1

1 P2|P1
)ε(w1πλ, ρ

∨
w−1

2 P3|P2
)ε(πλ, ρ

∨
(w2w1)−1P3|P1

)−1

=
∏
β1>0
w1β1<0

f(β1) ·
∏

w1β1>0
w2w1β1<0

f(β1) ·
∏
β1>0

w2w1β1<0

f(β1)
−1

=
∏
β1>0

w1β1<0, w2w1β1>0

f(β1)f(−β1)

=
∏
β1>0

w1β1<0, w2w1β1>0

ε(πλ, ρβ1)ε(πλ, ρ
∨
β1
)

=
∏
β1>0

w1β1<0, w2w1β1>0

det(ρβ1 ◦ ϕλ(u)).

Writing ϕλ(u) = m(u)⋊ u with m(u) ∈ M̂◦
1 , this product is equal to

det

Ad(m(u)⋊ u);
⊕
β1>0

w1β1<0, w2w1β1>0

ĝβ1

 .
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Since 1 ⋊ u acts on A
M̂◦

1
trivially, the direct sum is stable under the adjoint action of

1 ⋊ u, and we may compute this determinant as the product of the ones of Ad(m(u))

and Ad(1⋊ u). For the determinant of Ad(m(u)), we may assume that m(u) ∈ M̂◦
1 is

in T̂ ◦. Then we conclude that

det

Ad(m(u));
⊕
β1>0

w1β1<0, w2w1β1>0

ĝβ1

 =
∏
β1>0

w1β1<0, w2w1β1>0

λ∨β1(m(u)),

which is equal to ωπλ(z(w2, w1)) as we have seen above.
Finally, we show that

det

Ad(1⋊ u);
⊕
β1>0

w1β1<0, w2w1β1>0

ĝβ1

 = λ(w1)λ(w2)λ(w2w1)
−1.

Recall that if we set ∆1 (resp. ∆2) to be the set of reduced roots a ∈ R(AT ◦ , G◦) with
Ga,sc

∼= ResFa/FSL2 (resp. ResFa/FSUEa/Fa(2, 1)), and if we define f1(a) = λ(Fa/F, ψF )
(resp. f2(a) = λ(Ea/F, ψF )

2λ(Fa/F, ψF )
−1), then

λ(w1)λ(w2)λ(w2w1)
−1 =

∏
a∈∆1

a>0,w1a<0

f1(a) ·
∏
a∈∆1

w1a>0,w2w1a<0

f1(w1a) ·
∏
a∈∆1

a>0,w2w1a<0

f1(a)
−1

×
∏
a∈∆2

a>0,w1a<0

f2(a) ·
∏
a∈∆2

w1a>0,w2w1a<0

f2(w1a) ·
∏
a∈∆2

a>0,w2w1a<0

f2(a)
−1.

Here, we notice that w1 induces a bijection on ∆i, and fi(w1a) = fi(a) for i = 1, 2.
Applying Lemma A.6.2 twice, we have

λ(w1)λ(w2)λ(w2w1)
−1 =

∏
a∈∆1

a>0,w1a<0,w2w1a>0

f1(a)
2 ·

∏
a∈∆2

a>0,w1a<0,w2w1a>0

f2(a)
2

since fi(−a) = fi(a). Therefore, what we need to show is that det(Ad(1⋊ u); ĝ(a∨)) =
fi(a)

2 if a ∈ ∆i for i = 1, 2, where we set ĝ(a∨) = ĝa∨ ⊕ ĝ2a∨ and

ĝa∨ =
⊕

α∈R(T ◦,G◦)
α|A◦

T
=a

ĝα∨ .

When a ∈ ∆1, the WF -module ĝ(a∨) is isomorphic to IndWF
WFa

(1F×
a
) and hence

det(Ad(1⋊ u); ĝ(a∨)) = det
(
IndWF

WFa
(1F×

a
)
)
(−1) = λ(Fa/F, ψF )

2.

If a ∈ ∆2, then the WF -module ĝ(a∨) is isomorphic to IndWF
WFa

(n̂SU(2,1)), where n̂SU(2,1)

is the space of the sum of positive root spaces in the Lie algebra of the dual group of
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SUEa/Fa(2, 1). It is isomorphic to

Ind
WFa
WEa

(1E×
a
)⊕ ηEa/Fa

∼= 1F×
a
⊕ ηEa/Fa ⊕ ηEa/Fa ,

where ηEa/Fa is the quadratic character of F×
a associated to Ea/Fa by the local class

field theory. Hence

det(Ad(1⋊ u); ĝ(a∨)) = det
(
IndWF

WFa
(1F×

a
)
)
(−1) · det

(
IndWF

WFa
(ηEa/Fa)

)
(−1)2

= det
(
IndWF

WFa
(1F×

a
)
)
(−1) = λ(Fa/F, ψF )

2.

Since λ(Ea/F, ψF )
4 = 1, we have f2(a)

2 = λ(Ea/F, ψF )
4λ(Fa/F, ψF )

−2 = λ(Fa/F, ψF )
2.

This completes the proof of Lemma A.6.1. □

This result, along with others on the LIR will be extended to general disconnected
groups in a forthcoming paper.

Appendix B. Review of Aubert duality

The purpose of this appendix is to review several properties of Aubert duality, which
we used in the main body. In particular, we prove the commutativity of the normalized
intertwining operators with the Aubert involution up to scalars. It is a crucial result
to prove the local intertwining relations for co-tempered A-packets. This appendix is
an adaptation of an appendix in an arXiv version of [KMSW].

We also define the twisted Aubert dual, and establish some properties that we need in
this paper. A more detailed study of twisted Aubert duality will appear in a forthcoming
paper.

B.1. Definition of a complex. Let F be a non-archimedean local field and let G be
a connected reductive group over F . We identify G with the group of F -points G(F ).
We denote by Rep(G) the category of smooth representations of G of finite length.

For a parabolic subgroup P = MNP of G, where M is a Levi component of P and
NP is the unipotent radical of P , we have the normalized parabolic induction functor

IndGP : Rep(M) → Rep(G), (σ, Vσ) 7→ (π, Vπ),

where Vπ is the space of locally constant functions f : G→ Vσ such that

f(nmg) = δP (m)
1
2σ(m)f(g)

for n ∈ NP , m ∈M and g ∈ G with δP the modulus character of P , and (π(x)f)(g) =
f(gx) for x, g ∈ G. We also have the normalized Jacquet functor

JacP : Rep(G) → Rep(M), (π, Vπ) 7→ (σ, Vσ),

where

Vσ = (Vπ)NP = Vπ/⟨π(n)v − v |n ∈ NP , v ∈ Vπ⟩,
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and σ(m)v = δP (m)−
1
2π(m)v for m ∈ M and v ∈ Vπ with the image v ∈ Vσ. These

functors are adjoint, i.e., there is an isomorphism

HomG(π, Ind
G
P (σ))

∼= HomM(JacP (π), σ)

for π ∈ Rep(G) and σ ∈ Rep(M).
For (π, Vπ) ∈ Rep(G) and for a parabolic subgroup P =MNP of G, we set XP (π) =

IndGP (JacP (π)). This is the space of locally constant functions f : G → (Vπ)NP such
that

f(nmg) = π(m)f(g)

for n ∈ NP , m ∈ M and g ∈ G with f(g) ∈ Vπ a representative of f(g) ∈ (Vπ)NP . If Q
is another parabolic subgroup of G with Q ⊃ P , since NQ ⊂ NP , we have a projection

map (Vπ)NQ ↠ (Vπ)NP . We define a map φQP : XQ(π) → XP (π) by the composition of
functions G→ (Vπ)NQ with this projection (Vπ)NQ ↠ (Vπ)NP .

Fix a minimal parabolic subgroup P0 = M0NP0 of G. We denote the maximal split
central torus in a Levi subgroup M by AM , and set A0 = AM0 . Let S ⊂ X∗(A0) be the
set of (relative) simple roots corresponding to P0, and set r = |S| = dim(A0/AG). We
say that a parabolic subgroup P of G is standard if P ⊃ P0. Then there is a bijection

{J ⊂ S} → {standard parabolic subgroups of G}, J 7→ PJ ,

where PJ =MJNPJ is such that Lie(PJ) is the sum of A0-weight spaces for all weights
that are Z-linear combinations of S with non-negative contributions of S \ J . We write
XJ(π) = XPJ (π) for short. Note that if I ⊂ J , then PI ⊂ PJ . Hence we have a map

φJI = φPJPI : XJ(π) → XI(π) for π ∈ Rep(G).
For J ⊂ S, we consider the 1-dimensional vector space

ΛJ =

|S\J |∧
(C|S\J |),

which is regarded as the trivial representation of G. Let {ei}i∈S\J be the standard basis

of C|S\J |. For I ⊂ J ⊂ S with |J \I| = 1, letting J \I = {j}, we define the isomorphism

ϵJI : ΛJ → ΛI , ω 7→ ω ∧ ej.

Consider a functor

X̃J : Rep(G) → Rep(G)

given by X̃J(π) = XJ(π)⊗C ΛJ for π ∈ Rep(G). Then we define

φ̃JI : X̃J(π) → X̃I(π)

by φ̃JI = φJI ⊗ ϵJI .
For π ∈ Rep(G) and for 0 ≤ t ≤ r, set

X̃t(π) =
⊕
J⊂S
|J |=t

X̃J(π).
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In particular, X̃r(π) = π. For 1 ≤ t ≤ r, define dt : X̃t(π) → X̃t−1(π) by

dt

∑
J⊂S
|J |=t

xJ

 =
∑
I⊂S

|I|=t−1

∑
I⊂J⊂S
|J |=t

φ̃JI (xJ),

where xJ ∈ X̃J(π). Then we have a sequence

0 −−−→ X̃r(π) −−−→ X̃r−1(π) −−−→ · · · −−−→ X̃0(π)

of representations of G.

B.2. The Aubert involution. For 0 ≤ t ≤ r, we denote by Rep(G)t the full subcat-
egory of Rep(G) consisting of representations π such that for every irreducible subquo-
tient π′ of π, there is J ⊂ S with |J | = t such that π′ is a subquotient of IndGPJ (σ) for
an irreducible supercuspidal representation of MJ . Bernstein’s decomposition implies
the block decomposition

Rep(G) =
r∏
t=0

Rep(G)t.

Note that the factor Rep(G)r consists of direct sums of supercuspidal representations
of G, and every supercuspidal representation of G lies in Rep(G)r.

Theorem B.2.1 ([Au, Théorème 3.6]). For π ∈ Rep(G)t, we have X̃0(π) = · · · =
X̃t−1(π) = 0. Moreover, the sequence

0 −−−→ X̃r(π) −−−→ X̃r−1(π) −−−→ · · · −−−→ X̃t(π)

is exact.

Definition B.2.2. For π ∈ Rep(G)t, set

π̂ = X̃t(π)/dt+1(X̃t+1(π))

and call π̂ the Aubert dual of π.

Theorem B.2.3. Aubert duality π 7→ π̂ satisfies the following properties.

(1) The map Rep(G) ∋ π → π̂ ∈ Rep(G) is an exact covariant functor.
(2) For π ∈ Rep(G)t, we have

[π̂] = (−1)r−t
∑

P=MNP

(−1)dim(AM/AG)[IndGP (JacP (π))]

in the Grothendieck group R(G), where P runs over the set of standard parabolic
subgroups of G. Here, [Π] denotes the element in R(G) corresponding to a
representation Π of G of finite length.

(3) If π is irreducible, then π̂ is also irreducible.
(4) The Aubert dual of π̂ is isomorphic to π as representations of G.
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(5) Let P be a parabolic subgroup of G with Levi component M , and denote by P the
parabolic subgroup of G opposite to P . Then for π ∈ Rep(M) of finite length,
the Aubert dual of IndGP (π) is isomorphic to IndG

P
(π̂).

Proof. For (1), see [SS, III.3]. The assertions (2), (3) and (4) are [Au, Corollaire 3.9].
Finally, (5) is [Ber2, Theorem 31 (4)]. □
B.3. Intertwining operators and Aubert duality. In this subsection, let G be one
of the following quasi-split classical groups

SO2n+1(F ), Sp2n(F ), O2n(F ), Un.

Let P = MN be a maximal parabolic subgroup of G so that M ∼= GLk(E) × G0 for
some classical group G0 of the same type as G. We denote by P = MN the parabolic
subgroup of G opposite to P . We fix ψ ∈ Ψ(M).

In this subsection, we consider Aubert dualities for G◦ and M◦, the connected com-
ponents of the identity of G and M , respectively. To avoid Aubert duality for non-
connected groups explained in the next subsections, we assume the following.

Hypothesis B.3.1. There areA-packets Πψ and Πψ̂ which are multi-sets over Irrunit(M).

Moreover, there is a bijection Πψ ∋ π 7→ π′ ∈ Πψ̂ such that π′|M◦ is the Aubert dual of

π|M◦ .

Write ψ = ψGL ⊕ ψ0 with ψ0 ∈ Ψ(G0) and π = τ ⊠ σ for τ ∈ Irr(GLk(E)) corre-
sponding to ψGL and σ ∈ Πψ0 . We set ψs = ψGL| · |sE ⊕ ψ0 and πs = τ | · |sE ⊠ σ for
s ∈ C.

As in Section 1.7, for w ∈ W (M◦) and s ∈ C, we have the normalized intertwining
operator

RP (w, πs, ψs) : IP (πs) → IP (wπs),

which is a meromorphic family of operators. Since π is unitary, RP (w, πs, ψs) is regular
at s = 0, and we obtain a well-defined operator RP (w, π, ψ) = RP (w, πs, ψs)|s=0.

Note that ÎP (πs) ∼= IP (π̂s) as representations of G◦ by Theorem B.2.3 (5). Since
ŵπs ∼= wπ̂s, by the functoriality of Aubert duality, we have

̂RP (w, πs, ψs) : IP (π̂s) → IP (wπ̂s).

On the other hand, we can define a normalized intertwining operator

RP (w, π̂s, ψ̂s) : IP (π̂s) → IP (wπ̂s),

which is regular at s = 0.

Proposition B.3.2. Assume Hypothesis B.3.1. We further assume that RP (w, π̂, ψ̂)
is bijective.

(1) If G = G◦, then there is c ∈ C× such that

̂RP (w, π, ψ) = c ·RP (w, π̂, ψ̂).

(2) Suppose that G = O2n(F ).
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(a) If P ̸= P ◦ and if σ|G◦
0
is irreducible, then there is c ∈ C× such that

̂RP (w, π, ψ) = c ·RP (w, π̂, ψ̂).

(b) Otherwise, there is π◦
s ∈ Irr(M◦) such that IP (πs) = IP ◦(π◦

s) = IndGP ◦(π◦
s).

If we denote by I+P ◦(π◦
s) (resp. I

−
P ◦(π◦

s)) the subspace of IP ◦(π◦
s) consisting of

functions fs on G whose supports are contained in G◦ (resp. G \G◦), then
IP ◦(π◦

s) = I+P ◦(π◦
s)⊕I−P ◦(π◦

s). Moreover, there are two constants c+, c− ∈ C×

such that

̂RP (w, π, ψ)f± = c± ·RP (w, π̂, ψ̂)f±

for all f± in the Aubert dual of I±P ◦(π◦
s).

Proof. Suppose that G = G◦. Then since IP (π̂s) is irreducible for almost all q−sE , we
have the inverse map

RP (w, π̂s, ψ̂s)
−1 : IP (wπ̂s) → IP (π̂s),

for almost all q−sE . It is regular at s = 0 since RP (w, π̂, ψ̂) is bijective. We consider the
composition

RP (w, π̂s, ψ̂s)
−1 ◦ ̂RP (w, πs, ψs).

This is a meromorphic family of self-intertwining operators on IP (π̂s). Again by the
irreducibility of IP (π̂s) for almost all q−sE , we can find a meromorphic function c(s) such
that

RP (w, π̂s, ψ̂s)
−1 ◦ ̂RP (w, πs, ψs) = c(s) · id.

Since the left-hand side is regular at s = 0, we can define c = c(0) ∈ C. Then

̂RP (w, π, ψ) = c ·RP (w, π̂, ψ̂).

Since RP (w, π, ψ) is not identically zero, so is its Aubert dual. Hence c ̸= 0. This
completes the proof of (1).

When G = O2n(F ), the proof is essentially the same, but we need to consider the
restrictions to the connected components of the identity. First, we consider (2a). Then
πs|M◦ = (π|M◦)s is irreducible, and IP (πs)|G◦ ∼= IndG

◦

P ◦((π|M◦)s) by Lemma 2.1.3 (a).

By regarding RP (w, π, ψ) and RP (w, π̂, ψ̂) as G
◦-homomorphisms, the same argument

as in (1) shows that

̂RP (w, π, ψ) = c ·RP (w, π̂, ψ̂)

for some c ∈ C×.
Next, we assume that P = P ◦ or π|M◦ is reducible. Then by Lemma 2.1.3 (b), we

have IP (πs) = IP ◦(π◦
s) for any irreducible component π◦ of π|M◦ . Moreover, by the

proof of that lemma, we have IP ◦(π◦
s) = I+P ◦(π◦

s) ⊕ I−P ◦(π◦
s). As a G◦-homomorphism,

RP (w, πs, ψs) can be decomposed to the direct sum of

RP (w, πs, ψs) : I
±
P ◦(π◦

s) → I±δP ◦ (wπ◦
s),
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where δ = det(w) ∈ {±1}. By the same argument as in (1), we can find c± ∈ C× such
that

̂RP (w, π, ψ) = c± ·RP (w, π̂, ψ̂)

holds on the Aubert dual of I±P ◦(π◦
s). This completes the proof of (2). □

Now suppose that τ is conjugate-self-dual. Then as in Section 1.10, we can define
the normalized self-intertwining operators

⟨ũ, π̃⟩RP (wu, π̃, ψ) : IP (π) → IP (π),

⟨ũ, ˜̂π⟩RP (wu,
˜̂π, ψ̂) : IP (π̂) → IP (π̂).

Now we have the following corollary, which is a key result to prove Theorem 1.10.5.

Corollary B.3.3. Assume Hypothesis B.3.1. We further assume that RP (w, π̂, ψ̂) is
bijective, and that τ is conjugate-self-dual.

(1) If we are in the case (1) or (2a) of Proposition B.3.2, then there is c ∈ C× such
that

(⟨ũ, π̃⟩RP (wu, π̃, ψ))̂ = c · ⟨ũ, ˜̂π⟩RP (wu,
˜̂π, ψ̂).

(2) If we are in the case (2b) of Proposition B.3.2, then there are two constants
c+, c− ∈ C× such that

(⟨ũ, π̃⟩RP (wu, π̃, ψ))̂ = c± · ⟨ũ, ˜̂π⟩RP (wu,
˜̂π, ψ̂)

holds on the Aubert dual of I±P ◦(π◦
s).

Proof. Recall that the normalized intertwining operator ⟨ũ, π̃⟩RP (wu, π̃, ψ) is defined
by

⟨ũ, π̃⟩RP (wu, π̃, ψ)f(g) = ⟨ũ, π̃⟩π̃(wu) (RP (wu, π, ψ)f(g))

for an isomorphism ⟨ũ, π̃⟩π̃(wu) : wuπ
∼−→ π. By Schur’s lemma, its Aubert dual is equal

to ⟨ũ, ˜̂π⟩˜̂π(wu) up to a nonzero constant. Then the claim follows from Proposition
B.3.2. □
Remark B.3.4. In the next subsections, we introduce Aubert duality for non-connected
groups, in particular for O2n(F ). However, an analogue of Theorem B.2.3 (5) will not be
established, and hence a direct approach as in Proposition B.3.2 (1) cannot be applied.

B.4. Twisted Aubert duality as a functor. Now we define twisted Aubert duality,
and establish some properties that we need in this paper. We use the same notations
in Sections B.1 and B.2.

Let θ be an involution of G which preserves P0 and M0. Then θ also preserves A0

and acts on the set S of (relative) simple roots. We consider the disconnected group

G̃ = G ⋊ ⟨θ⟩. Let Rep(G̃) be the category of smooth representations of G̃ of finite

length. For 0 ≤ t ≤ r, we denote by Rep(G̃)t the inverse image of Rep(G)t under the

restriction map Res : Rep(G̃) → Rep(G).

Lemma B.4.1. The category Rep(G̃) has a block decomposition
∏

tRep(G̃)t.
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Proof. The automorphism θ acts on Rep(G) by π 7→ π ◦ θ. This action preserves
Rep(G)t. Hence the Bernstein decomposition for Rep(G) gives the decomposition for

Rep(G̃). Since the functor Res : Rep(G̃) → Rep(G) is faithful, the orthogonality of the
factors follows. □

Let π̃ ∈ Rep(G̃)t. Set π = Res(π̃) ∈ Rep(G)t and denote the space of π by Vπ. Recall
that for J ⊂ S, we have a representation XJ(π) of G. This is a space of functions
f : G→ (Vπ)NPJ . We have a map

XJ(θ) : XJ(π) → Xθ(J)(π), XJ(θ)(f)(g) = π̃(θ)(f(θ(g))).

On the other hand, the bijection θ : (S \ J) → (S \ θ(J)) induces an isomorphism
λJ(θ) : ΛJ → Λθ(J).

Lemma B.4.2. Let I ⊂ J ⊂ S be two subsets.

(1) We have XI(θ) ◦ φJI = φ
θ(J)
θ(I) ◦XJ(θ).

(2) If |J | = |I|+ 1, then λI(θ) ◦ ϵJI = ϵ
θ(J)
θ(I) ◦ λJ(θ).

Proof. For f ∈ XJ(π), we have a commutative diagram

G
θ // G

f // (Vπ)NPJ
// //

π̃(θ)

��

(Vπ)NPI

π̃(θ)

��
(Vπ)NPθ(J)

// // (Vπ)NPθ(I) .

This shows that XI(θ) ◦ φJI (f) = φ
θ(J)
θ(I) ◦XJ(θ)(f).

The second assertion is obvious. □
By taking the tensor product XJ(θ)⊗ λJ(θ), we obtain a map

X̃J(θ) : X̃J(π) → X̃θ(J)(π).

By Lemma B.4.2, it satisfies that X̃I(θ) ◦ φ̃JI = φ̃
θ(J)
θ(I) ◦ X̃J(θ) if |J | = |I| + 1. Putting

these together for all J ⊂ S with |J | = t, we can define an isomorphism

X̃t(θ) : X̃t(π) → X̃t(π)

by requiring the diagram

X̃t(π)
X̃t(θ)−−−→ X̃t(π)y y

X̃J(π)
X̃J (θ)−−−→ X̃θ(J)(π)

is commutative for all J ⊂ S with |J | = t, where the vertical maps are the canonical
projections.

Proposition B.4.3. We have the following.
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(1) The isomorphism X̃t(θ) satisfies that X̃t(π(g))◦ X̃t(θ) = X̃t(θ)◦ X̃t(π(θ(g))) for
g ∈ G.

(2) The differential dt : X̃t(π) → X̃t−1(π) satisfies that dt ◦ X̃t(θ) = X̃t−1(θ) ◦ dt.
(3) For π̃, π̃′ ∈ Rep(G̃) with π = π̃|G and π′ = π̃′|G, if φ : π̃ → π̃′ is a G̃-equivariant

map, then the induced homomorphism X̃t(φ) : X̃t(π) → X̃t(π
′) satisfies that

X̃t(φ) ◦ X̃t(θ) = X̃t(θ) ◦ X̃t(φ).

Proof. If f ∈ XJ(π), then

XJ(π(g)) ◦XJ(θ)(f)(x) = XJ(θ)(f)(xg)

= π̃(θ)
(
f(θ(xg))

)
= π̃(θ)

(
XJ(π(θ(g)))f(θ(x))

)
= XJ(θ) ◦XJ(π(θ(g)))(f)(x).

SinceG acts on ΛJ trivially, this action commutes with λJ(θ). Hence X̃J(π(g))◦X̃J(θ) =

X̃J(θ) ◦ X̃J(π(θ(g))) for g ∈ G. This implies (1).
Next, we have

dt ◦ X̃t(θ)

∑
J⊂S
|J |=t

fJ

 = dt

∑
J⊂S
|J |=t

X̃θ(J)(θ)(fθ(J))


=
∑
I⊂S

|I|=t−1

∑
I⊂J⊂S
|J |=t

φ̃JI ◦ X̃θ(J)(θ)(fθ(J))

=
∑
I⊂S

|I|=t−1

∑
I⊂J⊂S
|J |=t

X̃θ(I)(θ) ◦ φ̃θ(J)θ(I) (fθ(J))

= X̃t−1(θ)

 ∑
I⊂S

|I|=t−1

∑
I⊂J⊂S
|J |=t

φ̃JI (fJ)

 .

Hence we obtain (2).
Finally, in the situation of (3), if f ∈ XJ(π), then

XJ(φ) ◦XJ(θ)(f)(x) = φ ◦ π̃(θ)
(
f(θ(x))

)
= π̃′(θ)

(
φ(f(θ(x)))

)
= XJ(θ) ◦XJ(φ)(f)(x).

This implies (3). □



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 155

On X̃t(π), we have operators X̃t(θ) and X̃t(π(g)) for g ∈ G. For g̃ ∈ G̃, we write

X̃t(π̃(g̃)) =

{
X̃t(π(g)) if g̃ = g ∈ G,

X̃t(π(g)) ◦ X̃t(θ) if g̃ = g ⋊ θ ∈ G⋊ θ.

Then by Proposition B.4.3 (1), we see that

X̃t(π̃(g̃ · g̃′)) = X̃t(π̃(g̃)) ◦ X̃t(π̃(g̃
′))

for g̃, g̃′ ∈ G̃. This gives the C-vector space X̃t(π) the structure of a representation of

G̃. We denote this representation by X̃t(π̃). Moreover, the automorphism X̃t(π̃(g̃)) is
functorial in π̃ by Proposition B.4.3 (3).

Namely, we have a functor

X̃t : Rep(G̃) → Rep(G̃).

Lemma B.4.4. For π̃ ∈ Rep(G̃), we have

X̃t(π̃)|G = X̃t(π̃|G).

Proof. This is obvious from the construction. □

Proposition B.4.5. If π̃ ∈ Rep(G̃)t, then X̃0(π̃) = · · · = X̃t−1(π̃) = 0, and the
sequence

0 −−−→ X̃r(π̃) −−−→ X̃r−1(π̃) −−−→ · · · −−−→ X̃t(π̃)

is an exact sequence of representations of G̃.

Proof. By Theorem B.2.1 and Lemma B.4.4, we have the first assertion and the ex-
actness of the sequence. On the other hand, by Proposition B.4.3 (2), this sequence

consists of G̃-equivariant maps. □
Now we can define twisted Aubert duality.

Definition B.4.6. For π̃ ∈ Rep(G̃)t, set̂̃π = X̃t(π̃)/dt+1(X̃t+1(π̃))

and call ̂̃π the twisted Aubert dual of π̃.

Proposition B.4.7. Twisted Aubert duality π̃ 7→ ̂̃π satisfies the following properties.

(1) The map Rep(G̃) ∋ π̃ → ̂̃π ∈ Rep(G̃) is an exact covariant functor.

(2) If we write π = π̃|G, then ̂̃π|G = π̂.

(3) If π̃ is irreducible, then ̂̃π is also irreducible.

Proof. (1) follows from the construction together with Theorem B.2.3 and Lemma B.4.4.
(2) is a direct consequence of Lemma B.4.4.

To show (3), let π̃ be an irreducible representation of G̃. Set π = π̃|G so that

π̂ = ̂̃π|G by (2). Note that π is a direct sum of at most two irreducible representations
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of G since (G̃ : G) = 2. If π is irreducible, then so is π̂ and hence ̂̃π must be an

irreducible representation of G̃. Suppose that π = π1 ⊕ π2 with πi irreducible. Then
π̂ = π̂1 ⊕ π̂2. Moreover, π̃(θ) gives a linear isomorphism π1

∼−→ π2 as C-vector spaces.
By the construction, it induces a linear isomorphism π̂1

∼−→ π̂2. Since this is nothing

but ̂̃π(θ), we conclude that ̂̃π is irreducible as a representation of G̃. □

Remark B.4.8. We do not know whether the twisted Aubert duality functor π̃ 7→ ̂̃π is
really an involution. This and the commutativites of the twisted Aubert duality functor
with the contragredient functor, the parabolic induction functors, and Jacquet functors
would be solved in a forthcoming paper. In this paper, we do not use these expected
properties.

If η is a character of G satisfying η ◦ θ = η, then we can extend η to a character of

G̃ by setting η(θ) = 1. Hence for π̃ ∈ Rep(G̃), one can consider the twist π̃ ⊗ η.

Lemma B.4.9. Let η be a character of G such that η ◦ θ = η. Then for π̃ ∈ Rep(G̃),

the twisted Aubert dual of π̃ ⊗ η is equal to ̂̃π ⊗ η.

Proof. This follows from the construction. □
B.5. Twisted Aubert duality at the level of Grothendieck groups. Let P =
MNP be a standard parabolic subgroup of G. If P is θ-stable, we may assume that M

is also θ-stable. In this case, write P̃ = P ⋊⟨θ⟩ and M̃ =M⋊⟨θ⟩. Then the normalized
parabolic induction functor

IndG̃
P̃
: Rep(M̃) → Rep(G̃)

and the normalized Jacquet functor

JacP̃ : Rep(G̃) → Rep(M̃)

can be defined as in the connected case. Note that for π̃ ∈ Rep(G̃), we have

X̃P (π̃) ∼= IndG̃
P̃
(JacP̃ (π̃))⊗ ΛJ

as representations of G̃, where J ⊂ S is such that P = PJ .

Let R(G̃) be the Grothendieck group of Rep(G̃). When π̃ ∈ Rep(G̃), we denote

by [π̃] ∈ R(G̃) the corresponding element. The character Θπ̃ of π̃, which is a linear

functional on C∞
c (G̃), depends only on [π̃]. Moreover, it gives a map

R(G̃) ∋ [π̃] 7→ Θπ̃ ∈ C∞
c (G̃)∗.

For [π̃1], [π̃2] ∈ R(G̃), we write

[π̃1]
θ
= [π̃2]

if Θπ̃1(f) = Θπ̃2(f) for any f ∈ C∞
c (G⋊ θ). For example, for π ∈ Irr(G), if IndG̃G(π) =

π̃1 ⊕ π̃2 is reducible, then [π̃2]
θ
= −[π̃1].

In this subsection, we prove the following.



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 157

Proposition B.5.1. Let π̃ ∈ Rep(G̃)t. Then

[̂̃π] θ
= (−1)r−t

∑
P=MNP

(−1)dim((AM/AG)
θ)
[
IndG̃

P̃
(JacP̃ (π̃))

]
,

where P runs over the set of θ-stable standard parabolic subgroups of G, and (AM/AG)
θ

is the subgroup of AM/AG fixed by θ.

Proof. By construction, we have the exact sequence

0 −−−→ X̃r(π̃) −−−→ X̃r−1(π̃) −−−→ · · · −−−→ X̃t(π̃) −−−→ ̂̃π −−−→ 0

of representations of G̃. Hence

[̂̃π] = (−1)t
r∑
j=t

(−1)j
[
X̃j(π̃)

]
.

Since X̃j(π̃) = 0 for 0 ≤ j ≤ t− 1, we may extend the sum over all 0 ≤ j ≤ r.
Recall that if we write π = π̃|G, as representations of G, we have

X̃j(π̃) =
⊕
J⊂S
|J |=j

XJ(π)⊗ ΛJ .

Moreover, the action of g⋊θ on X̃j(π̃) sends the summandXJ(π)⊗ΛJ toXθ(J)(π)⊗Λθ(J).
This means that if θ(J) ̸= J , then[

(XJ(π)⊗ ΛJ)⊕
(
Xθ(J)(π)⊗ Λθ(J)

)] θ
= 0,

and hence

[X̃j(π̃)]
θ
=

∑
J⊂S

|J |=j, θ(J)=J

[XJ(π)⊗ ΛJ ] =
∑
J⊂S

|J |=j, θ(J)=J

[
IndG̃

P̃J
(JacP̃J (π̃))⊗ ΛJ

]
.

Note that ΛJ is a 1-dimensional C-vector space, and g ⋊ θ acts on it by a scalar λJ(θ),
which is equal to the sign of the action of θ on S \ J . Hence we have

[̂̃π] θ
= (−1)t

∑
J⊂S
θ(J)=J

(−1)|J |λJ(θ)
[
IndG̃

P̃J
(JacP̃J (π̃))

]
.

Therefore, what we have to show is the equation

λJ(θ) = (−1)dim(AM/AG) · (−1)dim((AM/AG)
θ)

for J = θ(J) ⊂ S with P = PJ = MNP since dim(AM/AG) = |S \ J | = r − |J |. Note
that S\J forms a basis of the Q-vector space X∗(AM/AG)⊗Q. Moreover, θ acts on this
space and its co-invariant space X∗(AM/AG)θ⊗Q is isomorphic to X∗((AM/AG)

θ)⊗Q.
As a basis of this space, one can take the set of θ-orbits in S \ J . If we denote the
number of θ-orbits in S \ J of order n by mn, we see that

m1 + 2m2 = dim(AM/AG), m1 +m2 = dim((AM/AG)
θ).
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Since λJ(θ) = (−1)m2 by definition, we obtain the claim. □

Appendix C. Derivatives of tempered representations

We use the notations in Sections 1.5 and 1.6, except that we denote the normalized
absolute value of E by | · | for simplicity. In particular, let G be one of the following
quasi-split classical groups

SO2n+1(F ), Sp2n(F ), O2n(F ), Un.

Throughout this appendix, we assume Hypothesis 5.1.1. For convenience, we restate
this hypothesis again.

Hypothesis C.0.1. For any quasi-split classical group G′ with dim(St
Ĝ′) ≤ dim(StĜ),

and for any tempered L-parameter ϕ′ for G′, there exists a subset Πϕ′ of Irrtemp(G
′)

equipped with ⟨·, π′⟩ϕ′ satisfying (ECR1) and (ECR2) in Section 1.6.

The purpose of this appendix is to extend some results in [Mœ], [X1] and [At] to
G. Note that in [At], the author used Mœglin’s construction of tempered L-packets,
which relies on (ECR1) and (ECR2) for all classical groups G′. Hence it is not trivial
that the arguments in [At] can work under our weaker hypothesis. To avoid Mœglin’s
construction, we will apply the argument in [X1] directly to tempered L-parameters.

C.1. Review of Tadić’s formula. One of the most useful tools to study represen-
tations of p-adic classical groups is the Geometric Lemma [BZ, Theorem 5.2], or its
semisimplified version called Tadić’s (structure) formula. In this subsection, we recall
this formula.

First, we prepare some notations for GLN(E). Let R(GLN(E)) be the Grothendieck
group of Rep(GLN(E)), and set

RGL =
∞⊕
N=0

R(GLN(E)).

It is a graded commutative algebra equipped with the product

m : RGL ⊗RGL → RGL, τ1 ⊗ τ2 7→ τ1 × τ2

defined using the parabolic induction functors. The unit element of RGL is the trivial
representation 1GL0(E) of the trivial group GL0(E). Moreover, we have a ring homo-
morphism

m∗ : RGL → RGL ⊗RGL

defined using the normalized Jacquet functors by

R(GLN(E)) ∋ τ 7→
N∑
k=0

Jac(k,N−k)(τ).
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Here, Jac(k1,k2) denotes the Jacquet functor along the standard parabolic subgroup
P(k1,k2) of GLk1+k2(E) with the Levi factor GLk1(E)×GLk2(E). For these facts, see [Z,
Proposition 1.7]. For example, by [Z, Proposition 9.5], we know that

m∗(∆([x, y]ρ)) =

y−x+1∑
i=0

∆([x+ i, y]ρ)⊗∆([x, x+ i− 1]ρ).

Here, we formally understand that ∆([x, x− 1]ρ) = 1GL0(E) for any x ∈ R. We define a
ring homomorphism

M∗ : RGL → RGL ⊗RGL

by the composition
M∗ = (m⊗ id) ◦ (c·∨ ⊗m∗) ◦ s ◦m∗,

where s : RGL⊗RGL → RGL⊗RGL denotes the transposition s(
∑

i τi⊗τ ′i) =
∑

i τ
′
i⊗τi.

For example,

M∗(∆([x, y]ρ)) =
∑

x−1≤z≤y
z+1≤w≤y+1

(∆([−z,−x]cρ∨)×∆([w, y]ρ))⊗∆([z + 1, w − 1]ρ).

Here, the sum is over z = x− 1, x, . . . , y and w = z + 1, z + 2, . . . , y + 1.
Next, let G be a quasi-split classical group as above. We denote by G◦ the connected

component of 1 ∈ G. Note that G◦ = G unless G = O2n(F ), in which case G◦ =
SO2n(F ). Fix a rational Borel subgroup B◦ = T ◦U of G◦, and we denote the normalizer
of (T ◦, B◦) in G by T . Let P ◦ =M◦NP be the standard parabolic subgroup of G◦ with
Levi subgroup M◦ isomorphic to GLd1(E)×· · ·×GLdr(E)×G◦

0, where G
◦
0 is a classical

group of the same type as G◦. If P ◦ is stable under the adjoint action of T , we set
P = P ◦ · T and M = M◦ · T so that M ∼= GLd1(E)× · · · ×GLdr(E)×G0. Otherwise,
we put P = P ◦ and M =M◦.

For π0 ∈ Rep(G0) and τi ∈ Rep(GLdi(E)) for 1 ≤ i ≤ r, we denote the normalized
parabolically induced representation by

τ1 × · · · × τr ⋊ π0 = IndGP (τ1 ⊠ · · ·⊠ τr ⊠ π0).

On the other hand, for π ∈ Rep(G), we have the normalized Jacquet module

JacP (π) ∈ Rep(M)

along P . They are related by Frobenius reciprocity

HomG(π, Ind
G
P (σ))

∼= HomM(JacP (π), σ)

for π ∈ Rep(G) and σ ∈ Rep(M).
Recall that R(G) is the Grothendieck group of Rep(G). If P = MNP is as above,

the normalized parabolic induction and the normalized Jacquet functor induce linear
maps

IndGP : R(M) → R(G),

JacP : R(G) → R(M).
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If (P ′,M ′) is conjugate to (P,M) by an element in T , then we can identify R(M ′)
(resp. IndGP ′ , JacP ′) with R(M) (resp. IndGP , JacP ).

Set

RG =
⊕
G′

R(G′),

where G′ runs over all quasi-split classical groups of the same type as G. It possesses
a module structure defined by

⋊ : RGL ⊗RG → RG, τ ⊗ π 7→ τ ⋊ π

and a comodule structure

µ∗ : RG → RGL ⊗RG

defined by

R(G) ∋ π 7→
n∑
k=0

JacPk(π).

Here, n is the F -rank of G, and JacPk denotes the normalized Jacquet functor along a
standard parabolic subgroup Pk of G with the Levi factor of the form GLk(E)×G0.

The Geometric Lemma at the level of Grothendieck groups is stated as follows.

Theorem C.1.1 (Tadić’s formula ([Tad1, Theorems 5.4, 6.5], [Ban, Theorem 7.3])).
For τ ∈ RGL and π ∈ RG, we have

µ∗(τ ⋊ π) =M∗(τ)⋊ µ∗(π).

Here, for τ1, τ2, τ3 ∈ RGL and π0 ∈ RG, we set

(τ1 ⊗ τ2)⋊ (τ3 ⊗ π0) = (τ1 × τ3)⊗ (τ2 ⋊ π0).

Remark C.1.2. Tadić’s formula holds even for O2n(F ) (see [X1, (5.5)] or [Ban, Theo-
rem 7.3]). However, as in [X1, page 463], for SO2n(F ), this formula needs to be modified.
This is one of the reasons why we do not work with SO2n(F ) but with O2n(F ).

The following is also a basic and useful tool.

Theorem C.1.3 (Casselman’s criterion ([Kon2, Lemma 2.4])). Let π be an irreducible
representation of G. Then the following are equivalent.

• π is a discrete series (resp. tempered) representation;
• for any irreducible representation τ ⊗π0 appearing in µ∗(π)−1GL0(E)⊗π, if we
denote the central character of τ by ωτ = χu| · |s with χu unitary and s ∈ R,
then s > 0 (resp. s ≥ 0).

C.2. Derivatives. Now we introduce the notion of derivatives. Note that this differs
from the Bernstein–Zelevinsky derivatives in [BZ].

Definition C.2.1. Fix an irreducible supercuspidal representation ρ of GLd(E).
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(1) Suppose that G◦ has a standard parabolic subgroup P ◦ =M◦NP such that M ∼=
GLd(E)×G−. For π ∈ R(G), if we write

JacP (π) =
∑
i∈I

τi ⊗ σi ∈ R(GLd(E))⊗R(G−)

with τi ∈ Irr(GLd(E)) and σi ∈ Irr(G−), we define the ρ-derivative Dρ(π) by

Dρ(π) =
∑
i∈I
τi∼=ρ

σi ∈ R(G−).

If such a parabolic subgroup P ◦ does not exist, we set Dρ(π) = 0.

(2) For k ≥ 0, we define the k-th ρ-derivative D
(k)
ρ (π) by

D(k)
ρ (π) =

1

k!
Dρ ◦ · · · ◦Dρ︸ ︷︷ ︸

k

(π).

In particular, D
(0)
ρ (π) = π.

(3) If D
(k)
ρ (π) ̸= 0 but D

(k+1)
ρ (π) = 0, we say that D

(k)
ρ (π) is the highest ρ-derivative,

and denote it by Dmax
ρ (π).

(4) We say that π is ρ-reduced if Dρ(π) = 0.

Note that for any π ∈ Irr(G), it follows from Frobenius reciprocity that Dρ(π) ̸= 0
if and only if there is an inclusion π ↪→ ρ ⋊ π0 for some representation π0. By [X1,
Lemma 5.6], if ρ′ ̸∼= ρ| · |±1, then Dρ ◦Dρ′ = Dρ′ ◦Dρ.

We write ρ×k = ρ × · · · × ρ (k times) for short. Note that for π ∈ R(G), the

k-th derivative D
(k)
ρ (π) is a linear combination of irreducible representations whose

coefficients are non-negative integers. In fact, it is characterized such that

JacP (π) = ρ×k ⊗D(k)
ρ (π) +

∑
i

τi ⊠ πi,

where P ◦ =M◦NP is such that M◦ = GLdk(E)×G◦
0, and τi⊠ πi ∈ Irr(M) is such that

τi ̸∼= ρ×k.

Lemma C.2.2. Suppose that ρ is not conjugate-self-dual. Then for any π ∈ Irr(G),
its highest derivative Dmax

ρ (π) is also irreducible. Moreover, the map Irr(G) ∋ π 7→
Dmax
ρ (π) is injective in the following sense: for π, π′ ∈ Irr(G), if Dmax

ρ (π) = D
(k)
ρ (π) =

D
(k)
ρ (π′), then π ∼= π′.

Proof. Write Dmax
ρ (π) = D

(k)
ρ (π). One can take an irreducible summand π0 of Dmax

ρ (π)
such that

JacP (π) ↠ ρ⊠ · · ·⊠ ρ︸ ︷︷ ︸
k

⊠π0
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in Rep(M), where P ◦ = M◦NP is an appropriate standard parabolic subgroup of G◦.
By Frobenius reciprocity, we have

π ↪→ ρ×k ⋊ π0.

In particular, we have

π0 ≤ D(k)
ρ (π) ≤ D(k)

ρ

(
ρ×k ⋊ π0

)
in R(G0) for some classical group G0. (Here, for A,B ∈ R(G0), we write A ≤ B if
B − A is a non-negative combination of irreducible representations.) Since π0 is ρ-
reduced and since ρ is not conjugate-self-dual, by applying Tadić’s formula (Theorem
C.1.1) to ρ×k ⋊ π0, we have

D(k)
ρ

(
ρ×k ⋊ π0

)
= π0,

and hence we have D
(k)
ρ (π) = π0.

Suppose that π′ ∈ Irr(G) satisfies D
(k)
ρ (π′) = π0 and π′ ̸∼= π. Then π′ is also an

irreducible subrepresentation of ρ×k ⋊ π0. However, in the Grothendieck group, since
π′ ≤ (ρ×k ⋊ π0)− π, we have

π0 = D(k)
ρ (π′) ≤ D(k)

ρ

(
(ρ×k ⋊ π0)− π

)
= 0.

This is a contradiction. □
By the compatibility of Aubert duality with Jacquet functors, we obtain the following.

Lemma C.2.3. Fix an irreducible cuspidal representation ρ of GLd(E). Let π be a
representation of G of finite length. Then

(Dρ(π))̂ = Dcρ∨(π̂).

Proof. This is a special case of [Au, Théorème 1.7 (2)] if G = G◦. The same proof
works for G = O2n(F ). □

Similarly, let P =MNP be a θ-stable standard parabolic subgroup of GLN(E) such

that M ∼= GLd(E)×GLN−(E)×GLd(E). For π̃ ∈ R(G̃LN(E)), if we write

JacP̃ (π̃) =
∑
i∈I

τi ⊗ σ̃i ⊗ cτ∨i +
∑
j∈J

(πj + πj ◦ θ)

with τi ∈ Irr(GLd(E)), σ̃i ∈ Irr(G̃LN−(E)) and πj ∈ Irr(M) such that πj ̸∼= πj ◦ θ, we
define

D̃ρ(π̃) =
∑
i∈I
τi∼=ρ

σ̃i ∈ R(G̃LN−(E)).

Moreover, for k ≥ 0, we set

D̃(k)
ρ (π̃) =

1

k!
D̃ρ ◦ · · · ◦ D̃ρ︸ ︷︷ ︸

k

(π̃).

Note that a priori, D̃
(k)
ρ (π̃) is in R(G̃LN0(E))⊗Z Q for some N0 ≥ 0.
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C.3. Compatibility of Jacquet functors with twisted endoscopy. We denote by
C[Π(G)] (resp. Cθ[Π(N)]) the space of invariant (resp. twisted invariant) distributions
on G (resp. GLN(E)) which are finite in the sense that they are finite linear combina-
tions of irreducible characters. Then the representation theoretic characters provide an
isomorphism

C[Π(G)] ∼= R(G)⊗Z C.
For any π ∈ R(G), its character is denoted by Θπ ∈ C[Π(G)]. Finally, we denote the
space of stable finite linear combinations of characters of G by C[Π(G)]st.

By the above isomorphism, one can transfer our definition of Jacquet functors to the
spaces C[Π(G)] and Cθ[Π(N)]. Now we set N = dim(StĜ) as in Section 1.5. We fix an
irreducible unitary supercuspidal representation ρ of GLd(E), and x ∈ R. We consider
Levi subgroups

GLd(E)×GLN−(E)×GLd(E)

of GLN(E) and
M◦ = GLd(E)×G◦

−
of G◦, respectively. Then by [X1, (6.6)], we have a commutative diagram:

C[Π(G)]st
(G:G◦)−1Transθ

G◦−−−−−−−−−−→ Cθ[Π(N)]

Dρ|·|x

y yD̃ρ|·|x
C[Π(G−)]

st
(G−:G◦

−)−1Transθ
G◦
−−−−−−−−−−−−−→ Cθ[Π(N−)]

where the above horizontal map is the composition of the averaged restriction map Θ 7→
(G : G◦)−1Θ|C∞

c (G◦) and the twisted endoscopic transfer map TransθG◦ : C[Π(G◦)]st →
Cθ[Π(N)]. The bottom horizontal map is defined similarly. This commutativity was
proven for general quasi-split connected reductive groups in [X1, Appendix C], and
can be extended to the case of O2n easily from the case of SO2n (see Remark 1.6.2
(3)). Applying the above commutative diagram repeatedly, we obtain a commutative
diagram

C[Π(G)]st
(G:G◦)−1Transθ

G◦−−−−−−−−−−→ Cθ[Π(N)]

D
(k)
ρ|·|x

y yD̃(k)
ρ|·|x

C[Π(G0)]
st

(G0:G◦
0)

−1Transθ
G◦
0−−−−−−−−−−−→ Cθ[Π(N0)]

for suitable G0 and N0.
Let ϕ be a tempered L-parameter for G, and let Πϕ be the L-packet associated to ϕ.

Then we have a stable invariant distribution∑
π∈Πϕ

Θπ ∈ C[Π(G)]st,

whose image under (G : G◦)−1TransθG◦ is the twisted character Θπ̃ϕ ∈ Cθ[Π(N)] by
(ECR1).
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From now on, we suppose that

• ρ is conjugate-self-dual;
• 2x is a positive integer;
• ϕ contains ρ⊠ S2x+1 with multiplicity k ≥ 0.

Then

D̃
(k)
ρ|·|x(π̃ϕ)

∣∣∣
GLN−2dk(E)

= C · πϕ0

for some C ∈ Q, where

ϕ0 = ϕ− (ρ⊠ S2x+1)
⊕k ⊕ (ρ⊠ S2x−1)

⊕k.

In particular, D̃
(k+1)
ρ|·|x (π̃ϕ) = 0 and one can define ϵ(ϕ) ∈ Q such that

D̃
(k)
ρ|·|x(π̃ϕ)

θ
= ϵ(ϕ) · π̃ϕ0 .

Here, we recall from Section 4.1 that for π̃1, π̃2 ∈ R(G̃LN(E)), we write π̃1
θ
= π̃2 if

Θπ̃1(f̃) = Θπ̃2(f̃) for any f̃ ∈ C∞
c (GLN(E)⋊θ). With the above commutative diagram,

it implies the following lemma.

Lemma C.3.1. We have D
(k+1)
ρ|·|x (π) = 0 for any π ∈ Πϕ. Moreover, ϵ(ϕ) ∈ {0, 1} and

D
(k)
ρ|·|x

∑
π∈Πϕ

π

 = ϵ(ϕ)
∑

π0∈Πϕ0

π0.

Proof. By (ECR1), we have

1

(G0 : G◦
0)
TransθG◦

0
◦D(k)

ρ|·|x

∑
π∈Πϕ

Θπ

 = D̃
(k)
ρ|·|x ◦ Trans

θ
G◦

 1

(G : G◦)

∑
π∈Πϕ

Θπ


= D̃

(k)
ρ|·|x(Θπ̃ϕ)

θ
= ϵ(ϕ) ·Θπ̃ϕ0

=
ϵ(ϕ)

(G0 : G◦
0)
TransθG◦

0

 ∑
π0∈Πϕ0

Θπ0

 .

Hence ∑
π∈Πϕ

D
(k)
ρ|·|x(Θπ) = ϵ(ϕ)

∑
π0∈Πϕ0

Θπ0 .

A similar argument shows that
∑

π∈Πϕ D
(k+1)
ρ|·|x (Θπ) = 0, which implies that D

(k+1)
ρ|·|x (π) =

0 for any π ∈ Πϕ. Hence by Lemma C.2.2,
∑

π∈Πϕ D
(k)
ρ|·|x(π) is a multiplicity-free sum

of irreducible representations (possibly zero). This implies that ϵ(ϕ) ∈ {0, 1}, and we
obtain the last equation in the statement. □
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C.4. Computation of highest derivatives. Recall that we fix an irreducible unitary
supercuspidal representation ρ of GLd(E), and x > 0 such that 2x ∈ Z. We compute

D
(k)
ρ|·|x(π) for each π ∈ Πϕ.

First, we suppose that ρ ⊠ S2x+1 is conjugate-self-dual of the opposite type to ϕ.
Then the multiplicity k of ρ⊠ S2x+1 is even. Moreover, if we set ϕ′ = ϕ− (ρ⊠ S2x+1)

k,
then Aϕ = Aϕ′ and

π = ∆([−x, x]ρ)× · · · ×∆([−x, x]ρ)︸ ︷︷ ︸
k/2

⋊π′,

where π′ ∈ Πϕ′ is such that ⟨·, π′⟩ϕ′ = ⟨·, π⟩ϕ. See [Ar3, Theorem 1.5.1] and [Mok,
Theorem 2.5.1]. Hence by Tadić’s formula (Theorem C.1.1), we have

D
(k)
ρ|·|x(π) = ∆([−(x− 1), x− 1]ρ)× · · · ×∆([−(x− 1), x− 1]ρ)︸ ︷︷ ︸

k/2

⋊π′.

This is equal to π0 ∈ Πϕ0 with ⟨·, π0⟩ϕ0 = ⟨·, π⟩ϕ via the canonical identification Aϕ0 =
Aϕ, where ϕ0 is the same as in the previous subsection.

In the rest of this subsection, we assume that ρ⊠ S2x+1 is conjugate-self-dual of the

same type as ϕ. In this case, to compute D
(k)
ρ|·|x(π) for each π ∈ Πϕ, we use (ECR2).

Let s ∈ Aϕ. When G = O2n(F ) and s ∈ Aϕ \A+
ϕ , we assume that G◦

− ̸= {1}. Let I1 be
an index set such that s =

∑
i∈I1 e(ρi, ai, 1), and set

ϕ1 =
⊕
i∈I1

ρi ⊠ Sai , ϕ2 = ϕ− ϕ1.

For i = 1, 2, fix a conjugate-self-dual character ηi of E
× such that ϕi ⊗ ηi ∈ Φtemp(Gi)

for some classical group Gi. Then H
◦ = G◦

1 ×G◦
2 is an elliptic endoscopic group of G◦,

and (η1, η2) gives an L-homomorphism

ξ : L(G◦
1 ×G◦

2) → LG◦.

Let

M◦ = GLd(E)×G0
−,

M◦
1 = GLd(E)×G0

1,−,

M◦
2 = GLd(E)×G0

2,−

be Levi subgroups of G◦, G◦
1 and G◦

2, respectively, and write

H = G1 ×G2,

H1,− = G1,− ×G2,

H2,− = G1 ×G2,−.
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Then by [X1, (6.2)–(6.4), (6.7)], we have a commutative diagram:

C[Π(H)]st
TransGH−−−−→ C[Π(G)]

Dρη1|·|x⊕Dρη2|·|x
y yDρ|·|x

C[Π(H1,−)]
st ⊕ C[(Π(H2,−))]

st

∑2
i=1 Trans

G−
Hi,−−−−−−−−−−→ C[Π(G−)],

where TransGH is the transfer map normalized such that

2∏
i=1

∑
πi∈Πϕi⊗ηi

Θπi 7→
∑
π∈Πϕ

⟨s, π⟩ϕΘπ.

For the proof, see [X1, Appendix C].
We denote the multiplicity of ρ⊠ S2x+1 in ϕi by ki, and set

ϕi,0 = ϕi − (ρ⊠ S2x+1)
⊕ki ⊕ (ρ⊠ S2x−1)

⊕ki .

Let Gi,0 be the classical group such that ϕi,0 ⊗ ηi ∈ Φtemp(Gi,0).

Proposition C.4.1. Let s0 be the image of s under the surjection Aϕ ↠ Aϕ0 defined
by

e(ρ′, d, 1) 7→


e(ρ, 2x− 1, 1) if ρ′ ∼= ρ, d = 2x+ 1 > 2,

0 if ρ′ ∼= ρ, d = 2x+ 1 = 2,

e(ρ′, d, 1) otherwise.

Then

D
(k)
ρ|·|x

∑
π∈Πϕ

⟨s, π⟩ϕΘπ

 = ϵ(ϕ1 ⊗ η1)ϵ(ϕ2 ⊗ η2)
∑

π0∈Πϕ0

⟨s0, π0⟩ϕ0Θπ0 .

Proof. Note that if ϕ0 = 0, then 2x+1 = 2 and ϕ = (ρ⊠S2)
⊕k. In this case, A+

ϕ = Aϕ.

In other words, if G = O2n(F ) and s ∈ Aϕ \A+
ϕ , then we have G◦

− ̸= {1} automatically,
and we can use the above diagram.

By applying the diagram repeatedly together with (ECR2) and Lemma C.3.1, we
have

D
(k)
ρ|·|x

∑
π∈Πϕ

⟨s, π⟩ϕΘπ

 = D
(k)
ρ|·|x ◦ Trans

G
G1×G2

 2∏
i=1

∑
πi∈Πϕi⊗ηi

Θπi


= TransG0

G1,0×G2,0

 2∏
i=1

D
(ki)
ρηi|·|x

 ∑
πi∈Πϕi⊗ηi

Θπi


= TransG0

G1,0×G2,0

 2∏
i=1

ϵ(ϕi ⊗ ηi)
∑

πi,0∈Πϕi,0⊗ηi

Θπi,0


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= ϵ(ϕ1 ⊗ η1)ϵ(ϕ2 ⊗ η2)
∑

π0∈Πϕ0

⟨s0, π0⟩ϕ0Θπ0 .

This completes the proof. □

As a first consequence, we obtain the following important result.

Corollary C.4.2. We have ϵ(ϕ) = 1.

Proof. Recall that ϵ(ϕ) ∈ {0, 1} satisfies D̃
(k)
ρ|·|x(π̃ϕ)

θ
= ϵ(ϕ) · π̃ϕ0 and∑

π∈Πϕ

D
(k)
ρ|·|x(Θπ) = ϵ(ϕ)

∑
π0∈Πϕ0

Θπ0 .

We show the claim by induction on k.

The case k = 0 is trivial since D̃
(0)
ρ|·|x(π̃ϕ) = π̃ϕ by definition. Similarly, if k = 1,

then D̃
(1)
ρ|·|x(π̃ϕ)|GLN−2d(E) = πϕ0 so that ϵ(ϕ) ∈ {±1}. Since ϵ(ϕ) ∈ {0, 1}, we must have

ϵ(ϕ) = 1.
Suppose now that k > 1. We apply Proposition C.4.1 to s = e(ρ, 2x+1, 1). Then by

the induction hypothesis, we have ϵ(ϕi⊗ηi) = 1 for i = 1, 2 since k1 = 1 and k2 = k−1.
Hence

D
(k)
ρ|·|x

∑
π∈Πϕ

⟨s, π⟩ϕΘπ

 ̸= 0.

This implies that ϵ(ϕ) ̸= 0 and hence ϵ(ϕ) = 1. □

In particular, by Lemma C.3.1 and Corollary C.4.2, we have

D
(k)
ρ|·|x

∑
π∈Πϕ

π

 =
∑

π0∈Πϕ0

π0.

Now we compute D
(k)
ρ|·|x(π) for π ∈ Πϕ.

Theorem C.4.3. Let ϕ be a tempered L-parameter for G. Suppose that ϕ contains

ρ⊠ S2x+1 with multiplicity k > 0. Let π ∈ Πϕ. Then D
(k)
ρ|·|x(π) = 0 if and only if one of

the following holds:

• x ≥ 1, ϕ ⊃ ρ⊠ S2x−1 and ⟨e(ρ, 2x+ 1, 1), π⟩ϕ ̸= ⟨e(ρ, 2x− 1, 1), π⟩ϕ;
• x = 1

2
and ⟨e(ρ, 2, 1), π⟩ϕ = −1.

Moreover, if D
(k)
ρ|·|x(π) ̸= 0, then π0 = D

(k)
ρ|·|x(π) ∈ Πϕ0 and it is characterized such that

⟨·, π⟩ϕ is the composition of ⟨·, π0⟩ϕ0 with the surjection Aϕ ↠ Aϕ0 in Proposition C.4.1.
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Proof. First, suppose that x ≥ 1 and ϕ ⊃ ρ ⊠ S2x−1. We apply Proposition C.4.1 to
s = e(ρ, 2x+ 1, 1) + e(ρ, 2x− 1, 1). Then s0 ∈ A0

ϕ0
so that

D
(k)
ρ|·|x

∑
π∈Πϕ

⟨s, π⟩ϕΘπ


is a sum of irreducible characters with non-negative coefficients. Hence, if ⟨s, π⟩ϕ =

⟨e(ρ, 2x+ 1, 1), π⟩ϕ · ⟨e(ρ, 2x− 1, 1), π⟩ϕ = −1, then D
(k)
ρ|·|x(π) = 0.

Similarly, when x = 1
2
, by applying Proposition C.4.1 to s = e(ρ, 2, 1), we see that if

⟨e(ρ, 2, 1), π⟩ϕ = −1, then D
(k)
ρ|·|x(π) = 0.

Note that via the surjection Aϕ ↠ Aϕ0 , we have zϕ 7→ zϕ0 , and the image of A0
ϕ

is included in A0
ϕ0
. Hence this map induces a surjection Aϕ ↠ Aϕ0 . Then π does

not satisfy the above two conditions if and only if the character ⟨·, π⟩ϕ : Aϕ → {±1}
factors through the surjection Aϕ ↠ Aϕ0 . In this case, we denote the character of Aϕ0

associated to π by ηπ, i.e.,

⟨·, π⟩ϕ : Aϕ ↠ Aϕ0

ηπ−→ {±1}.
For s0 ∈ Aϕ0 , choose a lift s ∈ Aϕ of it. By applying Proposition C.4.1 to s together

with Corollary C.4.2, we have∑
π∈Πϕ

⟨s, π⟩ϕD(k)
ρ|·|x(π) =

∑
π0∈Πϕ0

⟨s0, π0⟩ϕ0π0.

This equation can be written as∑
π∈Πϕ

D
(k)
ρ|·|x (π) ̸=0

ηπ(s0)D
(k)
ρ|·|x(π) =

∑
π0∈Πϕ0

⟨s0, π0⟩ϕ0π0

for s0 ∈ Aϕ0 . This implies that D
(k)
ρ|·|x(π) = π0 if and only if ηπ = ⟨·, π0⟩ϕ0 . This

completes the proof. □
When D

(k)
ρ|·|x(π) = 0, the highest derivative of π is given as follows.

Theorem C.4.4. Let ϕ be a tempered L-parameter for G. Suppose that ϕ contains

ρ⊠ S2x+1 with multiplicity k > 0. Let π ∈ Πϕ and assume that D
(k)
ρ|·|x(π) = 0.

(1) If k is odd, then π1 = D
(k−1)
ρ|·|x (π) is nonzero, tempered and belongs to Πϕ1 with

ϕ1 = ϕ− (ρ⊠ S2x+1)
⊕k−1 ⊕ (ρ⊠ S2x−1)

⊕k−1.

Moreover, there is a canonical isomorphism Aϕ1
∼= Aϕ, and ⟨·, π1⟩ϕ1 = ⟨·, π⟩ϕ

via this isomorphism.

(2) If k is even, then D
(k−1)
ρ|·|x (π) is nonzero but not tempered. It is the Langlands

quotient of the standard module

∆([−(x− 1), x]ρ)⋊ π2,
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where π2 ∈ Πϕ2 with

ϕ2 = ϕ− (ρ⊠ S2x+1)
⊕k ⊕ (ρ⊠ S2x−1)

⊕k−2.

Moreover, there is a canonical inclusion Aϕ2 ↪→ Aϕ, and ⟨·, π2⟩ϕ2 = ⟨·, π⟩ϕ|Aϕ2 .

Proof. First, we consider the case k = 2. Then

π ↪→ ∆([−x, x]ρ)⋊ π2 ↪→ ρ| · |x ×∆([−x, x− 1]ρ)⋊ π2.

By Frobenius reciprocity, we have D
(1)
ρ|·|x(π) ̸= 0. Since D

(2)
ρ|·|x(π) = 0, by Lemma C.2.2,

we know that D
(1)
ρ|·|x(π) is irreducible. Moreover, we have a nonzero equivariant map

D
(1)
ρ|·|x(π) → ∆([−x, x− 1]ρ)⋊ π2.

Since D
(1)
ρ|·|x(π) is irreducible, this map must be injective. Using the MVW involution,

we see that D
(1)
ρ|·|x(π) is the unique irreducible quotient of ∆([−(x − 1), x]ρ) ⋊ π2. See

e.g., [AG2, Section 2.7].
Note that when k = 1, there is nothing to prove. Therefore, the remaining case is

where k ≥ 3. Write k = 2l + k′ with k′ ∈ {1, 2}. Consider π′ ∈ Πϕ′ with

ϕ′ = ϕ− (ρ⊠ S2x+1)
⊕2l

so that Aϕ′
∼= Aϕ, and ⟨·, π′⟩ϕ′ = ⟨·, π⟩ϕ|Aϕ′ . Then by [Ar3, Theorem 1.5.1] and [Mok,

Theorem 2.5.1], the parabolically induced representation

∆([−x, x]ρ)× · · · ×∆([−x, x]ρ)︸ ︷︷ ︸
l

⋊π′

is irreducible and is equal to π. By Tadić’s formula (Theorem C.1.1), we see that

D
(k−1)
ρ|·|x (π) = D

(k−1)
ρ|·|x (∆([−x, x]ρ)× · · · ×∆([−x, x]ρ)⋊ π′)

= ∆([−(x− 1), x− 1]ρ)× · · · ×∆([−(x− 1), x− 1]ρ)︸ ︷︷ ︸
l

⋊D(k′−1)
ρ|·|x (π′).

This shows the assertions. □
Finally, we give a characterization of (almost) supercuspidal representations. (See

also [Mœ, Theorem 2.5.1].)

Corollary C.4.5. Fix an irreducible unitary supercuspidal representation ρ of GLd(E).
Let ϕ be a tempered L-parameter for G, and π ∈ Πϕ. Then the following are equivalent:

(1) π is ρ| · |x-reduced for every nonzero real number x ̸= 0;
(2) the following conditions hold:

• If we denote the multiplicity of ρ⊠ Sd in ϕ by mϕ(ρ, d), then mϕ(ρ, d) ≤ 1
whenever d ≥ 2;

• if ρ⊠ Sd ⊂ ϕ with d > 2, then ρ⊠ Sd−2 ⊂ ϕ and

⟨e(ρ, d, 1), π⟩ϕ = −⟨e(ρ, d− 2, 1), π⟩ϕ;
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• if ρ⊠ S2 ⊂ ϕ, then

⟨e(ρ, 2, 1), π⟩ϕ = −1.

Moreover, π is supercuspidal if and only if ϕ is a discrete parameter and the above
conditions hold for any irreducible unitary supercuspidal representation ρ of GLd(E).

Proof. By Casselman’s criterion (Theorem C.1.3), we know that any tempered repre-
sentation π is ρ| · |x-reduced for any x < 0. Then the first equivalence follows from
Theorems C.4.3 and C.4.4.

If π is supercuspidal, then π is a discrete series representation so that ϕ is discrete.
Conversely, if π satisfies the conditions in (2) but not cuspidal, then one can find
an irreducible cuspidal unitary representation ρ of GLd(E) such that Dρ(π) ̸= 0. In
particular, π ↪→ ρ ⋊ π0 for some irreducible representation π0. Then Casselman’s
criterion (Theorem C.1.3) shows that π0 is also tempered. Hence ϕ contains ρ⊕ cρ∨ so
that ϕ is not discrete. □
Remark C.4.6. Fix an irreducible unitary cuspidal representation ρ of GLd(E). In
general, for π ∈ Irr(G), the highest ρ-derivative Dmax

ρ (π) is not necessarily irreducible,
and it is difficult to describe Dmax

ρ (π) completely. However, when π is tempered, it is
easy. More strongly, the next claim follows from [Ar3, Proposition 2.4.3] and [Mok,
Proposition 3.4.4].

Let ϕ be the tempered L-parameter of π ∈ Irrtemp(G). Then there exists π′ ∈ Irr(G′)
such that

π ↪→ ρ⋊ π′

if and only if ϕ contains ρ⊕cρ∨. In this case, π′ is uniquely determined by the conditions
π′ ∈ Πϕ′ with ϕ = ϕ′ ⊕ ρ ⊕ cρ∨, and ⟨·, π′⟩ϕ′ = ⟨·, π⟩ϕ|Aϕ′ . In particular, if we write

ϕ = ϕ0 ⊕ (ρ ⊕ cρ∨)⊕k such that ϕ0 ̸⊃ ρ ⊕ cρ∨, and if π0 ∈ Πϕ0 is such that ⟨·, π0⟩ϕ0 =
⟨·, π⟩ϕ|Aϕ0 , then π ↪→ ρ×k ⋊ π0 and

Dmax
ρ (π) = D(k)

ρ (π) = m · π0
with m = 2k or m = 1 according to ρ ∼= cρ∨ or not.

C.5. Langlands data for certain irreducible representations. In this subsection,
we explain how to compute the Langlands data for certain irreducible representations
of classical groups.

Fix an irreducible conjugate-self-dual cuspidal representation ρ of GLd(E). Let π be
an irreducible representation of a classical group G, and let I(m) ⋊ τ be its standard
module. Suppose that Dρ|·|−x(π) ̸= 0 for some x > 0. We take the maximal x with this
condition. Let y ≥ x be the maximal real number with y ≡ x mod Z such that

π′ = Dmax
ρ|·|−y ◦ · · · ◦Dmax

ρ|·|−(x+1) ◦Dmax
ρ|·|−x(π)

= D
(ky)

ρ|·|−y ◦ · · · ◦D
(kx+1)

ρ|·|−(x+1) ◦D
(kx)

ρ|·|−x(π)

with kx, kx+1, . . . , ky ≥ 1. Note that π′ is irreducible by Lemma C.2.2. We denote by
I(m′)⋊ τ ′ the standard module of π′.
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Proposition C.5.1. With the above notations and assumptions, we have kx ≥ kx+1 ≥
· · · ≥ ky. Moreover, τ ∼= τ ′ and

m = m′ +

y∑
z=x

(kz − kz+1)[x, z]ρ

hold, where ky+1 = 0. Here,
∑y

z=x means the sum over z = x, x+ 1, . . . , y.

Proof. By construction, we have an injection

π ↪→ (ρ| · |−x)kx × (ρ| · |−(x+1))kx+1 × · · · × (ρ| · |−y)ky ⋊ π′.

We claim that kx ≥ kx+1 ≥ · · · ≥ ky, and the above injection factors through

(♮) π ↪→

(
y

×
z=x

∆([−z,−x]ρ)kz−kz+1

)
⋊ π′.

Fix 0 ≤ i < y− x. Suppose that we have proven that kx ≥ · · · ≥ kx+i and the injection
factors through

π ↪→

(
x+i×
z=x

∆([−z,−x]ρ)kz−k
′
z+1

)
× (ρ| · |−(x+i+1))kx+i+1 × · · · × (ρ| · |−y)ky ⋊ π′

with k′z+1 = kz+1 if z < x + i, and k′x+i+1 = 0. By [Z, Theorem 9.7], ∆([−z,−x]ρ)
commutes with ρ| · |−(x+i+1) for x ≤ z < x + i. On the other hand, by the Zelevinsky
dual of [Z, Proposition 4.6], if z = x+ i, then ∆([−(x+ i),−x]ρ)× ρ| · |−(x+i+1) contains
∆([−(x+i+1),−x]ρ) as a subrepresentation, which commutes with ρ| · |−(x+i+1), and its
quotient is an irreducible subrepresentation of ρ| · |−(x+i+1)×∆([−(x+ i),−x]ρ). Hence
if kx+i < kx+i+1, then every irreducible subquotient of(

x+i×
z=x

∆([−z,−x]ρ)kz−k
′
z+1

)
× (ρ| · |−(x+i+1))kx+i+1

is a subrepresentation of an induced representation of the form ρ| · |−(x+i+1) × τ for
some irreducible representation τ of some general linear group. This implies that
Dρ|·|−(x+i+1)(π) ̸= 0. This contradicts the definition of x. Hence kx+i ≥ kx+i+1, and
by the same argument, the injection factors through

π ↪→

(
x+i+1×
z=x

∆([−z,−x]ρ)kz−k
′′
z+1

)
× (ρ| · |−(x+i+2))kx+i+2 × · · · × (ρ| · |−y)ky ⋊ π′

with k′′z+1 = kz+1 if z < x+ i+ 1, and k′′x+i+2 = 0. By induction, we obtain the claim.
Since Dρ|·|−(y+1)(π′) = 0 by definition of y, the inclusion (♮) shows that Dρ|·|−x′ (π

′) = 0

for any x′ > y. Moreover, if Dρ|·|−x′ (π
′) ̸= 0 for some x ≤ x′ ≤ y, then x′ ≡ x mod Z

and, (♮) shows that

D
(kx′+1)

ρ|·|−x′

(
D

(kx′−1)

ρ|·|−(x′−1) ◦ · · · ◦D
(kx)

ρ|·|−x(π)
)
̸= 0.
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This contradicts of the definition of kx′ . Hence Dρ|·|−x′ (π
′) = 0 for any x′ ≥ x. This

means that m′ does not contain segments of the form [x′, y′]ρ for any x
′ ≥ x.

By applying [AG2, Lemma 2.2] to (♮), we obtain the surjections(
y

×
z=x

∆([x, z]ρ)
kz−kz+1

)
× I(m′)⋊ τ ′ ↠

(
y

×
z=x

∆([x, z]ρ)
kz−kz+1

)
⋊ π′ ↠ π.

We see that the left-hand side is a standard module so that it is isomorphic to I(m)⋊τ .
Hence τ ∼= τ ′ and

m = m′ +

y∑
z=x

(kz − kz+1)[x, z]ρ.

This completes the proof. □
As a consequence, we can describe the L-parameter of π using the one of π′ as follows.

This corollary is used in Sections 7.4–7.6.

Corollary C.5.2. We use the same notations and assumptions as above. Let ϕπ and
ϕπ′ be the L-parameters of π and π′, respectively. Then

ϕπ = ϕπ′ ⊕

(
y⊕

z=x

(ρ(| · |
x+z
2 ⊕ | · |−

x+z
2 )⊠ Sz−x+1)

⊕(kz−kz+1)

)
.

Appendix D. The tempered L-packet conjecture and Arthur’s Lemma
2.5.5

In this appendix, we prove two results whose statements appear unrelated, but whose
proofs follow from the same argument.

The first statement is that Arthur’s construction of tempered L-packets satisfies the
strong form of Shahidi’s tempered packet conjecture (Corollary D.1.3). This conjecture
was initially formulated as [Sha7, Conjecture 9.4] and stipulated that every tempered
L-packet should contain a generic representation. It was later strengthened to include
the statement that, for an arbitrarily fixed Whittaker datum w, every tempered L-
packet should contain exactly one w-generic member. For classical groups, this was
proven by Konno [Kon1] and Varma [V2] assuming the twisted endoscopic transfer to
GLN , which is the basis of the constructions of [Ar3] and [Mok]. A further strength-
ening of the conjecture would require that the w-generic member is matched with the
trivial character of the centralizer component group Sϕ. It is this version that we for-
mulate here (Conjecture D.1.3) and prove for classical groups, thus providing a mild
strengthening of the result of Konno and Varma for classical groups. We hasten to note
that our proof does not replace those of Konno and Varma, but rather it uses them
crucially. In fact, we prove a result (Theorem D.1.2) that is valid for general reductive
groups and infers the validity of this conjecture from its validity for endoscopic groups.
This result is a strengthening of [Sha7, Proposition 9.6] and the proof follows from a
similar outline, with a few additional arguments, and a key input from the work of
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Kottwitz [Kot2]. When combined with the results of Konno and Varma, this relative
result delivers Conjecture D.1.3 for classical groups.

The second statement (Theorem D.2.1) is of a more technical nature. It infers the
local intertwining relation from an a priori weaker statement. It was formulated for
symplectic and orthogonal groups as [Ar3, Lemma 2.5.5], whose proof was deferred
to [A27]. We formulate and prove it here for arbitrary connected reductive groups,
subject to assuming basic expected properties of tempered L-packets that are known
in the setting of classical groups.

Arthur suggested in [Ar3] that Theorem D.2.1 can be shown by applying results of
Konno [Kon1] concerning the behavior of local character expansions under the (twisted)
endoscopic transfer. We largely follows his suggestion in the proofs below. However,
it is also clear that the results of Konno needed to be refined and made more precise
before they can be applied. Thankfully, in the intervening years, Varma has provided
in [V2] such a refined result, and this is the main ingredient in our proof below. It
reduces the proof to an identity between Weil indices and ε-factors, which follows at
once from the work of Kottwitz [Kot2], and in the case of classical groups can also be
verified by hand. Thanks to [V1], we can also remove the assumption in [Ar3, Lemma
2.5.5] that the residual characteristic of F is odd.

We first employ this argument to obtain a proof of Theorem D.1.2. The flow is as in
[Sha7, Proposition 9.6], and is in some sense opposite to that of [V2]. Then we employ
a similar argument, in a slightly more abbreviated form, to obtain Theorem D.2.1.

Remark D.0.1. While the proofs of Theorems D.1.2 and D.2.1 use the same argu-
ment, the statements have different assumptions. The main assumption for Theorem
D.1.2 is that (ECR2) holds with respect to any endoscopic group, and Corollary D.1.3
assumes in addition that (ECR1) holds. Thus, in the setting of Arthur’s argument,
Theorem D.1.2 and Corollary D.1.3 become available after the inductive argument has
been completed for the group of interest. On the other hand, the main assumption in
Theorem D.2.1 is that a weakened form of the local intertwining relation holds. This
assumption replaces (ECR2). The reason is that Theorem D.2.1 will be used in the
middle of the inductive proof, where (ECR2) is not yet available. In addition, the va-
lidity of Corollary D.1.3 is assumed for groups of lower rank. In the setting of Arthur’s
argument, this is part of the inductive assumption.

D.1. Shahidi’s tempered packet conjecture for quasi-split classical groups.
Let F be a local field of characteristic zero and let G be a quasi-split connected reductive
F -group. Fix a Whittaker datum w for G. Let ϕ be a tempered L-parameter for
G. We assume that the corresponding L-packet Πϕ and its pairing with Sϕ have been
constructed, giving an injective map from Πϕ to the set of irreducible representations of
Sϕ; we use the notation ⟨s, π⟩ϕ for the trace at s of the representation of Sϕ associated
to π. Note that the pairing ⟨·, π⟩ϕ depends on w. Then Shahidi’s strong tempered
packet conjecture is the following statement, a strengthening of [Sha7, Conjecture 9.4].



174 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MÍNGUEZ, S. W. SHIN

Conjecture D.1.1. Fix a Whittaker datum w for G. The L-packet Πϕ contains exactly
one w-generic member πw, and it satisfies ⟨·, πw⟩ϕ = 1.

This conjecture is known for archimedean base fields due to the work of Shelstad in
[She1], see also [AK]. We may therefore concentrate on a non-archimedean base field
F .

Theorem D.1.2. Assume |Πϕ| > 1 and that, for any factorization ϕ′ of ϕ through a
proper endoscopic group, the character identity (ECR2) holds and Conjecture D.1.1
holds for Πϕ′. Then Conjecture D.1.1 holds for Πϕ.

We will show Theorem D.1.2 in Section D.3 below. For now, we extract the following
result in the setting of classical groups.

Corollary D.1.3. Let G be a quasi-split connected classical group. Assume that the
local results (ECR1) and (ECR2) of [Ar3] and [Mok] are known for the parameter ϕ
and for its factorizations through endoscopic groups. Then Conjecture D.1.1 holds for
Πϕ.

Proof. As already remarked, the archimedean case is known by the work of Shelstad,
so we focus on non-archimedean F . We induct on the size of L-packets.

Assume first that Πϕ is a singleton {π}. Then Sϕ is the trivial group, so trivially
⟨·, π⟩ϕ = 1 and it remains to show that π is w-generic. Let πϕ be the representation of
GLN(E) with parameter ϕ, seen as a parameter for GLN(E) via the standard represen-
tation of LG. Then πϕ is tempered, hence generic. Using (ECR1), the claim follows
from [Kon1] and [V2].

Assume next that Πϕ is not a singleton. Then Sϕ ̸= {1}. For any s ∈ Sϕ \ Z(Ĝ)Γ,
the pair (s, ϕ) leads to a proper endoscopic datum G′ and a parameter ϕ′ for G′. The
L-packet Πϕ′ has strictly smaller size than Πϕ, so Conjecture D.1.1 holds for Πϕ′ by the
induction hypothesis. Thus Conjecture D.1.1 holds for Πϕ by Theorem D.1.2. □
D.2. A weakening of the local intertwining relation. Let F be a non-archimedean
local field of characteristic zero and let G be a quasi-split connected reductive F -group
equipped with a Whittaker datum w. Let P = MN be a proper parabolic subgroup
of G and let ϕM be a tempered L-parameter for M . We assume the existence of
an associated L-packet ΠϕM . Let ϕ be the parameter for G obtained by composing

ϕM with the natural inclusion LM → LG. Recall that Nϕ = N(AM̂ , Ĝ) ∩ Sϕ and

Nϕ = π0(Nϕ/Z(Ĝ)
Γ). We now recall some material from Section 1.10 in this more

general setting. For f ∈ C∞
c (G(F )) and u ∈ Nϕ, define the distribution

f 7→ fG(ϕ, u) =
∑

πM∈ΠϕM
wuπM∼=πM

tr(⟨u, π̃M⟩RP (wu, π̃M , ϕM)IP (πM , f)),

where wu is the Weyl element given by u which preserves M , and we are using a
representation π̃M of the disconnected group

M(F )⋊ ⟨wu⟩
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that extends πM and the associated pairing ⟨u, π̃M⟩, noting that the product

⟨u, π̃M⟩RP (wu, π̃M , ϕM)

is independent of the choice π̃M extending πM .
Let s ∈ Sϕ be the image of u. From the pair (s, ϕ), we obtain an endoscopic datum

(G′, s, η) and a parameter ϕ′ for G′. We define a second distribution

f 7→ f ′
G(ϕ, s) = Trans(SΘϕ′)(f) = SΘϕ′(f

′),

where

SΘϕ′ =
∑
π′∈Πϕ′

⟨1, π′⟩ϕ′Θπ′

is the stable character of ϕ′, and f ′ ∈ C∞
c (G′(F )) is a ∆[w]-transfer of f , i.e. the two

functions f and f ′ have matching orbital integrals with respect to the transfer factor
∆[w] normalized with respect to the Whittaker datum w.

We now state the assumptions under which our result holds. The main assumption
is that there exists a constant e(s, u) such that

f ′
G(ϕ, s) = e(s, u)fG(ϕ, u).

The supplementary assumptions concern expected properties of L-packets, as follows.
We assume that Conjecture D.1.1 holds for the parameter ϕM as well as for the endo-
scopic factorizations ϕ′ of ϕ. In the setting of classical groups, this follows from Corollary
D.1.3. Thus, we know that there is a unique wM -generic member πM,w ∈ ΠϕM and it
satisfies ⟨·, πM,w⟩ϕM = 1. Let Πϕ be the set consisting of the irreducible constituents of
the representations IP (πM), as πM runs over ΠϕM . According to the heredity property
([Rod], [CS, Corollary 1.7]), there is a unique w-generic member πw of Πϕ and it lies
in IP (πM,w). Then the action of the operator ⟨u, π̃M,w⟩RP (wu, π̃M,w, ϕM) on IP (πM,w)
must preserve πw, and hence acts on it by a scalar. We assume that this scalar is 1.
For classical groups, this follows from Theorem 1.8.1 (1) together with Lemma 6.3.1.

Theorem D.2.1. Under the above assumptions, we have

e(s, u) = 1.

In other words, Equation (A-LIR) in Section 1.10 holds.

We will prove Theorem D.2.1 in Section D.4 below.

Remark D.2.2. Since we are also interested in the case of the orthogonal group
G = O2n, which is disconnected, we will make the following slight modification in
this situation. We will take f ∈ C∞

c (G◦(F )), and u ∈ Nϕ will also be taken with
respect to G◦. The distribution fG(ϕ, u) and the stable character SΘϕ′ will be defined
as

1

(G : G◦)

∑
πM∈ΠϕM
wuπM∼=πM

tr(⟨u, π̃M⟩RP (wu, π̃M , ϕM)IP (πM , f))
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and

SΘϕ′ =
1

(G′ : G′◦)

∑
π′∈Πϕ′

⟨1, π′⟩ϕ′Θπ′ ,

respectively. Note that, when G is connected, these formulas recover the previous
formulas. Then the modifications for the case of G = O2n follows by applying the
following argument to G◦ = SO2n. See Remark 1.6.2. In the following proof, we will
continue working with a connected reductive group G.

D.3. Proof of Theorem D.1.2. For π ∈ Πϕ, let

c(π,w) =

{
1 if π is w-generic,

0 otherwise.

We claim that it is enough to show the following statement: For any s ∈ Sϕ with s ̸= 1,
we have

(†)
∑
π∈Πϕ

c(π,w)⟨s, π⟩ϕ = 1.

Indeed, assume that we have shown this statement. Let

X = {π ∈ Πϕ | c(π,w) = 1} ⊂ Πϕ

and consider the conjugation-invariant function f on Sϕ defined by

f(s) =
∑
π∈Πϕ

c(π,w)⟨s, π⟩ϕ.

Equation (†) and the assumption |Sϕ| > 1 implies f ̸= 0, hence X ̸= ∅, and f(1) is a
natural number greater than 0 (if Sϕ is abelian, then f(1) = |X|). The scalar product
of f with the trivial character of Sϕ is non-trivial, hence X contains the representation
π1 with ⟨·, π1⟩ϕ = 1. Thus, π1 is w-generic. Let X1 = X \{π1} and let f 1 = f−⟨·, π1⟩ϕ.
Then f 1(s) = 0 for all s ̸= 1. On the one hand, since f is a multiplicity free sum of
irreducible characters of Sϕ, the construction of f 1 implies that the scalar product of
f 1 and the trivial character of Sϕ is equal to zero, while on the other hand, this scalar
product is equal to f 1(1) by evaluation. Thus f 1(1) = 0 and we conclude f 1 = 0, hence
X1 = ∅. Therefore X = {π1}.

This reduces the proof of Theorem D.1.2 to the proof of Equation (†). To prove it,
let 1 ̸= s ∈ Sϕ and let G′ and ϕ′ be the corresponding endoscopic datum and factored
parameter, respectively. Consider the distributions

f 7→ f ′
G(ϕ, s) = Trans(SΘϕ′)(f), SΘϕ′ =

∑
π′∈Πϕ′

⟨1, π′⟩ϕ′Θπ′

and

fG(ϕ, s) =
∑
π∈Πϕ

⟨s, π⟩ϕΘπ(f),
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both linear forms on C∞
c (G(F )). According to (ECR2) we have

fG(ϕ, s) = f ′
G(ϕ, s).

For each π ∈ Πϕ, we have the Harish-Chandra local character expansion

Θπ(f) =
∑
O

c(π,O)µ̂O(f ◦ exp)

for all f ∈ C∞
c (G(F )) with support close to the identity, where O runs over the set

of nilpotent orbits in g(F ) = Lie(G)(F ). To form the Fourier transform µ̂O, we have
chosen arbitrarily a non-degenerate G(F )-invariant symmetric bilinear form β on g(F )
and a non-trivial unitary character ψF : F → C×. Note that the measures on G(F )
(used to define Θπ) and on O (used to define µO) also depend on the choice of β, as in
[MW1, Section I.8].

Putting these together we obtain

fG(ϕ, s) =
∑
π∈Πϕ

⟨s, π⟩ϕ
∑
O

c(π,O)µ̂O(f ◦ exp).

In the same way, we obtain

f ′
G(ϕ, s) =

∑
π′∈Πϕ′

⟨1, π′⟩ϕ′
∑
O′

c(π′, O′)µ̂O′(f ′ ◦ exp),

where now O′ runs over the set of nilpotent orbits in g′(F ). We have used another
non-degenerate G′(F )-invariant symmetric bilinear form β′ on g′(F ), at the moment
unrelated to β.

Thus (ECR2) implies that, in a neighborhood of the identity,

Trans

 ∑
π′∈Πϕ′

⟨1, π′⟩ϕ′
∑
O′

c(π′, O′)µ̂O′

 =
∑
π∈Πϕ

⟨s, π⟩ϕ
∑
O

c(π,O)µ̂O,

and using the homogeneity of nilpotent orbital integrals, we obtain from this

Trans

 ∑
π′∈Πϕ′

⟨1, π′⟩ϕ′
∑

O′:regular

c(π′, O′)µ̂O′

 =
∑
π∈Πϕ

⟨s, π⟩ϕ
∑

O:regular

c(π,O)µ̂O,

see [Sha7, pp. 325–326].
We now use a result of Mœglin–Waldspurger [MW1] and its extension to the dyadic

case by Varma [V1]. There exists a certain regular nilpotent orbit OψF ,β,w, depending
on the Whittaker datum w, the form β, and the character ψF , such that

c(π,OψF ,β,w) =

{
1 if π is w-generic,

0 otherwise.

We will specify the orbit OψF ,β,w more precisely below. For now, we note that we
can apply this to both sides of the above identity. On the left-hand side, we use the
uniqueness of w′-generic constituent in Πϕ′ for each Whittaker datum w′ on G′, the
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fact that ⟨1, π′⟩ϕ′ = 1 for such a constituent (which is the assumption that Conjecture
D.1.1 holds for G′ and an application of [Kal1, Theorem 4.3]), and the fact that each
regular nilpotent orbit O′ is equal to OψF ,β′,w′ for some choice of w′, to conclude that∑

π′∈Πϕ′

⟨1, π′⟩ϕ′
∑

O′:regular

c(π′, O′)µ̂O′ =
∑

O′:regular

µ̂O′ .

Therefore, our identity becomes

Trans

( ∑
O′:regular

µ̂O′

)
=
∑
π∈Πϕ

⟨s, π⟩ϕ
∑

O:regular

c(π,O)µ̂O.

According to [LSh, Corollary 5.5.B], we have

Trans

( ∑
O′:regular

µO′

)
=

∑
O:regular

∆[w](O)µO,

where the transfer factor ∆[w](O) is defined at the end of [LSh, (5.1)], in which it was
denoted by ∆(u), with u a regular unipotent element in G(F ). We are using here the
bijection between regular unipotent orbits in G(F ) and regular nilpotent orbits in g(F ).

Since the endoscopic transfer commutes with the Fourier transform up to an explicit
scalar by [W1, p. 91, Conjecture 1] (which is a theorem due to [W2], [W3], [CHL], [N]),
we obtain

Trans

( ∑
O′:regular

µ̂O′

)
=

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )

∑
O:regular

∆[w](O)µ̂O,

where γ(g(F ), β, ψF ) and γ(g′(F ), β′, ψF ) are the corresponding Weil indices. This
identity requires the forms β and β′ to be synchronized, as explained in [W1, Section
VIII.6], and as we now recall. Extending scalars from F to F identifies the space of
non-degenerate symmetric bilinear forms on g(F ) that are invariant under G(F ) with
the space of non-degenerate symmetric bilinear forms on g(F ) that are invariant under
G(F ) and Γ = Gal(F/F ). If T ⊂ G is an arbitrary maximal torus, then the restriction
to its Lie algebra t(F ) identifies the latter space with the space of non-degenerate
symmetric bilinear forms on t(F ) that are invariant under the absolute Weyl group and
Γ. Note that, if T ′ ⊂ G is a second maximal torus, then the spaces for t and t′ are
canonically identified, namely by Ad(g) for any g ∈ G(F ) that conjugates T to T ′. In
this way, taking a maximal torus of G′ and transferring it to G, we can transfer β to
g′(F ), and we take β′ to be that transfer.

With this proviso, our identity becomes

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )

∑
O:regular

∆[w](O)µ̂O =
∑
π∈Πϕ

⟨s, π⟩ϕ
∑

O:regular

c(π,O)µ̂O.

By [HC, Theorem 5.11], we can separate terms. Comparing coefficients for the orbit
OψF ,β,w and applying the results of Mœglin–Waldspurger and Varma recalled above,
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this identity turns

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
∆[w](OψF ,β,w) =

∑
π∈Πϕ

c(π,w)⟨s, π⟩ϕ.

Our goal is to show that the left-hand side of this expression equals 1. As a first step,
we will rewrite this left-hand side in a way that does not involve the form β and the
Whittaker datum w. For this, let S ′ ⊂ G′ be a maximal torus defined over F and let
S ⊂ G be its transfer. Decompose g = s ⊕ r, where r is the direct sum of the root
spaces gα for all absolute roots α of S in G. As discussed in [Kot2, Section 1.3.3], there
is a canonical quadratic form Q on r defined as the orthogonal sum of quadratic forms
Q±α on each gα ⊕ g−α given by

[Yα, Y−α] = Q±α(Yα + Y−α) ·Hα,

where Hα is the coroot for α. We can thus form the Weil index γ(r(F ), Q, ψF ). Note
however that this form does not always extend to a non-degenerate G(F )-invariant
quadratic form on g(F ), see [Kot2, Section I.5].

We have the analogous decomposition g′ = s′ ⊕ r′ and the analogous quadratic form
Q′ on r′, hence also the Weil index γ(r′(F ), Q′, ψF ). Finally, we have the maximally
split maximal tori (equivalently, minimal Levi subgroups) T ⊂ G and T ′ ⊂ G′ defined
over F . Note that such tori exist since G is assumed to be quasi-split over F .

Lemma D.3.1. The identity

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
∆[w](OψF ,β,w) =

γ(r(F ), Q, ψF )

γ(r′(F ), Q′, ψF )
ε(1/2, X∗(T )C −X∗(T ′)C, ψF )

holds for any choices of character ψF , Whittaker datum w, and non-degenerate G(F )-
invariant symmetric bilinear form β, where β′ is the transfer of β to g′(F ) according to
[W1, Section VIII.6]. In particular, the left-hand side is independent of the choices of
w and β. Furthermore, both sides are independent of the choice of ψF .

Proof. Following the definition of ∆[w](OψF ,β,w) given at the end of [LSh, (5.1)], we
have

∆[w](OψF ,β,w) =
∆[w](γG′ , γG)

∆[spl′∞](γG′ , γG)
⟨invspl′(OψF ,β,w), s⟩,

where spl′ is an arbitrarily chosen splitting of G and spl′∞ is its opposite splitting; the
left-hand side is independent of this choice, as well as of the choice of related elements
γG′ and γG.

We will choose spl′ in such a way that invspl′(OψF ,β,w) = 1. To see what this entails,
we review the definition of OψF ,β,w given in [MW1] and [V1]. Choose a splitting spl =
(B, T, {Xα}) that, together with ψF , induces w in the sense of [KoSh1, Section 5.3]. Let
U be the unipotent radical of B and let U be the unipotent radical of the T -opposite
Borel subgroup to B. We write u and u for the Lie algebras of U and U , respectively.
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Then OψF ,β,w is the G(F )-orbit of a regular nilpotent element YψF ,β,w ∈ u(F ) whose
property is that the character

X 7→ ψF (β(X,YψF ,β,w))

of u(F ) equals the composition of the exponential map exp: u(F ) → U(F ) and the
generic character U(F ) → C× that makes up the Whittaker datum w. One can check
that YψF ,β,w is given by

YψF ,β,w =
∑
α

β(Xα, X−α)
−1X−α,

where X−α ∈ g−α is determined by [Xα, X−α] = Hα. Thus, if we take spl′ to be
(B, T, {β(Xα, X−α)

−1X−α}), then invspl′(OψF ,β,w) = 1. Hence we have

∆[w](OψF ,β,w) =
∆[w](γG′ , γG)

∆[spl′∞](γG′ , γG)

for this particular choice of spl′. On the other hand, by the definition of the Whittaker
normalization [KoSh1, Section 5.3], [KoSh2],

∆[w](γG′ , γG) = ε(1/2, X∗(T )C −X∗(T ′)C, ψF ) ·∆[spl](γG′ , γG).

Thus we need to compute the ratio between ∆[spl](γG′ , γG) and ∆[spl′∞](γG′ , γG).
Both of these being transfer factors, this ratio does not depend on the elements γG′ and
γG, as long as they are related (otherwise both factors are zero). So we choose arbitrarily
a pair of related strongly regular semisimple elements γG′ ∈ S ′(F ) and γG ∈ S(F ). Note

that this choice determines an admissible isomorphism S ′ ∼−→ S, namely the unique one
that maps γG′ to γG, and hence determines an inclusion of the absolute root systems
R(S ′, G′) → R(S,G).

The only term of the transfer factor that depends on the splitting is the term ∆I ,
where the splitting enters the definition of the splitting invariant. We have the relation
spl′∞ = b · spl, where bα = β(Xα, X−α) for all α ∈ R(T,G). Then [Kal1, Lemma 5.1]
shows that rescaling the splitting has the same effect as rescaling the a-data, which
also enters the definition of the splitting invariant. On the other hand, [LSh, Lemma
3.2.C] shows how the transfer factor changes when the a-data is rescaled. With this,
we obtain

∆[w](OψF ,β,w) = ε(1/2, X∗(T )C −X∗(T ′)C, ψF )
∏

α∈R(S,G/G′)sym/Γ

κα(bα),

where R(S,G/G′) is a short-hand notation for R(S,G)\R(S ′, G′), the subscript “sym”
indicates those roots that are symmetric, i.e. those α with −α ∈ Γ · α, and κα is the
sign character of the quadratic extension Fα/F±α.

Using that the decompositions g′ = s′ ⊕ r′ and g = s ⊕ r are orthogonal for β′ and
β, respectively, we see that the Weil indices decompose accordingly as products, and
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since β|s = β′|s′ by the synchronization of β and β′, the left-hand side of the equation
in the statement of the lemma becomes

γ(r(F ), β, ψF )

γ(r′(F ), β′, ψF )
ε(1/2, X∗(T )C −X∗(T ′)C, ψF )

∏
α∈R(S,G/G′)sym/Γ

κα(bα).

According to [Kal2, Lemma 4.8] and the fact that Q(Xα +X−α) = 1, we have

γ(r(F ), β, ψF )

γ(r(F ), Q, ψF )
=

∏
α∈R(S,G)sym/Γ

κα(bα).

The analogous identity holds with (G,S) replaced by (G′, S ′). This proves the identity
claimed in the lemma. The independence of the left-hand side of the choices of β and
w follows from that identity. To see the independence of both sides of the choice of
ψF , note that any other choice of character is of the form (aψF )(x) = ψF (ax) for some
a ∈ F×, but one sees directly from the definitions that replacing ψF and β by aψF and
a−1 · β does not change the Weil indices or the orbit OψF ,β,w. See Section D.5 below for
the definition of the Weil indices. □

To complete the proof of Theorem D.1.2, we need to show that the right-hand side
of the identity of Lemma D.3.1 equals to one. This is accomplished by the following
lemma.

Lemma D.3.2. Let S ′ ⊂ G′ be any maximal torus defined over F and let S ⊂ G be
its transfer. Decompose the Lie algebras g = s ⊕ r and g′ = s′ ⊕ r′. Let Q (resp. Q′)
be the canonical quadratic form on r (resp. r′) described before the statement of Lemma
D.3.1. Let T ′ ⊂ G′ and T ⊂ G be minimal Levi subgroups defined over F . Then

γ(r(F ), Q, ψF )

γ(r′(F ), Q′, ψF )
ε(1/2, X∗(T )C −X∗(T ′)C, ψF ) = 1.

Proof. From [Kot2, Theorem 1.1], we have

γ(r(F ), Q, ψF ) = ε(1/2, X∗(S)C −X∗(T )C, ψF ).

Applying this result once to G and the torus S, and once to G′ and the torus S ′, and
using that X∗(S) ∼= X∗(S ′) as Γ-modules, we obtain the desired result. □

We obtain Equation (†), and hence complete the proof of Theorem D.1.2.

Remark D.3.3. In the case of classical groups, one can also compute the left-hand
side in Lemma D.3.2 explicitly and check that it equals 1. See Section D.5 below.

D.4. Proof of Theorem D.2.1. The argument is very close to that of the proof of
Theorem D.1.2. Since Theorem D.2.1 is an important part of the argument of [Ar3], we
will still present all steps of the proof, but we will be more brief with the justifications,
which are the same as in the previous proof.
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We consider the same distribution f ′
G(ϕ, s) as in that proof, but replace the distribu-

tion fG(ϕ, s) by the distribution fG(ϕ, u) from the statement of Theorem D.2.1. This
distribution can be expanded as

fG(ϕ, u) =
∑
π∈Πϕ

c(π)Θπ(f),

where c(π) is defined as follows. Let π ⊗Mπ be the maximal π-isotypic constituent of
IP (πM). By Schur’s lemma ⟨u, π̃M⟩RP (wu, π̃M , ϕM) induces an operator on the finite-
dimensional C-vector spaceMπ and c(π) is the trace of that operator. Our assumptions
imply that Mπw is 1-dimensional and c(πw) = 1.

Instead of (ECR2) in Theorem D.1.2, we now use the assumed identity

f ′
G(ϕ, s) = e(s, u)fG(ϕ, u).

Expanding both sides using the Harish-Chandra local character expansion and using
the homogeneity of nilpotent orbital integrals, we arrive at the identity

Trans

 ∑
π′∈Πϕ′

⟨1, π′⟩ϕ′
∑

O′:regular

c(π′, O′)µ̂O′

 = e(s, u)
∑
π∈Πϕ

c(π)
∑

O:regular

c(π,O)µ̂O.

Here we have again fixed a non-trivial character ψF : F → C× and a non-degenerate
G(F )-invariant symmetric bilinear form β on g(F ), which we have transferred to a form
β′ on g′(F ), and have used these to form the Fourier transforms. We consider again
the nilpotent G(F )-orbit OψF ,β,w in g(F ), which according to the results of Mœglin–
Waldspurger and Varma has the property

c(π,OψF ,β,w) =

{
1 if π = πw,

0 otherwise.

Using the assumed validity of Conjecture D.1.1 for G′, which gives the uniqueness
of w′-generic constituent in Πϕ′ for each Whittaker datum w′ on G′ and the fact that
⟨1, π′⟩ϕ′ = 1 for such a constituent, and using further the fact that each regular nilpotent
orbit O′ is equal to OψF ,β′,w′ for some choice of w′, we conclude that∑

π′∈Πϕ′

⟨1, π′⟩ϕ′
∑

O′:regular

c(π′, O′)µ̂O′ =
∑

O′:regular

µ̂O′ .

Therefore, our identity becomes

Trans

( ∑
O′:regular

µ̂O′

)
= e(s, u)

∑
π∈Πϕ

c(π)
∑

O:regular

c(π,O)µ̂O.

Applying [LSh, Corollary 5.5.B], [W1, p. 91, Conjecture 1], [W2], [W3], [CHL], [N], we
have

Trans

( ∑
O′:regular

µ̂O′

)
=

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )

∑
O:regular

∆[w](O)µ̂O.
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We separate terms using [HC, Theorem 5.11] and comparing coefficients for the orbit
OψF ,β,w, we arrive at

e(s, u) =
γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
∆[w](OψF ,β,w).

By Lemmas D.3.1 and D.3.2, the right-hand side is equal to 1. This completes the proof
of Theorem D.2.1.

D.5. An explicit computation of Weil indices and ε-factors. The proofs of The-
orems D.1.2 and D.2.1 rely on the key Lemma D.3.2. We gave a proof of this lemma
for general reductive groups using the work of Kottwitz [Kot2]. For classical groups,
this lemma can also be verified by an explicit computation, which we shall give here.

For explicit computation, the left-hand side of Lemma D.3.2 is inconvenient, because
it stipulates that one has to work with a maximal torus of G that transfers to G′, while
the computation of the Weil index is most convenient when one uses as a maximal torus
a minimal Levi subgroup of G. So we return to the left-hand side of Lemma D.3.1. As
shown there, the left-hand side is independent of the choices of the character ψF , the
Whittaker datum w, and the form β (recalled that β′ is the transfer of β). We are thus
free to choose these objects in a convenient way. We first choose a character ψF and an
F -splitting spl = (B, T, {Xα}) and then take the Whittaker datum w determined by
spl and ψF as in [KoSh1, Section 5.3]. We have the G(F )-orbit OψF ,β,w of the regular
nilpotent element

YψF ,β,w =
∑
α

β(Xα, X−α)
−1X−α.

It may be a priori different from the G(F )-orbit O∞ of the regular nilpotent element

Y∞ =
∑
α

X−α

that is “associated” to the splitting spl∞ = (B, T, {X−α}) opposite to spl. In our
computations, we will show that β can be chosen such that

(‡) OψF ,β,w = O∞.

This identity implies that invspl∞(OψF ,β,w) = 1. We can then apply the computation of
∆[w](OψF ,β,w) given in the proof of Lemma D.3.1 but with spl′ = spl∞ and obtain

∆[w](OψF ,β,w) =
∆[w](γG′ , γG)

∆[spl](γG′ , γG)
= ε(1/2, X∗(T )C −X∗(T ′)C, ψF ),

thereby reducing the desired identity to

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )
= 1

for those particular choices of ψF , β and spl. We will show this identity for classical
groups by explicitly computing all terms.



184 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MÍNGUEZ, S. W. SHIN

First, we compute the relevant Weil indices. To recall the definition and properties
of Weil indices, we introduce some notation. Let V be a finite dimensional vector space
over F equipped with a non-degenerate symmetric bilinear form β. Following [W1,
Section VIII.1], we put

γ(V, β, ψF ) =
I

|I|
with I =

∫
L

ψF

(
β(x, x)

2

)
dx,

where L is a sufficiently large lattice of V and dx is a Haar measure on V . Note that
γ(V, β, ψF ) does not depend on the choices of L and dx. When Q(x) = 1

2
β(x, x) is

the associated quadratic form, we also write γ(V,Q, ψF ) = γ(V, β, ψF ). If V = F
and β(x, y) = 2axy for some a ∈ F×, then we have γ(V, β, ψF ) = γ(aψF ) with the
convention in [Rao, Appendix]. Here aψF is the non-trivial additive character of F
given by aψF (x) = ψF (ax). Note that γ(ψF )γ(−ψF ) = 1 and

γ(ψF )

γ(aψF )
= ε(1/2, ηa, ψF )

(see [Kah], [Sz]). Here ηa is the (possibly trivial) quadratic character of F× given
by ηa(x) = (a, x)F , where (·, ·)F is the quadratic Hilbert symbol of F , so that ηa is
associated to F (

√
a)/F by the local class field theory. One can prove that if (V, β) is a

direct sum of (V0, β0) and the hyperbolic plane H, then γ(V, β, ψF ) = γ(V0, β0, ψF ).
Recall that U is the unipotent radical of the Borel subgroup B = TU , and u is its Lie

algebra. Since G is quasi-split, u ⊕ u is an orthogonal direct sum of hyperbolic planes
and hence

γ(g(F ), β, ψF ) = γ(t(F ), β, ψF ).

Now we take the splitting spl given in Section A.3 and compute γ(g(F ), β, ψF )
explicitly.

The case of symplectic groups: Suppose that G(F ) = Sp2n(F ), so that

t(F ) = {diag(X1, . . . , Xn,−Xn, . . . ,−X1) |X1, . . . , Xn ∈ F}.
Take the non-degenerate G(F )-invariant symmetric bilinear form β on g(F )
given by β(X,Y ) = tr(XY ). Noting that X−αi = Ei+1,i − E2n+1−i,2n−i for
1 ≤ i ≤ n− 1 and X−αn = En+1,n, we have

YψF ,β,w = 2−1(X−α1 + · · ·+X−αn−1) +X−αn = Ad(t0)

(
n∑
i=1

X−αi

)
∈ O∞,

where

t0 = diag(2n−1, 2n−2, . . . , 1, 1, . . . , 2−n+2, 2−n+1) ∈ T (F ).

Hence β satisfies the condition (‡). Since
β(X,Y ) = 2(X1Y1 + · · ·+XnYn)

for X,Y ∈ t(F ), we have

γ(g(F ), β, ψF ) = γ(ψF )
n.
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The case of odd special orthogonal groups: Suppose thatG(F ) = SO2n+1(F ),
so that

t(F ) = {diag(X1, . . . , Xn, 0,−Xn, . . . ,−X1) |X1, . . . , Xn ∈ F}.
Take the non-degenerate G(F )-invariant symmetric bilinear form β on g(F )
given by β(X,Y ) = tr(XY ). Noting that X−αi = Ei+1,i − E2n+2−i,2n+1−i for
1 ≤ i ≤ n− 1 and X−αn = 2(En+1,n − En+2,n+1), we have

YψF ,β,w = 2−1(X−α1 + · · ·+X−αn−1) + 2−2X−αn = Ad(t0)

(
n∑
i=1

X−αi

)
∈ O∞,

where

t0 = diag(2n+1, 2n, . . . , 22, 1, 2−2, . . . , 2−n, 2−n−1) ∈ T (F ).

Hence β satisfies the condition (‡). Since
β(X,Y ) = 2(X1Y1 + · · ·+XnYn)

for X,Y ∈ t(F ), we have

γ(g(F ), β, ψF ) = γ(ψF )
n.

The case of even special orthogonal groups: Suppose thatG(F ) = SOη
2n(F ),

so that t(F ) is equal to{{diag(X1, . . . , Xn,−Xn, . . . ,−X1) |X1, . . . , Xn ∈ F} if η = 1,

{diag(X1, . . . , Xn,−Xn, . . . ,−X1) |X1, . . . , Xn−1 ∈ F, Xn ∈ K0} otherwise,

where K is the quadratic extension of F associated to η by the local class field
theory and K0 is the set of trace zero elements in K. Take the non-degenerate
G(F )-invariant symmetric bilinear form β on g(F ) given by β(X,Y ) = tr(XY ).
Noting that X−αi = Ei+1,i − E2n+1−i,2n−i for 1 ≤ i ≤ n − 1 and X−αn =
En+1,n−1 − En+2,n, we have

YψF ,β,w = 2−1(X−α1 + · · ·+X−αn) = Ad(t0)

(
n∑
i=1

X−αi

)
∈ O∞,

where

t0 = diag(2n−1, 2n−2, . . . , 1, 1, . . . , 2−n+2, 2−n+1) ∈ T (F ).

Hence β satisfies the condition (‡). Since

β(X,Y ) =

{
2(X1Y1 + · · ·+XnYn) if η = 1,

2(X1Y1 + · · ·+Xn−1Yn−1) + trK/F (XnYn) otherwise

for X,Y ∈ t(F ), we have

γ(g(F ), β, ψF ) = γ(ψF )
n−1γ(aψF ),

where we write η = ηa with a ∈ F× so that K = F (
√
a). Note that K0 = F

√
a.
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The case of unitary groups: Suppose that G(F ) = Un, so that

t(F ) =

{
{diag(X1, . . . , Xr,−Xr, . . . ,−X1) |X1, . . . , Xr ∈ E},
{diag(X1, . . . , Xr+1,−Xr, . . . ,−X1) |X1, . . . , Xr ∈ E, Xr+1 ∈ E0}

according to n = 2r or n = 2r + 1, where E0 is the set of trace zero ele-
ments in E. Write E = F (

√
a) with a ∈ F× and put η = ηa. Take the

non-degenerate G(F )-invariant symmetric bilinear form β on g(F ) given by
β(X,Y ) = 1

2
trE/F (tr(XY )). Noting that X−αi = Ei+1,i for 1 ≤ i ≤ n − 1 and

that

u1Xα1 + · · ·+ un−1Xαn−1 ∈ u(F ) ⇐⇒ ui = un−i (1 ≤ i ≤ n− 1)

for u1, . . . , un−1 ∈ E, we have

YψF ,β,w =
n−1∑
i=1

X−αi ∈ O∞.

Hence β satisfies the condition (‡). Since

β(X,Y ) =

{
trE/F (X1Y1 + · · ·+XrYr) if n = 2r,

trE/F (X1Y1 + · · ·+XrYr + (1/2)Xr+1Yr+1) if n = 2r + 1

for X,Y ∈ t(F ), we have

γ(g(F ), β, ψF ) =

{
γ(ψF )

rγ(aψF )
r if n = 2r,

γ(ψF )
rγ(aψF )

rγ((a/2)ψF ) if n = 2r + 1.

The computation of the Weil indices for the various classical groups is now complete.
We turn to the proof of the equation

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )
= 1.

Recall that G′(F ) is of the form

G′(F ) =


Sp2n1

(F )× SOη
2n2

(F ) if G(F ) = Sp2n(F ),

SO2n1+1(F )× SO2n2+1(F ) if G(F ) = SO2n+1(F ),

SOη1
2n1

(F )× SOη2
2n2

(F ) if G(F ) = SOη
2n(F ),

Un1 × Un2 if G(F ) = Un

with n1 + n2 = n and η1η2 = η (see e.g., [W5, Section 1.8]). Recall also that β′ is
the transfer of β to g′(F ) according to [W1, Section VIII.6]. Explicitly, if we write
G′(F ) = G1(F )×G2(F ), then we have

β′ = β1 ⊕ β2,

where βi is the bilinear form on gi(F ) as above.
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The case of symplectic groups: Suppose that G(F ) = Sp2n(F ) and G′(F ) =
Sp2n1

(F )× SOη
2n2

(F ) with η = ηa. Then we have

γ(g(F ), β, ψF ) = γ(ψF )
n, γ(g′(F ), β′, ψF ) = γ(ψF )

n−1γ(aψF )

and

ε(1/2, X∗(T )C, ψF ) = 1, ε(1/2, X∗(T ′)C, ψF ) = ε(1/2, ηa, ψF ).

Hence

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )
=

γ(ψF )

γ(aψF )
· 1

ε(1/2, ηa, ψF )
= 1.

The case of odd special orthogonal groups: Suppose thatG(F ) = SO2n+1(F )
and G′(F ) = SO2n1+1(F )× SO2n2+1(F ). Then we have

γ(g(F ), β, ψF ) = γ(g′(F ), β′, ψF ) = γ(ψF )
n

and

ε(1/2, X∗(T )C, ψF ) = ε(1/2, X∗(T ′)C, ψF ) = 1.

Hence
γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )
= 1.

The case of even special orthogonal groups: Suppose thatG(F ) = SOη
2n(F )

and G′(F ) = SOη1
2n1

(F )× SOη2
2n2

(F ) with η = ηa and ηi = ηai . Then we have

γ(g(F ), β, ψF ) = γ(ψF )
n−1γ(aψF ), γ(g′(F ), β′, ψF ) = γ(ψF )

n−2γ(a1ψF )γ(a2ψF )

and

ε(1/2, X∗(T )C, ψF ) = ε(1/2, η, ψF ),

ε(1/2, X∗(T ′)C, ψF ) = ε(1/2, η1, ψF )ε(1/2, η2, ψF ).

Hence

γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )

=
γ(ψF )γ(aψF )

γ(a1ψF )γ(a2ψF )
· ε(1/2, η, ψF )

ε(1/2, η1, ψF )ε(1/2, η2, ψF )
= 1.

The case of odd unitary groups: Suppose thatG(F ) = Un andG
′(F ) = Un1×

Un2 with n = 2r + 1. Then we have

γ(g(F ), β, ψF ) = γ(g′(F ), β′, ψF ) = γ(ψF )
rγ(aψF )

rγ((a/2)ψF )

and

ε(1/2, X∗(T )C, ψF ) = ε(1/2, X∗(T ′)C, ψF ) = ε(1/2, η, ψF )
r+1.
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Hence
γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )
= 1.

The case of even unitary groups: Suppose that G(F ) = Un and G′(F ) =
Un1 × Un2 with n = 2r. If n1 and n2 are even, then we have

γ(g(F ), β, ψF ) = γ(g′(F ), β′, ψF ) = γ(ψF )
rγ(aψF )

r

and

ε(1/2, X∗(T )C, ψF ) = ε(1/2, X∗(T ′)C, ψF ) = ε(1/2, η, ψF )
r.

Hence
γ(g(F ), β, ψF )

γ(g′(F ), β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )
= 1.

If n1 and n2 are odd, then we have

γ(g(F ), β, ψF ) = γ(ψF )
rγ(aψF )

r, γ(g′(F ), β′, ψF ) = γ(ψF )
r−1γ(aψF )

r−1γ((a/2)ψF )
2

and

ε(1/2, X∗(T )C, ψF ) = ε(1/2, η, ψF )
r, ε(1/2, X∗(T ′)C, ψF ) = ε(1/2, η, ψF )

r+1.

Hence

γ(g(F ), β, ψF )

γ(g′(F )β′, ψF )
· ε(1/2, X

∗(T )C, ψF )

ε(1/2, X∗(T ′)C, ψF )
=
γ(ψF )γ(aψF )

γ((a/2)ψF )2
· 1

ε(1/2, η, ψF )

=
ε(1/2, ηa/2, ψF )

2

ε(1/2, η, ψF )2
=
ηa/2(−1)

η(−1)

=
(a/2,−1)F
(a,−1)F

= (2,−1)F = 1.

Here, we use the fact that (x, 1− x)F = 1 for x ̸= 0, 1.

This completes the proof of Lemma D.3.2 for classical groups by explicit computation.

Appendix E. Endoscopic character relations for the archimedean case

In this appendix, we will argue that [Ar3, Theorem 2.2.1(a)] holds for F = R and
tempered parameters ψ = ϕ, and that [Ar3, Theorem 2.2.4] holds for F = R and discrete
parameters ψ = ϕ. The validity of these theorems is assumed at various places in [Ar3]
with the remark that they will follow from a forthcoming work of Shelstad and Mezo.
In the meantime, the work of Shelstad [She2] has appeared, which proves the transfer of
functions in twisted endoscopy for F = R, and the works of Mezo [Mez1, Mez2], which
prove a weaker version of the desired theorems: the character identities are shown to
hold up to a scalar.

In this appendix, we will use different sources. The forthcoming work [KM] treats a
general class of disconnected real reductive groups and L-parameters which are discrete
for the identity component; this will suffice for the purposes of [Ar3, Theorem 2.2.4],
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because the general tempered case can be reduced to the discrete case by a global
argument. However, this is insufficient for the purposes of [Ar3, Theorem 2.2.1(a)],
because the group GLN has no discrete parameters when F = R and N > 2. Here we
will build on [AMR] and [Cl]. This will again involve a global reduction argument, but
now to the case that ϕ is discrete for the endoscopic group. It will further involve a
local argument that allows for a variation of the L-homomorphism.

E.1. Theorem 2.2.4 for archimedean discrete parameters. We briefly review the
results of [KM]. One considers rigid inner forms of groups of the formG+ = G⋊A, where
G is a quasi-split connected reductive R-group and A is a finite group of automorphisms

of G that preserve a pinning. (These groups were denoted by G̃ in loc. cit., but here
we are using the notation G+ of Arthur.) In the case at hand we have G = SO2n, the
non-trivial element of A = Z/2Z is acting by the unique pinned outer automorphism,
and we are interested in the trivial rigid inner form, i.e. the group G+ = G⋊ A itself.

It is shown in loc. cit. that to each discrete parameter ϕ : WR → LG one can associate
an L-packet Πϕ(G

+) of irreducible discrete series representations of G+(R) and an

injection of this L-packet into Irr(S+
ϕ ), where S

+
ϕ is the centralizer of ϕ in Ĝ ⋊ A =

SO2n(C) ⋊ Z/2Z, where again A acts by preserving a pinning of Ĝ. Note that we
are using the superscript + here again in the sense of Arthur, and not in the sense of
[Kal3]. This injection is normalized using a Whittaker datum w that is A-admissible,
i.e. it is a G(R)-conjugacy class of pairs (B,χ) that contains an A-stable such pair;
such Whittaker data always exist.

When the Ĝ-conjugacy class of ϕ is not stable under A, then S+
ϕ = Sϕ is the centralizer

of ϕ in Ĝ. The setting of [Ar3, Theorem 2.2.4] is the opposite, namely the Ĝ-conjugacy
class of ϕ is stable under A, in which case Sϕ is a normal subgroup of index 2 in S+

ϕ ,
with quotient A = Z/2Z.

For any s ∈ S+
ϕ one can associate an endoscopic datum (G′,G ′, s, η), which is twisted

when s /∈ Sϕ. The following character identity is proved in loc. cit.:

(ECR) SΘϕ′(f
′) =

∑
π∈Πϕ(G)

⟨s, π̃⟩Θπ̃(f),

where the notation is as follows:

(1) f is a smooth compactly supported function on G(R) = SO2n(R), which we
interpret as a function on G+(R) that is supported on the non-identity coset,
by means of the injection G(R) → G+(R) sending g to gθ, with θ ∈ A = Z/2Z
the non-identity element.

(2) f ′ is the transfer of f to the twisted endoscopic group G′ in terms of the
Kottwitz–Shelstad transfer factor normalized by the fixed A-admissible Whit-
taker datum w.

(3) ϕ′ is the factorization of the parameter ϕ through η : LG′ → LG.
(4) SΘϕ′ is the stable character of the L-packet Πϕ′(G

′) of G′.
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(5) π̃ is an arbitrary extension to G+(R) of the representation π. We will argue
below that such an extension always exists in the special case we are considering.

(6) Θπ̃ is the distribution character of π̃. It is shown in loc. cit. that the product
⟨s, π̃⟩Θπ̃(f) does not depend on the choice of extension π̃ of π.

Identity (ECR) is the desired identity (2.2.17) in [Ar3, Theorem 2.2.4], albeit in dif-
ferent notation. This proves part (a) of that theorem for discrete parameters over R.

Part (b) is the assertion that we made in (5) above that every π has an extension π̃.
It is shown in loc. cit., in the general setting of disconnected groups discussed there,
that if π ∈ Πϕ(G) corresponds to ρ ∈ Irr(Sϕ), then the extensions of π to G+(R) are
in natural bijection with the extensions of ρ to S+

ϕ . Thus, it is enough to show that in

the particular case of G+ = SO2n ⋊ Z/2Z any ρ ∈ Irr(Sϕ) has an extension to S+
ϕ .

To see this we note that Ĝ⋊Z/2Z is isomorphic to O2n(C). Therefore, the centralizer
S+
ϕ is isomorphic to ∏

i

O(Vi)×
∏
i

Sp(Wi)

and Sϕ is the subgroup of index 2 on which the product of the determinants of the
individual factors is trivial. The representation ρ kills the identity component of Sϕ,
which is also the identity component of S+

ϕ . We are therefore looking for an extension

of ρ from π0(Sϕ) to π0(S
+
ϕ ). But the latter group is visibly abelian, in fact a 2-group,

so such an extension always exists.

E.2. Theorem 2.2.1(a) for archimedean tempered parameters. In the remain-
der of this appendix we will show that the twisted character identities in [Ar3, Theorem
2.2.1 (a)] and their unitary group analogue over R for tempered representations are
valid. Note that [KM] treats general disconnected real groups, but only those tempered
parameters that are discrete for the identity component, and this is not sufficient for our
purposes. Mezo has treated in [Mez2] general twisted real groups and general tempered
parameters, but the desired identity is proved there only up to a scalar. We need to
know that this scalar factor is equal to 1. This is done in [AMR, Appendix A] (resp. in
[Cl]) for G = Sp2n and G = SOn (resp. for G = Un), but only for special L-embeddings
LG → GLN and only for L-parameters that are discrete for G. We will reduce the
general case to that core case.

E.3. Reductions. For convenience we adopt the notation of [Ar3] and make references
to there. (These are closely followed in [Mok] with minor differences.)

We can first reduce the identities to the case that G is a simple twisted endoscopic
group. Indeed, if G = GS × GO is not simple, then by [Ar3, Proposition 6.6.1], we

may assume that ϕ = ϕS × ϕO ∈ Φ̃2(G) is square-integrable. (If G possesses no square-
integrable parameters, then there is nothing to prove.) There exist stable linear forms

fS(ϕS), f
O(ϕO), fS ∈ H̃(GS), f

O ∈ H̃(GO)
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either by the induction hypothesis or by well-known results in real endoscopy. (These
are the stable characters associated with the discrete series L-packets for ϕS and ϕO.)
We define a stable linear form f(ϕ) by the formula

f(ϕ) = fS(ϕS)f
O(ϕO), f = fS × fO.

Mezo [Mez2] has shown that the twisted character f̃N(ϕ) (defined in [Ar3, (2.2.1)]) on

f̃ ∈ H̃(N) satisfies the following twisted character identity up to a scalar c(ϕ) ∈ C×,

where f̃G denotes a transfer of f̃ :

f̃N(ϕ) = c(ϕ)f̃G(ϕ).

Lemma E.3.1. In the above setting, c(ϕ) = 1.

Remark E.3.2. This lemma was assumed in the proof of [Ar3, Lemma 6.6.3] and [Mok,
Proposition 7.7.1] when the authors write “assumed as part of the theory of twisted
endoscopy” or “by the results of Mezo and Shelstad”. Unfortunately the current state
of twisted endoscopy for real groups is not enough to imply the lemma as a special case.
So we give a global proof in much the same way as Arthur treats p-adic places.

Proof of Lemma E.3.1. Let d > 0 be a sufficiently large integer; this number controls
the number of archimedean places. (Arthur wants d to be large in the globalization of
[Ar3, Sections 6.2–6.3]. For our purpose d = 2 is enough because we do not need [Ar3,
Proposition 6.3.1 (iii)]. We do need d > 1 to be able to appeal to the simple trace
formula.)

By [Ar3, Proposition 6.3.1] (disregarding condition (iii) there) we have the following
globalization for each of i ∈ {0, 1}:

• a totally real field Ḟi such that [Ḟi : Q] = d+ i,
• a real place ui of Ḟi,

• a twisted endoscopic datum Ġi ∈
˙̃Eell(N) over Ḟi,

• a parameter ϕ̇i ∈ Φ̃sim
2 (Ġi)

such that (Ḟi, Ġi, ϕ̇i) specializes to (F,G, ϕ) at the place ui, and such that

• Ġi possesses discrete series at all v ∈ Suii,∞ (in addition to v = ui),

• ϕ̇i,v is square-integrable and in relative general position at all v ∈ Suii,∞,

where Si,∞ stands for the set of real places of Ḟi, and we put Suii,∞ = Si,∞\{ui}. (The

degree [Ḟi : Q] is not prescribed in loc. cit. but the existence argument there works for
a fixed choice of Ḟi and ui.) In fact the real groups

Ġi,v (i ∈ {0, 1}, v ∈ Si,∞)

are all isomorphic to G (canonically up to inner automorphism) as they are quasi-split
real forms accommodating discrete series. We fix such isomorphisms.

Now the point is that, in addition to the above, we can arrange that the real com-
ponents of ϕ̇0 and ϕ̇1 away from u0, u1 are all equal, i.e.,

(♭) ϕ̇i,v = ϕgen (i ∈ {0, 1}, v ∈ Suii,∞)
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for some ϕgen ∈ Φ̃2(G) in general position via Ġi,v
∼= G. This is possible since Arthur

can prescribe the parameters at v ∈ Suii,∞ quite flexibly. More precisely, for i = 0, 1
and v ∈ Suii,∞, his argument fixes a regular infinitesimal character µi,v (of a discrete

series representation) and shows that there exists a global parameter ϕ̇i such that ϕ̇i,v
has infinitesimal character nµi,v and trivial central character, as long as n ∈ Z>0 is
sufficiently large. Thus we can achieve (♭) by starting from the same µi,v for all i, v as
in (♭) and then choosing n large. (We use the same n for all i, v.)

The rest of the argument proceeds as in the proof of [Ar3, Lemma 6.6.3], with u a real
place rather than a finite place. Namely we apply [Ar3, Lemma 5.4.2] (applicable since
[Ar3, Assumption 5.4.1 (b)] therein is satisfied at all archimedean places) to deduce
that

˙̃fN(ϕ̇i) =
˙̃fG(ϕ̇i),

˙̃f =
∏
v

˙̃fv ∈ H̃(N)Ḟi .

Here the subscript Ḟi is there to remind us that the Hecke algebra is for the twisted
general linear group over Ḟi. Condition (ii) of [Ar3, Proposition 6.3.1] allows us to
cancel out the terms at all finite places from both sides, as in the proof of [Ar3, Lemma
6.6.3]. Hence ∏

v∈Si,∞

˙̃fN,v(ϕ̇i,v) =
∏

v∈Si,∞

˙̃fGv (ϕ̇i,v).

In light of the equation f̃N(ϕ) = c(ϕ)f̃G(ϕ), this implies that

c(ϕ)c(ϕgen)
d−1+i = 1.

Since this holds for both i ∈ {0, 1}, it follows that c(ϕ) = c(ϕgen) = 1, as desired. □

Now we may assume that G is simple. We further can reduce to the case that the
parameter ϕ is square-integrable. Indeed, if ϕ is tempered but not square-integrable,
[Ar3, Theorem 2.2.1] follows as explained at the beginning of Section 6.6 in loc. cit.

Now consider the core case that G is a simple endoscopic group of twisted GLN and
ϕ is a square-integrable parameter. If the endoscopic datum is standard (i.e. the L-
embedding LG → GLN is standard), the result is covered by [AMR, Appendix A] for
Sp2n, SOn and [Cl] for Un. This reduces the problem to Proposition E.4.1 below, which
may be of independent interest, so we will prove it for any local field.

E.4. Set-up and statement of the result. Let F be a local field, G a quasi-split
connected reductive F -group, (B, T, {Xα}) a pinning, θ an F -automorphism of G pre-
serving the pinning, and ψF : F → C× a non-trivial character. To simplify matters,
we assume that the derived subgroup Gder is simply connected. Let (H, 1,H, ξ) be the
principal endoscopic datum for (G, θ). We assume that there exists an L-isomorphism
LH → H and write Lξ : LH → LG for the composition of this isomorphism with ξ. The
pinning and the character ψF lead to a Whittaker datum, which we use to normalize
the transfer factor.
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Let ϕ : LF → LH be a tempered parameter. The expected twisted character identity
is then as follows: ∑

π∈ΠLξ◦ϕ(G)

π◦θ∼=π

tr(π̃(f̃)) =
∑

σ∈Πϕ(H)

tr(σ(f̃H)),

where π̃ is the Whittaker normalized extension of π to G(F )⋊ ⟨θ⟩, f̃ ∈ C∞
c (G(F )⋊ θ),

and f̃H ∈ C∞
c (H(F )) is its transfer.

This identity is stated in the language of distributions, but can also be restated in
the language of functions as∑

π∈ΠLξ◦ϕ(G)

π◦θ∼=π

tr(π̃(δ̃)) =
∑
γ

∆[Lξ](γ, δ̃)
∑

σ∈Πϕ(H)

tr(σ(γ))

for any regular semisimple element δ̃ ∈ G(F )⋊ θ, where γ runs over the set of regular

semisimple elements of H(F ) up to stable conjugacy, and ∆[Lξ](γ, δ̃) is the transfer
factor relative to the L-embedding Lξ and normalized by the Whittaker datum.

Proposition E.4.1. Assume that the twisted character identity holds for one choice
of embedding Lξ : LH → LG. Then it holds for any other choice of Lξ with the same

restriction to Ĥ.

Remark E.4.2. One can contemplate various generalizations of this statement. For
example, the proof given below easily generalizes to arbitrary endoscopic groups in the
ordinary setting, i.e. when θ = 1. It also generalizes to inner forms of (G, θ). What
is not so clear to us is how to generalize it to arbitrary endoscopic groups when θ is
non-trivial, but we do not need this case. Also, we will only give the proof when the
derived subgroup is simply connected.

E.5. Proof. First, we study the possible variations of Lξ. Since Lξ|Ĥ has been fixed,

we use it to identify Ĥ with a subgroup of Ĝ to save notation. We have Ĥ = (Ĝθ)◦.

Lemma E.5.1. We have ZĜ(Ĥ) = Z(Ĝ).

Proof. Let Ŝ ⊂ Ĥ be a maximal torus. Then since T̂ = ZĜ(Ŝ) is a θ-stable maximal

torus of Ĝ, it is contained in a θ-stable maximal Borel subgroup B̂, and Ŝ = (T̂ θ)◦. The

root system R(Ŝ, Ĥ) is the set of indivisible roots in the relative root system R(Ŝ, Ĝ).

The latter is the set of restrictions to Ŝ of the absolute root system R(T̂ , Ĝ). No such

restriction vanishes, and the restriction map R(T̂ , Ĝ) → R(Ŝ, Ĝ) is surjective with
fibers being the θ-orbits.

An element of ZĜ(Ĥ) centralizes Ŝ, hence lies in T̂ . Moreover, it acts trivially on

each root space of Ŝ in Lie(Ĥ). For β ∈ R(Ŝ, Ĥ), the root space Lie(Ĥ)β is the space

of θ-fixed points in
⊕

α 7→β Lie(Ĝ)α. Therefore, t ∈ T̂ fixes this root space if and only if

α(t) = 1 for all α 7→ β. Since all B̂-simple roots α map to an indivisible root in R(Ŝ, Ĥ),
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we see that for an element t ∈ T̂ to centralize Lie(Ĥ) it is necessary and sufficient that

α(t) = 1 for all B̂-simple roots in R(T̂ , Ĝ), which is equivalent to t ∈ Z(Ĝ). □
Lemma E.5.2. If Lξ : LH → LG is one choice of L-embedding, then any other choice

is of the form α · Lξ for some α ∈ Z1(WF , Z(Ĝ)) whose cohomology class is θ-fixed.

Proof. The actions of σ ∈ WF on Ĥ and Ĝ are generally different, and we will write σH
and σG for them. Then σH = Ad(gσ) ⋊ σG for some gσ ∈ Ĝ that is well-defined up to

multiplication on the left by ZĜ(Ĥ). By above lemma we have ZĜ(Ĥ) = Z(Ĝ).

Since, for any Lξ and σ ∈ WF , the element Lξ(1 ⋊ σ) ∈ LG normalizes Ĥ and acts
on it by σH , we see that if one Lξ is fixed, then other choice is of the form α · Lξ for a

continuous map α : WF → Z(Ĝ).
The multiplicativity of Lξ and α · Lξ implies that α is a 1-cocycle. By an axiom of

twisted endoscopic data ([KoSh1, (2.1.4a)]), there exist x, y ∈ Z(Ĝ) such that θ ◦ Lξ =
x · Lξ · x−1 and θ ◦ (α · Lξ) = y · (α · Lξ) · y−1. It follows that α−1(σ) · θ ◦ α(σ) =

(xy−1)−1σ(xy−1), i.e. [α] ∈ H1(WF , Z(Ĝ))
θ. □

Next, we reduce Proposition E.4.1 to a property of the transfer factor. We now fix
Lξ for which the character identity∑

π∈ΠLξ◦ϕ(G)

π◦θ∼=π

tr(π̃(δ̃)) =
∑
γ

∆[Lξ](γ, δ̃)
∑

σ∈Πϕ(H)

tr(σ(γ))

holds. If we replace Lξ by α · Lξ for some α ∈ Z1(WF , Z(Ĝ)) whose class is θ-fixed,
then on the left-hand side of the identity, the packet ΠLξ◦ϕ changes to Πα·Lξ◦ϕ. If
χα : G(F ) → C× is the character corresponding to α, then tensoring representations
with χα provides a bijection

ΠLξ◦ϕ → Πα·Lξ◦ϕ.

Moreover, the Whittaker extension of χα ⊗ π equals χ̃α ⊗ π̃, where π̃ is the Whittaker
extension of π, and χ̃α is the extension of χα to G(F )⋊⟨θ⟩ specified by χ̃α(θ) = 1 (since
the class of α is θ-fixed, the character χα is θ-invariant). Therefore, upon replacing Lξ

by α · Lξ, the left-hand side of the character identity multiplies by χ̃α(δ̃). Hence to
prove Proposition E.4.1, it would be enough to show

∆[α · Lξ](γ, δ̃) = χ̃α(δ̃) ·∆[Lξ](γ, δ̃).

Finally, we shall show this property. The only piece of the transfer factor that
depends on the choice of L-embedding is ∆III . Let us briefly recall its construction
following [KoSh1, Section 5.3]. There exists a θ-admissible maximal F -torus T ⊂ G

together with an element g ∈ Gsc(F ) such that δ̃∗ = g−1δ̃g ∈ T (F )⋊ θ, and if we write

δ̃∗ = δ∗ ⋊ θ then the image γ∗ ∈ Tθ(F ) of δ∗ lies in Tθ(F ). Writing zσ = g−1σ(g) we

have (z−1
σ , δ∗) ∈ Z1(F, Tsc

1−θ−−→ T ).

Let γ ∈ H(F ) be related to δ̃ and let S ⊂ H be the centralizer of γ. There exists
a unique admissible isomorphism ξγ,γ∗ : S → Tθ mapping γ to γ∗. Choosing χ-data for
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R(T θ, G) provides L-embeddings LξS,H : LS → LH and LξT,G :
LT → LG. There is a

unique 1-cocycle η : WF → T̂ that makes the following diagram commute

LS
LξS,H //

η·Lξγ,γ∗
��

LH

Lξ
��

LT
LξT,G

// LG.

Here Lξγ,γ∗ is the L-embedding obtained from the L-isomorphism Ŝ⋊WF → (T̂ θ)◦⋊WF

dual to the inverse of ξγ,γ∗ and the inclusion (T̂ θ)◦ → T̂ , and we have multiplied it with

the 1-cocycle η, composed with the projection LS → WF and the inclusion T̂ → LT .

Then (η−1, 1) ∈ Z1(WF , T̂
1−θ−−→ T̂ad). The factor ∆III is the pairing of (z−1

σ , δ∗) and
(η−1, 1).

If we replace Lξ by α · Lξ then η is replaced by α · η. We are using the natural

inclusion Z(Ĝ) → T̂ , which is equivariant under both Γ and θ, and induces an inclusion

of complexes of Γ-modules [Z(Ĝ) → 1] → [T̂
1−θ−−→ T̂ad]. The value of the transfer

factor thus multiplies by the pairing of (α−1, 1) with (z−1
σ , δ∗). Now (α−1, 1) is included

from [Z(Ĝ) → 1]. Using the functoriality of the Tate–Nakayama pairing and the fact

that Z(Ĝ) is the torus dual to D = G/Gder when Gder is simply connected, we may
compute the pairing of (α−1, 1) and (z−1

σ , δ∗) by mapping the latter under the map

[Tsc
1−θ−−→ T ] → [1 → D]. Now δ∗ ⋊ θ = δ̃∗ = g−1δ̃g = (g−1δ̃gδ̃−1) · δ̃ and the term

in the parentheses lies in Gder. Therefore we see that the images of δ∗ ⋊ θ and δ̃ in
D(F ) ⋊ θ agree, and lie in D(F ) ⋊ θ. In particular, the image δ of δ∗ in D is an F -
point. Since ∆III enters the transfer factor with its reciprocal, we see that changing
Lξ to α · Lξ multiplies the transfer factor by χα(δ), where χα is the character of D(F )
with parameter α. This character is θ-invariant and hence extends to a character χ̃α of

D(F )⋊ ⟨θ⟩ with χ̃α(θ) = 1. Then χα(δ) = χ̃α(δ ⋊ θ) = χ̃α(δ̃), where we have mapped

δ̃ in D(F )⋊ θ under the natural map G(F )⋊ θ → D(F )⋊ θ. Since the character χα of
G(F ) is simply the inflation to G(F ) of the character χα of D(F ), the desired identity

∆[α · Lξ](γ, δ̃) = χ̃α(δ̃) ·∆[Lξ](γ, δ̃)

has been established.

Appendix F. Arithmetic Frobenius vs. geometric Frobenius

There are two conventions for normalizing class field theory in the literature, depend-
ing on whether arithmetic or geometric Frobenius elements correspond to uniformizing
elements under the local non-archimedean reciprocity map. In this appendix we shall
review these conventions and discuss how they influence Arthur’s endoscopic classifica-
tion. This is an expanded version of the discussion of [KoSh2, Section 4].
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F.1. Two conventions for L-factors. Consider a non-archimedean local field F and
let (ρ, V ) be a finite-dimensional representation of the absolute Galois group ΓF , or of
its Weil group WF ⊂ ΓF . In [Art, (9)], Artin has attached to this representation an
L-factor

LA(s, ρ) = det(1− q−s · ρ(Frobari)|V ρ(IF ))−1,

where IF ⊂ WF is the inertia subgroup and Frobari ∈ WF/IF is the arithmetic Frobenius,
i.e. the element whose action on the algebraic closure Fq of the residue field kF ∼= Fq
of F is by the transformation x 7→ xq. On the other hand, Delgine considers in [D,
(3.5.1)] the definition (we have set t = q−s)

LD(s, ρ) = det(1− q−s · ρ(Frobgeo)|V ρ(IF ))−1,

where Frobgeo is the geometric Frobenius, i.e. the inverse of the arithmetic Frobenius.
We have

LD(s, ρ) = LA(s, ρ
∨),

where (ρ∨, V ∗) is the contragredient representation.
Artin’s convention appears more natural from an arithmetic point of view, because

the substitution x 7→ xq is a primary object for any field of characteristic p, and is not
always invertible. Deligne’s convention appears more natural from a geometric point
of view, because the geometric Frobenius acts on the ℓ-adic cohomology of algebraic
varieties over Fq with eigenvalues that are algebraic integers, and this is not the case
for the arithmetic Frobenius, see [D, Section 3.6].

Both conventions are widely used in the literature. On the other hand, the L-factors
associated to characters of F×, and more generally to admissible representations of
reductive F -groups, are often defined, following Tate’s thesis, in terms of zeta integrals
on the group and related spaces, and make no reference to the Galois group of F .
We refer the reader to [Tate1] for the group F× = GL1(F ), Godement–Jacquet [GJ]
for the standard L-function on the group GLn(F ), and [JPSS] for the Rankin–Selberg
L-function of a “product” of two representations of general linear groups. These defi-
nitions are compatible with parabolic induction, which implies that for principal series
representations, they specialize to the 1-dimensional case. In that case, the output of
the construction is expressible in terms of uniformizers of F , see [Tate2, (3.1.3)] for
characters of F×.

Therefore, as discussed in [D, Section 3.6], the desire that a correspondence between
representations of the Galois or Weil groups of F and representations of connected
reductive F -groups should respect the L-factors on both sides leads to two possible
conventions for such a correspondence – one convention adapted to Artin’s definition
of a Galois-theoretic L-function, and one convention adapted to Deligne’s convention.

In the following, we will review these conventions and discuss the various parts of
Arthur’s argument which are affected by the choice of convention. We will then explain
how to make consistent choices and how the main results are affected by this choice.
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F.2. Class field theory. One of the main results of class field theory is the Artin
reciprocity map rF : CF → Γab

F , available for each local or global field F , where CF = F×

when F is local and CF = A×
F/F

× when F is global. It is closely related to the

invariant map inv : Br(F ) = H2(ΓF , CF ) → Q/Z, where CF = F
×
when F is local and

CF = A×
F/F

×
when F is global. Here AF = lim−→AE, the colimit taken over all finite

Galois extensions E/F .
In the classical normalization of Artin, the local reciprocity map sends a uniformizer

of CF = F× to an arithmetic Frobenius element of Γab
F , i.e. an element whose projection

to ΓkF acts as x 7→ xq on kF ∼= Fq. The local and global reciprocity maps are related
by the property that, for each place v of a global field F , we have the commutative
diagram

F×
v

rFv //

��

Γab
Fv

��
A×
F/F

× rF // Γab
F ,

where the left map embeds x ∈ F×
v into A×

F as the idele whose v-component equals x
and all of whose other components equal 1, while the right map is induced by identifying
ΓFv with the stabilizer in ΓF of a lift of v to a “place” of F ; the latter identification is
unique up to conjugation within ΓF , hence unique after passing to abelianization.

The reciprocity map induces for each finite Galois extension E/F , an isomorphism

CF/NE/F (CE)
∼−→ Gal(E/F )ab. Conversely, these maps for all such E/F glue together

to the reciprocity map. The finite-level maps can be interpreted via Tate cohomology
as the isomorphisms

Gal(E/F )ab = H−2
Tate(Gal(E/F ),Z) → H0

Tate(Gal(E/F ), CE) = CE/NE/F (CF )

obtained by taking the cup product with the fundamental class in H2(Gal(E/F ), CE).
In turn, the fundamental class provides an isomorphism

inv : H2(Gal(E/F ), CE) →
1

[E : F ]
Z/Z

sending the fundamental class to [E : F ]−1. These invariants splice together under
inflation to form the absolute invariant inv : H2(ΓF , CF ) → Q/Z.

The local non-archimedean absolute invariant map can be described explicitly as
follows. Let F u ⊂ F be the maximal unramified extension of F . It is known that the
inflation map H2(Gal(F u/F ), (F u)×) → H2(ΓF , F

×
) is an isomorphism. On the other

hand, if E/F is finite unramified, ϖ ∈ F× is a uniformizer and σ ∈ Gal(E/F ) is the
arithmetic Frobenius element, then the assignment

(σi, σj) 7→
{
ϖ if i+ j ≥ [E : F ],

1 if i+ j < [E : F ],
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for 0 ≤ i, j < [E : F ] is an element of Z2(Gal(E/F ), E×) that represents the funda-
mental class in H2(Gal(E/F ), E×).

The local archimedean invariant map can also be described explicitly. It is trivial for
F = C, and when F = R and σ ∈ Gal(C/R) denotes the complex conjugation, then
the assignment

(σi, σj) 7→
{−1 if i = j = 1,

1 otherwise

for 0 ≤ i, j ≤ 1 is an element of Z2(Gal(C/R),C×) that represents the fundamental
class in H2(Gal(C/R),C×). We can also give an explicit description of the archimedean
local reciprocity map. It is again trivial when F = C, and when F = R, it is the unique
surjective group homomorphism R× ↠ Gal(C/R) whose kernel is R>0.

All the objects described so far are in the Artin convention. To switch to the Deligne
convention, we compose the local and global reciprocity maps with the inversion auto-
morphism of CF . This has the effect that, at each non-archimedean place, a uniformizer
of CF = F× is mapped to a geometric Frobenius element, i.e. the inverse of an arith-
metic Frobenius element. To keep the invariant maps aligned with the reciprocity maps,
so that the reciprocity map is again obtained by the cup product with the fundamental
class, we also invert the fundamental classes, which means that we also invert the local
and global invariant maps. At the archimedean places the reciprocity map, the invari-
ant map, and the fundamental class, remain unchanged, because the relevant groups
have exponent 2.

Note that we cannot choose an Artin convention at one non-archimedean place and a
Deligne convention at another non-archimedean place, because doing so will not be com-
patible with any global reciprocity map. Thus, there are overall just two conventions,
which hold at all local places simultaneously, as well as globally. At the archimedean
places the Artin and Deligne conventions coincide.

It would be next to impossible to list exhaustively all treatments of class field theory
and say for each of them which convention is used. A small and useful list appears in
[Tate2, (1.4.1)]. In particular, [AT], [CF], and [Ser], use the Artin normalization, while
[D] and [Tate2] use the Deligne normalization.

F.3. Two conventions for ε-factors. In [D, §4], Deligne proves the existence and
uniqueness of a local ε-factor ε(ρ, ψF , dx) ∈ C× associated to a finite-dimensional rep-
resentation ρ of the Weil group of a local field F , a non-trivial character ψF : F → C×,
and a Haar measure dx of F , subject to the properties listed in [D, Theorem 4.1].
Following Langlands, Tate reinterprets this definition in [Tate2, (3.6.4)] as a function
ε(s, ρ, ψF ) = ε(ρ ⊗ ωs, ψF , dx), where dx is the unqiue Haar measure on F that is
self-dual with respect to ψF , and ωs : WF → R>0 is the character sending w ∈ WF to
|r−1
F (w̄)|sF , where w̄ ∈ W ab

F is the image of w, rF is the Artin reciprocity isomorphism
F× → W ab

F , and | · |F is the normalized absolute value on F (see [Tate2, (2.2)]).
Tate uses subscripts “D” and “L” in his article to distinguish between two possible

conventions for the local ε-factors (one due to Deligne and one due to Langlands), which
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are related by a shift by ω1/2, see [Tate2, (3.6.1)]. This difference of conventions is not
related to the difference we are discussing here, and the two conventions lead to the
same function ε(s, ρ, ψF ). Since that function is the form of the ε-factor that will be
relevant for us, we do not need to distinguish between these conventions. We will write
εD(s, ρ, ψF ) for this function.

If F is now a global field, ρ a finite-dimensional complex representation of WF , and
ψF : AF/F → C× a non-trivial character, then for each place v of F we have the
factor εD(s, ρv, ψFv), where ρv = ρ|WFv

and ψFv = ψF |Fv . The product εD(s, ρ) =∏
v εD(s, ρv, ψFv) is well-defined and independent of the choice of ψ, and we have

LD(s, ρ) = εD(s, ρ)LD(1− s, ρ∨)

according to [Tate2, (3.5.3) Theorem] (recall that Tate’s article uses Delign’s normal-
ization of class field theory).

Returning to a local field F , to switch from Deligne’s to Artin’s normalization of
class field theory we define

εA(ρ, ψF , dx) = εD(ρ
∨, ψF , dx), εA(s, ρ, ψF ) = εD(s, ρ

∨, ψF ).

The factor εA(ρ, ψF , dx) satisfies the conditions (1)–(4) of [D, Theorem 4.1] in terms
of class field theory in Artin’s normalization – indeed, the conditions (1)–(3) make no
reference to class field theory and are stable under the contragredient operation, while
the condition (4) asserts that ε(ρ, ψF , dx) = ε(χ, ψF , dx) whenever ρ : WF → C× is a
character and χ = ρ ◦ rF . Therefore, [D, Theorem 4.1] implies the uniqueness of the
collection of factors εA(ρ, ψF , dx).

Moreover, when F is global and we define as above εA(s, ρ) =
∏

v εA(s, ρv, ψv), then
the functional equation in Deligne’s normalization implies at once

LA(s, ρ) = εA(s, ρ)LA(1− s, ρ∨).

We conclude that the local factors εA(s, ρ, ψF ) provide a satisfactory theory of ε-factors
for the Artin normalization of class field theory.

F.4. The local correspondence for GLn. Let F be a non-archimedean local field.
Fix a non-trivial additive character ψF : F → C×. It was proved by Henniart [He3] that
there exists at most one collection of bijections

recF,n : Irr(GLn(F )) → H1
cts(WF × SL2(C),GLn(C))

indexed by natural numbers n satisfying the following conditions:

(1) The map recF,1 coincides with pull-back under the inverse of the isomorphism
rF : F

× → W ab
F .

(2) For π1 ∈ Irr(GLn1(F )) and π2 ∈ Irr(GLn2(F )), we have

L(s, π1 × π2) = L(s, recF,n1(π1)⊗ recF,n2(π2))

and
ε(s, π1 × π2, ψF ) = ε(s, recF,n1(π1)⊗ recF,n2(π2), ψF ),

where the left-hand sides are the local factors defined in [JPSS].
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(3) If π ∈ Irr(GLn(F )) and χ ∈ Irr(GL1(F )), then

recF,n(π ⊗ (χ ◦ det)) = recF,n(π)⊗ recF,1(χ).

(4) If π ∈ Irr(GLn(F )) has central character χ ∈ Irr(GL1(F )), then

det(recF,n(π)) = recF,1(χ).

(5) If π ∈ Irr(GLn(F )), then recF,n(π
∨) = recF,n(π)

∨.

The existence of such a bijection was proved by Harris–Taylor [HT] and Henniart [He2]
for the characteristic zero case, and by Laumon–Rapoport–Stuhler [LRS] for the positive
characteristic case.

The compatibility properties (1)–(5) make it clear that recF,n also depends on the
choice of normalization of local class field theory. More precisely, (1), (3) and (4) relate
recF,n to recF,1, and the latter is directly induced by the local reciprocity map, while (2)
relates recF,n to local L and ε-factors, for which we have the two conventions of Artin
and Deligne. Therefore, there are two normalizations of the collection of maps recF,n
– one compatible with the Artin normalization of recF,1 and the Artin convention for
local factors, and the other compatible with the Deligne normalization and convention.

Passing from Artin to Deligne normalization composes recF,n with the contragredient
operation on its source, equivalently (by (5)) on its target, for all n simultaneously.
Since for n = 1, taking contragredient is equivalent to composing with inversion, which
is the operation that switches between the Artin and Delgine normalizations of local
class field theory, we see that (1), (3), and (4) remain valid, and so does clearly (5).

To see that (2) also remains valid, we just note that on the left-hand side we have
the Rankin–Selberg factors, which are intrinsically defined in terms of zeta integrals,
and do not depend on the choice of normalization we are discussing, while on the
right-hand side the factors are Galois-theoretic and depend on the choice of Artin
vs. Deligne convention. Since by the equations LD(s, ρ) = LA(s, ρ

∨) and εD(s, ρ, ψF ) =
εA(s, ρ

∨, ψF ), i.e., since switching from one convention to the other with regards to the
local factors has the effect of taking contragredient, we see from (5) that (2) will remain
valid if we also compose recF,n with the contragredient operation.

In the work of Harris–Taylor, the Deligne convention is used. If one prefers the
Artin convention, one has to compose the result of their work with the contragredient
operation.

F.5. The isomorphisms of Langlands and Tate–Nakayama. To see how the Artin
and Deligne conventions influence Arthur’s endoscopic classification, we begin with the
two most basic tools on which everything else is built: the Langlands correspondence
for tori and the Tate–Nakayama isomorphism. Letting Γ = ΓF be the absolute Galois
group of F , the Tate–Nakayama isomorphism is the isomorphism

H i−2
Tate(Γ, X∗(S))

∼−→ H i
Tate(Γ, X∗(S)⊗Z CF ),

functorial in any F -torus S, given by taking the cup product against the fundamental
class. Note that X∗(S)⊗Z CF equals S(F ) when F is local, and S(AF )/S(F ) when F
is global. Passing from Artin to Deligne normalization inverts the fundamental class,
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hence composes the Tate–Nakayama isomorphism with the inversion automorphism on
X∗(S)⊗Z CF , equivalently with the negation automorphism of X∗(S).

There is also a duality version of the Tate–Nakayama isomorphism, where it takes
the form of a pairing

H i(Γ, X∗(S))×H2−i(Γ, X∗(S)⊗Z CF ) → H2(Γ, CF ) → Q/Z,

for i = 0, 1, 2. Here, the first map is given by taking the cup product, and the second
map is the invariant map, see [Kot1, Section 3]. Passing from Artin to Deligne conven-
tions inverts the invariant map, hence composes this duality pairing with the inversion
automorphism of X∗(S)⊗Z CF , equivalently the negation automorphism of X∗(S).

The Langlands correspondence for tori is the homomorphism

H1
cts(WF , Ŝ) → Homcts(X∗(S)⊗Z CF ,C×),

functorial in any F -torus S, which is an isomorphism when F is local, and surjective
with kernel given by the locally-everywhere-trivial classes when F is global.

We claim that passing from Artin to Deligne normalization also composes this homo-
morphism with the inversion automorphism of X∗(S)⊗ZCF , equivalently the inversion

automorphism of Ŝ.
A special case of this claim is an application of the discussion of Tate–Nakayama

duality. Consider the subgroup H1(Gal(E/F ), Ŝ) ⊂ H1
cts(WF , Ŝ) for an arbitrary finite

Galois extension E/F splitting S. The restriction of the Langlands isomorphism to this
subgroup can be described as follows: The exponential map induces the exact sequence
0 → Z → C → C× → 1, which upon applying X∗(S)⊗Z− produces the exact sequence

0 −−−→ X∗(S) −−−→ Lie(Ŝ) −−−→ Ŝ −−−→ 1,

and the connecting homomorphism in the resulting long exact sequence of Gal(E/F )-

cohomology induces an isomorphism H1(Gal(E/F ), Ŝ) → H2(Gal(E/F ), X∗(S)). The
cup product pairing between this group andH0

Tate(Gal(E/F ), X∗(S)⊗ZCE) takes values
in H2(Gal(E/F ), CE), and its composition with the invariant map becomes a perfect

pairing which identifies H1(Gal(E/F ), Ŝ) with the group of characters of X∗(S)⊗Z CF
that vanish on the image of the norm map for the extension E/F . Switching from
Artin to Deligne normalization inverts the invariant map, hence also this piece of the
Langlands homomorphism.

To discuss the full Langlands homomorphism, we need to review the Weil group
WF and see how it is affected by the switch from Artin to Deligne normalization.
We follow the exposition of [Tate2], in which a “Weil group for F” is defined as a
triple (WF , φF , {rE}), where WF is a topological group, φF : WF → ΓF is a continuous
homomorphism with dense image, and for each finite extension E/F , the map rE is an

isomorphism of topological groups CE
∼−→ W ab

E . Here WE is defined as the preimage
under φF of ΓE ⊂ ΓF , W

ab
E is the quotient of WE by the closure W c

E of its commutator
subgroup. It is required the composition φF ◦ rE : CE → Γab

E is the reciprocity map of
class field theory. In particular, if E/F is Galois and we define WE/F = WF/W

c
E, then
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we obtain an extension

1 −−−→ CE
rE−−−→ WE/F

φF−−−→ Gal(E/F ) −−−→ 1.

If we pass from Artin to Deligne normalization, then the reciprocity map is composed
with inversion, and in order to keep the condition on φF ◦ rE satisfied, we will compose
rE with the inversion automorphism of CE for all E/F (we cannot compose φF with
inversion, because φF is a homomorphism between non-abelian groups). We emphasize
again that, in a global situation, we have to do this for both the global field and all of
its localizations, to keep the local–global compatibility intact.

We now recall from [Lab, Section 6] that the Langlands homomorphism over F is
obtained from the commutative diagram

H1
cts(WE, Ŝ)

��

// Homcts(X∗(S)⊗Z CE,C×)

��
H1

cts(WF , Ŝ) // Homcts(X∗(S)⊗Z CF ,C×)

where E/F is any finite Galois extension splitting S, the left map is corestriction along
the inclusionWE ↪→ WF , and the right map is restriction along the inclusion CF ↪→ CE.

Since ΓE acts trivially on Ŝ, we have H1
cts(WE, Ŝ) = Homcts(WE, Ŝ) = Homcts(W

ab
E , Ŝ),

which rE becomes identified with the group

Homcts(CE, Ŝ) = Homcts(CE, X
∗(S)⊗Z C×) = Homcts(X∗(S)⊗Z CE,C×).

Passing between Artin and Deligne normalizations composes rE with inversion, hence
the Langlands isomorphism with inversion, as claimed.

F.6. Unramified local Langlands correspondence. LetG be a connected reductive
group over a non-archimedean local field F that is unramified, i.e. quasi-split and
split over a finite unramified extension E of F . Fix a hyperspecial maximal compact
subgroup K of G and consider the subset IrrK-sph(G) of Irr(G) consisting of those
irreducible representations π whose space πK of K-fixed vectors is non-zero. Then the
Satake isomorphism induces a bijection

IrrK-sph(G) → Φu(G), π 7→ ϕπ,

where Φu(G) is the subset of Φ(G) consisting of L-parameters which are trivial on IF ×
SL2(C). However, this bijection depends on the choice of Artin vs. Deligne convention.
In this subsection, we recall its construction and explain how it is affected by this choice.

Let H(G,K) be the C-algebra of bi-K-invariant compactly supported functions on G
equipped with the convolution product. Then the map π 7→ πK gives a bijection from
IrrK-sph(G) to the set of isomorphism classes of simple H(G,K)-modules. To describe
H(G,K) explicitly, we fix a Borel pair (B, T ) of G such that K is in good position with
respect to T (see [Car, Section 3.5]). Let A = AT be the maximal split torus in T , so
that

T/(T ∩K) ∼= A/(A ∩K) ∼= X∗(A).
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Here the first map is induced by the inclusion A ↪→ T , and the second map is induced
by the map A → X∗(A) that sends a ∈ A to λ ∈ X∗(A) = HomZ(X

∗(A),Z) given
by λ(χ) = valF (χ(a)), with valF : F

× → Z being the normalized valuation. Then the
Satake isomorphism states that

H(G,K) ∼= C[X∗(A)]
W ,

where W = NG(T )/T is the Weyl group of G (see [Car, Theorem 4.1]). In particular,
H(G,K) is commutative and hence πK is 1-dimensional for π ∈ IrrK-sph(G). Thus we
obtain a bijection

IrrK-sph(G) ∼= HomC-alg(H(G,K),C)
∼= HomC-alg(C[X∗(A)]

W ,C)
∼= (X∗(A)⊗ C×)/W = Â/W.

Now we need to choose a Frobenius element. For a moment, we use the finite Galois

form of the L-group Ĝ⋊Gal(E/F ) and fix a generator σ of the cyclic group Gal(E/F ).

By [B, Lemma 6.4], the inclusion A ↪→ T induces a surjection T̂ ↠ Â and a bijection

(T̂ ⋊ σ)/Int(N) ∼= Â/W,

where N is the inverse image of W ∼= (NĜ(T̂ )/T̂ )
Γ in NĜ(T̂ ). Moreover, by [B, Lemma

6.5], the inclusion T̂ ↪→ Ĝ induces a bijection

(T̂ ⋊ σ)/Int(N) ∼= (Ĝ⋊ σ)ss/Int(Ĝ),

where (Ĝ⋊σ)ss is the set of semisimple elements in Ĝ⋊σ. This gives rise to a bijection
(depending on the choice of a generator Frob ∈ WF/IF )

IrrK-sph(G) → Φu(G), π 7→ ϕπ

determined by
ϕπ(Frob) = t⋊ Frob

up to Ĝ-conjugacy, where t ∈ T̂ is an element whose image in Â/W corresponds to π

under the canonical bijection IrrK-sph(G) ∼= Â/W . We write ϕπ = ϕAπ (resp. ϕπ = ϕDπ )
if we take Frob = Frobari (resp. Frob = Frobgeo).

Now we discuss the relation between ϕAπ and ϕDπ . For this, we need to introduce
more notation. For a moment, let G be an arbitrary quasi-split connected reductive

group over F . Recall the Chevalley involution Ĉ = CĜ of the complex connected

reductive group Ĝ. See [AV, Proposition 2.1]. For given a pinning (B̂, T̂ , {X̂α}), the
involution Ĉ is defined as the unique automorphism of Ĝ that normalizes T̂ and acts

as inversion on it, sends B̂ to the opposite Borel subgroup, and X̂α to −X̂−α such that

[X̂α, X̂−α] = Ĥα. Since all pinnings of Ĝ are conjugate, all involutions obtained this way
are also conjugate2. We can extend such an involution to LG by ensuring the pinning

2We could have also chosen to send X̂α to X̂−α and would have again obtained an involution in the
same inner class.



204 H. ATOBE, W. T. GAN, A. ICHINO, T. KALETHA, A. MÍNGUEZ, S. W. SHIN

is Γ-stable, which implies that Ĉ commutes with the Γ-action, and then taking the

automorphism LC = Ĉ ⋊ idΓ of LG = Ĝ⋊ Γ. Since all Γ-stable pinnings are conjugate

under ĜΓ, the same holds for all versions of LC obtained this way.

Lemma F.6.1. Suppose that G is unramified, and let K be a hyperspecial maximal
compact subgroup of G. For π ∈ IrrK-sph(G), let ϕ

A
π (resp. ϕDπ ) be the L-parameter of π

in the Artin (resp. Deligne) convention. Then we have

ϕDπ = LC ◦ ϕAπ .

Proof. Recall that

ϕAπ (Frobari) = t⋊ Frobari,

ϕDπ (Frobgeo) = t⋊ Frobgeo

for some common t ∈ T̂ whose image in Â/W corresponds to π under the canonical bi-

jection IrrK-sph(G) ∼= Â/W . Since the natural map T̂ → Â restricted to T̂ Γ is surjective
by [B, p. 37, (3)], we may assume that t is Γ-fixed. Then we have

ϕDπ (Frobari) = ϕDπ (Frobgeo)
−1 = t−1 ⋊ Frobari

= Ĉ(t)⋊ Frobari =
LC ◦ ϕAπ (Frobari).

This implies the lemma. □
Let (τ, V ) be a finite-dimensional complex representation of LG. For π ∈ IrrK-sph(G)

with the L-parameter ϕπ, define the unramified L-factors LA(s, π, τ) and LD(s, π, τ) by

LA(s, π, τ) = det(1− q−s · τ ◦ ϕAπ (Frobari))
−1,

LD(s, π, τ) = det(1− q−s · τ ◦ ϕDπ (Frobgeo))
−1.

Then we have
LD(s, π, τ) = LA(s, π

∨, τ∨).

Indeed, since LC ◦ ϕAπ ∼= ϕAπ∨ , we have

τ ◦ ϕDπ (Frobgeo) = τ ◦ LC ◦ ϕAπ (Frobari)
−1

= τ ◦ ϕAπ∨(Frobari)
−1.

Its characteristic polynomial is equal to that of τ∨ ◦ ϕAπ∨(Frobari).

F.7. Endoscopic transfer. Geometric and spectral endoscopic transfers are governed
by the transfer factors defined in [LSh] and [KoSh1], in the setting of ordinary and
twisted endoscopy, respectively. Since twisted endoscopy generalizes ordinary endoscopy,
the factors of [KoSh1] ought to specialize to the factors of [LSh]. Moreover, since
Arthur’s endoscopic classification of representations uses both ordinary and twisted en-
doscopy between various pairs of groups, it is important for all factors to be normalized
compatibly.

The reader needs to be aware that the definition given in [KoSh1] is incorrect. There
are two ways to correct it, depending on whether one uses Artin or Deligne convention
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for class field theory. But neither of these corrections specializes to the definition
of [LSh]. Consequently, that latter definition also needs to be modified. All this is
explained carefully in [KoSh2, Section 5] and we will content ourselves with a brief
summary.

Let F be a local field and let G be a quasi-split connected reductive F -group. Fix an
automorphism θ of G that preserves an F -pinning and a θ-stable pair (B,χ) consisting
of a Borel subgroup B over F and a generic character χ of the unipotent radical U of
B. Let (H, s,H, η) be an endoscopic datum and let (H1, η1) be a z-pair. Associated to
these data, there are two normalizations of the transfer factors: the Artin normalization
∆A (denoted by ∆′ in [KoSh2, Section 5]) and the Deligne normalization ∆D. They
are defined in [KoSh2, (5.5.1), (5.5.2)] as

∆A = ϵ · (∆new
I ∆III)

−1∆II∆IV

and

∆D = ϵ ·∆new
I ∆III∆

−1
II ∆IV ,

where the terms ϵ,∆II ,∆III ,∆IV are defined in [KoSh1], and the corrected term ∆new
I

is defined in [KoSh2]. We note here that both ∆A and ∆D use the same ϵ-factor, namely
the one normalized according to Artin’s convention; the construction of the remaining
pieces uses both the Tate–Nakayama and the Langlands isomorphism, and in the above
formulas, these two isomorphisms have been normalized according to the conventions
in [KoSh1], namely the Artin normalization of the Tate–Nakayama isomorphism and
the Deligne normalization of the Langlands isomorphism. This is the reason why ∆A

and ∆D are given by different formulas.
In the case of trivial twisting, i.e. θ = 1, these factors can also be described using

the terms ∆I ,∆II ,∆III1 ,∆III2 ,∆IV defined in [LSh], namely as

∆A = ϵ · (∆I∆III1)
−1∆II∆III2∆IV

and

∆D = ϵ ·∆I∆III1∆
−1
II ∆

−1
III2

∆IV = ϵ ·∆I∆III1∆II∆III2,D∆IV ,

where ∆III2,D is obtained from ∆III2 by first inverting the χ-data that is being used in
the definition, and then inverting the entire factor, see [KoSh2, (5.1.2)]. Note also that
in the setting of ordinary endoscopy, the twisted ∆III breaks up as ∆III1 ·∆−1

III2
.

F.8. The Arthur–Langlands conjectures. From now on, we assume that the char-
acteristic of the base field is zero. Before we discuss the effect of Artin and Deligne
normalizations on the Arthur–Langlands conjectures, we briefly recall them. Their
main thrust can be summarized as follows.

Conjecture F.8.1. Let G be a quasi-split connected reductive group over a local or
global field F of characteristic zero.
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(1) For F global, there exists a set Ψ2(G) and for each ψ ∈ Ψ2(G) a subrepresenta-
tion L2

ψ(G) ⊂ L2
disc(G) such that

L2
disc(G) =

⊕
ψ∈Ψ2(G)

L2
ψ(G).

(2) For F local, there is a multi-set Πψ(G) over Irrunit(G) attached to each ψ ∈ Ψ(G)
such that

Irrtemp(G) =
⊔

ϕ∈Φtemp(G)

Πϕ(G).

(3) For F local and ψ ∈ Ψ(G), there is a stable distribution f 7→ ψ(f) supported on
Πψ(G), as well as a map Πψ(G) → Irr(Sψ), depending on a choice of Whittaker
datum w for G. We denote it by π 7→ ρw,π. For each semisimple s ∈ Sψ we
have

(ECR)
∑

π∈Πψ(G)

⟨π, s · sψ⟩w,ψ · π(f) = ψ′(f ′),

where ⟨π, ·⟩w,ψ = tr(ρw,π(·)) and f 7→ f ′ is the endoscopic transfer of functions.
(4) For F global, there is a localization map

Ψ2(G) → Ψ(Gv), ψ 7→ ψv

for any place v of F , and

L2
ψ(G) =

⊕
π

πm(ψ,π),

where π runs over all irreducible admissible representations π = ⊗′
vπv of G(A)

which satisfy πv ∈ Πψv(Gv) for all places v, and

m(ψ, π) = mult(ϵψ,⊗v(ρwv ,πv |Sψ)),
where wv are the localizations of a fixed global Whittaker datum w for each place
v. Here, ϵψ is the quadratic character of Sψ defined explicitly in terms of ψ as
in [Ar2, (8.4)].

(5) When F is non-archimedean and ψ ∈ Ψ(G) is unramified, Πψ has a unramified
representation π (with respect to a fixed hyperspecial maximal compact subgroup)
with multiplicity one such that

ϕψ = ϕ∗
π,

where ∗ = A (resp. ∗ = D) if we use Artin’s (resp. Deligne’s) convention for
class field theory. Moreover, it corresponds to the trivial representation of Sψ.

Let LC = Ĉ ⋊ idΓ be the Chevalley involution of LG = Ĝ ⋊ Γ defined in Section

F.6. Given ψ ∈ Ψ(G), define ψ∨ = LC ◦ ψ. Note that (ψ∨)∨ = ψ and that Ĉ induces
an isomorphism Sψ → Sψ∨ . For the group GLN and the standard pinning, we have

Ĉ(g) = tg−1. In particular, if τ : GLN(C) → GLM(C) is a representation, then τ ◦ Ĉ
is isomorphic to the contragredient of τ , and if ρ : ∆ → GLN(C) is a representation of
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some group ∆, then Ĉ ◦ ρ is isomorphic to the contragredient of ρ. Therefore, for any
G, we may think of ψ∨ as “the contragredient” of ψ. The following result, whose proof
will be given further below, lends some credence to this thought.

Proposition F.8.2. Fix a quasi-split group G and consider the validity of Conjecture
F.8.1 for all endoscopic groups G′ of G.

(1) Assume that F is local and Conjecture F.8.1 (2)–(3) holds (in either conven-
tion). Assume further that for all G′ and ψ′ ∈ Ψ(G′), the equation ψ′∨(f ′) =
ψ′(f ′ ◦ i′) holds, where i′ is the inversion anti-automorphism of G′. For any
ψ ∈ Ψ(G), consider Πψ(G)

∨ = {π∨ | π ∈ Πψ(G)}. Then

Πψ∨(G) = Πψ(G)
∨, ⟨π∨, Ĉ(x−1)⟩w−1,ψ∨ = ⟨π, x⟩w,ψ

for π ∈ Πψ(G) and x ∈ Sψ, where w−1 = (B,χ−1) for w = (B,χ).
(2) Assume that F is global and Conjecture F.8.1 (1)–(4) holds (in either conven-

tion). Assume again that for all G′ and ψ′ ∈ Ψ(G′), the equation ψ′∨(f ′) =
ψ′(f ′ ◦ i′) holds. For any ψ ∈ Ψ2(G) and π ∈ Πψ(G), we have

m(π∨, ψ∨) = m(π, ψ).

(3) If G is a quasi-split classical group, then the identity ψ∨(f) = ψ(f ◦ i) holds
for Arthur’s construction (in either convention). Since all G′ are products of
classical groups, we see that parts (1) and (2) hold for G.

Let us now turn to the effect of the Artin and Delgine normalizations on the Arthur–
Langlands conjectures. We will write ϕAπ and ϕDπ for the Langlands parameter associated
to a representation π with respect to either convention. We have the following cues:

(1) In the local correspondence for G = GLN , switching between the two normal-
izations is accomplished by taking the contragredient of the representation of
G(F ), equivalently of its Langlands parameter. That is the same as composing
the Langlands parameter with the Chevalley involution of GLN(C). Thus we

have ϕDπ = Ĉ ◦ ϕAπ .
(2) If G is an unramified group, then we saw in Lemma F.6.1 that ϕDπ = LC ◦ ϕAπ .
(3) It is expected that there should be an independent definition of an L-function

L(s, π, τ) associated to an automorphic representation π of G(AF ) and a finite-
dimensional representation τ : LG→ GL(V ), which does not reference the Galois
side, and that L(s, π, τ) = L∗(s, τ ◦ ϕ∗

π), where ϕ
∗
π is the L-parameter of π and

∗ ∈ {A,D} is either of the two normalization conventions. It is not known
how to define L(s, π, τ) in general, but there are some known examples, such
as that of Godement–Jacquet [GJ], where G = GLN and τ is the standard

representation of Ĝ = GLN(C) and trivial on Γ. In that setting L(s, π, τ) is
insensitive to the normalization of class field theory. One might expect that, for
general groups G, the definition of the automorphic L-function L(s, π, τ) might
be insensitive to the normalization of class field theory provided that LG is a

direct product Ĝ × Γ and τ is trivial on Γ. This implies that we should have
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LA(s, τ ◦ ϕAπ ) = LD(s, τ ◦ ϕDπ ), pointing towards τ ◦ ϕDπ = (τ ◦ ϕAπ )∨ as finite-
dimensional representations of the Langlands group of the base field. Now on

the one hand (τ ◦ ϕAπ )∨ = τ∨ ◦ ϕAπ , while on the other hand τ∨ = τ ◦ Ĉ; the
latter can be seen by first reducing to the case that τ is irreducible and then

noting that the weights of τ ◦ Ĉ are exactly the negatives of that of τ . This

again points to ϕDπ = Ĉ ◦ ϕAπ .
With regards to (3) we want to point out that if we do not assume that LG = Ĝ×Γ and
that τ is trivial on Γ, then it is not reasonable to expect that L(s, π, τ) is independent
of the choice of normalization of class field theory. A degenerate example would be
when G = {1}, in which case LG = Γ and L(s, π, τ) is simply the L-function of the
Galois representation τ .

A less degenerate example is the unramified L-function L(s, π, τ), where both G and
π are unramified, where we saw that there are two normalizations linked by the identity

LD(s, π, τ) = LA(s, π
∨, τ∨).

Note that, in this setting, if G is in fact split and τ is trivial on the Γ-factor of LG =

Ĝ× Γ, then

LD(s, π, τ) = LD(s, τ ◦ ϕDπ )
= LA(s, (τ ◦ ϕDπ )∨)
= LA(s, τ

∨ ◦ ϕDπ )

= LA(s, τ
∨ ◦ Ĉ ◦ ϕAπ )

= LA(s, τ ◦ ϕAπ ) = LA(s, π, τ),

consistent with (3) above.
We are thus led to expect the following:

Conjecture F.8.3. Let G be a quasi-split connected reductive group over a local or
global field F .

(1) If F is local and Πψ(G)
A (resp. Πψ(G)

D) is the A-packet associated to ψ ∈ Ψ(G)
by the Artin (resp. Deligne) convention of Conjecture F.8.1, then

Πψ(G)
D = (Πψ(G)

A)∨ = Πψ∨(G)A,

and for π ∈ Πψ(G)
D and x ∈ Sψ, we have

⟨π, x⟩Dw,ψ = ⟨π∨, x−1⟩Aw−1,ψ = ⟨π, Ĉ−1(x)⟩Aw,ψ∨ .

(2) If F is global and L2
ψ(G)

A (resp. L2
ψ(G)

D) is the ψ-constituent of L2
disc(G) asso-

ciated to ψ ∈ Ψ2(G) by the Artin (resp. Deligne) convention, then

L2
ψ(G)

D = (L2
ψ(G)

A)∨ = L2
ψ∨(G)A, m(π∨, ψ∨) = m(π, ψ).

Proposition F.8.4. Let G be a quasi-split connected reductive group over a local or
global field F .
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(1) Assume that F is local and Conjecture F.8.1 (2)–(3) holds in Artin’s convention.
For any ψ ∈ Ψ(G), π ∈ Πψ(G)

A, and x ∈ Sψ, define

Πψ(G)
D = (Πψ(G)

A)∨, ⟨π∨, x⟩Dw,ψ = ⟨π, x−1⟩Aw−1,ψ.

Then Conjecture F.8.1 (2)–(3) holds in Deligne’s convention.
(2) Assume that F is global and Conjecture F.8.1 (1)–(4) holds in Artin’s conven-

tion. For any ψ ∈ Ψ(G), define

L2
ψ(G)

D = (L2
ψ(G)

A)∨.

Then Conjecture F.8.1 (1)–(4) holds in Deligne’s convention.
(3) In the setting of a quasi-split classical group G, let ψA(f) and ψD(f) be the Artin

and Deligne normalizations of the stable character corresponding to ψ ∈ Ψ(G)
according to Arthur’s construction (for quasi-split symplectic, orthogonal, or
unitary groups). Then ψD(f) = ψA(f ◦ iG), where iG is the inversion anti-
automorphism of G. In particular, Arthur’s construction satisfies Conjecture
F.8.3.

We will now give the proof of Propositions F.8.2 and F.8.4, which are closely related.
The generic part of Proposition F.8.2 (1) was proved in [Kal1]. These arguments extend
to prove both propositions, as was noted in the setting of unitary groups by Bertoloni
Meli and Nguyen in [BMN, Section 2.2].

The technical heart of the proof is the following lemma, whose statement needs a bit
of preparation. Given an endoscopic datum e = (H, s,H, ξ) for G ⋊ θ we write LC(e)

for the quadruple (H, s′,H′, ξ′), where s′ = Ĉ(s−1), H′ is the same group as H but

with the embedding Ĥ → H composed with ĈH , and ξ′ = LC ◦ Lθ ◦ ξ. Given a z-pair
z = (H1, ξH1) for e we write LCH(z) for the pair (H1,

LCH1 ◦ ξH1).
Recall that the endoscopic transfer of a compactly supported function on G(F )⋊θ to

H1(F ) is generally not compactly supported. Indeed, as discussed in [KoSh1, §5.5], such
a function f1 transforms under the kernel of H1(F ) → H(F ) by a character λ = λH1 ,
and only the image in H(F ) of its support is compact. We shall write C∞

λ,c(H1(F )) for
the space of these functions.

Lemma F.8.5. Let (G, θ) be a quasi-split twisted group, let e = (H, s,H, η) be an
endoscopic datum, and let z = (H1, η1) be a z-pair. Denote by iθ and i1 the inversion
anti-automorphisms on G⋊ ⟨θ⟩ and H1, respectively.

(1) Assume that f ∈ C∞
c (G(F ) ⋊ θ) and f1 ∈ C∞

λ,c(H1(F )) are matching functions
with respect to the transfer factor ∆[w, e, z] (in either convention). Then the
functions f ◦ iθ ∈ C∞

c (G(F )⋊ θ−1) and f1 ◦ i1 ∈ C∞
λ,c(H1(F )) are matching with

respect to the transfer factor ∆[w−1, LC(e), LCH(z)] (in the same convention).
(2) Assume that f ∈ C∞

c (G(F ) ⋊ θ) and f1 ∈ C∞
λ,c(H1(F )) are matching func-

tions with respect to the transfer factor ∆A[w, e, z]. Then the functions f ◦ iθ ∈
C∞
c (G(F ) ⋊ θ−1) and f1 ◦ i1 ∈ C∞

λ,c(H1(F )) are matching with respect to the

transfer factor ∆D[w
−1, e′, z], where e′ = (H, s−1,H, η).
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Admitting this lemma, whose proof we will give at the end of this section, we complete
the proofs of Propositions F.8.2 and F.8.4 as follows.

Consider first parts (1) of these propositions; thus F is local. The A-packets Πψ(G)
and the maps Πψ(G) → Irr(Sψ) are uniquely characterized by the stable characters ψ(f)
and the identities (ECR). In Proposition F.8.2 (1), we are assuming ψ∨(f) = ψ(f ◦ i)
and it is enough to show that Equation (ECR) for a fixed ψ and all s ∈ Sψ implies the
same equation for ψ∨ and all s∨ ∈ Sψ∨ , while for Proposition F.8.4 (1), we are defining
ψD(f) = ψA(f ◦ i) and we want to show that the validity of Equation (ECR) for a
fixed ψ and all s ∈ Sψ in Artin’s convention implies its validity in Deligne’s convention,
where the two pairings are related as in the statement of Proposition F.8.4 (1).

For Proposition F.8.2 (1), we will give a proof which works in either convention. We
compute

ψ′∨(f ′ ◦ i′) = ψ′(f ′)

=
∑

π∈Πψ(G)

⟨π, s · sψ⟩w,ψ · π(f)

=
∑

π∨∈Πψ(G)∨

⟨π, s · sψ⟩w,ψ · π∨(f ◦ i).

According to Lemma F.8.5(1), the functions f ◦ i and f ′ ◦ i′ are matching with respect
to ∆[w−1, LC(e), LCH(z)]. This implies that the collection {π∨ | π ∈ Πψ(G)} constitutes
the A-packet for the parameter for G whose transfer via LC(e) and LCH(z) equals ψ

′∨,
but this parameter is ψ∨. In other words, we conclude that

Πψ∨(G) = {π∨ |π ∈ Πψ(G)}.

Furthermore, equating scalars in the above equation with those in Equation (ECR) for
the parameter ψ∨, we conclude

⟨π∨, Ĉ(x−1)⟩w−1,ψ∨ = ⟨π, x⟩w,ψ,

which completes the proof of Proposition F.8.2 (1).
The proof of Proposition F.8.4 (1) is similar. First, part (2) of Conjecture F.8.1

in Artin’s convention directly implies part (2) in Deligne’s convention, since the con-
tragredient operation preserves Πtemp(G). So we consider part (3). We first need to
associate to ψ a stable character ψD(f). We define ψD(f) := ψA(f ◦ i), which is a stable
character, in fact equal to (ψ∨)A(f). Next we want to verify Equation (ECR) for given
ψ and all s ∈ S in Deligne’s convention, provided it holds in Artin’s convention. Fix
s ∈ Sψ and let e = (H, s,H, ξ), z, and ψ′, correspond to (ψ, s). Let f ∈ C∞

c (G(F ))
and f ′ ∈ C∞

λ,c(H1(F )) be matching with respect to ∆[w, e, z]. Then, as in the proof of
Proposition F.8.2 (1), we obtain the identity

ψ′D(f ′ ◦ i′) = ψ′A(f ′) =
∑

π∈Πψ(G)A

⟨π, s · sψ⟩Aw,ψ · π∨(f ◦ i)
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=
∑

σ∈Πψ(G)D

⟨σ, s−1 · sψ⟩Dw−1,ψ · σ(f ◦ i).

According to Lemma F.8.5(2), the functions f ◦ i and f ′ ◦ i′ are matching with respect
to ∆D[w

−1, e′, z], from which we conclude that Equation (ECR) holds for (ψ, s−1) in
the Deligne convention. This completes the proof of Proposition F.8.4 (1).

Next we move to the proof of parts (3) of these propositions. They claim that, in
Arthur’s construction, we have

ψD(f) = ψA(f ◦ i) = (ψA)∨(f),

for F both local and global. The global case reduces immediately to the local case. In
the local case, the stable character ψ∗(f) is uniquely determined by the twisted transfer
identity

ψ∗(f) = π̃∗
τ◦ψ(f

N).

Let us explain the notation. The superscript ∗ stands for either of the normaliza-
tions of Artin or Deligne, fN ∈ C∞

c (GLN(F ) ⋊ θ) is an arbitrary test function, and
f ∈ C∞

c (G(F )) is its twisted transfer with respect to the transfer factor ∆∗[w, e, τ ],
normalized with respect to the convention used. Here e stands for the endoscopic datum
that realizes G as a twisted endoscopic group of GLN , τ is the standard representation
LG→ GLN(C) used by Arthur, π∗

τ◦ψ is the representation of GLN(F ) associated to the
L-parameter ϕτ◦ψ by the local Langlands correspondence for GLN normalized accord-
ing to the convention being used, and π̃∗

τ◦ψ is its Whittaker-normalized extension to
GLN(F )⋊ ⟨θ⟩.

Now we claim that for any irreducible θ-stable representation π of GLN(F ) asso-
ciated to an A-parameter, the contragredient of its Whittaker-normalized extension
to GLN(F ) ⋊ ⟨θ⟩ is equal to the Whittaker-normalized extension of its contragredi-
ent. For this, it is enough to show that a non-degenerate GLN(F )-invariant pairing
⟨·, ·⟩ : π × π∨ → C is in fact a GLN(F )⋊ ⟨θ⟩-invariant pairing.
Suppose first that π is tempered. Notice that π is unitary so that π∨ is isomorphic to

the complex conjugate of π. Hence we may consider a GLN(F )-invariant inner product
on π instead of a bilinear form on π × π∨. Fix a non-trivial Whittaker functional ω on
π. By [Ber1, Theorem 6.2, Theorem A], the integral

⟨v, v′⟩ =
∫
U\M

ω(π(g)v)ω(π(g)v′)dg

converges and realizes a non-degenerate GLN(F )-invariant inner product on π, whereM
is the standard mirabolic subgroup and U is the standard maximal unipotent subgroup.
Then we have ⟨π̃(1 ⋊ θ)v, π̃(1 ⋊ θ)v′⟩ = ⟨v, v′⟩ by definition. In general, letting Iπ be
the standard module of π, a pairing ⟨·, ·⟩ can be induced from a pairing for standard
modules ⟨·, ·⟩ : Iπ × I∨

π → C. By Lemma 3.1.1, there is a constant c ∈ C× such that

⟨θWv, θ∨Wv∨⟩ = c⟨v, v∨⟩
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for v ∈ Iπ and v∨ ∈ I∨
π , where θW (resp. θ∨W ) is the action of θ on Iπ (resp. I∨

π )
normalized by Whittaker functionals with respect to w (resp. w−1). Considering the
unique irreducible tempered subrepresentation of Iπ (Lemma 3.1.2), we see that c = 1.
Since the diagram

π∨ π̃∨(1⋊θ)−−−−−→ π∨y y
I∨
π

θ∨W−−−→ I∨
π

is commutative, which follows from Theorem 1.9.1, we obtain the claim.
The claim implies that π̃τ◦ψ(f

N) = π̃∨
τ◦ψ(f

N ◦ iN), where π̃∨
τ◦ψ denotes the Whittaker

extension of the contragredient of πτ◦ψ and iN is the inversion anti-automorphism of
GLN(F ) ⋊ ⟨θ⟩. By Lemma F.8.5 (1), the functions fN ◦ iN and f ◦ i have matching
orbital integrals with respect to ∆[w−1, CN(e),

LCG ◦ τ ], where CN (resp. LCG) is the
Chevalley involution on GLN (resp. LG). Therefore (dropping the superscript * and
agreeing that we are using an arbitrary but fixed convention)

ψ(f) = π̃τ◦ψ(f
N)

= π̃∨
τ◦ψ(f

N ◦ iN)
= π̃CN◦τ◦ψ(f

N ◦ iN)
= (LCG ◦ ψ)(f ◦ i) = ψ∨(f ◦ i),

proving Proposition F.8.2 (3).
The proof of Proposition F.8.4 (3) is quite similar. Namely, if fN and f match

with respect to ∆A[w, e, z], then f
N ◦ iN and f ◦ i match with respect to ∆D[w

−1, e′, z]
according to Lemma F.8.5 (2). The switch from w to w−1 is now irrelevant since they
are equivalent on GLN , and the switch from e to e′ is also irrelevant, since the endoscopic
element s has order 2. Hence we see that

ψD(f ◦ i) = π̃Dτ◦ψ(f
N ◦ iN) = π̃Aτ◦ψ(f

N) = ψA(f),

as desired.
We now come to the global statements (2) of Propositions F.8.2 and F.8.4. For

Propositions F.8.2 (2) we have, using part (1) and noting that ϵψ is a quadratic char-
acter,

m(π, ψ) = |Sψ|−1
∑
x∈Sψ

ϵψ(x)⟨π, x⟩ψ

= |Sψ|−1
∑
x∈Sψ

ϵψ(x)⟨π∨, Ĉ(x)⟩ψ∨

= |Sψ∨|−1
∑
x∈Sψ∨

ϵψ(Ĉ
−1(x))⟨π∨, x⟩ψ∨ ,
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where we are using the global pairing ⟨π, x⟩ψ =
∏

v⟨πv, x⟩w,ψv and suppress the Whit-
taker datum from the notation on the left, because its influence on the local pairings
obeys a global product formula, so the global pairing is independent of it.

We claim that ϵψ(Ĉ
−1(x)) = ϵψ∨(x) for all x ∈ Sψ∨ . We recall a formula for ϵψ in

[CL, Section 8.3.5]. Decompose

ψ = τ1[d1]⊞ · · ·⊞ τr[dr],

where τi is an irreducible (conjugate-)self-dual unitary cuspidal automorphic represen-
tation of GLmi(AE). Then Sψ is an elementary abelian 2-group generated by elements
{ατi[di]}i=1,...,r with ατi[di] corresponding to τi[di], and

ϵψ(ατi[di]) =
∏
j ̸=i

ε(τi × τj)
min{di,dj},

where ε(τi × τj) = ε(1/2, τi × τj) ∈ {±1} is the central value of the Rankin–Selberg

epsilon factor. Since Ĉ−1(ατi[di]) = ατ∨i [di] ∈ Sψ∨ and ε(τi × τj)ε(τ
∨
i × τ∨j ) = 1, we have

ϵψ(Ĉ
−1(x)) = ϵψ∨(x) for x = ατi[di].

Therefore,

m(π, ψ) = |Sψ∨|−1
∑
x∈Sψ∨

ϵψ∨(x)⟨π∨, x⟩ψ∨ = m(π∨, ψ∨),

which proves F.8.2 (2). Note in particular that it implies L2
ψ∨(G) = L2

ψ(G)
∨.

The computation for the proof of Proposition F.8.4 (2) is almost identical. Consider
an irreducible constituent π of L2

ψ(G)
D = (L2

ψ(G)
A)∨. The multiplicity mD(π, ψ) of π

in L2
ψ(G)

D ⊂ L2
disc(G) is equal (tautologically) to the multiplicity mA(π∨, ψ) of π∨ in

L2
ψ(G)

A ⊂ L2
ψ(G). Therefore

mD(π, ψ) = |Sψ|−1
∑
x∈Sψ

ϵψ(x)⟨π∨, x⟩Aψ = |Sψ|−1
∑
x∈Sψ

ϵψ(x)⟨π, x−1⟩Dψ .

Since ϵψ is a quadratic character, we have ϵψ(x) = ϵψ(x
−1), and we can reindex the sum

to replace x−1 by x. This completes the proofs of Propositions F.8.2 and F.8.4, modulo
the proof of Lemma F.8.5, which we now give.

Proof of Lemma F.8.5. Part (1) is proved as [Kal1, Corollary 5.5]. Note just the slight
change in notational convention. In [Kal1] we are using test functions on the group
G(F ) and are letting G(F ) act on itself by θ-twisted conjugation, i.e. hgθ(h)−1, while
now we are using test functions on the coset G(F )⋊ θ in the group G(F )⋊ ⟨θ⟩ and we
are using the action of G(F ) on this coset coming from the action of G(F ) on G(F )⋊⟨θ⟩
by usual conjugation. The translation between the two set-ups is by the map g 7→ g⋊θ,
and we have (f ◦ iθ)(g ⋊ θ) = f(θ−1(g−1)⋊ θ−1).

The proof of part (2) is reduced in the same way to the identity

∆D[w
−1, e, z](γ−1

1 , θ−1(δ−1)) = ∆A[w, e, z](γ1, δ).
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To prove the latter, we follow the discussion of [Kal1, Proposition 5.4]. We write out
as in (5.2) of loc. cit.

∆A[w, e, z](γ1, δ) = ϵ(VG,H , ψF ) ·∆new
I [e, spl, a]−1 ·∆II [a, χ] ·∆III [e, z, χ]

−1 ·∆IV ,

where we have chosen arbitrarily a-data and χ-data. We will now alter the pieces,
without changing their product, in such a way as to see that their product equals
∆D[w

−1, e′, z](γ−1
1 , θ−1(δ)−1).

As discussed in [Kal1, (5.3)], we have

∆IV (γ1, δ1) = ∆IV (γ
−1
1 , θ−1(δ1)

−1).

We will also keep ψF fixed, which keeps ϵ(VG,H , ψF ) unchanged.
Next, since the choice of a-data is arbitrary, we may replace a by −a without changing

the product of all pieces. Of course the individual pieces ∆I and ∆II change. We have

∆new
I [e, spl,−a]−1 = ∆new

I [e,−spl, a]−1 = ∆new
I [e′,−spl, a],

where the first equality is according to [Kal1, Lemma 5.1], and the second is by con-
struction. The passage from (γ1, δ) to (γ−1

1 , θ−1(δ−1)) makes no difference to that piece.
On the other hand, we have

∆II [−a, χ](γ1, δ1) = ∆II [a,−χ](γ−1
1 , θ−1(δ1)

−1) = ∆II [a, χ](γ
−1
1 , θ−1(δ1)

−1)−1

where the first identity is discussed in [Kal1, (5.5)] and the second is by construction.
Next we claim

∆III [e, z, χ](γ1, δ)
−1 = ∆III [e

′, z, χ](γ−1
1 , θ−1(δ−1)).

The proof is similar to that of [Kal1, (5.9)], so we will just give a minimalistic sketch
using the notation from that reference. The term ∆III [e, z, χ](γ1, δ) is obtained by

pairing the cohomology classes inv(γ1, δ) ∈ H1(F, Ssc
1−θ1−−−→ S1), obtained as the pair

(σ(g)g−1, δ∗1), and A0[e, z, χ] ∈ H1(WF , Ŝ1
1−θ̂1−−−→ Ŝad), obtained as a pair (aS[χ]

−1, sS),
via a hypercohomology version of Tate–Nakayama duality which blends the usual
Tate–Nakayama isomorphism (in Artin normalization) and the usual Langlands iso-
morphism (in Deligne normalization). Switching (γ1, δ) to (γ−1

1 , θ−1(δ−1)) does not
change σ(g)g−1, but inverts δ∗1. Switching e to e′ does not change aS[χ], but inverts sS.
In other words, we are now pairing (σ(g)g−1, δ∗,−1

1 ) with (aS[χ]
−1, s−1

S ), both of which
lie in the corresponding hypercohomology groups but with θ1 replaced by θ−1

1 . Since
the pairing is built by pairing δ∗1 with aS[χ]

−1 and σ(g)g−1 with sS, we see that the
total outcome of the pairing is inverted.

Combining the changes of the individual pieces, we arrive at

∆A[w, e, z](γ1, δ) = ϵ(VG,H , ψF ) ·∆new
I [e′,−spl, a] ·∆II [a, χ]

−1 ·∆III [e
′, z, χ] ·∆IV ,

where now all pieces are built for the related pair (γ−1
1 , θ(δ−1)). Noting that ψF

and −spl lead to the Whittaker datum w−1, we see that the above product equals
∆D[w

−1, e′, z](γ−1
1 , θ−1(δ)−1), as claimed. □



LOCAL INTERTWINING RELATIONS AND CO-TEMPERED A-PACKETS 215

References

[AK] J. Adams and T. Kaletha, Discrete series L-packets for real reductive groups. Preprint,
arXiv:2409.13375v1.

[AV] J. Adams and D. A., Jr. Vogan, Contragredient representations and characterizing the local
Langlands correspondence. Amer. J. Math. 138 (2016), no. 3, 657–682.

[AMR] N. Arancibia, C. Mœglin and D. Renard, Paquets d’Arthur des groupes classiques et unitaires.
Ann. Fac. Sci. Toulouse Math. (6) 27 (2018), no. 5, 1023–1105.
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