
AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY À LA
MŒGLIN–WALDSPURGER

THOMAS LANARD AND ALBERTO MÍNGUEZ

Abstract. Let F be a locally compact non-Archimedean field of characteristic
0, and let G be either the split special orthogonal group SO2n+1(F) or the
symplectic group Sp2n(F). The goal of this paper is to give an explicit
description of the Aubert–Zelevinsky duality for G in terms of Langlands
parameters. We present a new algorithm, inspired by the Mœglin–Waldspurger
algorithm for GLn(F), which computes the dual Langlands data in a recursive
and combinatorial way. Our method is simple enough to be carried out by
hand and provides a practical tool for explicit computations. Interestingly, the
algorithm was discovered with the help of machine learning tools, guiding us
toward patterns that led to its formulation.

Contents

1. Introduction 1
2. Preliminaries 7
3. Representation theory of GLn(F) 9
4. Representation theory of classical groups 11
5. Definition of the algorithm 18
6. Well-definedness of the algorithm in the good parity case 25
7. Important properties 29
8. The theory of derivatives and the Atobe–Mínguez algorithm 33
9. Explicit formulas for the derivatives 35
10. Proof in the good parity case 41
11. Proof in the bad parity case 75
12. Proof in the ugly case 80
Appendix A. On machine learning 80
References 84

1. Introduction

1.1. Let F be a locally compact non-Archimedean field. In 1980, A. Zelevinsky
[Zel80] introduced an involution of the Grothendieck group of (smooth complex)
finite-length representations of GLn(F), for n ≥ 1. Notably, this involution maps the
trivial representation to the Steinberg representation and fixes every supercuspidal
representation. He conjectured that this involution preserves irreducibility.

Inspired by the Alvis–Curtis duality [Alv79, Alv82, Cur80], S.-I. Kato [Kat93]
introduced an involution on the Grothendieck group of finite-length Iwahori-fixed
representations of a split connected reductive group defined over F . Using properties
of the functor of invariants under an Iwahori subgroup [Bor76], Kato was able to
prove that his involution preserves irreducibility, up to a sign.

Some years later, in 1995, A.-M. Aubert [Aub95] showed that Kato’s construction
can be generalized to define an involution on the Grothendieck group of finite-length

1

2 THOMAS LANARD AND ALBERTO MÍNGUEZ

representations of any connected reductive group defined over F (see Paragraph 2.2),
and proved that her involution preserves irreducibility, up to a sign. In the case of
GLn(F), it coincides with Zelevinsky’s involution up to a sign, thereby confirming
Zelevinsky’s conjecture. Using the theory of coefficient systems on the Bruhat–Tits
building, P. Schneider and U. Stuhler [SS97] similarly defined a duality and proved
that it preserves irreducibility and, at the level of the Grothendieck groups, coincides
with Aubert’s involution up to the contragredient. Another approach to this duality
can be found in the work of J. Bernstein, R. Bezrukavnikov, and D. Kazhdan
[BBK18].

For simplicity, when restricted to the set of irreducible representations of a
connected reductive group G defined over F , in this article, this involution will be
referred to as the Aubert–Zelevinsky duality and will be denoted τ 7→ τ̂ .

1.2. One of the most exciting accomplishments in recent years in Number Theory
has been the proof of the Local Langlands Correspondence for quasi-split classical
groups, namely unitary, symplectic, and orthogonal groups. In the case when the
characteristic of F is 0, using the twisted trace formula and an inductive process
known as endoscopy, J. Arthur [Art13] established a natural bijection between the
set of isomorphism classes of irreducible representations of quasi-split orthogonal
and symplectic groups and the set of so-called Langlands data, thereby proving the
Local Langlands Correspondence for these groups. It should be noted that these
results are conditional (only) on the validity of the twisted weighted fundamental
lemma; see [AGI+24] and the discussion in §0.4 therein for details.

A natural question then arises: can the Aubert–Zelevinsky duality be explicitly
described in terms of Langlands data? In other words, given the Langlands data of
an irreducible representation τ of a classical group G, what are the Langlands data
of τ̂?

1.3. The answer to this question is known for GLn(F). In 1986, C. Mœglin and
J.-L. Waldspurger [MW86] studied the Zelevinsky involution and developed an
algorithm for computing the Langlands data of τ̂ for every irreducible representation
τ of GLn(F). For GLn(F), Zelevinsky established that the set IrrGL of isomorphism
classes of irreducible representations of GLn(F), for n ≥ 0, is parametrized by Mult,
a set consisting of certain combinatorial objects known as multisegments (see Section
3 for a precise definition). We denote this correspondence by m 7→ L(m). Given an
irreducible representation τ of GLn(F) with corresponding multisegment m, Mœglin
and Waldspurger provided an algorithm to compute the multisegment mt ∈ Mult
such that τ̂ = L(mt).

The algorithm goes as follows. Given a multisegment m = ∆1 + · · ·+∆N , one
constructs a segment ∆′

1 using certain ends of the segments ∆i (see Paragraph 3.6
for more precisions), and then forms a multisegment m(1) by removing these ends
from m. They then proved that mt = ∆′

1 + (m(1))
t, which allows to compute mt

inductively.

1.4. As this will be relevant in the discussion that follows, let us briefly outline how
Mœglin–Waldspurger proved that their algorithm determines the Zelevinsky dual on
the representation side. The category of finite-length representations of GLn(F), for
n ≥ 0, has a monoidal structure given by (normalized) parabolic induction, denoted
by π1 × π2. A key consequence of the commutativity of the Zelevinsky duality with
the parabolic induction functor is that if τ is a subrepresentation of π1 × π2, then τ̂
is a subrepresentation of π̂2 × π̂1.

Given m ∈ Mult and τ = L(m), where τ is non-supercuspidal, Mœglin and
Waldspurger showed that there exist a supercuspidal representation ρ1 and a repre-
sentation τ1 ∈ IrrGL such that:

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 3

(1) τ is the unique subrepresentation of ρ1 × τ1.
(2) One can compute the multisegment m1 corresponding to τ1.
(3) Conversely, given m1 ∈ Mult and a supercuspidal representation ρ1, one can

compute the unique multisegment m ∈ Mult such that L(m) ↪→ L(m1)× ρ1.
By induction, their algorithm computes the multisegment mt

1 corresponding to τ̂1,
and the final step is to verify that the candidate mt satisfies L(mt) ↪→ L(mt

1)× ρ1,
which they confirmed.

1.5. It is important to note that Properties (1), (2) and (3) above allow the
computation of m 7→ mt even without knowing the Mœglin–Waldspurger’s algorithm.
Indeed, given m ∈ Mult, we construct m1 as described above. For m1, there
also exists a supercuspidal representation ρ2 and a multisegment m2 such that
L(m1) is the unique subrepresentation of ρ2 × L(m2), and this process continues
iteratively. The first step of induction occurs when L(mi) is supercuspidal. For
supercuspidal representations, the involution acts as the identity, so mt

i = mi. Going
backwards, from mt

i, one can reconstruct mt
i−1 as the unique multisegment satisfying

L(mt
i−1) ↪→ L(mt

i)× ρi. By continuing this process, one can recover mt.

1.6. Let us return to the case of classical groups. Let G = Gn be either the split
special orthogonal group SO2n+1(F) or the symplectic group Sp2n(F) of rank n,
where F is a non-Archimedean local field of characteristic 0. The Langlands classifi-
cation asserts that any irreducible representation π of Gn is the unique irreducible
subrepresentation of a standard module. We denote this by π = L(m, πtemp), where
m is a negative multisegment and πtemp is an irreducible tempered representation (see
Section 4.2). Tempered irreducible representations are themselves classified by local
Langlands parameters ϕ : WF × SL2(C) → GLn(C) together with some character η
of the component group of ϕ (see Section 4.3). We write πtemp = π(ϕ, η). Altogether,
the irreducible representation π is uniquely determined by the triple (m, ϕ, η), which
we refer to as the “Langlands data” of π; and we write π ≃ L(m;π(ϕ, η)).

1.7. H. Atobe and the second-named author described an algorithm to compute
the Aubert–Zelevinsky duality, similar to the one in Paragraph 1.5, building on
previous work by Jantzen [Jan18] and Atobe [Ato22b]. Let us provide more details.

For G = Gn, if π (resp. τi) is a smooth representation of Gn0 (resp. GLdi(F)),
with d1 + · · ·+ dr + n0 = n, it is customary to denote

τ1 × · · · × τr ⋊ π

the normalized parabolically induced representation of τ1 ⊠ · · ·⊠ τr ⊠ π from the
standard parabolic subgroup P of Gn with Levi subgroup isomorphic to GLd1

(F)×
· · · ×GLdr (F)×Gn0 .

Given an irreducible representation π of Gn and a supercuspidal non-self-dual
representation ρ of GLd(F), there exist a unique k ≥ 0 and a unique irreducible
representation π0 of Gn0

, with n = dk + n0, such that:
• π is the unique irreducible subrepresentation of

(1) ρ× · · · × ρ︸ ︷︷ ︸
k times

⋊π0.

• k is maximal, in the sense that for every irreducible representation π′
0 of

Gn0−d, π0 is not a subrepresentation of ρ⋊ π′
0.

We call π0 the highest ρ-derivative of π and denote it by Dmax
ρ (π). Note that,

when ρ is self-dual, a representation of the form (1) may have several irreducible
subrepresentations, and there is no simple way to distinguish them.

Furthermore, Atobe and the second-named author provided an explicit formula
for the Langlands data of Dmax

ρ (π) in terms of those of π. Conversely, they found

4 THOMAS LANARD AND ALBERTO MÍNGUEZ

a formula to explicitly determine the Langlands data of π in terms of those of
Dmax

ρ (π), just as Mœglin–Waldspurger did for linear groups in Paragraph 1.4.
Since the Aubert–Zelevinsky duality commutes with Jacquet functors, we have:

̂Dmax
ρ (π) = Dmax

ρ∨ (π̂),

where ρ∨ denotes the contragredient of ρ. The algorithm in [AM23] follows the
same lines as the one in Paragraph 1.5: given an irreducible representation π of
Gn, if there exists a supercuspidal non-self-dual representation ρ of GLd(F) such
that Dmax

ρ (π) ̸= π, then, by induction, we can compute the Langlands data of
̂Dmax
ρ (π) = Dmax

ρ∨ (π̂), which allows us to compute the Langlands data of π̂.
The issue, however, lies in the fact that one must assume ρ is not self-dual,

making the first step of the induction too complicated to handle, and the algorithm
becomes more intricate (see Section 4 for further details). While the algorithm can
be implemented on a computer, unlike the Mœglin–Waldspurger algorithm, it is not
practical for computing the Aubert–Zelevinsky dual of a representation by hand, as
the formulas for the derivatives are rather involved (they are recalled in Section 9).

1.8. The goal of this article is to provide a new algorithm for the case of split
special odd orthogonal groups or symplectic groups, in the spirit of the Mœglin–
Waldspurger algorithm for GLn(F). Given the Langlands data (m, ϕ, η) attached to
a representation π of Gn, our algorithm produces AD(m, ϕ, η), the Langlands data
associated with the representation π̂. The algorithm is described in Section 5. Here,
we will only mention three key points:

• First, given Langlands data (m, ϕ, η) attached to a representation π of Gn,
the algorithm constructs new Langlands data (m1, ϕ1, η1) and (m#, ϕ#, η#).
We then prove that the operator AD is given recursively by AD(m, ϕ, η) =
(m1, ϕ1, η1) + AD(m#, ϕ#, η#).

• As in the case of GLn, Langlands data for classical groups admit a decompo-
sition along supercuspidal lines. This is known as the Jantzen decomposition
(see Section 4.5). The Aubert–Zelevinsky dual AD(m, ϕ, η) can then be
computed line by line, by computing AD(mρ, ϕρ, ηρ) for each supercusp-
idal representation ρ. However, in the case of classical groups, we must
distinguish between three different cases. Let ρ ∈ CGL be a supercuspidal
representation of a general linear group, and let Zρ := {ρ| · |n : n ∈ Z}
denote its supercuspidal line (see Paragraph 3.5). We fix a supercuspidal
representation σ of Gn. Then
(1) We say that ρ is ugly if Zρ ̸= Zρ∨ .
(2) We say that ρ is good if Zρ = Zρ∨ and ρ′ ⋊ σ is reducible for some

ρ′ ∈ Zρ.
(3) We say that ρ is bad if Zρ = Zρ∨ and ρ′⋊σ is irreducible for all ρ′ ∈ Zρ.

This classification is independent of the choice of σ. Accordingly, we define
three distinct versions of the duality operator AD, corresponding to the
good, the bad and the ugly cases respectively.

• Finally, regarding the proof: once we have a tentative algorithm, in order
to prove that it corresponds to the Aubert–Zelevinsky duality, one only
needs to check, as in the case of general linear groups, that the algorithm
commutes with derivatives. However, this is not as straightforward as one
might expect, due to the complexity of the derivative formulas. In order to
carry out these computations, it was useful to introduce a simplified notation
for derivatives; this streamlined notation turned out to be interesting in
its own right, as it also provides a unified treatment of the positive and
negative cases considered in [AM23] (see Section 9).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 5

The proof is provided in great detail in Sections 10, 11, and 12.

1.9. Let us give an example to illustrate how the algorithm works in practice.
Here, we treat the case of a cuspidal representation ρ of good parity. We will
not provide all the details, but just a glimpse into how the process unfolds. Let
ρ ∈ CGL be of good parity and take π ∈ IrrG with Langlands data (m, ϕ, η) where
m = [−3,−1]ρ + [−2, 0]ρ + [−2,−2]ρ + [−1, 0]ρ, ϕ = ρ⊠ S3, where Sa is the unique
irreducible algebraic representation of SL2(C) of dimension a, and η(ρ⊠ S3) = 1.

The first step of the algorithm is to construct a symmetric multisegment with
signs. This is done by sending each segment ∆ ∈ m to ∆+∆∨, and each ρ⊠Sa to the
segment [−(a−1)/2, (a−1)/2]ρ (see Section 4.6). This is almost the transfer to GLn,
but the centered segments carry signs, so that we can distinguish representations
in the same L-packet (recall that the Aubert–Zelevinsky duality does not preserve
L-packets). In this example, the resulting symmetric multisegment is:

s = [−3,−1]ρ+[1, 3]ρ+[−2, 0]ρ+[0, 2]ρ+[−2,−2]ρ+[2, 2]ρ+[−1, 0]ρ+[0, 1]ρ+[−1, 1]ρ

with [−1, 1]ρ having sign +1. We then order these segments according to an order
⪯ defined in Section 5.3.1. This yields the following diagram:

-3 -2 -1 0 1 2 3

+

We now define a sequence of segments ∆1 ⪰ ∆2 ⪰ · · · ⪰ ∆l as follows (see Section
5.3.2 for full details). The segment ∆1 is the largest segment with maximal end. Then
recursively, ∆j is the largest segment such that ∆j ≺ ∆j−1, e(∆j) = e(∆j−1)− 1,
and if the segments have signs, those signs are opposite. In our example, we have
l = 5, ∆1 = [1, 3]ρ, ∆2 = [0, 2]ρ, ∆3 = [−1, 1]ρ, ∆4 = [−1, 0]ρ and ∆5 = [−3,−1]ρ.
The ends of these segments are removed, as well as the beginnings of their duals.
These removed ends form the first segment of the dual; the removed beginnings
form the symmetric counterpart. The process is then repeated on the remaining
symmetric multisegment. In our example, this gives:

-3 -2 -1 0 1 2 3

+

So the first part of the predicted dual is [−3, 1]ρ + [−1, 3]ρ. We then continue
with the remaining multisegment:

s = [2, 2]ρ+[2, 2]ρ+[0, 1]ρ+[1, 1]ρ+[0, 0]ρ+[−1,−1]ρ+[−2,−2]ρ+[−1, 0]ρ+[−2,−2]ρ

6 THOMAS LANARD AND ALBERTO MÍNGUEZ

with [0, 0]ρ having sign +1. It may happen that the two green paths above “meet in
the middle”. In such cases, the result is a centered segment, which corresponds to
an element in the tempered part. This occurs in the current multisegment, where
we obtain:

-2 -1 0 1 2

+

The resulting segment is [−2, 2]ρ with sign +1, and the remaining multisegment
becomes

[2, 2]ρ + [0, 1]ρ + [−1, 0]ρ + [−2,−2]ρ.

We repeat the process until nothing remains. Here, one more step is required where
[−2, 0]ρ + [0, 2]ρ is produced. At the end, the symmetric multisegment is:

[−3, 1]ρ + [−1, 3]ρ + [−2, 2]ρ + [−2, 0]ρ + [0, 2]ρ.

Unsymmetrizing this gives the Langlands data of π̂ as L(m;π(ϕ, η)) with m =
[−3, 1]ρ + [−2, 0]ρ, ϕ = ρ⊠ S5 and η(ρ⊠ S5) = 1.

1.10. Our algorithm generalizes Atobe’s algorithm for the so-called ladder rep-
resentations [Ato24]. For representations of Arthur type, Atobe also provides an
algorithm in terms of his parametrization [Ato22a]. Ruben La describes the Iwahori–
Matsumoto dual of tempered representations with real infinitesimal character in
[La24].

1.11. All algorithms described in this paper are implemented in Python and
SageMath, and are publicly available on GitHub1.

1.12. This duality has numerous interesting applications to the Langlands program.
We will briefly mention two of them.

One notable feature of the Aubert–Zelevinsky duality is that it does not pre-
serve temperedness. In Arthur’s local classification, the first step beyond tempered
representations involves considering the Aubert–Zelevinsky dual of tempered rep-
resentations. One first constructs A-packets and proves the local theorems when
the A-parameters are co-tempered, that is, when they are Aubert-dual to tempered
L-parameters. This is possible provided we understand how Aubert duality interacts
with the local classification and the local intertwining relation. See [Art13, §7],
[AGI+24].

The Aubert–Zelevinsky duality is also a very useful tool in studying the wavefront
set, a fundamental invariant of admissible representations, arising from the Harish-
Chandra–Howe local character expansion. Significant progress has been made in
recent years [CMBO24a, CMBO24b, CMBO23, HLLS24, La24, Wal18], and we
expect that our algorithm will be valuable in solving some of the conjectures in the
mentioned papers.

However, to be transparent, we did not begin this research with the primary
goal of exploring applications of the Aubert–Zelevinsky duality. Our initial aim

1https://github.com/ThomasLanard/aubert-zelevinsky-duality

https://github.com/ThomasLanard/aubert-zelevinsky-duality

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 7

was to investigate the potential uses of deep learning in the Langlands program.
Inspired by the work of [DVB+21], we sought an excuse to determine whether deep
learning could help reveal patterns in problems within our field. The difficult-to-
use algorithm in [AM23] for computing the Aubert–Zelevinsky duality gave us the
perfect opportunity. A discussion of how we applied deep learning and developed our
new algorithm can be found in Appendix A. For us, it is remarkable and somewhat
paradoxical that we used an AI to create an algorithm that feels more intuitive and
human.

1.13. We now briefly discuss some issues that are not addressed in this article. The
first concerns the use of symplectic and split special odd orthogonal groups. What
about other (quasi-split) classical groups? With the endoscopic classification being
(almost) complete [Art13, AGI+24, Mok15], it is natural to ask whether similar
results can be expected for even orthogonal or unitary groups. We believe so, and
the proof should be similar. We focused on symplectic and split odd orthogonal
groups because the work in [Ato22b, AM23] deals exclusively with these groups.
Now that the results in [Ato20] have been extended to all quasi-split classical groups
(see [AGI+24, Appendix C]), and given that [Jan18] is written for all classical groups,
the extension to quasi-split classical groups should not pose significant challenges.
(A much more challenging task would be to extend our results to the case where F
has positive characteristic.)

Secondly, one of the goals of Mœglin–Waldspurger’s algorithm was to demonstrate
that Zelevinsky’s involution has a geometric interpretation, as he had conjectured
[Zel81]. We aim to explore this problem in future work.

1.14. The contents of this paper are as follows. In Section 2, we recall some general
results on the representation theory of p-adic groups and the Aubert–Zelevinsky
involution. Section 3 reviews the representation theory of GLn(F), including the
Zelevinsky classification and the Mœglin–Waldspurger algorithm. In Section 4,
we present the representation theory of classical groups and the associated local
Langlands data. Section 5 introduces the definition of our algorithm AD. In
Section 6, we verify that this definition is well-posed, particularly in the good
parity case. Section 7 establishes several important properties of AD. Section 8
recalls the theory of derivatives, while Section 9 provides explicit formulas for these
derivatives. Section 10 concludes the proof that the algorithm AD indeed realizes
the Aubert–Zelevinsky involution in the good parity case. The bad and ugly cases
are treated in Sections 11 and 12, respectively. Finally, Appendix A explains how
machine learning was used to discover this algorithm.

Acknowledgment. We would like to thank Hiraku Atobe for stimulating discus-
sions about this work. In particular, this article would not have been possible without
his Sage implementation of the algorithm from [AM23]. We gratefully acknowledge
the hospitality of Kyoto University, where part of this work was developed in Spring
2023. In particular, we would like to thank Atsushi Ichino for kindly inviting both
of us.

A. Mínguez was partially funded by the Principal Investigator project PAT-
4832423 of the Austrian Science Fund (FWF) and Proyecto PID2024-156912NB-I00
financiado por MICIU/ AEI / 10.13039/501100011033 / FEDER, UE. T. Lanard
was partially funded by the PEPS JCJC 2023 of INSMI (CNRS).

2. Preliminaries

Throughout this article, we fix a non-Archimedean, locally compact field F of
characteristic zero, with normalized absolute value | · |.

8 THOMAS LANARD AND ALBERTO MÍNGUEZ

2.1. Let G be the group of F -points of a connected reductive group defined
over F , equipped with its usual topology. We will only consider smooth complex
representations of G, meaning representations on C-vector spaces where the stabilizer
of each vector is an open subgroup of G. Henceforth, by “representation” we will
always mean “smooth complex representation”. We write Rep(G) for the category
of finite-length representations of G and denote by Irr(G) the set of equivalence
classes of irreducible objects in Rep(G). For π, π′ ∈ Rep(G), we write π ↪→ π′

(resp. π ↠ π′) to indicate the existence of an injective (resp. surjective) morphism
from π to π′. For any π ∈ Rep(G), we denote by π∨ the contragredient of π.

Let π ∈ Rep(G). The socle of π is the largest semisimple subrepresentation of π
and is denoted soc(π). We say that π is socle irreducible (SI) if soc(π) is irreducible
and occurs with multiplicity one in π.

Fix a minimal F -parabolic subgroup P0 of G. A parabolic subgroup P of G is
called standard if it contains P0. From now on, P will always denote a standard
parabolic subgroup of G, with an implicit standard Levi decomposition P = MU .
Let Σ denote the set of roots of G with respect to P0, and let ∆ be a basis of
Σ. For any subset Θ ⊂ ∆, let PΘ denote the standard parabolic subgroup of G
corresponding to Θ, and let MΘ be the corresponding standard Levi subgroup.
Finally, let W denote the Weyl group of G.

Let τ be a representation of M , viewed as a representation of P where U acts
trivially. We denote by IndGP τ the representation of G parabolically induced from τ ,
using normalized induction. We treat IndGP as a functor, whose left adjoint is the
Jacquet functor with respect to P , denoted by JacGP .

An irreducible representation π of G is called supercuspidal if it is not a composi-
tion factor of any representation of the form IndGP (τ), where P is a proper parabolic
subgroup of G and τ is a representation of M . We denote by C (G) the subset of
Irr(G) consisting of supercuspidal representations. We also let Irrtemp(G) be the set
of equivalence classes of irreducible tempered representations of G.

Let R(G) denote the Grothendieck group of Rep(G). The canonical map from
the objects of Rep(G) to R(G) is denoted by π 7→ [π]. Both the induction and
Jacquet functors, IndGP and JacGP , are exact and preserve finite-length representations.
Therefore, they induce morphisms of Z-modules:

IndGP : R(M) −→ R(G),

JacGP : R(G) −→ R(M).

2.2. The Aubert–Zelevinsky involution. Define:

DG : R(G) −→ R(G)

π 7→
∑
P

(−1)dimAM IndGP (Jac
G
P (π)),

where P runs over all standard parabolic subgroups of G and AM is the maximal split
torus of the center of M . A.-M. Aubert [Aub95] showed that if π is irreducible, there
exists a sign ϵ ∈ {±1} such that π̂ := ϵ ·DG(π) is also an irreducible representation.
We refer to the map:

Irr(G) −→ Irr(G)

π 7→ π̂

as the Aubert–Zelevinsky duality.
This duality satisfies the following important properties:
(1) The map π 7→ π̂ is an involution of Irr(G) [Aub95, Théorème 1.7 (3)].
(2) If π ∈ C (G), then π̂ = π [Aub95, Théorème 1.7 (4)].

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 9

(3) Let Θ ⊂ ∆, and consider the standard parabolic subgroup P = PΘ with
Levi decomposition P = MN . Let w0 be the longest element in the set
{w ∈ W | w−1(Θ) > 0}, and let P ′ be the standard parabolic with Levi
subgroup M ′ = w−1

0 (M). Then, we have (cf. [Aub95, Théorème 1.7 (2)]):

(2) JacGP ◦DG = Ad(w0) ◦DM ′ ◦ JacGP ′ .

3. Representation theory of GLn(F)

3.1. The representation theory of the groups GLn(F), for n ≥ 0, plays a particularly
important role in the general theory of representations of p-adic groups. Bernstein
and Zelevinsky studied this extensively in their fundamental work in the 1970s
[BZ77, Zel80], where they emphasized the benefits of considering all n’s together.

We define IrrGL :=
⋃

n≥0 Irr(GLn(F)), and let CGL ⊂ IrrGL denote the subset of
supercuspidal representations. Furthermore, we set RGL :=

⊕
n≥0 R(GLn(F)).

Let d1, . . . , dr be positive integers, and for each 1 ≤ i ≤ r, let τi ∈ Rep(GLdi
(F)).

The normalized parabolically induced representation is customarily denoted by

τ1 × · · · × τr := Ind
GLd1+···+dr (F)

P (τ1 ⊠ · · ·⊠ τr).

This operation induces a Z-graded commutative algebra structure on RGL. If
τ1 = · · · = τr = τ , we simplify the notation to τ r = τ × · · · × τ (r times).

The Jacquet functor for GLm(F), along the maximal standard parabolic subgroup
P(d,m−d), with Levi decomposition GLd(F) × GLm−d(F), is simply denoted by
Jac(d,m−d) = Jac

GLm(F)
P(d,m−d)

.
For any π ∈ Rep(GLn(F)), we call n its degree and denote it deg(π). Moreover,

if χ is a character of F×, we denote the representation obtained by twisting π by
χ ◦ det as πχ.

A supercuspidal representation is unitary if and only if its central character is
unitary. Therefore, given any supercuspidal representation ρ, there exists a unique
x ≥ 0 such that ρu := ρ| · |x is unitary. We call ρu the unitarization of ρ.

3.2. A segment ∆ is a finite, non-empty subset of CGL of the form

(3) ∆ = {ρ| · |x, ρ| · |x−1, . . . , ρ| · |y},
where ρ ∈ CGL, and x, y ∈ R with x − y ∈ Z and x ≤ y. We denote such a
segment by [x, y]ρ. Thus, [x, y]ρ = [x′, y′]ρ′ if and only if ρ| · |x = ρ′| · |x′

and
ρ| · |y = ρ′| · |y′

. Hence, one can assume, when needed, that ρ is unitary. Notice
that our notation differs from [AM23]: our segments are increasing, while in [AM23]
they are decreasing.

We denote by Seg the set of all segments. Let ρ ∈ CGL be unitary. We denote
by b([x, y]ρ) = x the beginning of the segment [x, y]ρ and by e([x, y]ρ) = y its end.
The size of a segment ∆, also called its length, is denoted by l(∆). We denote by
deg(∆) its degree, that is deg(ρ)l(∆). If ∆ = [x, y]ρ, we call x+y

2 ∈ R the center of
∆ and denote it c(∆). We denote by Seg>0 (resp. Seg0 or Seg<0) the subset of Seg
composed of segments ∆ such that c(∆) > 0 (resp. c(∆) = 0 or c(∆) < 0). We say
that ∆ is a centered segment if c(∆) = 0.

We define the following operations on a segment ∆ = [x, y]ρ:

∆− = [x, y − 1]ρ,
−∆ = [x+ 1, y]ρ,

∆+ = [x, y + 1]ρ,
+∆ = [x− 1, y]ρ,

∆∨ = [−y,−x]ρ∨ .

Let ∆ = [x, y]ρ and ∆′ = [x′, y′]ρ′ be two segments. We say that ∆ and ∆′ are
linked if ∆ ∪∆′ forms a segment, but neither ∆ ⊂ ∆′ nor ∆′ ⊂ ∆.

10 THOMAS LANARD AND ALBERTO MÍNGUEZ

If ∆ and ∆′ are linked and ρ′| · |y′
= ρ| · |y+j with j > 0, we say that ∆ precedes

∆′. Thus, if ∆ and ∆′ are linked, then either ∆ precedes ∆′ or ∆′ precedes ∆, but
not both.

3.3. For any segment ∆ = [x, y]ρ, we define:

Z(∆) = soc(ρ| · |x × ρ| · |x+1 × · · · × ρ| · |y),
L(∆) = soc(ρ| · |y × ρ| · |y−1 × · · · × ρ| · |x).

Zelevinsky proved that Z(∆) and L(∆) are irreducible representations. Moreover,
L(∆) is an essentially discrete series representation, and all essentially discrete series
representations are of this form [Zel80, Theorem 9.3].

If ∆ = [x, y]ρ with x = y+1, we set by convention Z(∆) = L(∆) to be the trivial
representation of the trivial group GL0(F).

3.4. Classification. Given a set X, write N(X) for the commutative semigroup of
maps from X to N with finite support.

A multisegment is a multiset of segments, that is, an element in Mult := N(Seg).
We will see a multisegment m as a finite sum m = ∆1+ · · ·+∆N , with ∆i ∈ Seg. We
denote the multiplicity of a segment ∆ in m by mm(∆). By linearity one extends the
definition of contragredient, length and degree from segments to multisegments. If
m = ∆1+· · ·+∆N ∈ Mult, we define the support of m to be ∪∆i ⊂ CGL. We say m is
positive (resp. negative) if c(∆i) > 0 (resp. c(∆i) < 0), for all 1 ≤ i ≤ N . We denote
by Mult♣ the subset of Mult made of segments in Seg♣ where ♣ is one of the following
symbols: > 0, 0 or < 0. The natural map Mult −→ Mult>0 ×Mult0 ×Mult<0 will
be denoted m 7→ (m>0,m0,m<0).

A sequence of segments (∆1, . . . ,∆N) is said to be arranged if, for every 1 ≤ i <
j ≤ N , ∆i does not precede ∆j . This is the case in particular if c(∆1) ≥ c(∆2) ≥
· · · ≥ c(∆N). If m ∈ Mult and (∆1, . . . ,∆N) is an arranged sequence of segments
such that m = ∆1 + · · ·+∆N , we say that (∆1, . . . ,∆N) is an arranged form of m.

For any arranged form (∆1,∆2, . . . ,∆N) of a multisegment m, we define

λ̃(m) = L(∆N)× · · · × L(∆2)× L(∆1).

Zelevinsky showed that λ̃(m) is SI and that, up to isomorphism, it does not
depend on the choice of the arranged form of m. Furthermore, if one defines

L(m) := soc(λ̃(m)) ∈ IrrGL,

the map Mult → IrrGL given by

(4) m 7→ L(m)

is a bijection, providing a classification of the set IrrGL in terms of multisegments.

3.5. Reduction to supercuspidal lines. The equivalence relation on CGL gener-
ated by ρ ∼ ρ| · | partitions CGL into equivalence classes, each of which is called a
supercuspidal line. The supercuspidal line containing ρ ∈ CGL is thus given by

Zρ := {ρ| · |n : n ∈ Z}.
We denote the set of all such equivalence classes by CGL/ ∼.

Let ρ ∈ CGL, and denote by Multρ the submonoid of multisegments supported
in Zρ, and by IrrGL

ρ the image of Multρ under the map (4), so that IrrGL
ρ consists

of irreducible representations with supercuspidal support in Zρ. Again, we denote
by Mult♣ρ = Multρ ∩Mult♣ where ♣ is one of the following symbols: > 0, 0 or < 0.

There is a natural map

Mult −→ Multρ(5)
m 7→ mρ,

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 11

where mρ is the sum of all segments in m with support in Zρ. It induces a natural
decomposition:

L(m) = ×
ρ∈CGL/∼

L(mρ).

Thus, any π ∈ IrrGL can be written uniquely (up to permutation) as π =

π1 × · · · × πr, where πi ∈ IrrGL
ρi

with Zρi ̸= Zρj for i ≠ j. In practice, this allows us
to reduce questions about IrrGL to IrrGL

ρ .

3.6. The Mœglin–Waldspurger algorithm. Given m ∈ Mult, there exists a
unique mt ∈ Mult such that L(mt) ≃ L̂(m). The map m 7→ mt factors through (5),
that is,

(mt)ρ = (mρ)
t.

This allows us to fix ρ ∈ CGL for the remainder of this subsection. The combina-
torial description of the map

Multρ −→ Multρ

m 7→ mt

was provided by Mœglin and Waldspurger [MW86], which we recall here.
First, we need to fix an order on the set of segments supported in Zρ. We define

that [x1, y1]ρ < [x2, y2]ρ if either x1 < x2, or x1 = x2 and y1 > y2.

3.6.1. Remark. This is not the classical lexicographical order on segments. This order
has the advantage that if [x1, y1]ρ and [x2, y2]ρ are two segments with y2 = y1 − 1,
then [x2, y2]ρ ≤ [x1, y1]ρ if and only if [x2, y2]ρ precedes [x1, y1]ρ.

Let 0 ̸= m ∈ Multρ. Let ρu be the unitarization of ρ. Let ymax be the maximum
of the ends e(∆) of the segments ∆ ∈ m. Let ∆1 ∈ m be the largest segment (with
respect to the above order) such that e(∆1) = ymax. We then define recursively a
sequence ∆1 ≥ · · · ≥ ∆l, where ∆j is the largest segment in m such that ∆j ≤ ∆j−1

and e(∆j) = e(∆j−1)− 1.
Define ∆′

1(m) = [e(∆l), e(∆1)]ρu
, and

m(1) = m+

l∑
j=1

(∆−
j −∆j).

The map m 7→ mt is defined recursively by 0t = 0 and

mt = (m(1))
t +∆′

1, if m ̸= 0.

4. Representation theory of classical groups

Throughout this paper, we denote by Gn either the split special orthogonal group
SO2n+1(F) or the symplectic group Sp2n(F), both of rank n, and maintain this
choice throughout.

4.1. We define

IrrG :=
⋃
n≥0

Irr(Gn), and RG :=
⊕
n≥0

R(Gn),

where the union and direct sum are taken over groups of the fixed type. Similarly, let
CG ⊂ IrrG denote the subset of supercuspidal representations of Gn for all n ≥ 0.

Let P be a standard parabolic subgroup of Gn with a Levi subgroup isomorphic
to GLd1

(F)× · · · ×GLdr
(F)×Gn0

. Let π ∈ Rep(Gn0
) and τi ∈ Rep(GLdi

(F)) for
1 ≤ i ≤ r. As in the introduction, we denote the normalized parabolically induced
representation by

τ1 × · · · × τr ⋊ π := IndGn

P (τ1 ⊠ · · ·⊠ τr ⊠ π).

12 THOMAS LANARD AND ALBERTO MÍNGUEZ

If π ∈ IrrG, there exist ρ1, . . . , ρr ∈ CGL and σ ∈ CG such that π is a subrepre-
sentation of ρ1 × · · · × ρr ⋊ σ. The set

scusp(π) := {ρ1, . . . , ρr, ρ∨1 , . . . , ρ∨r , σ}
is uniquely determined by π and is called the supercuspidal support of π. For σ ∈ CG,
we set Irrσ := {π ∈ IrrG | σ ∈ scusp(π)}.

4.2. The Langlands Subrepresentation Theorem. Let m = ∆1 + · · ·+∆r be a
negative multisegment, and let πtemp ∈ IrrG be tempered. A parabolically induced
representation of the form

λ̃(m)⋊ πtemp

is called a standard module.
The Langlands classification asserts that any standard module has an irreducible

socle, and that any irreducible representation π ∈ IrrG is the unique irreducible
subrepresentation (Langlands subrepresentation) of a standard module λ̃(m)⋊πtemp,
which is unique up to isomorphism. In this case, we write π = L(∆1+· · ·+∆r;πtemp).
For more details, see [Kon03].

4.3. The endoscopic classification. The Langlands subrepresentation theorem
reduces the classification of irreducible representations of Gn to the case of tempered
irreducible representations. These representations, in turn, are classified by Local
Langlands parameters, which we briefly recall in this section [Art13].

Let WF denote the Weil group of F . A homomorphism

ϕ : WF × SL2(C) → GLn(C)

is called an L-parameter for GLn(F) if it satisfies the following conditions:
• ϕ(WF) consists of semisimple elements;
• ϕ|WF

is smooth, meaning it has an open kernel;
• ϕ|SL2(C) is algebraic.

Any irreducible representation of WF × SL2(C) has the form ρ ⊠ Sa, where ρ
is an irreducible representation of WF and Sa is the unique irreducible algebraic
representation of SL2(C) of dimension a. For simplicity, we often write ρ = ρ⊠ S1.
For a given L-parameter ϕ, the multiplicity of ρ⊠Sa in ϕ is denoted by mϕ(ρ⊠Sa).

The local Langlands correspondence for GLd(F) establishes a canonical bijection
between the set of irreducible unitary supercuspidal representations of GLd(F) and
the set of irreducible d-dimensional representations of WF with bounded image.
These sets are identified, and we use the symbol ρ to refer to their elements.

We say that ϕ is an L-parameter for SO2n+1(F) if it is an L-parameter for
GL2n(F) of symplectic type, i.e.,

ϕ : WF × SL2(C) → Sp2n(C).

Similarly, ϕ is called an L-parameter for Sp2n(F) if it is an L-parameter for
GL2n+1(F) of orthogonal type with trivial determinant, i.e.,

ϕ : WF × SL2(C) → SO2n+1(C).

For Gn = SO2n+1(F) (respectively, Gn = Sp2n(F)), let Φ(Gn) denote the
set of Ĝn-conjugacy classes of L-parameters for Gn with bounded image, where
Ĝn = Sp2n(C) (respectively, Ĝn = SO2n+1(C)). We say that ϕ ∈ Φ(Gn) is of good
parity if ϕ is a sum of irreducible self-dual representations of the same type as ϕ.

Let Φgp(Gn) denote the subset of Φ(Gn) consisting of L-parameters of good
parity. We define the sets

Φ(G) :=
⋃
n≥0

Φ(Gn) and Φgp(G) :=
⋃
n≥0

Φgp(Gn).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 13

For each ϕ ∈ Φ(G), a component group Sϕ is attached, which is defined as follows.
We express ϕ as a direct sum:

(6) ϕ =

r⊕
i=1

ϕi ⊕ ϕ′ ⊕ ϕ′∨,

where ϕ1, . . . , ϕr are irreducible self-dual representations of the same type as ϕ, and
ϕ′ is a sum of irreducible representations that are not of the same type as ϕ. We
then denote

ϕgp =

r⊕
i=1

ϕi.

and define the enhanced component group Aϕ as

Aϕ :=

r⊕
i=1

(Z/2Z)αϕi
.

Thus, Aϕ is a free Z/2Z-module of rank r, with a basis {αϕi} corresponding to the
irreducible components {ϕi} of good parity. The element

zϕ :=

r∑
i=1

αϕi

is called the central element of Aϕ.
The component group Sϕ is defined as the quotient of Aϕ by the subgroup

generated by αϕi + αϕi′ whenever ϕi
∼= ϕi′ .

Let Ŝϕ and Âϕ denote the Pontryagin duals of Sϕ and Aϕ, respectively. Through
the canonical surjection Aϕ ↠ Sϕ, we may regard Ŝϕ as a subgroup of Âϕ. For any
element η ∈ Âϕ, we write η(αϕi) = η(ϕi). The map ϕ 7→ ϕgp, from Φ(G) to Φgp(G),
induces canonical isomorphisms:

(7) Aϕ ≃ Aϕgp , Sϕ ≃ Sϕgp , Ŝϕ ≃ Ŝϕgp .

To each ϕ ∈ Φ(Gn), one can associate a subset Πϕ ⊆ Irrtemp(Gn), called the
L-packet for Gn attached to ϕ, such that:

Irrtemp(Gn) =
⊔

ϕ∈Φ(Gn)

Πϕ.

Furthermore, there is a canonical injection

Πϕ → Ŝϕ, π 7→ ⟨·, π⟩ϕ ,

which satisfies certain endoscopic identities and has image

Ŝϕ

+
:= {η ∈ Ŝϕ | η(zϕ) = 1}.

For further details, see [Art13, Theorem 2.2.1] and [Mœg11]. When π ∈ Πϕ

corresponds to η ∈ Ŝϕ

+
, we write π = π(ϕ, η).

A useful property of this classification is the following: if we have a decomposition
as in (6):

ϕ = ϕ′ ⊕ ϕgp ⊕ ϕ′∨,

then, for all η ∈ Ŝϕ

+
, we have

(8) π(ϕ, η) ≃ πϕ′ ⋊ π(ϕgp, η).

See [Xu17, 8.11] for a more general result.

14 THOMAS LANARD AND ALBERTO MÍNGUEZ

4.4. Local Langlands data. We denote by Temp(Gn) the set of pairs (ϕ, η) such
that ϕ ∈ Φ(Gn) and η ∈ Ŝϕ. Similarly, we denote by Temp+(Gn) the set of pairs

(ϕ, η) such that ϕ ∈ Φ(Gn) and η ∈ Ŝϕ

+
.

Again, it will be convenient to work with all Gn’s together so we let:

Temp(G) =
⊔
n≥0

Temp(Gn), Temp+(G) =
⊔
n≥0

Temp+(Gn).

The set of Langlands data is then defined by:

Data(G) = Mult<0 ×Temp(G), Data+(G) = Mult<0 ×Temp+(G)

It follows from 4.2 and 4.3 that for every irreducible representation π ∈ IrrG, there
exists a unique triple (m;ϕ, η) ∈ Data+(G) such that:

π ≃ L(m;π(ϕ, η)).

We refer to (m;ϕ, η) as the Langlands data of π.

4.5. The Jantzen Decomposition. We now aim to establish a line decomposition
for classical groups, analogous to the one for GLn discussed in Paragraph 3.5. This is
achieved by the Jantzen decomposition, which we recall in this paragraph. However,
in the case of classical groups, we must distinguish between three different cases.

We begin with the parameters. For ϕ =
⊕

i∈I ρi⊠Sai
an L-parameter, we define

πϕ = L(mϕ) ∈ IrrGL by

mϕ =
∑
i∈I

[−ai − 1

2
,
ai − 1

2
]ρi

.

We define scusp(ϕ) the support of the parameter ϕ as the support of mϕ. The line
decomposition in Paragraph 3.5 induces, for every ρ ∈ CGL, a natural map ϕ 7→ ϕρ

so that
mϕρ = (mϕ)ρ

Let ρ ∈ CGL. Assume that Zρ = Zρ∨ . We denote by Tempρ(G) (resp. Temp+ρ (G))
the subset of Temp(G) (resp. Temp+(G)) consisting of parameters (ϕ, η) satisfying
scusp(ϕ) ⊂ Zρ and let:

Dataρ(G) = Mult<0
ρ ×Tempρ(G), Data+ρ (G) = Mult<0

ρ ×Temp+ρ (G)

the set of Langlands parameters in the ρ-line.

4.5.1. Remark. Consider the natural projection

Data(G) −→ Dataρ(G)

y = (m;ϕ, η) 7→ yρ := (mρ;ϕρ, η|Sϕρ
).

Observe that, if ϕρ ∈ Φgp(G), the image of Data+(G) is not necessarily contained
in Data+ρ (G).

When Zρ ̸= Zρ∨ , the above definition of Tempρ(G) is unsuitable, as it would
not give a subset of Temp(G). In this case, we define Tempρ(G) (resp. Temp+ρ (G))
as the subset of Temp(G) (resp. Temp+(G)) consisting of parameters (ϕ, η) with
scusp(ϕ) ⊂ Zρ ∪ Zρ′∨ , and let again:

Dataρ(G) = Mult<0
ρ ×Mult<0

ρ∨ ×Tempρ(G),

Data+ρ (G) = Mult<0
ρ ×Mult<0

ρ∨ ×Temp+ρ (G)

the set of Langlands parameters in the ρ-line and denote by y 7→ yρ the projection
map from Data(G) to Dataρ(G).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 15

We say that two supercuspidals ρ, ρ′ ∈ CGL are line equivalent, and we denote it
by ρ ∼′ ρ′, if ρ ∼ ρ′ or ρ ∼ ρ′∨; or equivalently ρ ∼′ ρ′, if Zρ ∪ Zρ∨ = Zρ′ ∪ Zρ′∨ .

We have a natural bijection

Data(G) ≃ ⊕ρ∈CGL/∼′Dataρ(G)

y 7→ yρ

Remark 4.5.1 implies there is no such decomposition for Data+(G).
The discussion above makes the following definitions natural.

4.5.2. Definition. Let ρ ∈ CGL. We write ρ = ρu| · |x with ρu unitary and x ∈ R.
(1) We say that ρ is ugly if ρu is not self-dual or x /∈ (1/2)Z (that is Zρ ̸= Zρ∨).
(2) We say that ρ is good if ρu is self-dual and

• If ρu is of the same type as G then x ∈ Z.
• If ρu is of the opposite type as G then x ∈ (1/2)Z \ Z.

(3) We say that ρ is bad if ρu is self-dual and
• If ρu is of the same type as G then x ∈ (1/2)Z \ Z.
• If ρu is of the opposite type as G then x ∈ Z.

4.5.3. Remark. Let ρ ∈ CGL. By [AM23, Remark 5.1] we see that the following
conditions are equivalent:

(1) ρ is good (resp. bad)
(2) For every π(ϕ, η) with ϕ ∈ Φgp(G) and η ∈ Ŝϕ, there exists m ∈ Z (resp. m ∈

1
2Z \ Z) such that ρ| · |m ⋊ π(ϕ, η) is reducible.

(3) For some π(ϕ, η) with ϕ ∈ Φgp(G) and η ∈ Ŝϕ, there exists m ∈ Z (resp. m ∈
1
2Z \ Z) such that ρ| · |m ⋊ π(ϕ, η) is reducible.

We denote by C good (resp. C bad, resp. C ugly) a set of representatives of good
(resp. bad, resp. ugly) representations under the line equivalence relation ∼′.

4.5.4. Definition. Let σ ∈ CG and let π ∈ Irrσ.
(1) If

scusp(π) ⊂

 ⋃
ρ∈C good

Zρ

 ∪ {σ},

we say that π is of good parity. We write Irrgoodσ for the set of such
representations.

For any multisegment m, we denote:

mgp :=
∑

ρ∈C good

mρ

(2) If scusp(π) ⊂ Zρ ∪ {σ} for some bad representation ρ, we say that π is of
bad parity (or of ρ-bad parity if we want to specify ρ). We write Irrρ−bad

σ

for the set of such representations.
(3) If scusp(π) ⊂ (Zρ ∪ Zρ∨) ∪ {σ} for some ugly representation ρ, we say that

π is ugly (or ρ-ugly if we want to specify ρ). We write Irrρ−ugly
σ for the set

of such representations.

Let π ∈ Irrσ. Jantzen [Jan97] defines the representations πgood ∈ Irrgoodσ ,
πρ−bad ∈ Irrρ−bad

σ , and πρ−ugly ∈ Irrρ−ugly
σ as follows:

• πgood is the unique representation in Irrgoodσ such that π ↪→ τ ⋊πgood, where
no good supercuspidal representations appear in scusp(τ).

• If ρ is a bad supercuspidal representation, then πρ−bad is the unique repre-
sentation in Irrρ−bad

σ such that π ↪→ τ ⋊ πρ−bad, with scusp(τ) ∩ Zρ = ∅.

16 THOMAS LANARD AND ALBERTO MÍNGUEZ

• If ρ is an ugly supercuspidal representation, then πρ−ugly is the unique
representation in Irrρ−ugly

σ such that π ↪→ τ ⋊πρ−ugly, with scusp(τ)∩ (Zρ∪
Zρ∨) = ∅.

4.5.5. Theorem. The map

Jz: Irrσ −→ Irrgoodσ ⊔

 ⊔
ρ∈Cbad

Irrρ−bad
σ

 ⊔

 ⊔
ρ∈Cugly

Irrρ−ugly
σ

 ,

π 7−→
(
πgood, {πρ−bad}ρ, {πρ−ugly}ρ

)
is a bijection. It commutes with the Aubert–Zelevinsky duality in the following sense:

Jz(π̂) =
(
π̂good, {π̂ρ−bad}ρ, {π̂ρ−ugly}ρ

)
.

Furthermore, let y = (ϕσ, ησ) and (m;ϕ, η) denote the Langlands data of σ and π,
respectively. Then, we have:

• The Langlands data of πgood are ygood := (mgp;ϕgp, η).
• The Langlands data of πρ−bad are yρ−bad := (mρ;ϕρ + ϕσ, ησ).
• The Langlands data of πρ−ugly are yρ−ugly := (mρ +mρ∨ ;ϕρ +ϕρ∨ +ϕσ, ησ).

Proof. The theorem is due to C. Jantzen; see [Jan97, Theorem 9.3]. The only point
that needs some explanation is the description of the map Jz in terms of Langlands
data. It is probably well-known, but for the convenience of the reader, we provide
some details. Let’s start with the first bullet point. We write ϕ = ϕ′ ⊕ ϕgp ⊕ ϕ′∨.
By the Langlands classification, π is the socle of λ̃(m)⋊π(ϕ, η), which is isomorphic,
by [Zel80, 9.7] and (8) to

λ̃(m−mgp)× λ̃(mgp)× πϕ′ ⋊ π(ϕgp, η)

which is equivalent by [Zel80, 9.7] to

λ̃(m−mgp)× πϕ′ × λ̃(mgp)⋊ π(ϕgp, η).

We deduce that π is the socle of

soc(λ̃(m−mgp)× πϕ′)⋊ soc(λ̃(mgp)⋊ π(ϕgp, η)),

which, by the Langlands subrepresentation theorem, proves the first claim. The
proofs of the second and third bullet points follow a similar approach. By [Jan97,
Theorem 9.3.(8)], we can assume that m = ∅. Then, for the second bullet, π(ϕ, η)
is isomorphic by (8) to π 1

2ϕρ
⋊ πϕ−ϕρ

, which embeds into π 1
2ϕρ

× τ ⋊ π(ϕσ, ησ), for
some τ with scusp(τ)∩Zρ = ∅, so isomorphic by [Zel80, 8.6] to τ ×π 1

2ϕρ
⋊π(ϕσ, ησ).

As π 1
2ϕρ

⋊π(ϕσ, ησ) is irreducible by (8) and isomorphic to π(ϕρ+ϕσ, ησ) the result
follows. The third bullet is proved in exactly the same manner. □

A consequence of the explicit description of the Jantzen decomposition is that
the map y 7→ yρ factors through Jz. In other words:

4.5.6. Corollary. Let π ∈ Irrσ, with Langlands data y. Let ρ ∈ CGL. Then:
• If ρ is good then, yρ = (ygood)ρ.
• If ρ is bad then, yρ = (yρ−bad)ρ.
• If ρ is ugly then, yρ = (yρ−ugly)ρ.

4.5.7. Remark. One could define ρ−good representations and obtain a decomposition
similar to that in Theorem 4.5.5, replacing good with ρ− good. However, Remark
4.5.1 implies that such a definition would not allow for a natural description —in
terms of Langlands data— of the corresponding map. Furthermore, the first bullet
point of Corollary 4.5.6 would no longer hold if one replaces good with ρ−good. For

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 17

this reason, following [AM23], we have chosen to define only good representations
and not ρ− good representations.

4.6. Symmetrization. Our algorithm to compute the Aubert–Zelevinsky invo-
lution is similar to the Mœglin–Waldspurger algorithm and will use symmetrical
multisegments with signs instead of Langlands data.

We will define a transfer map that sends the elements of Data(G) to symmetrical
multisegments. The tempered representations will be sent to centered segments. As
these representations come with a sign, we need to define the notion of a centered
segment with a sign. A centered segment with a sign is a pair (∆, ε) where ∆ ∈ Seg0

and ε ∈ {−1, 1}. Let Multε be the multiset composed of centered segments with
signs and non centered segments, that is formally Multε is the set of functions
Seg<0 ∪ Seg>0 ∪ (Seg0 × {−1, 1}) → N, with finite support. For s ∈ Multε, we call
the underlying multisegment of s the multisegment of Mult obtained by forgetting
all the signs. We will usually write s ∈ Multε as s = (m, ε), where m ∈ Mult is the
underlying multisegment of s and, if ∆i ∈ m0, ε(∆i) ∈ {−1, 1} is the sign of ∆i.

Let Symm ⊆ Mult be the set of symmetrical multisegments, that is Symm = {m ∈
Mult,m∨ = m}. We also define Symmε ⊆ Multε to be the subset of multisegments
with signs of elements whose underlying multisegment is in Symm.

We have a natural transfer map

trans : Data(G) → Symmε

defined as follows. Let (n;ϕ, η) ∈ Data(G). Then trans(n;ϕ, η) = (m, ε) where

m :=
∑
∆∈n

(∆ +∆∨) +
∑

ρ⊠Sa∈ϕ

[
−a+ 1

2
,
a− 1

2

]
ρ

and if ρ⊠ Sa ∈ ϕ then

ε(

[
−a+ 1

2
,
a− 1

2

]
ρ

) := η(ρ⊠ Sa).

The map trans is injective, and its image is the subset Symmε(G) of Symmε

consisting of all elements s ∈ Symmε satisfying the following conditions for every
pair of signed centered segments (∆, ε), (∆′, ε′) ∈ s:

(1) If ∆ = ∆′ then ε = ε′.
(2) If ∆ is supported in Zρ with ρ bad or ugly, then ε = 1.
(3) If ∆ is supported in Zρ with ρ bad, then the multiplicity of (∆, ε) in s is

even.
Hence, we get a bijection

trans : Data(G)
∼→ Symmε(G).

We denote by Symmε,+ the image of Data+(G) by trans, that is Symmε,+
ρ is the

subset of Symmε
ρ consisting of elements such that the product of the signs of the

centered segments are 1. If π ∈ IrrG is an irreducible representation, there exists a
unique element (m, ε) ∈ Symmε,+ such that π ≃ L(trans−1(m, ε)). We will denote
this element as the symmetrical Langlands data of π and we will write π = L(m, ε).

Let ρ ∈ CGL. If ρ is good or bad (resp. ugly), we define Symmε
ρ(G) to be the subset

of Symmε(G) of elements with underlying multiset in Multρ (resp. Multρ ×Multρ∨).
This gives us a natural decomposition

Symmε(G) ≃ ⊕ρ∈CGL/∼′ Symmε
ρ(G).

18 THOMAS LANARD AND ALBERTO MÍNGUEZ

The restriction of trans to Dataρ(G) gives us a bijection

transρ : Dataρ(G)
∼→ Symmε

ρ(G)

making the following diagram commute:

Data(G)

trans

��

y 7→yρ // Dataρ(G)

transρ

��
Symmε(G)

(m̃,ε̃) 7→(m̃ρ,ε̃|m̃ρ) // Symmε
ρ(G)

.

The sets Symmρ, Symmε
ρ and Symmε

ρ(G) are endowed with an order ≤ coming
from the order ≤ on Multρ defined in Section 3.6.

5. Definition of the algorithm

In this section we define a map AD : Data(G) → Data(G). We will prove
later that AD is in fact an involution and that for y ∈ Data+(G) we have π̂(y) =
π(AD(y)).

Using the bijection trans : Data(G)
∼→ Symmε

ρ(G), it is enough to define AD :

Symmε(G) → Symmε(G), and set AD = trans−1 ◦AD ◦ trans. The definition of
AD is the content of this section. Using Symmε(G) = ⊕ρ∈CGL/∼′ Symmε

ρ(G), we
will define for each ρ ∈ CGL/ ∼′ a map

ADρ : Symmε
ρ(G) → Symmε

ρ(G),

and AD = ⊕ρ∈CGL/∼′ ADρ.

5.0.1. Remark. We will show in Proposition 7.3.2 that for each ρ ∈ CGL, ADρ induces
a map ADρ : Symmε,+

ρ (G) → Symmε,+
ρ (G) and ADρ : Symmε

ρ(G) \ Symmε,+
ρ (G) →

Symmε
ρ(G)\Symmε,+

ρ (G). This implies that AD induces a map AD : Data+(G) →
Data+(G).

In the next subsections, we define ADρ when ρ is ugly (Subsection 5.1), ρ is bad
(Subsection 5.2) and ρ is good (Subsection 5.3).

5.1. The ugly case. Let ρ ∈ CGL be ugly and ρu its unitarization. By definition of
Symmε

ρ(G), all the signs are trivial. So we can identify an element of Symmε
ρ(G) with

its underlying multisegment. Let m ∈ Symmε
ρ(G) and we want to define ADρ(m) ∈

Symmε
ρ(G). The definition is essentially the Mœglin–Waldspurger algorithm (see

Remark 5.1.3 below).

Let emax,ρ be the maximum of the ends e(∆) of the segments ∆ ∈ m supported in
Zρ. Let ∆1 be the biggest segment of m supported in Zρ such that e(∆1) = emax,ρ.
We then define recursively a sequence ∆1 ≥ · · · ≥ ∆l, where ∆j is the biggest
segment of m supported in Zρ such that ∆j ≤ ∆j−1 and e(∆j) = e(∆j−1)− 1. We
call the sequence ∆1, · · · ,∆l the the initial sequence in the algorithm.

From this sequence, we define

m1 := [e(∆l), e(∆1)]ρu
+ [−e(∆1),−e(∆l)]ρ∨

u

and

m# = m+

l∑
i=1

(∆−
i −∆i +

−∆∨
i −∆∨

i).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 19

5.1.1. Definition. When ρ is ugly, we define ADρ : Symmε
ρ(G) → Symmε

ρ(G)
inductively by

ADρ(m) = m1 +ADρ(m
#).

5.1.2. Remark. From the construction of ADρ, it is clear that ADρ(m) is a sym-
metrical multisegment, hence ADρ : Symmε

ρ(G) → Symmε
ρ(G) is a well defined

map.

5.1.3. Remark. Let us write m = mρ +mρ∨ with mρ ∈ Multρ and mρ∨ ∈ Multρ∨ . It
is clear from the definition that ADρ(m) = mt

ρ + (mt
ρ)

∨, where mt
ρ is the Mœglin–

Waldspurger dual of mρ (see Section 3.6).

5.1.4. Example. Let ρ be ugly. Let π := L(n;π(ϕ, η)) with n = [−3,−1]ρ+[−2,−1]ρ+
[−2, 0]ρ and π(ϕ, η) trivial. We associate to π the symmetric multisegment m ∈
Symm defined by m = [−3,−1]ρ + [−2,−1]ρ + [−2, 0]ρ + [1, 3]ρ∨ + [1, 2]ρ∨ + [0, 2]ρ∨ .

In the diagram below, we represent the multisegment m ordered by ≤. The solid
lines are the segments supported on Zρ∨ and the dotted lines are the segments on
Zρ. The thick black lines indicate the initial sequence of segments ∆1, . . . ,∆l. The
portions highlighted in green mark the parts of m that are extracted to form the
segment m1; the remaining parts will constitute the multisegment m# after this first
step.

-3 -2 -1 0 1 2 3 -2 -1 0 1 2

-2 -1 0 1 2-1 0 1-1 0 1

The algorithm gives (in five steps) that ADρ(m) = ([−3,−2]ρ + [2, 3]ρ∨) +
([−2,−1]ρ+[1, 2]ρ∨)+([−2,−2]ρ+[2, 2]ρ∨)+([−1, 0]ρ+[0, 1]ρ∨)+([−1,−1]ρ+[1, 1]ρ∨).
Thus π̂ = L([−3,−2]ρ + [−2,−1]ρ + [−2,−2]ρ + [−1, 0]ρ + [−1,−1]ρ;π(ϕ, η)) with
π(ϕ, η) trivial.

5.1.5. Example. With the notation and coloring as above. Let π := L(n;π(ϕ, η))
with n = [−2, 1]ρ and π(ϕ, η) trivial. We associate to π the symmetric multisegment
m ∈ Symm defined by m = [−2, 1]ρ + [−1, 2]ρ∨ .

The algorithm gives (in four steps) that ADρ(m) = ([−2,−2]ρ + [2, 2]ρ∨) +
([−1,−1]ρ+[1, 1]ρ∨)+([0, 0]ρ+[0, 0]ρ∨)+([1, 1]ρ+[−1,−1]ρ∨). Thus π̂ = L([−2,−2]ρ+
[−1,−1]ρ + [−1,−1]ρ∨ ;π(ρ⊠ S1 + ρ∨ ⊠ S1, 1)).

20 THOMAS LANARD AND ALBERTO MÍNGUEZ

-2 -1 0 1 2 -1 0 1

-1 0 1 -1 0 1

5.2. The bad case. Let ρ ∈ CGL be bad. Since ρ is bad, all the signs of the
elements in Symmε

ρ(G) are trivial. Thus, we can identify an element of Symmε
ρ(G)

with its underlying multisegment.
Let m ∈ Symmε

ρ(G). We want to define ADρ(m) ∈ Symmε
ρ(G). The definition

will be similar to the ugly case. The difference here is that all the segments in m lie
on the same line Zρ = Zρ∨ . In particular, it may happen that for some ∆ ∈ m, we
have ∆∨ ≤ ∆.

We impose a condition (see (3) below) that must be satisfied so that both ∆ and
∆∨ appear in the initial sequence of the algorithm.

Let emax be the biggest coefficient of the segments of m (hence the biggest end).
Let ∆1 be the biggest segment of m such that e(∆1) = emax. We then define
recursively a sequence ∆1 ≥ · · · ≥ ∆l, where ∆j is the biggest segment of m, if it
exists, satisfying

(1) ∆j ≤ ∆j−1;
(2) e(∆j) = e(∆j−1)− 1;
(3) If there exists i < j such that ∆∨

j = ∆i then mm(∆j) ≥ 2.
We call the sequence ∆1, · · · ,∆l the the initial sequence in the algorithm.

From this sequence, we define

m1 := [e(∆l), e(∆1)]ρu
+ [−e(∆1),−e(∆l)]ρu

and

m# = m+

l∑
i=1

(∆−
i −∆i +

−∆∨
i −∆∨

i).

5.2.1. Remark. Condition (3) ensures that m# is a well-defined multisegment. Indeed,
if ∆i = ∆∨

j for some i ̸= j, then mm(∆i) ≥ 2, so we can suppress ∆i twice from m.

5.2.2. Definition. When ρ is bad, we define ADρ : Symmε
ρ(G) → Symmε

ρ(G)
inductively by

ADρ(m) = m1 +ADρ(m
#).

5.2.3. Remark. From the construction it is clear that ADρ(m) is a symmetrical
multisegment. It is also very easy to see that all the centered segments in m1 and
m# have even multiplicity. Therefore, the image of ADρ is indeed in Symmε

ρ(G)
and ADρ is well defined.

5.2.4. Example. Let ρ be of bad parity and unitary. Let π := L(n;π(ϕ, η)) with
n = [−1, 0]ρ and π(ϕ, η) trivial. We associate to π the symmetric multisegment
m ∈ Symm defined by m = [−1, 0]ρ + [0, 1]ρ.

In the diagram below, we represent the multisegment m ordered by ≤. The
thick black lines indicate the initial sequence of segments ∆1, . . . ,∆l. The portions

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 21

-1 0 1 -1 0 1

highlighted in green mark the parts of m that are extracted to form the segment
m1; the remaining parts will constitute the multisegment m# after this first step.

The algorithm gives (in two steps) that ADρ(m) = ([−1,−1]ρ + [1, 1]ρ)+ ([0, 0]ρ +
[0, 0]ρ). Thus π̂ = L([−1,−1]ρ;π(ρ⊠ S1 + ρ⊠ S1, 1)).

5.2.5. Example. With the notation and coloring as above, we consider now the case
π := L(n;π(ϕ, η)) with n = [−1, 0]ρ + [−1, 0]ρ and π(ϕ, η) trivial. The symmetric
multisegment m ∈ Symm is now m = [−1, 0]ρ + [−1, 0]ρ + [0, 1]ρ + [0, 1]ρ.

-1 0 1 -1 0 1

The algorithm gives (in two steps) that ADρ(m) = ([−1, 0]ρ + [0, 1]ρ)+ ([−1, 0]ρ +
[0, 1]ρ). Thus, π̂ = π.

5.3. The good case. Let ρ ∈ CGL be good and (m, ε) ∈ Symmε
ρ. Let ρu be the

unitarization of ρ. The definition of ADρ will also resemble the definition in the bad
case; however, there are some differences:

• The signs play a role here.
• A pair of segments (∆,∆∨) can appear in the initial sequence of the algorithm

without any condition on the multiplicity. In this case, in m# the segment
∆ will be replaced by −∆−.

• The parity of the multiplicity of the centered segments also plays a role.
To make these conditions more transparent, we introduce a new set Symmε

ρ

equipped with an order ⪯, in which the definition of ADρ closely resembles the
previous cases. We describe it in the following paragraph.

5.3.1. The set Symmε and the order ⪯. The idea of the set Symmϵ(G) arises from
the structure of maximal parabolic subgroups of Gn, which are of the form GLn1

(F) ∗ ∗
0 Gn0

∗
0 0 GLn1(F)

 ,

where the bottom-right block GLn1
(F) is a copy of the top-left one.

When dealing with a tempered representation that is not discrete, a centered
segment may appear with multiplicity greater than one. Naturally, half of these will
be assigned to the upper GLn1

(F), the other half to the lower GLn1
(F), and if there

is one more left, it will remain in the middle block Gn0 . This needs to be taken
into account when ordering the segments: some centered segments will be assigned
to the upper GLn1

(F), others to the lower GLn1
(F), and some may remain in

Gn0
. To formalize this, we introduce a set Symmϵ

ρ(G), which distinguishes centered
segments more carefully. To this end, we formally enrich segments with a label
♣ ∈ {≥ 0,= 0,≤ 0} that encodes their position.

22 THOMAS LANARD AND ALBERTO MÍNGUEZ

Let Seg be the set of labeled pairs (∆,♣), where ∆ ∈ Seg and ♣ satisfies the
following conditions:

• If c(∆) > 0, then ♣ is equal to ≥ 0;
• If c(∆) < 0, then ♣ is equal to ≤ 0.

In the case c(∆) = 0, then ♣ can be any of the three values. So only centered
segments (c(∆) = 0) carry a nontrivial choice of label; in all other cases the label
is determined uniquely and may be omitted. In those cases, we will simply write
∆ instead of (∆,♣). For centered segments, we usually indicate the label by a
superscript ∆♣, e.g., [−a, a]≥0

ρu
, [−a, a]=0

ρu
, or [−a, a]≤0

ρu
.

One can define the contragredient of an element of Seg in the following way. For
∆♣ ∈ Seg, we define (∆♣)∨ ∈ Seg, by

(1) If c(∆) > 0, then (∆≥0)∨ = (∆∨)≤0.
(2) If c(∆) < 0, then (∆≤0)∨ = (∆∨)≥0.
(3) If c(∆) = 0 and ♣ is ≤ 0 then (∆≤0)∨ = (∆∨)≥0.
(4) If c(∆) = 0 and ♣ is = 0 or ≥ 0, then (∆♣)∨ = (∆∨)♣.

There is also a natural involution ι on Seg defined by ι(∆,♣) = (∆∨, ι(♣)) where
ι exchanges ≥ 0 and ≤ 0 and fixes = 0. The contragredient and the involution
naturally extend to multisets. Let Symm denote the multisets in Seg that are
symmetric under the involution, i.e., those satisfying ι(m) = m.

There is a natural surjection

p : Symm↠ Symm

which forgets the labels. This projection has a section

s : Symm → Symm

where s(m) equals∑
∆∈m,c(∆) ̸=0

∆+
∑

∆∈m,c(∆)=0

⌊
mm(∆)

2

⌋
∆≤0+

⌊
mm(∆)

2

⌋
∆≥0+

(
mm(∆)− 2

⌊
mm(∆)

2

⌋)
∆=0.

Let ∆1,∆2 ∈ Symm. We define an order relation ≺ on the segments of Seg
supported in Zρ in the following way:

• (∆1,≤ 0) ≺ (∆2,= 0).
• (∆1,= 0) ≺ (∆2,≥ 0).
• If ♣ is ≥ 0 or ≤ 0, then ∆♣

1 ⪯ ∆♣
2 if and only if ∆1 ≤ ∆2.

• If ♣ is = 0, then ∆♣
1 ⪯ ∆♣

2 if and only if e(∆1) ≤ e(∆2).
The transitive closure of these relations defines an order on Seg.

Finally, we add signs to centered segments. Let Symmε(G) be the set of pairs
(m, ε) with m ∈ Symm and ε : {∆ ∈ m, c(∆) = 0} → {−1, 1}. The order ≺ on
Symm extends naturally to an order on Symmε. The maps p and s give maps
(fixing ε) p : Symmε(G) → Symmε(G) and s : Symmε(G) → Symmε(G).

5.3.2. The algorithm. Now that we have defined Symm and ⪯ we can describe
ADρ.

Let (m, ε) ∈ Symmε
ρ(G) and set (y, ε) = s(m, ε) ∈ Symmε(G).

Let emax be the biggest coefficient of the segments of m (hence the biggest end).
The first step of the algorithm is to define a sequence ∆1 ⪰ · · · ⪰ ∆l of segments in
y. The segment ∆1 is the biggest (for ⪯) segment of y such that e(∆1) = emax. We
define inductively the other segments. Let j ≥ 1 and assume that ∆j is defined. If
ρ is of the same type as G, and ∆j = [0, 0]≥0

ρu
or ∆j = [0, 0]=0

ρu
, then j = l (that is,

we stop the process). If ρ is not of the same type as G, and ∆j = [1/2, 1/2]ρu
; or

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 23

∆j = [−1/2, 1/2]≥0
ρu

or ∆j = [−1/2, 1/2]=0
ρu

, and ε([−1/2, 1/2]ρu
) = −1, then j = l.

Otherwise, ∆j+1 is (if it exists) the biggest segment of y such that:
• ∆j+1 ⪯ ∆j ;
• e(∆j+1) = e(∆j)− 1;
• if c(∆j+1) = c(∆j) = 0 then ε(∆j+1) = −ε(∆j).

If such a ∆j+1 does not exist then j = l. Again, we call the sequence ∆1, · · · ,∆l

the the initial sequence in the algorithm.

From this sequence, we will define (m1, ε1) ∈ Symmε
ρ(G) and (m#, ε#) ∈

Symmε
ρ(G) so that we can set ADρ(m, ε) = (m1, ε1) + ADρ(m

#, ε#).
We start by defining a sign ε0 ∈ {−1, 1}. This sign will determine when m1 is a

centered segment.

5.3.1. Definition. We define ε0 ∈ {−1, 1} by ε0 := −1 if one of the following
conditions is satisfied:

• ρu is of the same type as G and ∆l = [0, 0]≥0
ρu

or ∆l = [0, 0]=0
ρu

;
• ρu is not of the same type as G and ∆l = [1/2, 1/2]ρu ; or ∆l = [−1/2, 1/2]≥0

ρu

or ∆l = [−1/2, 1/2]=0
ρu

with ε([−1/2, 1/2]ρu
) = −1.

Otherwise, ε0 := 1.

The pair (m1, ε1):
(1) If ε0 = 1. Then

m1 := [e(∆l), e(∆1)]ρu
+ [−e(∆1),−e(∆l)]ρu

5.3.2. Remark. We will show in Lemma 7.2.1 that e(∆1) + e(∆l) ̸= 0 and
thus the segments in m1 are not centered segments.

(2) If ε0 = −1. Then

m1 := [−e(∆1), e(∆1)]ρu
.

Since m1 is centered, we need to define its sign. Let n0 be the number of
centered segments in m, that is n0 = card{∆ ∈ m, c(∆) = 0}.

• If ρu is of the same type as G then

ε1(m1) := (−1)n0+1ε([0, 0]ρu).

• If ρu is not of the same type as G then

ε1(m1) := (−1)n0 .

The pair (m#, ε#):
To construct m# we will remove the end of the segments ∆1, · · · ,∆l of m and

the beginning of the segments ∆∨
1 , · · · ,∆∨

l . As there can be multiplicities in y, we
need to be precise on which segments we modify. Let us write y = Λ1 + · · ·+Λk,
with Λ1 ⪰ · · · ⪰ Λk.

From ∆1, · · · ,∆l we construct two sequences i1, · · · , il and i′1, · · · , i′l. Let 1 ≤
j ≤ l and define

ij := min{i ∈ {1, . . . , k},Λi = ∆j}
and

i′j := min{i ∈ {1, . . . , k},Λi = ∆∨
j }.

We define m# = Λ#
1 + Λ#

2 + · · ·+ Λ#
k (with the Λ#

i possibly empty) by

Λ#
i =


p(Λi) if i /∈ {i1, · · · , il} and i /∈ {i′1, . . . , i′l}
p(Λi)

− if i ∈ {i1, . . . , il} and i /∈ {i′1, . . . , i′l}
−p(Λi) if i /∈ {i1, . . . , il} and i ∈ {i′1, . . . , i′l}
−p(Λi)

− if i ∈ {i1, . . . , il} and i ∈ {i′1, . . . , i′l}

24 THOMAS LANARD AND ALBERTO MÍNGUEZ

We are left to define the signs of the centered segments of m#. Let Λ#
i be a

centered segment of m# supported in Zρ.
• If there exists 1 ≤ j ≤ l such that Λ#

i = Λ#
ij

and c(∆j) = 0; then ε#(Λ#
i) =

ε0 ∗ ε(∆j).
• If there exists 1 ≤ j ≤ l such that Λ#

i = Λ#
ij

, c(∆j) = 1/2 and Λ#
i /∈ m;

then ε#(Λ#
i) = ε0.

• If there exists 1 ≤ j ≤ l such that Λ#
i = Λ#

ij
, c(∆j) = 1/2 and Λ#

i ∈ m;
then ε#(Λ#

i) = ε0 ∗ (−1) ∗ ε(Λ#
i).

• Otherwise, ε#(Λ#
i) = ε0 ∗ ε(Λ#

i).
It is often convenient to see m# as a modification of m where some segments

∆ ∈ m have been replaced by −∆, ∆− or −∆−. To describe these modifications,
when Λ#

i ̸= p(Λi), we will say that the algorithm suppresses Λi and creates Λ#
i .

5.3.3. Definition. When ρ is good, we define ADρ : Symmε
ρ(G) → Symmε

ρ(G)
inductively by

ADρ(m, ε) = (m1, ε1) + ADρ(m
#, ε#)

5.3.4. Remark. Unlike the ugly and bad case, it is not clear here that ADρ is well
defined. At this stage, it is a map Symmε

ρ(G) → Symmε
ρ. To ensure that its image

actually lies in Symmε
ρ(G), we need to verify that two centered segments which are

equal have the same sign. This is established in the next section in Proposition 6.0.7.

5.3.5. Example. Let ρ be of good parity and unitary. Let π := L(n;π(ϕ, η)) with
n = [−1, 0]ρ and π(ϕ, η) trivial. We associate to π the symmetric multisegment
m ∈ Symm defined by m = [−1, 0]ρ + [0, 1]ρ.

In the diagram below, we represent the multisegment m ordered by ≤. We
colored in red the segments with label ≥ 0 and in blue those with ≤ 0. The portions
highlighted in green mark the parts of m that are extracted to form the segment
m1; the remaining parts will constitute the multisegment m# after this first step.

-1 0 1

The algorithm gives (in one step) that ADρ(m) = [−1, 0]ρ + [0, 1]ρ. Thus π̂ = π
(remark the difference with the bad parity case in Example 5.2.4).

5.3.6. Example. With the notation and coloring as above, we consider now the case
π := L(n;π(ϕ, η)) with n = [−2,−2]ρ, ϕ = ρ⊠ S1 + ρ⊠ S1 + ρ⊠ S3, η(ρ⊠ S1) = −1
and η(ρ⊠S3) = 1. The symmetric multisegment (m, ε) ∈ Symmε is m = [−2,−2]ρ+
[0, 0]ρ + [0, 0]ρ + [−1, 1]ρ + [2, 2]ρ with ε([0, 0]ρ) = −1 and ε([−1, 1]ρ) = 1.

-2 -1 0 1 2

−

+

−

-2 -1 0 1 2

+

The algorithm gives (in two steps) that ADρ(m, ε) = (m′, ε′) with m′ = ([−2, 0]ρ+
[0, 2]ρ) + [0, 0]ρ and ε′([0, 0]ρ) = 1. Thus π̂ = L([−2, 0]ρ;π(ρ⊠ S1, η

′)) with η′(ρ⊠
S1) = 1.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 25

5.3.7. Example. With the notation and coloring as above, we consider now the case
(m, ε) ∈ Symmε with m = [−2,−2]ρ + [0, 0]ρ + [−1, 1]ρ + [2, 2]ρ, ε([0, 0]ρ) = −1 and
ε([−1, 1]ρ) = 1.

-2 -1 0 1 2

+

−

-2 -1 0 1 2

−

The algorithm gives (in two steps) that ADρ(m, ε) = (m′, ε′) with m′ = [−2, 2]ρ +
[0, 0]ρ, ε′([−2, 2]ρ) = 1 and ε′([0, 0]ρ) = −1. In this example, we see that the
algorithm also works when the product of the signs is −1, and that it preserves this
product (the general proof of this property is given in Section 7.3).

5.3.8. Remark. For GLn(F), Knight and Zelevinsky observed in [KZ96] that for a
given multisegment m, the number of segments in mt that contain a given segment
[i, j] is equal to the capacity of the graph whose vertices are pairs (∆, x) where
∆ ∈ m and x ∈ ∆ ∩ [i, j] and the edges connect (∆, x) and (∆′, x+ 1) if ∆ precedes
∆′.

A naive transposition of this result in our setting doesn’t work as shown by the
following example. Let ρ be of good parity and consider π := L(n;π(ϕ, η)) with
n = [−3,−3]ρ, ϕ = ρ⊠S3+ρ⊠S3+ρ⊠S3+ρ⊠S5+ρ⊠S5+ρ⊠S5+ρ⊠S7+ρ⊠S7,
η(ρ ⊠ S3) = 1, η(ρ ⊠ S5) = −1 and η(ρ ⊠ S7) = 1. The corresponding labelled
symmetric multisegment is (y, ε) ∈ Symmε(G) given by

y = [3, 3]ρ + [−1, 1]≥0
ρ + [−2, 2]≥0

ρ + [−3, 3]≥0
ρ

+ [−2, 2]=0
ρ + [−1, 1]=0

ρ

+ [−1, 1]≤0
ρ + [−2, 2,]≤0

ρ + [−3,−3]ρ + [−3, 3]≤0
ρ

with ε([−1, 1]ρ) = 1, ε([−2, 2]ρ) = −1 and ε([−3, 3]ρ) = 1.
Applying AD, we get that π̂ = L(n′;π(ϕ′, η′)) with n′ = [−3,−1]ρ + [−3,−2]ρ +

[−3,−3]ρ + [−2,−2]ρ + [−2,−2]ρ + [−1,−1]ρ + [−1,−1]ρ + [−1,−1]ρ + [−1,−1]ρ +
[−1,−1]ρ, ϕ′ = ρ⊠S1 + ρ⊠S1 + ρ⊠S1 + ρ⊠S1 + ρ⊠S1 + ρ⊠S1 + ρ⊠S3 + ρ⊠S5,
η′(ρ⊠ S1) = −1, η′(ρ⊠ S3) = 1 and η′(ρ⊠ S5) = −1.

Now let us consider the segment [i, j] = [−3,−1]ρ. Its multiplicity in the dual is
1. However, the capacity of the graph is 2 as there are two paths ([−1, 1]=0

ρ , 1) →
([−2, 2]≥0

ρ , 2) → ([3, 3]ρ, 3) and ([−1, 1]≤0
ρ , 1) → ([−2, 2]=0

ρ , 2) → ([−3, 3]≥0
ρ , 3).

5.4. Main Theorem. The above constructions define for all ρ ∈ CGL a map
ADρ : Symmε

ρ(G) → Symmε
ρ(G). As explained at the beginning of the section,

we get a map AD : Symmε(G) → Symmε(G) by AD = ⊕ρ∈CGL/∼′ ADρ; and a
map AD : Data(G) → Data(G) defined by AD = trans−1 ◦AD ◦ trans. The main
theorem of this paper (proved in the following sections) is:

5.4.1. Theorem. Let π ∈ IrrG with Langlands data (m;ϕ, η). Then

π̂ ≃ L(AD(m;ϕ, η)).

6. Well-definedness of the algorithm in the good parity case

In this section, we verify that, in the good parity case, the algorithm is well-
defined. Let ρ ∈ CGL be of good parity and ρu its unitarization. As explained in
Remark 5.3.4, at this stage ADρ is a map ADρ : Symmε

ρ(G) → Symmε
ρ. To ensure

26 THOMAS LANARD AND ALBERTO MÍNGUEZ

that the image lies in Symmε
ρ(G) we need to verify that any two equal centered

segments are assigned the same sign. Establishing this compatibility is the main
goal of this section.

Let (m, ε) ∈ Symmε(G). Let ∆1, · · · ,∆l be the initial sequence in the algorithm
for (m, ε) and ∆′

1, · · · ,∆′
l′ be the initial sequence in the algorithm for (m#, ε#). Let

ε0 be the sign in (m, ε) and ε′0 the sign in (m#, ε#) (see Definition 5.3.1).

6.0.1. Lemma. Suppose that there exists j ≥ 1 such that j < l, c(∆j+1) = 0 and
c(∆j) = 1/2. Then mm#(p(∆j+1)) is even.

Proof. Let a ∈ 1
2Z such that p(∆j+1) = [−a, a]ρu and ∆j = [−a, a + 1]ρu . If

mm([−a, a]ρu
) is odd, then ∆j+1 = [−a, a]=0

ρu
. The algorithm suppresses one [−a, a]ρu

(namely, Λij+1
) and creates two new ones from Λij and Λ∨

ij
. Thus mm#([−a, a]ρu

)

is even. If mm([−a, a]ρu
) is even, then ∆j+1 = [−a, a]≤0

ρu
. The algorithm suppresses

two [−a, a]ρu (namely, Λij+1 and Λi′j+1
) and creates two new ones from Λij and Λ∨

ij
.

Thus mm#([−a, a]ρu
) is also even. □

6.0.2. Lemma. Let us assume that e(∆1) = e(∆′
1). Suppose that there exists

j ≥ 1 such that j < l, j < l′, ∆′
j+1 ≺ ∆j, c(∆j) ̸= 0 and c(∆j+1) = 0. Then

∆′
j+1 ⪯ ∆j+1.

Proof. If bρu
(∆′

j+1) < bρu
(∆j+1) then c(∆′

j+1) < 0 and ∆′
j+1 ⪯ ∆j+1. We assume

now that bρu
(∆′

j+1) = bρu
(∆j+1). Let a ∈ 1

2Z such that p(∆j+1) = p(∆′
j+1) =

[−a, a]ρu . Notice that, since ∆′
j+1 ≺ ∆j , c(∆j) ≥ 0 and thus c(∆j) > 0. If

bρu(∆j) > −a, then ∆#
ij

̸= [−a, a]ρu and since p(∆′
j+1) = [−a, a]ρu we get that

mm([−a, a]ρu
) > 1. Thus ∆j+1 = [−a, a]≥0

ρu
and ∆′

j+1 ⪯ ∆j+1.
We can now assume that bρu(∆j) = −a, that is ∆j = [−a, a+ 1]ρu . By Lemma

6.0.1, mm#([−a, a]ρu
) is even. Then ∆′

j+1 = [−a, a]≤0
ρu

and ∆′
j+1 ⪯ ∆j+1. □

6.0.3. Lemma. Let us assume that e(∆1) = e(∆′
1). Suppose that there exists j ≥ 1

such that j ≤ l, j < l′ and c(∆j) = 0. We also assume that for all i ≤ j, ∆′
i ⪯ ∆i.

Then c(∆′
j+1) ̸= 0.

Proof. We prove the result by contradiction. Assume that c(∆′
j+1) = 0. We may

assume that j is minimal among the indices such that c(∆j) = 0 and c(∆′
j+1) = 0.

Since ∆′
j+1 ≺ ∆′

j ⪯ ∆j we get that ∆′
j is also centered. By minimality of

j, j = 1 or c(∆j−1) ̸= 0. Let a ∈ 1
2Z such that p(∆j) = [−a − 1, a + 1]ρu . If

j = 1 or p(∆′
j) ̸= ∆#

ij−1
, then ε#([−a − 1, a + 1]ρu

) = ε0ε([−a − 1, a + 1]ρu
) and

ε#([−a, a]ρu
) = ε0ε([−a− 1, a+ 1]ρu

) contradicting the fact that ∆′
j+1 follows ∆′

j

in the algorithm and thus ε#([−a− 1, a+ 1]ρu
) = −ε#([−a, a]ρu

).
Thus j > 1 and p(∆′

j) = ∆#
ij−1

. Since c(∆j−1) ̸= 0, we get that ∆j−1 =

[−a− 1, a+ 2]ρu
. Now ∆′

j ≺ ∆j−1, thus the label of ∆′
j is either = 0 or ≤ 0. And

∆′
j+1 ≺ ∆′

j , so the label of ∆′
j is = 0. But by Lemma 6.0.1, mm#([−a− 1, a+ 1]ρu

)

is even, which contradicts the fact that ∆′
j = [−a− 1, a+ 1]=0

ρu
. □

6.0.4. Lemma. Suppose that e(∆1) = e(∆′
1). Then

(1) If ε0 = 1 then l′ ≤ l;
(2) For all j ≤ min{l, l′}, ∆′

j ⪯ ∆j.

Proof. We prove by induction on j ≤ l′ the following result: if, for all k ≤
min{j, l}, ∆k is not equal to any of [0, 0]=0

ρu
, [0, 0]≥0

ρu
, [1/2, 1/2]ρu , [−1/2, 1/2]≥0

ρu

with ε([−1/2, 1/2]ρu) = −1 or [−1/2, 1/2]0ρu
with ε([−1/2, 1/2]ρu) = −1, then

necessarily l ≥ j and ∆′
j ⪯ ∆j .

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 27

For j = 1, we have l ≥ 1. Moreover, e(∆′
1) = emax, and the segments of m#

ending in emax are the Λ#
i with i ≠ i1 and e(Λi) = emax. Thus, there exists

i ̸= i1 such that p(∆′
1) = Λ#

i (that is p(Λi) or −p(Λi)). Moreover, by definition
of i1, we have i > i1 and thus Λi ≺ Λi1 . If both ∆1 and ∆′

1 are centered, then
necessarily, mm(p(∆1)) > 1 and therefore the label of ∆1 is ≥ 0, which implies that
∆′

1 ⪯ ∆1. We may assume that one of ∆1 and ∆′
1 is not centered. In this case,

as e(∆′
1) = e(∆1), we have that ∆′

1 ⪯ ∆1 if and only if bρu
(∆′

1) ≤ bρu
(∆1). Since

Λi ≺ Λi1 , it follows that bρu
(Λi1) ≤ bρu

(∆1). And p(∆′
1) = p(Λi) or −p(Λi) thus

bρu
(∆′

1) = bρu
(Λi) or bρu

(Λi) + 1. Hence, the only possible case where ∆′
1 ⪯ ∆1

might not hold would be when bρu(∆
′
1) = bρu(Λi) + 1 (that is p(∆′

1) =
−p(Λi)) and

p(Λi) = p(Λi1). This implies that i = i′j for some j. But from the definition of i′j
we should have i′j = i1 which contradicts i ̸= i1.

Now, let us assume the result for j and prove it for j+1. We assume that ∆j is not
equal to any of [0, 0]=0

ρu
, [0, 0]≥0

ρu
, [1/2, 1/2]ρu , [−1/2, 1/2]≥0

ρu
with ε([−1/2, 1/2]ρu) =

−1 or [−1/2, 1/2]=0
ρu

with ε([−1/2, 1/2]ρu
) = −1. First, let us show that l ≥ j + 1.

We have that ∆′
j+1 ≺ ∆′

j ⪯ ∆j (the last inequality follows from the induction
hypothesis). There exists an index i such that p(∆′

j+1) = Λ#
i , and p(∆′

j+1) is one
of the following segments: p(Λi), p(Λi)

−, −p(Λi) or −p(Λi)
−.

• If p(∆′
j+1) = p(Λi). Then Λi is a segment ending in emax− j. First, suppose

that ∆′
j+1 is not a centered segment. Then p(∆′

j+1) = p(Λi) implies that
∆′

j+1 = Λi. Thus Λi ≺ Λj and Λi satisfies the condition to be in the initial
sequence (but may not be maximal) giving us l ≥ j + 1. Moreover, by
maximality of ∆j+1 we get that ∆′

j+1 = Λi ≺ ∆j+1. Now suppose that
∆′

j+1 is centered. By Lemma 6.0.3 ∆j is not centered. Since ∆′
j+1 ⪯ ∆j we

get that c(∆j) > 0. If the label of Λi is ≤ 0 or = 0 then Λi ≺ ∆j . And if
Λi = [−a, a]≥0

ρu
, then Λ′

i := [−a, a]≤0
ρu

∈ y and Λ′
i ≺ ∆j . In both cases, Λi or

Λ′
i satisfies the condition to be in the initial sequence and l ≥ j + 1. Let

Λ be either Λi or Λ′
i such that Λ ≺ ∆j . By maximality Λ ≺ ∆j+1. The

segment Λ is centered, so c(∆j+1) ≥ 0. If c(∆j+1) > 0 then ∆′
j+1 ⪯ ∆j+1.

And if c(∆j+1) = 0, Lemma 6.0.2 gives us that ∆′
j+1 ⪯ ∆j+1.

• If p(∆′
j+1) =

−p(Λi). Then Λi is a segment ending in emax − j. Moreover,
as p(∆′

j+1) = −p(Λi), we get that Λi ≺ ∆′
j+1. Thus Λi ≺ ∆j . Here,

it is impossible to have both Λi and ∆j centered. Indeed, if p(∆j) =
[−a − 1, a + 1]ρu

and p(Λi) = [−a, a]ρu
, then ∆′

j+1 = [−a + 1, a]ρu
and

in that case, ∆′
j+1 ≺ ∆j does not hold. Hence, l ≥ j + 1 and Λi ⪯

∆j+1. Since Λ#
i = −p(Λi), Λi ̸= Λij+1 . Thus bρu(Λi) < bρu(∆j+1) and

bρu(∆
′
j+1) ≤ bρu(∆j+1). If bρu(∆

′
j+1) < bρu(∆j+1) or ∆j+1 is not centered,

then ∆′
j+1 ⪯ ∆j+1. We assume now that bρu

(∆′
j+1) = bρu

(∆j+1) and
∆j+1 is centered. Let a ∈ 1

2Z such that p(∆j+1) = [−a, a]ρu
. Hence,

Λi = [−a− 1, a]ρu and ∆j = Λ∨
i = [−a, a+ 1]ρu . Since, ∆j+1 ⪯ ∆j , we get

that ∆j+1 = [−a, a]=0
ρu

or ∆j+1 = [−a, a]≤0
ρu

; and similarly for ∆′
j+1. But if

∆j+1 = [−a, a]≤0
ρu

then mm#([−a, a]ρu
) is even and ∆′

j+1 = [−a, a]≤0
ρu

. In all
cases, ∆′

j+1 ⪯ ∆j+1.
• If p(∆′

j+1) = p(Λi)
−. Hence, i = ij and Λi = ∆j . Moreover, as Λ#

i = p(Λi)
−

we cannot have that Λi is a centered segment with label ≥ 0 or = 0.
We first show that ∆′

j+1 is a centered segment. From p(∆′
j+1) = p(∆j)

−

we get that c(∆′
j+1) = c(∆j) + 1. Hence, if c(∆′

j+1) > 0, ∆′
j+1 = ∆−

j and
∆j ≺ ∆′

j+1. Similarly, if c(∆j) < 0 we get a contradiction. If c(∆j) = 0,
then c(∆′

j+1) = 1/2 and ∆j ≺ ∆′
j+1. Thus c(∆′

j+1) = 0. Let a ∈ (1/2)Z
such that p(∆′

j+1) = [−a, a]ρu
and Λi = ∆j = [−a, a + 1]. Since, ∆j =

28 THOMAS LANARD AND ALBERTO MÍNGUEZ

[−a, a + 1]ρu
, we get that l ≥ j + 1 as [−a − 1, a]ρu

≺ [−a, a + 1]ρu
. But

∆#
ij

= p(∆j)
− so ∆j+1 ≠ [−a − 1, a]ρu

. Hence, p(∆j+1) = [−a, a]ρu
. As

∆′
j+1 ≺ ∆j = [−a, a+1]ρu

, we get that ∆′
j+1 = [−a, a]=0

ρu
or [−a, a]≤0

ρu
. But,

mm#([−a, a]ρu
) is even by Lemma 6.0.1, so ∆′

j+1 = [−a, a]≤0
ρu

and we get
that ∆′

j+1 ≺ ∆j+1.
• If p(∆′

j+1) =
−p(Λi)

−. Again, i = ij and Λi = ∆j , and if ∆ ∈ Seg is a
segment such that c(∆) ̸= 0, then ∆ ≺ −∆−. Thus c(∆′

j+1) = c(∆j) = 0.
This contradicts Lemma 6.0.3.

□

6.0.5. Lemma. Suppose that e(∆1) = e(∆′
1). If ε′0 = −1 then ε0 = −1.

Proof. Suppose that ε′0 = −1. Then one of the following conditions is satisfied.
• If ρ is of the same type as G and ∆′

l′ = [0, 0]≥0
ρu

or ∆′
l′ = [0, 0]=0

ρu
. Then,

by Lemma 6.0.4, l′ ≤ l and ∆′
l′ ⪯ ∆l′ . Since e(∆l′) = 0, we get that

∆l′ = [0, 0]≥0
ρu

or ∆l′ = [0, 0]=0
ρu

. Hence l = l′ and ε0 = −1.
• If ρ is not of the same type as G and ∆′

l′ = [1/2, 1/2]ρu
. By Lemma 6.0.4,

we get that ∆′
l ⪯ ∆l and as e(∆l) = 1/2, we get that ∆l = [1/2, 1/2]ρu

.
Hence ε0 = −1.

• If ρ is not of the same type as G and ∆′
l′ = [−1/2, 1/2]≥0

ρu
or ∆′

l′ =

[−1/2, 1/2]=0
ρu

and ε#([−1/2, 1/2]ρu
) = −1. By Lemma 6.0.4, ∆′

l′ ⪯ ∆l′ , so
∆l′ = [1/2, 1/2]ρu

or ∆l′ = [−1/2, 1/2]≥0
ρu

or ∆l′ = [−1/2, 1/2]=0
ρu

. If ∆l′ =
[1/2, 1/2]ρu

then ε0 = −1. We now show the other possibilities lead to contra-
dictions. Suppose that ∆l′ = [−1/2, 1/2]≥0

ρu
or ∆l′ = [−1/2, 1/2]=0

ρu
. If l′ = 1,

then −1 = ε#([−1/2, 1/2]ρu
) = ε0ε([−1/2, 1/2]ρu

) which is impossible. We
assume now that l′ > 1. By Lemma 6.0.3, c(∆l′−1) ̸= 0. By the formula
for ε#, if c(∆l′−1) ̸= 1, then −1 = ε#([−1/2, 1/2]ρu

) = ε0ε([−1/2, 1/2]ρu
)

which is impossible. Thus c(∆l′−1) = 1/2 and ∆l′−1 = [−1/2, 3/2]ρu . By
Lemma 6.0.1, mm#([−1/2, 1/2]ρu

) is even, and ∆′
l′ = [−1/2, 1/2]≥0

ρu
. From

Lemma 6.0.4, we get that ∆′
l′−1 satisfies ∆′

l′ = [−1/2, 1/2]≥0
ρu

≺ ∆′
l′−1 ≺

∆l′−1 = [−1/2, 3/2]ρu
which is impossible.

□

The following proposition generalizes [MW86, II.2.2.] to our setting.

6.0.6. Proposition. Let η1 ∈ m1 be the segment ending in emax. Then η1 is the
longest among the segments ∆ of ADρ(m, ε) such that e(∆) = emax.

Proof. We prove the result by induction. By definition ADρ(m, ε) = (m1, ε1) +
ADρ(m

#, ε#). If m# = 0 then we are done. If not, let us write ADρ(m
#, ε#) =

(m′
1, ε

′
1) + ADρ(m

′#, ε′#). Let e′max be the maximum of the coefficients of m#. If
e′max < emax then no segments of AD(m#, ε#) contain emax and we are done. Hence
we can assume that e′max = emax. Let η′1 be the segment of m′

1 ending in emax. By
the induction hypothesis, every segment of ADρ(m

#, ε#) ending in emax has length
smaller than l(η′1). We are left to prove that l(η′1) ≤ l(η1). Let ∆1, · · · ,∆l be the
initial sequence in the algorithm for (m, ε) and ∆′

1, · · · ,∆′
l′ be the initial sequence

in the algorithm for (m#, ε#). If ε0 = −1 then l(η1) = 2l − 1, and if not l(η1) = l.
Similarly, l(η′1) = 2l′ − 1 if ε′0 = −1, and l(η′1) = l′ otherwise. Thus l(η′1) ≤ l(η1)
follows from Lemma 6.0.4 and Lemma 6.0.5. □

6.0.7. Proposition. The algorithm is well-defined. That is, all the centered segments
with the same end have the same sign.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 29

Proof. We prove the result by induction. We can assume that m1 is centered and
that there is another m1 in AD(m#, ε#). If we write AD(m#, ε#) = (m′

1, ε
′
1) +

AD(m′#, ε′#), then Proposition 6.0.6 tells us that m′
1 = m1. We are left to prove

that ε1(m1) = ε′1(m
′
1). Let n0 = card{∆ ∈ m, c(∆) = 0} and n#

0 = card{∆ ∈
m#, c(∆) = 0}.

• If ρ is of the same type as G. Then ε1(m1) := (−1)n0+1ε([0, 0]ρu
) and

ε′1(m
′
1) := (−1)n

#
0 +1ε#([0, 0]ρu

). After applying the algorithm, only one
[0, 0]ρu

is suppressed and any centered segments created appear in pairs.
Hence, (−1)n0+1 = (−1)n

#
0 . By Lemma 6.0.3, ∆l−1 cannot be centered.

Moreover, c(∆l−1) ̸= 1/2 because, by Lemma 6.0.1, this would imply
that ∆′

l = [0, 0]≥0
ρu

, but this contradicts Lemma 6.0.4 that says that ∆′
l =

[0, 0]≥0
ρu

⪯ ∆′
l−1 ≺ ∆l−1 = [0, 1]ρu

. Thus c(∆l−1) ̸= 1/2 and ε#([0, 0]ρu
) =

(−1)ε([0, 0]ρu). Finally, we get that (−1)n0+1ε([0, 0]ρu) = (−1)n
#
0 +1ε#([0, 0]ρu)

and that ε1(m1) = ε′1(m
′
1).

• If ρ is not of the same type as G. By definition, ε1(m1) := (−1)n0 and
ε′1(m

′
1) := (−1)n

#
0 . The proof of Lemma 6.0.5, tells us that ∆l = [1/2, 1/2]ρu

.
Now Lemma 7.2.2 gives us that ∆j = [emax − j + 1, emax − j + 1]ρu

. Thus
n#
0 = n0 and ε1(m1) = ε′1(m

′
1).

□

7. Important properties

In this section, we will study some properties of the recursive maps:

ADρ : Symmε
ρ(G) −→ Symmε

ρ(G)

(m, ε) 7→ (m1, ε1) + ADρ(m
#, ε#).

7.1. Maximality of the length of m1. We fix ρ ∈ CGL. In this first paragraph
we prove that m1 has the longest length among the segments ending in emax.

7.1.1. Remark. When ρ is of good parity, this is proved in Proposition 6.0.6. In
this case, the crucial lemma is Lemma 6.0.4. This lemma is false in the bad parity
case (with respect to the order ≤). Indeed, we have seen in Example 5.2.5 that, if
m = [−1, 0]ρ + [−1, 0]ρ + [0, 1]ρ + [0, 1]ρ, then ∆1 = [0, 1]ρ and ∆′

1 = [1, 1]ρ. Thus,
∆′

1 ≰ ∆1.

Let ρ ∈ CGL be of bad parity. Let m ∈ Symmε
ρ(G), and denote by ∆1, · · · ,∆l

the initial sequence in the algorithm. We also denote by ∆′
1, · · · ,∆′

l′ the initial
sequence in the algorithm for m#.

Let i0 = min{i ∈ {1, · · · , l} : ∃j ∈ {1, · · · , l},∆∨
i = ∆j}, and j0 = max{j ∈

{1, · · · , l} : ∃i ∈ {1, · · · , l},∆∨
j = ∆i}

7.1.2. Lemma. (1) ∆∨
i0

= ∆j0 .
(2) Let i, j ∈ {1, · · · , l}. Then, ∆∨

i = ∆j if and only if i0 ≤ i ≤ j0 and
i+ j = i0 + j0.

(3) For all i ∈ {i0, · · · , j0}, l(∆i) = l(∆i0).

Proof. If ∆∨
i = ∆j , then c(∆i) = −c(∆j). Moreover, for every k, ∆k+1 ≤ ∆k and

e(∆k+1) = e(∆k)−1 implies that c(∆k+1) < c(∆k). This proves (1). To get (2) and
(3), note that for all k, l(∆k+1) ≥ l(∆k) and l(∆j0) = l(∆∨

i0
) = l(∆i0). Thus, for all

i ∈ {i0, · · · , j0}, l(∆i) = l(∆i0). This also proves (3) as e(∆i) = e(∆i0)− i+ i0. □

7.1.3. Lemma. Suppose that e(∆1) = e(∆′
1), l′ ≥ i0 and +∆′

i0
= ∆i0 . Then l′ ≥ j0,

and for all i0 ≤ i ≤ j0, +∆′
i = ∆i.

30 THOMAS LANARD AND ALBERTO MÍNGUEZ

Proof. This follows easily from a direct computation, since by Lemma 7.1.2, for
i ∈ {i0, · · · , j0} we have ∆i = [b(∆i0)− i+ i0, e(∆i0)− i+ i0]ρu

. □

7.1.4. Proposition. Suppose that e(∆1) = e(∆′
1). Then the following holds:

(1) l′ ≤ l.
(2) For all i ≤ l′, we have +∆′

i ≤ ∆i.
(3) If there exists i ≤ l′ such that +∆′

i = ∆i, then i0 ≤ i ≤ j0, l′ ≥ j0, and for
all i0 ≤ j ≤ j0, we have +∆′

j = ∆j.

Proof. We prove by induction on k ≤ l′ the following properties:

(1) k ≤ l,
(2) +∆′

k ≤ ∆k,
(3) If +∆′

k = ∆k, then i0 ≤ k ≤ j0, l′ ≥ j0, and for all i0 ≤ i ≤ j0, we have
+∆′

i = ∆i.

We start with the base case k = 1. Clearly, 1 ≤ l. Suppose that i0 = 1. If
∆1 = [emax, emax], then ∆′

1 ≤ ∆1 holds trivially. Otherwise, since ∆∨
1 = ∆j0 , the

largest segment in m# ending in emax is −∆1. Hence, ∆′
1 = −∆1, which proves

property (2). Property (3) then follows from Lemma 7.1.3.
Now assume i0 ≠ 1. By definition of the algorithm, ∆′

1 = ∆ or −∆ for some
∆ ∈ m. Since ∆1 is the largest segment ending in emax, we have ∆ ≤ ∆1. If ∆′

1 /∈ m,
then ∆ ̸= ∆1, as i0 ̸= 1, so ∆ < ∆1. Therefore, ∆′

1 ≤ ∆1, as required.
Now let k < l′, and assume the result holds for all k′ ≤ k. We want to prove it

for k + 1.

• Suppose +∆′
k = ∆k and k < j0. Then k + 1 ≤ j0, and l ≥ j0 ≥ k + 1.

Moreover, by the induction hypothesis (3), +∆′
k+1 = ∆k+1, so (3) also holds

for k + 1. This completes the step.
• Suppose ∆′

k ≤ ∆k, or +∆′
k = ∆k with k = j0.

We first show that ∆′
k+1 ≤ ∆k. If ∆′

k ≤ ∆k, then ∆′
k+1 ≤ ∆′

k ≤ ∆k

immediately. Suppose instead +∆′
k = ∆k and k = j0. By the induction

hypothesis, +∆′
i0

= ∆i0 . If i0 = 1, then ∆i0 is the largest segment ending in
emax, so −∆i0 /∈ m. If i0 > 1, then ∆′

i0−1 ≤ ∆i0−1, so −∆i0 = ∆′
i0

≤ ∆i0−1.
Hence, −∆i0 /∈ m, since otherwise it would contradict the definition of ∆i0 .
In all cases, −∆i0 /∈ m. Therefore, ∆−

k = ∆−
j0

= (−∆i0)
∨ /∈ m. This implies

mm#(∆−
k) = 1. But (∆−

k)
∨ = −∆i0 = ∆′

i0
, so by definition of the algorithm,

∆′
k+1 ̸= ∆−

k . Hence, ∆′
k+1 ≤ ∆k, as required.

By construction of m#, ∆′
k+1 = ∆, −∆, or ∆− for some ∆ ∈ m. If

∆′
k+1,

+∆′
k+1 /∈ m and ∆′

k+1 = ∆−, then ∆ = ∆k, contradicting ∆′
k+1 ≤ ∆k.

Thus, ∆′
k+1 = ∆ or −∆, and in both cases ∆ ≤ ∆′

k+1 ≤ ∆k.
Suppose ∆∨ /∈ {∆i | i ≤ k} or mm(∆) ≥ 2. Then l ≥ k+1 and ∆ ≤ ∆k+1.

Consequently, +∆′
k+1 ≤ ∆ ≤ ∆k+1. If +∆′

k+1 = ∆k+1, and if there exists
i such that ∆∨

k+1 = ∆i, then by Lemma 7.1.2, k + 1 ∈ {i0, . . . , j0}. Also,
since −∆k+1 ≤ ∆k, we have l(∆k+1) ̸= l(∆k), so k /∈ {i0, . . . , j0}, and hence
k + 1 = i0. Property (3) then follows from Lemma 7.1.3.

It remains to show that such i exists. If −∆k+1 /∈ m, then by the
construction of m#, there exists i such that ∆∨

k+1 = ∆i, and we are done.
If instead −∆k+1 ∈ m, then since −∆k+1 = ∆′

k+1 ≤ ∆k, there exists i ≤ k

such that (−∆k+1)
∨ = ∆i, and mm(

−∆k+1) = 1.
By the induction hypothesis, +∆′

i ≤ ∆i. If +∆′
i = ∆i, then i ∈

{i0, . . . , j0}, and there exists j such that ∆∨
i = ∆j , so ∆j = −∆k+1,

contradicting the uniqueness of ∆k+1 as the segment ending at e(∆k+1).
Therefore, ∆′

i ≤ ∆i. From ∆′
k+1 ≤ ∆′

i ≤ ∆i = (∆′
k+1)

∨, it follows that

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 31

∆′
i = ∆i, and hence (∆′

k+1)
∨ = ∆′

i. Thus, mm#(∆′
k+1) ≥ 2, contradicting

mm(∆
′
k+1) = 1.

Finally, suppose ∆∨ = ∆i for some i ≤ k and mm(∆) = 1. Then
∆ ≤ ∆′

k+1 ≤ ∆k ≤ ∆i = ∆∨, so l(∆) = l(∆′
k+1), hence ∆ = ∆′

k+1.
By the induction hypothesis, +∆′

i ≤ ∆i. If ∆′
i ≤ ∆i, then from ∆ ≤

∆′
k+1 ≤ ∆′

i ≤ ∆i = ∆∨, we obtain ∆′
i = ∆i, so (∆′

k+1)
∨ = ∆′

i, and
mm#(∆′

k+1) ≥ 2, again contradicting mm(∆) = 1. If +∆′
i = ∆i, then

i ∈ {i0, . . . , j0}, and by Lemma 7.1.2, ∆ = ∆i0+j0−i. Since ∆ = ∆′
k+1,

we have k + 1 = i0 + j0 − i ∈ {i0, . . . , j0}, so ∆k+1 = ∆′
k+1, contradicting

Lemma 7.1.3.

□

We conclude that the same result holds for any ρ ∈ CGL.

7.1.5. Proposition. Let ρ ∈ CGL and (m, ε) ∈ Symmε
ρ. Let (m1, ε1) be the mul-

tisegment produced by ADρ(m, ε), and let η1 ∈ m1 be the segment ending in emax.
Then η1 is the longest among the segments ∆ of ADρ(m, ε) such that e(∆) = emax.

Proof. When ρ is ugly, by Remark 5.1.3, ADρ is the Mœglin–Waldspurger algorithm,
and this is proved in [MW86, II.2.2.]. When ρ is good, this is covered by Proposition
6.0.6. The case where ρ is bad follows from Proposition 7.1.4. □

7.2. Centered segments in the good parity case. In this section, we show that
in the good parity case, ε0 characterizes whether m1 contains a centered segment.

We assume that ρ is good.

7.2.1. Lemma. If ε0 = 1, then e(∆1) + e(∆l) ̸= 0.

Proof. Suppose that ε0 = 1. Necessarily, e(∆1) > 0. Let emax = e(∆1) be
the maximum of the coefficients of m. Suppose that e(∆1) + e(∆l) = 0. Then
−emax ≤ bρu(∆l) ≤ e(∆l) = −emax, so ∆l = [−emax,−emax]ρu .

If −emax +1 < 0, the only segment ∆ such that e(∆) = −emax +1 and ∆l ≺ ∆ is
[−emax + 1,−emax + 1]ρu

. Let i ≥ 0 be the largest integer such that −emax + i < 0.
By induction, for 0 ≤ j ≤ i, we have ∆l−j = [−emax+j,−emax+j]ρu

. For 0 ≤ j ≤ i,
the segment ∆∨

l−j = [emax−j, emax−j]ρu
is in m, and by maximality in the algorithm,

∆1 = [emax, emax]ρu
, . . . ,∆i = [emax − i, emax − i]ρu

.
If ρ is not of the same type as G, then −emax ∈ 1

2Z \ Z and −emax + i = − 1
2 .

This is a contradiction since the algorithm stops at [12 ,
1
2]ρu

.
If ρ is of the same type as G, then −emax ∈ Z and −emax + i = −1. Hence

∆l−i = [−1,−1]ρu and ∆l−i−1 = [0, 0]≤0
ρu

(had it been [0, 0]=0
ρu

or [0, 0]≥0
ρu

, the
algorithm would have stopped there). However, we have shown that ∆l−i−2 = [1, 1]ρu

.
This contradicts the maximality of ∆l−i−1, since [0, 0]≥0

ρu
≺ [1, 1]ρu

. □

Also, when ∆l = [0, 0]≥0
ρu

or [1/2, 1/2]ρu , the sequence is very specific, as shown
in the lemma below.

7.2.2. Lemma. Suppose that ∆l = [0, 0]≥0
ρu

or [1/2, 1/2]ρu
. Then, for all j ∈

{1, . . . , l}, we have ∆j = [emax − j + 1, emax − j + 1]ρu .

Proof. Let x ≥ 0, and let ∆ = [x, x]≥0
ρu

. Then the only segment ∆′ ∈ Seg such that
e(∆′) = x+ 1 and ∆ ≺ ∆′ is ∆′ = [x+ 1, x+ 1]≥0

ρu
. The result follows easily from

this observation. □

32 THOMAS LANARD AND ALBERTO MÍNGUEZ

7.3. Sign preserving property in the good parity case. We assume that ρ is
good. In this section, we show that ADρ preserves the product of the signs.

Let (m, ε) ∈ Symmε
ρ(G). By convention, if ∆ ∈ m and c(∆) ̸= 0, we define

ε(∆) = 1. We define the product of the signs in (m, ε) by

S(m, ε) :=
∏
∆∈m

ε(∆).

Our goal is to prove that

S(ADρ(m, ε)) = S(m, ε).

7.3.1. Lemma. We have

S(m1, ε1) · S(m#, ε#) = S(m, ε).

Proof. Let ρu be the unitarization of ρ.
• Assume that ε0 = 1 and in ∆1, · · · ,∆l there is no centered segment with

label ≥ 0 or = 0. By Lemma 7.2.1, m1 is not a centered segment, so
S(m1, ε1) = 1. So we need to show that S(m, ε)S(m#, ε#) = 1. Since
ε0 = 1, in m# the segments that changed signs are the Λ#

ij
which are

centered. The only possible segment creating a centered segment would
be a Λij such that c(Λij) = 1/2. If there is no such Λij then there is
no change in the signs and thus S(m, ε) = S(m#, ε#). If such a segment
exists, then ε#(Λ#

ij
) = 1 if Λ#

ij
/∈ m and in this case no sign change; or

ε#(Λ#
ij
) = −ε(Λ#

ij
) if Λ#

ij
∈ m. But if Λ#

ij
∈ m, necessarily mm(Λ

#
ij
) is even

(if not [−e(Λ#
ij
), e(Λ#

ij
)]=0
ρu

would follow Λij in the algorithm). Two segments
Λ#
ij

are created in m# so the multiplicity stays even and the product of the
signs remains 1. Hence, S(m, ε) = S(m#, ε#).

• Assume that ε0 = 1 and that in ∆1, · · · ,∆l there are centered segments
with label ≥ 0 or = 0. By definition of the order, all these segments are
consecutive in ∆1, · · · ,∆l. There exist two integers a, b with 1 ≤ a ≤ b ≤ l
such that these segments are ∆a, · · · ,∆b. The only possible segment with
label ≥ 0 is ∆a. As before, m1 is not a centered segment, so S(m1, ε1) = 1
and ε0 = 1. The new centered segment in m# is created by Λia , · · · ,Λib ,
and possibly Λia−1 if c(Λia−1) = 1/2. This gives the following change to
S(m, ε)S(m#, ε#). If a = 1 or c(Λia−1

) ̸= 1, then the multiplicity of Λia is
decreased by one, hence multiplying S(m, ε)S(m#, ε#) by ε(Λia). If a > 1
and c(Λia−1) = 1/2, then two segments Λia are created (from Λia + Λ∨

ia
)

and, then, one is suppressed, which also flips the sign of S(m, ε)S(m#, ε#)
by ε(Λia). With the hypotheses on Λia−1

, necessarily ∆a has label ≤ 0,
thus mm(p(∆a)) is odd. Hence, there is in m# an even number of p(∆a)
and the change of their signs does not affect S(m, ε)S(m#, ε#). In both
cases, S(m, ε)S(m#, ε#) is multiplied by ε(Λia). For a + 1 ≤ m ≤ b, the
multiplicity of Λim is unchanged, but ε#(Λim) = ε0∗ε(Λim−1

) = −ε(Λim), so
S(m, ε)S(m#, ε#) is multiplied by (−1)mm(p(∆m)). Finally, the multiplicity
of Λ#

ib
is increased by one, and the signs are changed to ε(∆b), that is

S(m, ε)S(m#, ε#) is multiplied by ε(Λ#
ib
)
mm(Λ#

ib
) ∗ ε(∆b)

mm(Λ#
ib
)+1. At the

end we get

S(m, ε)S(m#, ε#) = ε(∆a) ∗
b∏

m=a+1

(−1)mm(p(∆m)) ∗ ε(Λ#
ib
)
mm(Λ#

ib
) ∗ ε(∆b)

mm(Λ#
ib
)+1

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 33

Since, for a + 1 ≤ m ≤ b, ∆m has label = 0, we have that mm(p(∆m))
is odd and (−1)mm(p(∆m)) = −1. Also by definition of the algorithm,
ε(∆m−1) = −ε(∆m). Hence, ε(∆b) = (−1)b−aε(∆a). We get

S(m, ε)S(m#, ε#) = ε(Λ#
ib
)
mm(Λ#

ib
) ∗ ε(∆b)

mm(Λ#
ib
)
.

If mm(Λ
#
ib
) is even then S(m, ε)S(m#, ε#) = 1 and we are done. And if

mm(Λ
#
ib
) is odd, as Λ#

ib
is not in the sequence ∆1, · · · ,∆l it means that

ε(Λ#
ib
) = ε(Λib), and S(m, ε)S(m#, ε#) = 1.

• Assume that ε0 = −1 and ∆l = [1/2, 1/2]ρu . By Lemma 7.2.2, for all
j ∈ {1, · · · , l}, ∆j = [emax − j + 1, emax − j + 1]ρu

and the algorithm just
suppresses these segments and their symmetric counterparts. Since ε0 = −1,
all the centered segments change signs, so S(m, ε)S(m#, ε#) = (−1)n0 =
ε1(m1).

• Assume that ε0 = −1 and ∆l ≠ [1/2, 1/2]ρu . Then either ρ is of the same
type as G and ∆l = [0, 0]≥0

ρu
or [0, 0]=0

ρu
; or ρ is not of the same type as G

and ∆l = [−1/2, 1/2]≥0
ρu

or [−1/2, 1/2]=0
ρu

with ε([−1/2, 1/2]ρu
) = −1. Now,

m1 is a centered segment, and ε0 = −1. Following the notation of the
previous case, let a be the smallest integer such that ∆a is centered (and
we would have b = l). Let n1 be the number of centered segments ∆ in m

with eρ(∆) ≥ eρ(∆a). For a ≤ j ≤ l − 1, ε#(Λ#
ia
) = ε(Λ#

ia
). If a > 1 and

c(Λia−1) = 1/2, two segments p(∆a) are created with the same sign. In all
cases, one ∆a is suppressed, which flips the sign of S(m, ε)S(m#, ε#) by
ε(∆a). Now all the other segments change sign. If a = 1 or c(Λia−1

) ̸= 1,
there is n1−1 such segments (as one ∆a has been suppressed), thus the sign of
S(m, ε)S(m#, ε#) is changed by (−1)n1−1. If a > 1 and c(Λia−1) = 1/2, the
number of segments that change signs are n1 −mm(p(∆a)). But mm(p(∆a))
is odd. Thus S(m, ε)S(m#, ε#) changes by (−1)n1−1. In all cases, we get

S(m, ε)S(m#, ε#) = (−1)n1+1ε(∆a).

The centered segments of m with e(∆) < e(∆a) are the Λ#
ij

with a ≤ j ≤ l−1.
Thus n0 = n1 +

∑l−1
j=a mm(Λ

#
ij
). But mm(Λ

#
ij
) is odd, thus (−1)n1+1 =

(−1)n0+1 ∗ (−1)l−a. Also, ε(∆a) = −ε(∆a+1) = · · · = (−1)l−aε(∆l). Hence

S(m, ε)S(m#, ε#) = (−1)n0+1ε(p(∆l)) = ε1(m1).

□

7.3.2. Proposition. Let (m, ε) ∈ Symmε
ρ(G). Then S(ADρ(m, ε)) = S(m, ε).

Proof. We prove the result by induction. We have that

S(ADρ(m, ε)) = S(m1, ε1)S(ADρ(m
#, ε#))

= S(m1, ε1)S(m
#, ε#) (using the induction hypothesis).

The result follows from Lemma 7.3.1. □

8. The theory of derivatives and the Atobe–Mínguez algorithm

We now recall the theory of derivatives as presented in [AM23]. It will be the
main tool to prove Theorem 5.4.1. Let d > 0 be an integer. Throughout this section,
we fix ρ ∈ C (GLd(F)).

34 THOMAS LANARD AND ALBERTO MÍNGUEZ

8.1. We first treat the case of general linear groups. For τ ∈ Rep(GLn(F)), we
define the semisimple representations L

(k)
ρ (τ) and R

(k)
ρ (τ) of GLn−dk(F) by the

equations: [
Jac(dk,n−dk)(τ)

]
= ρk ⊠ L(k)

ρ (τ) +
∑
i

τi ⊠ σi,[
Jac(n−dk,dk)(τ)

]
= R(k)

ρ (τ)⊠ ρk +
∑
i

σ′
i ⊠ τ ′i ,

where τi and τ ′i are irreducible representations of GLdk(F) that are not isomorphic
to ρk. We refer to L

(k)
ρ (τ) (respectively, R

(k)
ρ (τ)) as the k-th left ρ-derivative

(respectively, the k-th right ρ-derivative) of τ .
If L(k)

ρ (τ) ̸= 0 but L(k+1)
ρ (τ) = 0, we say that L(k)

ρ (τ) is the highest left ρ-derivative.
The highest right ρ-derivative is defined in the same way using R

(k)
ρ (τ).

When L
(1)
ρ (τ) = 0 (respectively, R(1)

ρ (τ) = 0), we say that τ is left ρ-reduced
(respectively, right ρ-reduced).

8.2. We now proceed to the case of Gn. Let k ≥ 0, and let Pdk denote the standard
parabolic subgroup of Gn with Levi subgroup isomorphic to GLdk(F)×Gn−dk. For
Π ∈ Rep(Gn), we define a semisimple representation D

(k)
ρ (Π) of Gn−dk by:[

JacGn

Pdk
(Π)

]
= ρk ⊠D(k)

ρ (Π) +
∑
i

τi ⊠Πi,

where τi is an irreducible representation of GLdk(F) which is not isomorphic to ρk.
We call D(k)

ρ (Π) the k-th ρ-derivative of Π.
If D(k)

ρ (Π) ̸= 0 but D(k+1)
ρ (Π) = 0, we say that D(k)

ρ (Π) is the highest ρ-derivative.
When D

(1)
ρ (Π) = 0, we say that Π is ρ-reduced.

8.3. Now assume that ρ is not self-dual. Then, for all π ∈ IrrG, the highest
ρ-derivative D

(k)
ρ (π) is irreducible, and soc(ρr ⋊ π) is irreducible for all r ≥ 0. We

define
S(r)
ρ (π) = soc(ρr ⋊ π).

One has that D
(r)
ρ ◦ S(r)

ρ (π) = π and S
(r)
ρ ◦D(r)

ρ (π) = π, if D(r)
ρ (π) ̸= 0. For more

details, see [AM23, §3].

8.4. In this paragraph, we assume that ρ ∈ C (GLd(F)) is self-dual. In this case, ρ-
derivatives are not yet well understood. One of the ideas in [AM23] is to circumvent
this issue by using alternative derivatives.

Let Π ∈ Rep(Gn). We define the L([−1, 0]ρ)-derivative D
(k)
L([−1,0]ρ)

(Π) and

the Z([0, 1]ρ)-derivative D
(k)
Z([0,1]ρ)

(Π) as the semisimple representations of Gn−2dk

satisfying[
JacGn

P2dk
(Π)

]
= L([−1, 0]ρ)

k⊠D(k)
L([−1,0]ρ)

(Π)+Z([0, 1]ρ)
k⊠D(k)

Z([0,1]ρ)
(Π)+

∑
i

τi⊠πi,

where τi ∈ Irr(GL2dk(F)) such that τi ̸∼= L([−1, 0]ρ)
k, Z([0, 1]ρ)

k.
As before, we define the notions of highest L([−1, 0]ρ)-derivatives (resp. highest

Z([0, 1]ρ)-derivatives) and the property of being L([−1, 0]ρ)-reduced (resp. Z([0, 1]ρ)-
reduced).

If Π ∈ Irr(Gn) is ρ|·|−1-reduced (resp. ρ|·|1-reduced), then the highest L([−1, 0]ρ)-
derivative D

(k)
L([−1,0]ρ)

(Π) (resp. the highest Z([0, 1]ρ)-derivative D
(k)
Z([0,1]ρ)

(Π)) is
irreducible. Similar definitions apply for GLn(F).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 35

For an irreducible representation π of Gn which is ρ| · |−1-reduced (resp. ρ| · |1-
reduced), we also define:

S
(r)
L([−1,0]ρ)

(π) := soc(L([−1, 0]ρ)
r ⋊ π)

(resp. S
(r)
Z([0,1]ρ)

(π) := soc(Z([0, 1]ρ)
r ⋊ π))

They are irreducible representations and we have: D
(r)
L([−1,0]ρ)

◦ S(r)
L([−1,0]ρ)

(π) = π

and S
(r)
L([−1,0]ρ)

◦D(r)
L([−1,0]ρ)

(π) = π, if D(r)
L([−1,0]ρ)

(π) ̸= 0, and similarly for Z([0, 1]ρ).

8.5. The derivatives are compatible with the Aubert–Zelevinsky dual in the follow-
ing sense.

8.5.1. Proposition ([AM23, Prop. 3.9]). Let π ∈ IrrG and ρ ∈ CGL.

(1) If D(k)
ρ is the highest ρ-derivative, then

D̂
(k)
ρ (π) = D

(k)
ρ∨ (π̂).

(2) If ρ is self-dual, π is ρ| · |−1-reduced and D
(k)
L([−1,0]ρ)

(π) is the highest
L([−1, 0]ρ)-derivative, then

̂
D

(k)
L([−1,0]ρ)

(π) = D
(k)
Z([0,1]ρ)

(π̂).

8.6. We now recall the Atobe–Mínguez algorithm for computing the Aubert–
Zelevinsky dual of an irreducible representation π.

Assume that the dual π̂0 can be computed for all irreducible representations of
Gn0

, where n0 < n. Let π be an irreducible representation of Gn.

(1) If there exists a ρ ∈ CGL such that ρ is not self-dual, and D
(k)
ρ (π) is the

highest ρ-derivative with k ≥ 1, then

π̂ = S
(k)
ρ∨

(
D̂

(k)
ρ (π)

)
.

(2) Otherwise, if π is not tempered, there exists a self-dual ρ ∈ CGL such that
D

(k)
L([−1,0]ρ)

(π) is the highest L([−1, 0]ρ)-derivative with k ≥ 1. In this case,
we have

π̂ = S
(k)
Z([0,1]ρ)

(
̂

D
(k)
L([−1,0]ρ)

(π)

)
.

(3) If neither of the above cases applies, then π̂ is explicitly computed (see
[AM23, Proposition 5.4]).

9. Explicit formulas for the derivatives

In Section 8, we recalled the definition of derivatives. In this section, we provide
explicit formulas for computing these derivatives. Such formulas are given in [AM23]
in terms of Langlands data. Here, we instead work with our symmetric Langlands
data (the space Symmε

ρ(G)), which simplifies the formulas and unifies the treatment
of the negative and positive cases, handled respectively in Sections 6 and 7 of
[AM23].

Accordingly, we define an operator Dρ on Symmε
ρ(G) such that, for π = L(m, ε),

the highest derivative satisfies D
(k)
ρ (π) = L(Dρ(m, ε)). This operator will play a

crucial role in the proof of our main theorem. However, readers interested only
in the overall strategy of the proof may skip this section and proceed directly to
Sections 10.1 and 10.2.

36 THOMAS LANARD AND ALBERTO MÍNGUEZ

9.1. Best matching functions. Following [LM16, §5.3], we introduce best match-
ing functions.

Let X and Y be finite sets, and let ⇝ be a relation between elements of Y and
X. We are interested in injective functions f : X → Y such that f(x) ⇝ x for
all x ∈ X. Any such function will be called a ⇝-matching function (or simply a
matching function when the relation ⇝ is understood from context).

According to Hall’s criterion, such a function f exists if and only if, for every
subset A ⊂ X, the following inequality holds:

(9) #{y ∈ Y : y ⇝ x for some x ∈ A} ≥ #A.

In some cases, it is possible to construct such a function f explicitly. Assume
X and Y are totally ordered by relations ≤X and ≤Y , respectively. One natural
approach is to define f recursively, starting from the largest element of X and
proceeding to the smallest, using the following rule:

(10) f(x) = min{y ∈ Y \ f(X>x) : y ⇝ x},
where X>x := {x′ ∈ X : x′ > x}. For this definition to be valid, we must ensure
that, for each x ∈ X, there exists some y /∈ f(X>x) such that y ⇝ x. Clearly, this
requires additional assumptions about the relation ⇝.

To this end, we introduce the following property. We say that the relation ⇝
is traversable if for all x1, x2 ∈ X and y1, y2 ∈ Y with x1 ≥X x2 and y1 ≥Y y2, the
following implication holds:

(11) y1 ⇝ x1, y2 ⇝ x1, and y2 ⇝ x2 ⇒ y1 ⇝ x2.

More generally, even when Hall’s criterion is not satisfied, we can still speak of
⇝-matchings (or simply matchings, if ⇝ is clear from context) between X and Y .
By this, we mean injective functions f from a subset of X to Y such that f(x)⇝ x
for all x in the domain of f . We view such a function as a relation between X and
Y .

Mimicking the earlier construction, if ⇝ is traversable, we define the best ⇝-
matching between X and Y : for this, we recursively define the domain X0 ⊆ X and
the function f on X0 by

x ∈ X0 ⇐⇒ ∃y ∈ Y \ f(X0 ∩X>x) such that y ⇝ x,

in which case we set f(x) = min{y ∈ Y \ f(X0 ∩X>x) : y ⇝ x}.

We set Y 0 := f(X0), Xc := X \X0 and Y c := Y \ Y 0. Finally, for x ∈ X0, we
will say that x protects f(x) ∈ Y 0.

9.2. The good parity case. Here, we give the formulas for computing the highest
ρ-derivatives, for ρ of good parity, in terms of symmetrical Langlands data.

Let ρ ∈ CGL be of good parity. We write ρ = ρu| · |x with ρu unitary and
x ∈ (1/2)Z. Let (m, ε) ∈ Symmε

ρ(G). We assume that x ̸= 0.
By convention, when x = 1/2, we set [−x+1, x−1]ρu = 0, mm([−x+1, x−1]ρu) = 1

and ε([−x+1, x−1]ρu) = 1. Let t = card{[−x, x−1]ρu ∈ m} = card{[−x+1, x]ρu ∈
m}.

9.2.1. Definition. We say that (∗) is satisfied if the four following conditions are
satisfied:

(1) x > 0;
(2) mm([−x, x]ρu

) ̸= 0;
(3) mm([−x+ 1, x− 1]ρu

) ̸= 0;
(4) ε([−x, x]ρu

)ε([−x+ 1, x− 1]ρu
) = (−1)t+1.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 37

We write m = ∆1 + · · · +∆r. If (∗) is satisfied, fix i0 and j0 such that ∆i0 =
[−x, x]ρu

and ∆j0 = [−x+1, x−1]ρu
; otherwise let i0 = j0 = −1. Let Aρu|·|x = {i ∈

{1, · · · , r}, e(∆i) = x} \ {i0} and Aρu|·|x−1 = {i ∈ {1, · · · , r}, e(∆i) = x− 1} \ {j0}.
We define the traversable relation ⇝ between Aρu|·|x and Aρu|·|x−1 by

i ∈ Aρu|·|x ⇝ j ∈ Aρu|·|x−1 ⇔ ∆j ≤ ∆i.

Let Ac
ρu|·|x be given by the best matching function (see Section 9.1). If Ac

ρu|·|x =

{i1, · · · , ik} then we fix j1, · · · , jk ∈ {1, · · · , r} such that ∆ja = ∆∨
ia

and ja ̸= jb
if a ̸= b. We denote by Ac,∨

ρu|·|x the set Ac,∨
ρu|·|x = {j1, · · · , jk}. The “naive” highest

ρ-derivative of (m, ε) would be (m′, ε′) defined as follows (the actual derivative will
result from a slight adjustment of this pair). Let m′ =

∑r
i=1 ∆

′
i where

∆′
i =


∆−

i if i ∈ Ac
ρu|·|x and ∆i ̸= [−x, x]ρu

−∆i if i ∈ Ac,∨
ρu|·|x and ∆i ̸= [−x, x]ρu

−∆−
i if i ∈ Ac

ρu|·|x and ∆i = [−x, x]ρu

∆i otherwise

We also need to define the signs of the centered segments of m′. Let ∆ ∈ m′

such that c(∆) = 0. If ∆ ∈ m, we define ε′(∆) = ε(∆) and if not, then necessarily
∆ = [−x+ 1, x− 1]ρu

and we define ε′([−x+ 1, x− 1]ρu
) = (−1)tε([−x, x]ρu

).

Finally we can define the operator Dρu|·|x on Symmε
ρ(G). Let c = card{i ∈

Ac
ρu|·|x ,∆i = [−x, x]ρu

}.

9.2.2. Definition. Let (m, ε) ∈ Symmε
ρ(G). We define Dρu|·|x(m, ε) ∈ Symmε

ρ(G)
by Dρu|·|x(m, ε) = (mx, εx) where

(1) If (∗) is not satisfied, c is odd and t ≥ 1. Then

mx = m′ − [−x+ 1, x]ρu − [−x, x− 1]ρu + [−x, x]ρu + [−x+ 1, x− 1]ρu .

and εx([−x, x]ρu) = ε([−x, x]ρu), and for a centered segment ∆ ∈ mx

different from [−x, x]ρu
, εx(∆) = ε′(∆).

(2) If (∗) is satisfied and c is odd. Then

mx = m′ − [−x, x]ρu
− [−x+ 1, x− 1]ρu

+ [−x+ 1, x]ρu
+ [−x, x− 1]ρu

.

and for a centered segment ∆ ∈ mx, εx(∆) = ε′(∆).
(3) Otherwise, mx = m′ and εx = ε′.

9.2.3. Remark. The cases (1) and (2) can be seen as a correction of some “mistake”
made when transforming the segments. In (1) a segment [−x, x]ρu

has been changed
into [−x+ 1, x− 1]ρu

but it should have been that [−x+ 1, x]ρu
+ [−x, x− 1]ρu

is
changed into [−x+ 1, x− 1]ρu

+ [−x+ 1, x− 1]ρu
. In (2) one segment [−x, x]ρu

has
been changed into [−x+ 1, x− 1]ρu and another [−x, x]ρu was unchanged but the
two [−x, x]ρu should have been changed into [−x+ 1, x]ρu + [−x, x− 1]ρu .

Using Symmε(G) = ⊕ρ∈CGL/∼′ Symmε
ρ(G), we can extend Dρu|·|x : Symmε

ρ(G) →
Symmε

ρ(G) to an operator Dρu|·|x : Symmε(G) → Symmε(G) by making it act as
the identity on each Symmε

ρ′(G) with ρ′ ≁′ ρ.

9.2.4. Proposition. Let ρ = ρu| · |x ∈ CGL be of good parity with ρu unitary and
x ̸= 0. Let π = L(m, ε) ∈ IrrG with symmetrical Langlands data (m, ε) ∈ Symmε(G).
Then D

(k)
ρ (π) = L(Dρ(m, ε)), where D

(k)
ρ is the highest ρ-derivative.

Proof. When x < 0 the formula is given by [AM23, Prop. 6.1.] and when x > 0 by
[AM23, Thm. 7.1.]. □

38 THOMAS LANARD AND ALBERTO MÍNGUEZ

9.3. The bad parity case. Similarly to the previous section, we give formulas for
the highest ρ-derivative when ρ is of bad parity.

Let ρ = ρu| · |x ∈ CGL be of bad parity with ρu unitary and x ̸= 0. Let
(m, ε) ∈ Symmε

ρ(G). Let t = card{[−x, x − 1]ρu
∈ m} = card{[−x + 1, x]ρu

∈ m}.
We write m = ∆1 + · · · + ∆r. Let Aρu|·|x = {i ∈ {1, · · · , r}, e(∆i) = x} and
Aρu|·|x−1 = {i ∈ {1, · · · , r}, e(∆i) = x− 1}.

The relation ⇝ between Aρu|·|x and Aρu|·|x−1 is similar to the one for the good
parity with the exception that “a segment cannot protect its own symmetric”. This
can only happen for the segments [−x, x−1]ρu and [−x+1, x]ρu and we have an issue
if t is odd. So if t is odd we fix two indices i0 and j0 such that ∆i0 = [−x+ 1, x]ρu

and ∆j0 = [−x, x − 1]ρu
; otherwise set i0 = j0 = −1. We define the traversable

relation ⇝ between Aρu|·|x and Aρu|·|x−1 by

i ∈ Aρ|·|x ⇝ j ∈ Aρ|·|x−1 ⇔ ∆j ≤ ∆i and (i, j) ̸= (i0, j0).

Let Ac
ρu|·|x be given by the best matching function (see Section 9.1). If Ac

ρu|·|x =

{i1, · · · , ik} then we fix j1, · · · , jk ∈ {1, · · · , r} such that ∆ja = ∆∨
ia

and ja ̸= jb if
a ̸= b. We denote by Ac,∨

ρu|·|x the set Ac,∨
ρu|·|x = {j1, · · · , jk}. Let m′ =

∑r
i=1 ∆

′
i where

∆′
i =


∆−

i if i ∈ Ac
ρu|·|x and ∆i ̸= [−x, x]ρu

−∆i if i ∈ Ac,∨
ρu|·|x and ∆i ̸= [−x, x]ρu

−∆−
i if i ∈ Ac

ρu|·|x and ∆i = [−x, x]ρu

∆i otherwise

Finally we can define the operator Dρu|·|x on Symmε
ρ(G). Let c = card{i ∈

Ac
ρu|·|x ,∆i = [−x, x]ρu

}.

9.3.1. Definition. Let m ∈ Symmε
ρ(G). We define Dρu|·|x(m) ∈ Symmε

ρ(G) by
Dρu|·|x(m) = mx where

(1) If c is odd. Then

mx = m′ − [−x+ 1, x− 1]ρu
− [−x, x]ρu

+ [−x, x− 1]ρu
+ [−x+ 1, x]ρu

.

(2) Otherwise, mx = m′.

9.3.2. Remark. Case (1) can be seen as a correction of some “mistake” made
when transforming the segments. The segments [−x, x]ρu

+ [−x, x]ρu
have been

changed into [−x+ 1, x− 1]ρu
+ [−x, x]ρu

but they should have been changed into
[−x+ 1, x]ρu

+ [−x, x− 1]ρu
.

We extend Dρu|·|x : Symmε
ρ(G) → Symmε

ρ(G) to an operator Dρu|·|x : Symmε(G) →
Symmε(G) by making it act as the identity on each Symmε

ρ′(G) with ρ′ ≁′ ρ.

9.3.3. Proposition. Let ρ = ρu| · |x ∈ CGL be of bad parity with ρu unitary and
x ̸= 0. Let π = L(m, ε) ∈ IrrG with symmetrical Langlands data (m, ε) ∈ Symmε(G).
Then D

(k)
ρ (π) = L(Dρ(m, ε)), where D

(k)
ρ is the highest ρ-derivative.

Proof. When x < 0 the formula is given by [AM23, Prop. 6.1.] and when x > 0 by
[AM23, Thm. 7.4.]. □

9.4. The derivative of a sum. The proof of the main theorem will rely on
computing Dρ(AD(m, ε)). The definition of AD being recursive, AD(m, ε) =
(m1, ε1) + AD(m#, ε#), we need to relate the derivative of a multisegment of the
form (m1, ε1) + (m′, ε′) to Dρ(m1, ε1) and Dρ(m

′, ε′). In general, the derivative of a
sum does not behave nicely. However, in our setting, (m1, ε1), the first multisegment
produced by AD, satisfies certain favorable properties that make this comparison
possible.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 39

Let ρ ∈ CGL. We have recalled in Sections 9.2 and 9.3 explicit formulas for the
highest derivative D

(k)
ρ on Symmε(G). Using [AM23, Prop. 6.1.], [AM23, Thm.

7.1.] and [AM23, Thm. 7.4.] we also get an explicit formula for S
(1)
ρ on Symmε(G).

Let (m, ε) ∈ Symmε(G). We define Dmax−1
ρ (m, ε) by Dmax−1

ρ (m, ε) = (m, ε) if
(m, ε) is ρ-reduced; and Dmax−1

ρ (m, ε) = S
(1)
ρ ◦Dρ(m, ε) otherwise.

9.4.1. Lemma. Let ρ = ρu| · |x ∈ CGL with ρu self-dual unitary and x ̸= 0. Let
(m, ε) ∈ Symmε(G). Let (a, b) ∈ (xZ)2 such that a ≤ b. If ρ is good and a+ b = 0,
let m1 = [a, b]ρu and ε1 ∈ {−1, 1}. Otherwise, let m1 = [a, b]ρu + [−b,−a]ρu . We
assume that (m1, ε1) + (m, ε) ∈ Symmε(G).

(1) If b ̸= x, x − 1 and a ̸= −x,−x + 1, then Dρu|·|x((m1, ε1) + (m, ε)) =
(m1, ε1) +Dρu|·|x(m, ε).

(2) If b = x, a ̸= −x,−x+ 1 and there is no segment ∆ ∈ m supported in Zρ

such that e(∆) = x− 1 and ∆ ≤ [a, b]ρu
, then Dρu|·|x((m1, ε1) + (m, ε)) =

Dρu|·|x(m1, ε1) +Dρu|·|x(m, ε).
(3) If b = x− 1, a ̸= −x,−x+ 1 and for all ∆ ∈ m supported in Zρ such that

e(∆) = x then [a, b]ρu ≤ ∆, then Dρu|·|x((m1, ε1) + (m, ε)) = (m1, ε1) +

Dmax−1
ρu|·|x (m, ε).

Proof. It follows directly from the formula of Dρ|·|x . □

We will also need an analogous formula with DZ([0,1]ρu). An explicit formula for
the Z([0, 1]ρu

)-derivative can be found in [Ato22c, Algorithm A.4.]. As before, for
(m, ε) ∈ Symmε(G) we define Dmax−1

Z([0,1]ρu)(m, ε) by Dmax−1
Z([0,1]ρu)(m, ε) = (m, ε) if (m, ε)

is Z([0, 1]ρu)-reduced; and Dmax−1
ρ (m, ε) = S

(1)
Z([0,1]ρu) ◦DZ([0,1]ρu)(m, ε) otherwise.

9.4.2. Lemma. Let ρ = ρu| · |x ∈ CGL with ρu self-dual unitary and x ∈ 1
2Z be

given. Let (m, ε) ∈ Symmε(G). Let (a, b) ∈ (xZ)2 with a ≤ b and a + b ≤ 0. If ρ
is good and a + b = 0, let m1 = [a, b]ρu

and choose ε1 ∈ {−1, 1}. Otherwise, let
m1 = [a, b]ρu + [−b,−a]ρu . We assume that (m1, ε1) + (m, ε) ∈ Symmε(G) and that
(m1, ε1) + (m, ε) is ρu| · |-reduced. We also assume that a ≤ min{b(∆),∆ ∈ m} and
that for all ∆ ∈ m with b(∆) = a, l([a, b]) ≥ l(∆).

(1) If a, b /∈ {0, 1,−1}, then

DZ([0,1]ρu)((m1, ε1) + (m, ε)) = (m1, ε1) +DZ([0,1]ρu)(m, ε).

(2) If b = 0, a ̸= −1, 0 and (m, ε) is 1-reduced, then

DZ([0,1]ρu)((m1, ε1) + (m, ε)) = (m1, ε1) +DZ([0,1]ρu)(m, ε).

(3) If b = 0, a ̸= −1, 0 and (m, ε) is not 1-reduced, then

DZ([0,1]ρu)((m1, ε1) + (m, ε)) = [a,−1]ρu + [1,−a]ρu +DZ([0,1]ρu)(Dρu|·|(m, ε)).

(4) If b = −1, then

DZ([0,1]ρu)((m1, ε1) + (m, ε)) = (m1, ε1) +Dmax−1
Z([0,1]ρu)(m, ε).

Proof. Part (1) follows immediately from [Ato22c, Algorithm A.4]. Let us focus on
the other three parts. Although one could also use [Ato22c, Algorithm A.4], we
instead provide a simple proof using basic facts from representation theory. We will
repeatedly use the following simple lemma:

9.4.3. Lemma. Let τ ∈ IrrGL, σ ∈ IrrG such that:
(1) The induced representation τ ⋊ σ is SI.
(2) τ is left-ρu| · |-reduced and σ is ρu| · |x-reduced.
(3) τ is left-Z([0, 1]ρu

)-reduced and σ is Z([0, 1]ρu
)-reduced.

40 THOMAS LANARD AND ALBERTO MÍNGUEZ

Then,
Z([0, 1]ρu

)× τ ⋊ σ

is SI.

Proof. The conditions imply that Z([0, 1]ρu
)⊗ soc(τ ⋊ σ) appears with multiplicity

1 in
JacGP (Z([0, 1]ρu)× τ ⋊ σ)

for some parabolic subgroup P of a certain G. This implies the claim. □

Denote by π (resp. π′) the representation associated to (m, ε) (resp. (m1, ε1) +
(m, ε)). Then, by our hypotheses, π′ is the socle of L([a, b]ρu

)⋊ π.
Assume first that b = 0 and π is ρu| · |-reduced. If we denote by k the integer

such that DZ([0,1]ρu)(π) = D
(k)
Z([0,1]ρu)(π), we have

L([a, b]ρu
)× Z([0, 1]ρu

)k ⋊DZ([0,1]ρu)(π)

is SI. Indeed, as b = 0, by [BLM13, Thm. 0.1], it is isomorphic to

Z([0, 1]ρu
)k × L([a, b]ρu

)⋊DZ([0,1]ρu)(π),

and the claim follows from Lemma 9.4.3. As π′ is clearly in the socle, we deduce

DZ([0,1]ρu)(π
′) = soc(L([a, b]ρu)⋊DZ([0,1]ρu)(π)).

This proves (2).
Now assume that b = 0 but π is not ρu| · |-reduced. Then, by [BLM13, Thm. 0.1],

we have

L([a, b]ρu
+ [1, 1]ρu

)× Z([0, 1]ρu
)k ⋊DZ([0,1]ρu)Dρu|·|(π) ≃(12)

Z([0, 1]ρu
)k × L([a, b]ρu

+ [1, 1]ρu
)⋊DZ([0,1]ρu)Dρu|·|(π).

This representation embeds into

Z([0, 1]ρu
)k+1 × L([a, b− 1]ρu

)⋊DZ([0,1]ρu)Dρu|·|(π).

Lemma 9.4.3 implies that this induced is SI and so is (12). But again this socle is
isomorphic to π′. As proving it requires some more work, let’s give some details. First
see that, as π′ embeds in L([a, b]ρu

)× ρu| · |⋊Dρu|·|(π), it embeds in σ0 ⋊Dρu|·|(π)
for some subquotient σ0 of L([a, b]ρu)× ρu| · |. But π′ is ρu| · |-reduced, so we deduce
that σ0 ≃ L([a, b]ρu + [1, 1]ρu). Therefore,

soc(L([a, b]ρu
+ [1, 1]ρu

)× Z([0, 1]ρu
)k ⋊DZ([0,1]ρu)Dρu|·|(π)) ≃

soc(L([a, b]ρu
+ [1, 1]ρu

)× soc(Z([0, 1]ρu
)k ⋊DZ([0,1]ρu)Dρu|·|(π))) ≃

soc(L([a, b]ρu
+ [1, 1]ρu

)×Dρu|·|(π)),

which contains π′ and is thus isomorphic to it. This proves (3).
Finally, assume b = −1. Then π′ is a subrepresentation of

L([a, b]ρu
)× Z([0, 1]ρu

)k ⋊DZ([0,1]ρu)(π).

Here, L([a, b]ρu)× Z([0, 1]ρu)
k is not irreducible but has length 2, with composition

factors soc(Z([0, 1]ρu
)×L([a, b]ρu

))×Z([0, 1]ρu
)k−1 and soc(L([a, b]ρu

)×Z([0, 1]ρu
))×

Z([0, 1]ρu
)k−1. By our assumption on m1, we must have that π′ is a subrepresentation

of

soc(L([a, b]ρu
)× Z([0, 1]ρu

))× Z([0, 1]ρu
)k−1 ⋊DZ([0,1]ρu)(π) ≃

Z([0, 1]ρu
)k−1 × soc(L([a, b]ρu

)× Z([0, 1]ρu
))⋊DZ([0,1]ρu)(π).

By Lemma 9.4.3, this induced representation is SI, and as before, this proves (4). □

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 41

10. Proof in the good parity case

The goal of this section is to prove Theorem 5.4.1 in the case of an irreducible
representation of good parity. To do so, we will work with symmetric Langlands data
throughout this section. More precisely, we will establish the following equivalent
formulation of the theorem.

10.0.1. Theorem. Let π ∈ IrrG be of good parity with symmetrical Langlands data
π ≃ L(m, ε). Then we have

π̂ ≃ L(AD(m, ε)).

The strategy to prove Theorem 10.0.1 is as follows. We have already seen in
Proposition 8.5.1 that the derivatives and the Aubert–Zelevinsky involution are
compatible. This allows us to prove the theorem by induction on the length of m,
using the fact that derivatives are injective and reduce the length.

The base case is when π is ρ-reduced for all ρ, and also L([−1, 0]ρ)-reduced; this
case is treated in Section 10.1. Now suppose that π is not ρ-reduced for some ρ (the
case where it is not L([−1, 0]ρ)-reduced is similar). Let (m, ε) ∈ Symmε,+(G) such
that π = L(m, ε). Then, if we can prove that

Dρ(AD(m, ε)) = AD(Dρ∨(m, ε)),

the result follows by induction, as shown in the following computation:

Dρ(L(AD(m, ε))) = L(Dρ(AD(m, ε))) by Lemma 9.2.4
= L(AD(Dρ∨(m, ε)))

= L(Dρ∨(m, ε))̂ by the induction hypothesis

= Dρ∨(L(m, ε))̂ by Lemma 9.2.4
= Dρ(π̂) by Proposition 8.5.1

and we conclude by the injectivity of Dρ.
The key point in this argument is the compatibility between the derivative functor

and AD: namely,
Dρ(AD(m, ε)) = AD(Dρ∨(m, ε)).

Establishing this identity is the main goal of this section.
However, a technical difficulty arises. We would like to prove this identity by

induction using the recursive definition AD(m, ε) = (m1, ε1) +AD(m#, ε#), but this
recursion is only valid when (m, ε) ∈ Symmε,+(G), and unfortunately, (m#, ε#) may
not belong to Symmε,+(G). As a result, we are led to prove a slightly modified
version of the statement above, which we will explain in detail below.

If C = {ρ1, · · · , ρr} ⊂ CGL is a finite set composed of good supercuspidals, we
denote by Symmε

C (G) =
⊕

ρ∈C Symmε
ρ(G).

We fix C = {ρ1, · · · , ρr} ⊂ CGL/∼′ a set composed of good supercuspidals and
ρ0 ∈ CGL \ C be a good self-dual supercuspidal. For a multisegment m ∈ Mult, we
denote by l(m) the length of m. We will prove the following theorem.

10.0.2. Theorem. Let N ∈ N. Let π ∈ IrrG be of good parity with symmetrical Lang-
lands data (m′, ε′) ∈ Symmε,+(G). We assume that there exist (m, ε) ∈ Symmε

C (G)
and (m0, ε0) ∈ Symmε

ρ0
(G) such that

(1) (m′, ε′) = (m, ε) + (m0, ε0);
(2) l(m) ≤ N ;
(3) l(m0) ≤ 1.

Then π̂ ≃ L(AD(m′, ε′)).

42 THOMAS LANARD AND ALBERTO MÍNGUEZ

If we prove 10.0.2 for all finite subsets C ∈ CGL and all N ∈ N, then Theorem
10.0.2 implies Theorem 10.0.1.

10.1. The case of a reduced multisegment. Let (m, ε) ∈ Symmε. Let ρ ∈ CGL

be self-dual. For x ≠ 0, we say that (m, ε) is ρ|·|x-reduced if D(1)
ρ|·|x(m, ε) ̸= 0. If (m, ε)

is ρ| · |−1-reduced, we say that (m, ε) is L([−1, 0]ρ)-reduced if D(1)
L([−1,0]ρ)

(m, ε) ̸= 0.
Finally, we say that (m, ε) is reduced if for every self-dual ρ and x ̸= 0, it is
ρ| · |x-reduced and L([−1, 0]ρ)-reduced.

In this section we prove Theorem 10.0.1 for reduced multisegments.

Let ρ ∈ CGL be self-dual and of the same type as G. Let n0, y0 ∈ N, with
n0 ≥ 1. We define (m, ε) ∈ Symmε

ρ(G) by m = n0[0, 0]ρ +
∑y0

y=1[−y, y]ρ and for all
1 ≤ y ≤ y0, ε([−y, y]ρ)ε([−y + 1, y − 1]ρ) = −1 (we do not fix any condition on
ε([0, 0]ρ)).

10.1.1. Lemma. We have that ADρ(m, ε) = (m′, ε′) where
(1) If y0 = 0, then m′ = m and ε′([0, 0]ρ) = (−1)n0+1ε([0, 0]ρ).
(2) If n0 is odd and y0 ̸= 0, then (m′, ε′) = (m, ε).
(3) If n0 is even and y0 ̸= 0, then m′ = m−[0, 0]ρ−[−y0, y0]ρ+[−y0, 0]ρ+[0, y0]ρ

and for y < y0, ε′([−y, y]ρ) = −ε([−y, y]ρ).

Proof. (1) Suppose y0 = 0. Then m1 = [0, 0]ρ, ε1([0, 0]ρ) = (−1)n0+1ε([0, 0]ρ),
m# = (n0 − 1)[0, 0]ρ and ε#([0, 0]ρ) = −ε([0, 0]ρ). We get the result by
induction.

(2) Suppose n0 is odd and y0 ̸= 0. Then m1 = [−y0, y0]ρ, ε1([−y0, y0]ρ) =

ε([−y0, y0]ρ), m# = n0[0, 0]ρ+
∑y0−1

y=1 [−y, y]ρ and for y < y0, ε#([−y, y]ρ) =

ε([−y, y]ρ). By induction, we see that AD(m0, ε0) = (m0, ε0).
(3) Suppose n0 is even and y0 ≠ 0. Then m1 = [−y0, 0]ρ + [0, y0]ρ, m# =

(n0 − 1)[0, 0]ρ +
∑y0−1

y=1 [−y, y]ρ and for y < y0, ε#([−y, y]ρ) = −ε([−y, y]ρ).
We get the result using the previous case.

□

Now, let ρ ∈ CGL be self-dual of the opposite type as G. Let y0 ∈ (1/2)N \ N.
We define (m, ε) ∈ Symmε

ρ by m =
∑y0

y=1/2[−y, y]ρ, ε([−1/2, 1/2]ρ) = −1 and for all
1/2 < y ≤ y0, ε([−y, y]ρ)ε([−y + 1, y − 1]ρ) = −1.

10.1.2. Lemma. We have that ADρ|·|1/2(m, ε) = (m, ε).

Proof. Applying the algorithm, we get that m1 = [−y0, y0]ρ and m# =
∑y0−1

y=1/2[−y, y]ρ.
The result follows directly by induction. □

We can now prove Theorem 10.0.1 for reduced (m, ε).

10.1.3. Lemma. Let π = L(m, ε) ∈ IrrG be of good parity with (m, ε) ∈ Symmε,+(G).
If (m, ε) is reduced then π̂ ≃ L(AD(m, ε)).

Proof. We can write (m, ε) =
∑

ρi
(mρi , ερi) such that the ρi ∈ CGL are good, Zρi ̸=

Zρj if i ̸= j, and (mρi , ερi) ∈ Symmε
ρi

. By definition, AD(m, ε) =
∑

ρi
ADρi(mρi , ερi).

The hypothesis made on π imply that each (mρi , ερi) satisfies the hypotheses of
Lemma 10.1.1 or Lemma 10.1.2. These lemmas explicitly compute AD(m, ε). The
representation π̂ is explicitly computed in [AM23, Prop. 5.4]. The two results are
identical, proving the result. □

Because we want to prove Theorem 10.0.2, we will also need the following lemma.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 43

10.1.4. Lemma. Let π = L(m′, ε′) ∈ IrrG be of good parity with (m′, ε′) ∈ Symmε,+(G).
We assume that there exist (m, ε) ∈ Symmε

C (G) and (m0, ε0) ∈ Symmε
ρ0
(G) such

that
(1) (m′, ε′) = (m, ε) + (m0, ε0);
(2) (m, ε) is reduced;
(3) l(m0) ≤ 1.

Then π̂ ≃ L(AD(m′, ε′)).

Proof. The only elements (m0, ε0) ∈ Symmε
ρ0

of good parity with l(m0, ε0) ≤ 1, are
m0 = 0 and m0 = [0, 0]ρ0

with ρ0 of the same type as G. They are both reduced, so
the result follows from Lemma 10.1.3. □

10.2. The strategy of the proof. We explain here the strategy to prove Theorem
10.0.2.

We prove Theorem 10.0.2 by induction on N . The case N = 0 is handled by
Lemma 10.1.4. Let N ∈ N∗.

10.2.1. Hypothesis. We assume that Theorem 10.0.2 is true for all N ′ < N .

Until the end of the section, we will assume that Hypothesis 10.2.1 is true. We
want to prove now that Theorem 10.0.2 is true for N . To do that, we will prove
that the algorithm AD commutes with derivatives.

10.2.2. Lemma. We assume that for all non-reduced (m, ε) ∈ Symmε
C (G) with

l(m) = N , there exist ρi ∈ C , ρ ∈ CGL self-dual and x ̸= 0 such that ρ| · |x ∈ Zρi

and we have either
(1) (m, ε) is not ρ| · |x-reduced and ADρi(Dρ|·|x(m, ε)) = Dρ|·|−x(ADρi(m, ε))
(2) or, if it is defined, (m, ε) is not L([−1, 0]ρ)-reduced and ADρi

(DL([−1,0]ρ)(m, ε)) =
DZ([0,1]ρ)(ADρi

(m, ε)).
Then Theorem 10.0.2 is true for N .

Proof. Let π, (m′, ε′), (m, ε) and (m0, ε0) as in Theorem 10.0.2. If (m, ε) is reduced,
Theorem 10.0.2 follows from Lemma 10.1.4. Hence, we can assume that (m, ε) is not
reduced. By hypothesis, there exist ρi ∈ C , ρ ∈ CGL self-dual and x ̸= 0 such that
(m, ε) is not ρ| · |x-reduced and ADρi(Dρ|·|x(m, ε)) = Dρ|·|−x(ADρi(m, ε)); or (m, ε) is
not L([−1, 0]ρ)-reduced and ADρi

(DL([−1,0]ρ)(m, ε)) = DZ([0,1]ρ)(ADρi
(m, ε)). We

assume that (m, ε) is not ρ|·|x-reduced and ADρi
(Dρ|·|x(m, ε)) = Dρ|·|−x(ADρi

(m, ε)),
the other cases being treated similarly. Note that AD = ⊕ρ ADρ and similarly for
the derivative. Thus we have AD(Dρ|·|x(m

′, ε′)) = Dρ|·|−x(AD(m′, ε′)). Then we get

Dρ|·|−x(L(AD(m′, ε′))) = L(Dρ|·|−x(AD(m′, ε′))) by Lemma 9.2.4

= L(AD(Dρ|·|x(m
′, ε′)))

= L(Dρ|·|x(m
′, ε′))̂ by Hypothesis 10.2.1

= Dρ|·|x(L(m
′, ε′))̂ by Lemma 9.2.4

= Dρ|·|−x(π̂) by [AM23, Prop. 3.9.]

By the injectivity of Dρ|·|−x , we get that π̂ = L(AD(m′, ε′)). □

Let (m, ε) ∈ Symmε
C (G) non-reduced with l(m) = N . We will show that the

hypotheses of Lemma 10.2.2 are satisfied. First note that we have the following
result.

44 THOMAS LANARD AND ALBERTO MÍNGUEZ

10.2.3. Lemma. For all (m, ε) ∈ Symmε
C (G) such that l(m) < N , for all ρi ∈ C ,

ρ ∈ C self-dual and x ̸= 0,

ADρi
(Dρ|·|x(m, ε)) = Dρ|·|−x(ADρi

(m, ε))

and, if it is well-defined,

ADρi
(DL([−1,0]ρ)(m, ε)) = DZ([0,1]ρ)(ADρi

(m, ε)).

Proof. We can assume that ρ| · |x ∈ Zρi . If S(m, ε) = 1, by Hypothesis 10.2.1,
L̂(m, ε) = L(AD(m, ε)). Thus the result follows from Proposition 8.5.1. If S(m, ε) =
−1, we consider m0 = [0, 0]ρ0

, ε0([0, 0]ρ0
) = −1 and (m′, ε′) = (m, ε) + (m0, ε0).

The element (m′, ε′) satisfies the conditions of Theorem 10.0.2, thus ̂L(m′, ε′) =
L(AD(m′, ε′)). We also get the result from Proposition 8.5.1 and projecting on the
line Zρi

. □

10.2.4. Lemma. For all (m, ε) ∈ Symmε
C (G) such that l(m) < N −2, for all ρi ∈ C ,

ρ ∈ C self-dual and x ̸= 0,

ADρi
(S

(1)
ρ|·|x(m, ε)) = S

(1)
ρ|·|−x(ADρi

(m, ε))

and, if it is well-defined,

ADρi
(S

(1)
L([−1,0]ρ)

(m, ε)) = S
(1)
Z([0,1]ρ)

(ADρi
(m, ε)).

Proof. The proof is similar to the proof of Lemma 10.2.3 using [Ber92, Thm. 31
(4)] □

The multisegment (m, ε) can be written as (m, ε) =
∑r

i=1(mi, εi), with (mi, εi) ∈
Symmε

ρi
(G). If there exists i ̸= j such that mi ̸= 0 and mj ≠ 0, then, for all

1 ≤ i ≤ r, l(mi) < N , and Lemma 10.2.3 shows that the conditions of Lemma 10.2.2
are satisfied. Hence we can assume that C is composed of a single supercuspidal
(that is r = 1). We fix ρ ∈ CGL of good parity and assume that C = {ρ}. Let ρu
be the unitarization of ρ. Let (m, ε) ∈ Symmε

ρ(G).
To simplify the notations, until the end of Section 10, we will write all the segments

with respect to ρu and we will omit ρ and ρu in the notations. That is AD :=
ADρ, [x, y] := [x, y]ρu , Dx := Dρu|·|x , DZ([0,1]) := DZ([0,1]ρu) and DL([−1,0]) :=
DL([−1,0]ρu). We will also say that (m, ε) is x-reduced if it is ρu| · |x-reduced, and
similarly for L([−1, 0])-reduced and Z([−1, 0])-reduced.

The goal is to find a suitable value of y0 such that Dy0(m, ε) is easy to compute,
and the initial sequence of Dy0(m, ε) remains relatively close to that of (m, ε), in
order to control the effect of AD. The simplest way to ensure that Dy0

(m, ε) is
easy to compute is to choose y0 as the smallest half-integer y ∈ (1/2)Z∗ such
that (m, ε) is not y-reduced. However, this choice can significantly alter the initial
sequence of (m, ε), especially when [−y0,−y0] ∈ m. In that case, this segment, which
necessarily appears first in the initial sequence of (m, ε), is removed by the derivative
operator Dy0 . To avoid this issue, we instead choose y0 as the smallest half-integer
y ∈ (1/2)Z∗ such that y ̸= −emax and (m, ε) is not y-reduced. This provides a good
compromise between the simplicity of the derivative’s expression and control over
the initial sequence.

The proof is divided into several subsections, as explained below:
(1) By a direct computation, we deal with the case emax ≤ 1 in Section 10.3.
(2) In Section 10.4, we treat the case where emax > 1 and there exists y < 0,

y ̸= −emax such that (m, ε) is not y-reduced.
(3) In Section 10.5, we prove the result when emax > 1, for all −emax < y < 0,

(m, ε) is y-reduced, and (m, ε) is not L([−1, 0])-reduced.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 45

(4) The Section 10.6 deals with the case emax > 1, ρ of the same type as G,
for all −emax < y < 0, (m, ε) is y-reduced, (m, ε) is L([−1, 0])-reduced, and
there exists y > 0 with y ̸= emax such that (m, ε) is not y-reduced.

(5) The Section 10.7 deals with the case emax > 1, ρ not of the same type as G,
for all −emax < y < 0, (m, ε) is y-reduced, (m, ε) is L([−1, 0])-reduced, and
there exists y > 0 with y ̸= emax such that (m, ε) is not y-reduced.

(6) In Section 10.8 we assume that emax > 1, for all y ̸= 0, emax,−emax, (m, ε)
is y-reduced, (m, ε) is L([−1, 0])-reduced, and (m, ε) is not emax-reduced.

(7) Finally in Section 10.9 we assume that emax > 1, for all y ̸= 0,−emax, (m, ε)
is y-reduced and (m, ε) is L([−1, 0])-reduced.

10.3. The case emax ≤ 1. In this section we assume that emax ≤ 1. The goal is to
compute AD(m, ε) explicitly.

We start with the easiest case which is when ρ is not of the same type as G.
Then m is of the form

m = c[−1/2, 1/2] + n([−1/2,−1/2] + [1/2, 1/2])

with c, n ∈ N. To simplify notation, set ε = ε([−1/2, 1/2]).
Let (m′, ε′) = AD(m, ε). The maximum of the coefficients of (m′, ε′) is also

smaller than 1, so (m′, ε′) is of the form as above. We denote by c′, n′ ∈ N and
ε′ ∈ {±1} the constants relative to (m′, ε′).

Let (∗) be the condition c ̸= 0 and ε = (−1)n+1.

10.3.1. Proposition. The dual AD(m, ε) = (m′, ε′) is given by the following formu-
las.

(1) If (∗) is satisfied, then c′ = n+ 1, n′ = c− 1 and ε′ = (−1)c.
(2) If (∗) is not satisfied, then c′ = n, n′ = c and ε′ = (−1)c.

Proof. We write m1 and m# in the different cases and the result follows by an
immediate induction.

• Suppose n ̸= 0. Then ∆1 = [1/2, 1/2]. Thus m1 = [−1/2, 1/2], ε1([−1/2, 1/2]) =
(−1)c, m# = c[−1/2, 1/2]+(n−1)([−1/2,−1/2]+[1/2, 1/2]) and ε#([−1/2, 1/2]) =
−ε([−1/2, 1/2]).

• Suppose n = 0 and ε = −1. Then ∆1 = [−1/2, 1/2]. Thus m1 = [−1/2, 1/2],
ε1([−1/2, 1/2]) = (−1)c, m# = (c − 1)[−1/2, 1/2] and ε#([−1/2, 1/2]) =
−ε([−1/2, 1/2]).

• Suppose n = 0 and ε = 1. Then ∆1 = [−1/2, 1/2]. Thus m1 = [−1/2,−1/2]+
[1/2, 1/2], m# = (c− 1)[−1/2, 1/2] and ε#([−1/2, 1/2]) = ε([−1/2, 1/2]).

□

Now, we check that AD commutes with the derivative.

10.3.2. Proposition. (1) If n ̸= 0, then AD(D−1/2(m, ε)) = D1/2(AD(m, ε)).
(2) If n = 0, then AD(D1/2(m, ε)) = D−1/2(AD(m, ε)).

Proof. This follows directly from the explicit formulas for the derivatives recalled in
Section 9 and Proposition 10.3.1. □

Now, let us assume that ρ is of the same type as G. Then m is of the form

m = c0[0, 0] + c1[−1, 1] + t([−1, 0] + [0, 1]) + n([−1,−1] + [1, 1])

with c0, c1, t, n ∈ N. To simplify notation, set ε(0) = ε([0, 0]) and ε(1) = ε([−1, 1]).
Let (m′, ε′) = AD(m, ε). The maximum of the coefficients of (m′, ε′) is also

smaller than 1, so (m′, ε′) is of the form as above. We denote by c′0, c
′
1, t

′, n′ ∈ N
and ε′(0), ε′(1) ∈ {±1} the constants relative to (m′, ε′).

Let (∗) be the condition c0 ̸= 0, c1 ̸= 0 and ε(0)ε(1) = (−1)t+1.

46 THOMAS LANARD AND ALBERTO MÍNGUEZ

10.3.3. Proposition. The dual AD(m, ε) = (m′, ε′) is given by the following formu-
las.

(1) If n > c0, then c′0 = c1, c′1 = c0, t′ = t, n′ = n − c0 + c1, ε′(0) =
ε(1) ∗ (−1)c0+c1+1 and ε′(1) = ε(0) ∗ (−1)c0+c1+1.

(2) If n = c0, then c′0 = c1, c′1 = c0, t′ = t, n′ = c1, ε′(0) = ε(1) ∗ (−1)c0+c1+1

and ε′(1) = ε(0) ∗ (−1)c0+c1+1.
(3) If n < c0, (∗) is not satisfied and c0 − n is even or t = 0 . Then t′ = t,

n′ = c1, c′0 = c0 + c1 − n, c′1 = n, ε′(0) = ε(0) ∗ (−1)c0+c1+t+1 and
ε′(1) = ε(0) ∗ (−1)c0+c1+1.

(4) If n < c0, (∗) is not satisfied, c0 − n is odd and t ̸= 0. Then t′ = t − 1,
n′ = c1, c′0 = c0 + c1 − n+ 1, c′1 = n+ 1, ε′(0) = ε(0) ∗ (−1)c0+c1+t+1 and
ε′(1) = ε(0)(−1)c0+c1+1.

(5) If n < c0, (∗) is satisfied and c0 − n is even. Then t′ = t+ 1, n′ = c1 − 1,
c′0 = c0 + c1 − n − 2, c′1 = n, ε′(0) = ε(0) ∗ (−1)t+c0+c1 and ε′(1) =
ε(0)(−1)c0+c1+1.

(6) If n < c0, (∗) is satisfied and c0 − n is odd. Then t′ = t, n′ = c1 − 1,
c′0 = c0 + c1 − n − 1, c′1 = n + 1, ε′(0) = ε(0) ∗ (−1)t+c0+c1 and ε′(1) =
ε(0)(−1)c0+c1+1.

Proof. We write m1 and m# in the different cases and the result follows from an
immediate induction.

• Suppose n, c0 ̸= 0. Then ∆1 = [1, 1] and ∆2 = [0, 0]=0 or [0, 0]≥0. Thus
m1 = [−1, 1], ε1(0) = ε(0) ∗ (−1)c0+c1+1, m# = (c0 − 1)[0, 0] + c1[−1, 1] +
t([−1, 0]+[0, 1])+(n−1)([−1,−1]+[1, 1]), ε#(0) = −ε(0) and ε#(1) = −ε(1).

• Suppose n, t ≠ 0 and c0 = 0. Then ∆1 = [1, 1] and ∆2 = [−1, 0]. Thus m1 =
[−1, 0] + [0, 1], m# = c1[−1, 1] + (t− 1)([−1, 0] + [0, 1]) + n([−1,−1] + [1, 1])
and ε#(1) = ε(1).

• Suppose n ̸= 0 and c0, t = 0. Then ∆1 = [1, 1]. Thus m1 = [1, 1] + [−1,−1],
m# = (c1 − 1)[−1, 1] + n([−1,−1] + [1, 1]) and ε#(1) = ε(1).

• Suppose n, c0 = 0 and t ̸= 0. Then ∆1 = [0, 1] and ∆2 = [−1, 0]. Thus
m1 = [−1, 0]+[0, 1], m# = c1[−1, 1]+(t−1)([−1, 0]+[0, 1]) and ε#(1) = ε(1).

• Suppose n = 0, t, c0 ̸= 0 and c0 is even. Then ∆1 = [0, 1] and ∆2 = [0, 0]≤0.
Thus m1 = [−1, 0] + [0, 1], m# = c0[0, 0] + c1[−1, 1] + (t− 1)([−1, 0] + [0, 1]),
ε#(0) = −ε(0) and ε#(1) = ε(1).

• Suppose n = 0, t ̸= 0 and c0 is odd. Then ∆1 = [0, 1] and ∆2 = [0, 0]=0.
Thus m1 = [−1, 1], ε1(1) = (−1)c1ε(0), m# = (c0 +1)[0, 0] + c1[−1, 1] + (t−
1)([−1, 0] + [0, 1]), ε#(0) = ε(0) and ε#(1) = −ε(1).

• Suppose n, t, c1 = 0. Then ∆1 = [0, 0]≥0 or [0, 0]=0. Thus m1 = [0, 0],
ε1(0) = ε(0) ∗ (−1)c0+1, m# = (c0 − 1)[0, 0] and ε#(0) = −ε(0).

• Suppose n, t, c0 = 0. Then ∆1 = [−1, 1]≥0 or [−1, 1]=0. Thus m1 =
[1, 1]+ [−1,−1], m# = [0, 0]+(c1−1)[−1, 1], ε#(0) = ε(1) and ε#(1) = ε(1).

• Suppose n, t = 0 c0, c1 ̸= 0 and ε(0) = ε(1). Then ∆1 = [0, 0]≥0 or [0, 0]=0.
Thus m1 = [1, 1]+[−1,−1], m# = (c0+1)[0, 0]+(c1−1)[−1, 1], ε#(0) = ε(1)
and ε#(1) = ε(1).

• Suppose n, t = 0, c0, c1 ̸= 0, ε(0)ε(1) = −1 and c0 is odd. Then ∆1 = [0, 0]≥0

or [0, 0]=0 and ∆2 = [0, 0]=0. Thus m1 = [−1, 1], ε1(1) = ε(1) ∗ (−1)c1+1,
m# = c0[0, 0] + (c1 − 1)[−1, 1], ε#(0) = ε(0) and ε#(1) = ε(0).

• Suppose n, t = 0, c0, c1 ̸= 0, ε(0)ε(1) = −1 and c0 is even. Then ∆1 =
[0, 0]≥0 or [0, 0]=0 and ∆2 = [0, 0]≤0. Thus m1 = [0, 1] + [−1, 0], m# =
(c0 − 1)[0, 0] + (c1 − 1)[−1, 1], ε#(0) = −ε(0) and ε#(1) = −ε(0).

□

We also check the commutativity with the derivative.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 47

10.3.4. Proposition. (1) If n ̸= 0, then AD(D−1(m, ε)) = D1(AD(m, ε)).
(2) If n = 0 and t ̸= 0, then AD(DL([−1,0])(m, ε)) = DZ([0,1])(AD(m, ε)).
(3) If n, t = 0, then AD(D1(m, ε)) = D−1(AD(m, ε)).

Proof. The cases (1) and (3) follow directly from the formulas in Section 9 and
Proposition 10.3.3. Let us do (2). We assume that n = 0 and t ≠ 0. First
DL([−1,0])(m, ε) = (c0[0, 0] + c1[−1, 1], ε). Thus AD(DL([−1,0])(m, ε)) is given by
Proposition 10.3.3.

Now for DZ([0,1])(AD(m, ε)), we can compute AD(m, ε) with Proposition 10.3.3
and then DZ([0,1]) thanks to the formula in [Ato22c, Prop. A.2]. There are four
cases in Proposition 10.3.3. We give all the details for the first one. The other cases
are treated similarly and the complete details are left to the reader.

• Suppose c0 is even and (∗) is not satisfied. By Proposition 10.3.3, AD(m, ε) =
t([−1, 0] + [0, 1]) + c1([−1,−1] + [1, 1]) + (c0 + c1)[0, 0], with ε′(0) = ε(1) ∗
(−1)c0+c1+1. With the notation of [Ato22c, §A.3], s = c1, t = t, m = c0 + c1
and δ = 0. We have that m ≡ s (mod 2) thus DZ([0,1])(AD(m, ε)) is given
by [Ato22c, Prop. A.2 (4)].

– If t ≡ 1 (mod 2) and m > s = 0. Then by [Ato22c, Prop. A.2],
DZ([0,1])(AD(m, ε)) = (c0 + c1)[0, 0]. Since s = c1 = 0, we are in the
case (3) in Proposition 10.3.3 and the formulas coincide.

– If t ≡ 1 (mod 2) and m > s > 0. Then by [Ato22c, Prop. A.2],
DZ([0,1])(AD(m, ε)) = ([−1, 0] + [0, 1]) + (c1 − 1)([−1,−1] + [1, 1]) +
(c0 + c1 − 2)[0, 0]. Here c1 ≠ 0 (as s ̸= 0) and c0 ̸= 0 (as m > s). Since
(∗) is not satisfied, ε(0) ∗ (−1)t = ε(1) and t is odd (as t ≡ 1 (mod 2)),
thus ε(0)ε(1) = −1. We are in the case (4) in Proposition 10.3.3 and
the formulas coincide.

– Otherwise, by [Ato22c, Prop. A.2], DZ([0,1])(AD(m, ε)) = c1([−1,−1]+
[1, 1]) + (c0 + c1)[0, 0]. If c1 ̸= 0 and c0 ̸= 0 then m > s > 0, thus t ≡ 0
(mod 2). This means that t is even and ε(0) = ε(1). Therefore, we are
in the case (3) in Proposition 10.3.3 and the formulas coincide.

• The case c0 even and (∗) satisfied of Proposition 10.3.3 corresponds to the
case (3) of [Ato22c, Prop. A.2] (s = c1 − 1, t = t+ 1, m = c0 + c1 − 2 and
δ = 0).

• The case c0 odd and (∗) not satisfied of Proposition 10.3.3 corresponds to
the case (2) of [Ato22c, Prop. A.2] (s = n1, t = t− 1, m = c0 + c1 + 1 and
δ = 1).

• The case c0 odd and (∗) satisfied of Proposition 10.3.3 corresponds to the
case (1) of [Ato22c, Prop. A.2] (s = c1 − 1, t = t, m = c0 + c1 − 1 and
δ = 1).

□

10.4. The negative derivative. In this section, we assume that emax > 1 and
there exists y < 0, y ̸= −emax such that (m, ε) is not y-reduced.

We define y0 ∈ (1/2)Z to be the smallest y ∈ (1/2)Z such that y ̸= −emax and
(m, ε) is not y-reduced. With our hypotheses on (m, ε) necessarily y0 < 0. Let us
give a more explicit description of y0 using the formula of the derivative recalled in
Section 9.

If [emax, emax] /∈ m, let y1 = emax+1. Otherwise, let y1 ∈ (1/2)N∗ be the smallest
positive half-integer such that for all y1 ≤ y ≤ emax with y − y1 ∈ N, [y, y] ∈ m and
if y ̸= emax, mm([y, y]) ≤ mm([y + 1, y + 1]). Then y0 is the minimum of the e(∆)
for ∆ ∈ m such that ∆ ̸= [−y,−y] with y1 ≤ y. Then Dy0

removes all the ends of
the segments ending in y0 and all the beginnings of the segments starting in −y0,

48 THOMAS LANARD AND ALBERTO MÍNGUEZ

apart possibly, when y1 ≤ −y0 +1, for mm([y0 − 1, y0 − 1]) segments [−y0,−y0] and
[y0, y0].

Let ∆1, · · · ,∆l be the initial sequence in the algorithm for (m, ε).

10.4.1. Lemma. We have that e(∆l) ≥ y0.

Proof. Let us assume by contradiction that e(∆l) < y0. By definition of y0, we
must have that ∆l = [−y,−y] with y1 ≤ y. Now, with the definition of y1, if
y ̸= emax then there exists [−y − 1,−y − 1] ∈ m contradicting the fact that ∆l is
the last segment in the algorithm. Thus ∆l = [−emax,−emax] contradicting Lemma
7.2.1. □

We fix an ordering y = Λ1 + · · · + Λk, with Λ1 ⪰ · · · ⪰ Λk. As in the formula
for the derivative recalled in Section 9, let Ay0 , Ay0−1, and Ac

y0
be the sets defining

Dy0
for m; and similarly, let A#

y0
, A#

y0−1, and A#,c
y0

be those defining Dy0
for m#.

Note that the sets Ay0 and Ay0−1 (and likewise for m#) are uniquely determined,
whereas the set Ac

y0
is not. Indeed, the multiset of segments Λi for i ∈ Ac

y0
is

uniquely determined (these are the segments modified by the derivative), but due
to multiplicities, several different indices may correspond to the same segment.

Given a subset A ⊆ {1, . . . , k}, we write A#,c
y0

= A if the multiset of segments
Λ#
i for i ∈ A matches the multiset of segments modified by Dy0

in m#.
We start by calculating Dy0

(m#, ε#).

10.4.2. Lemma. The set Ac
y0

can be chosen such that if there is a j ∈ {i, · · · , l}
such that ∆j = [−y0,−y0] then i′j /∈ Ac

y0
. We fix Ac

y0
satisfying this condition.

(1) If e(∆l) ≥ y0 + 2, then A#,c
y0

= Ac
y0

.
(2) If e(∆l) = y0, then A#,c

y0
= Ac

y0
\ {il}.

(3) If e(∆l) = y0 + 1 and ε0 = 1, then A#,c
y0

= Ac
y0

∪ {il}.
(4) If e(∆l) = y0 + 1 and ε0 = −1 (necessarily y0 = −1 or −1/2), then

A#,c
y0

= Ac
y0

.

Proof. By definition A#
y0

= {i, e(Λ#
i) = y0 and Λ#

i ̸= 0}. If i /∈ {i1, · · · , il}, then
e(Λ#

i) = y0 if and only if e(Λi) = y0. If i ∈ {i1, · · · , il}, then e(Λ#
i) = y0 if and

only if e(Λi) = y0 + 1. Thus A#
y0

= {i ∈ Ay0
,Λ#

i ̸= 0} ∪ {i ∈ {i1, · · · , il}, e(Λi) =

y0 + 1 and Λ#
i ̸= 0} \ {i ∈ {i1, · · · , il}, e(Λi) = y0}. We have a similar result for

A#
y0−1. Let i /∈ {i1, · · · , il} such that e(Λi) = y0 and Λ#

i = 0. Then Λi = [y0, y0]

and i = i′j for j such that ∆j = [−y0,−y0]. Similarly, if i /∈ {i1, · · · , il} such that
e(Λi) = y0 − 1 and Λ#

i = 0, i = i′n for a n such that ∆n = [−y0 + 1,−y0 + 1].
Note that if there is a j such that ∆j = [−y0,−y0], then necessarily n = j − 1, and
ij /∈ Ac

y0
. In (m, ε) the only possible segments ending in y0−1 are the [y0−1, y0−1]

and they protect possibly some segments [y0, y0]. Now, let us remark that if
i ∈ A#

y0−1 and i /∈ {i1, · · · , il} then Λi = [y0 − 1, y0 − 1] thus Λ#
i = [y0 − 1, y0 − 1].

Also, if there is an i /∈ {i1, · · · , il} such that Λ#
i = [y0, y0] and Λi ̸= [y0, y0], then

Λi = [y0 − 1, y0]. Thus [−y0,−y0 + 1] is in the sequence of the algorithm, which
implies that [−y0+1,−y0+1] /∈ m. To deal with the i ∈ {i1, · · · , il}, we will analyse
the different cases.

• If e(∆l) > y0 + 1. By the paragraph above, if there is a j such that
∆j = [−y0,−y0], then A#

y0
= Ay0

\ {i′j}; otherwise A#
y0

= Ay0
. Similarly,

if there is a n such that ∆n = [−y0 + 1,−y0 + 1], A#
y0−1 = Ay0−1 \ {i′n};

otherwise A#
y0−1 = Ay0−1. We have seen that if such a j exists then ij /∈ Ac

y0
.

We have also studied the case of the segments [y0, y0] and [y0 − 1, y0 − 1].
Hence, we see that A#,c

y0
= Ac

y0
.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 49

• If e(∆l) = y0. We start with the case where Λ#
il
̸= 0 and Λ#

il−1
̸= 0. This time,

if there is a j such that ∆j = [−y0,−y0], then A#
y0

= Ay0
∪ {il−1} \ {il, i′j};

otherwise A#
y0

= Ay0
∪ {il−1} \ {il}. And if there is a n such that ∆n =

[−y0+1,−y0+1], A#
y0−1 = Ay0−1∪{il}\{i′n}; otherwise A#

y0−1 = Ay0−1∪{il}.
Now let us show that Λ#

il
≤ Λ#

il−1
. We have Λil ≤ Λil−1

, so the only issue
would be if Λ#

il
= −Λ−

il
, Λ#

il−1
= Λ−

il−1
and b(Λil) + 1 = b(Λil−1

). But if
Λ#

il
= −Λ−

il
, it means that there exists an i such that Λ∨

il
= ∆i. But as

b(Λil) + 1 = b(Λil−1
) and e(Λil) + 1 = e(Λil−1

) we would have ∆i+1 = Λ∨
il−1

contradicting Λ#
il−1

= Λ−
il

. Moreover, Λ#
il

is the smallest segment such that
Λ#

il
≤ Λ#

il−1
because another segment ending in y0 − 1 smaller than Λ#

il−1

but bigger than Λ#
il

would contradict the definition of ∆l in the algorithm.
Thus il−1 /∈ A#,c

y0
. As before, we get A#,c

y0
= Ac

y0
\ {il}.

If Λ#
il

= 0. We show that Λ#
il−1

= 0. We have two possibilities Λil =

[y0, y0] or Λil = [y0 − 1, y0]. If Λil = [y0, y0] then Λil−1
= [y0 + 1, y0 + 1]

and Λ#
il−1

= 0. If Λil = [y0 − 1, y0], then either Λil−1
= [y0 + 1, y0 + 1] (and

Λ#
il−1

= 0) or Λil−1
= [y0, y0 + 1], but in this case Λ∨

il−1
and Λ∨

il
are both in

the sequence of the algorithm, thus Λ#
il−1

= 0. Since Λ#
il
= 0 and Λ#

il−1
= 0,

the result is similar to case (1).
If Λ#

il
̸= 0 and Λ#

il−1
= 0. Then by the definition of the sequence of the

algorithm, we can see that Λil is the biggest segment ending in y0. Therefore,
for all i ∈ A#

y0
, Λ#

il
≰ Λ#

i and A#,c
y0

= Ac
y0

\ {il}.
• If e(∆l) = y0 + 1 and ε0 = 1. First, we show that Λ#

il
̸= 0. Indeed, Λil

cannot be [y0+1, y0+1] because it would be followed in the initial sequence
of the algorithm by any segments ending in y0 (and it is not [0, 0]=0, [0, 0]≥0

or [1/2, 1/2]). If it is [y0, y0+1] then [−y0− 1,−y0] is in the initial sequence
of the algorithm. Hence [y0, y0] /∈ m and ∆l would be followed in the
initial sequence by any segments ending in y0. The last case to consider
is [−1/2, 1/2]≥0 or [−1/2, 1/2]=0 (if Λil = [−1/2, 1/2]≤0 then Λ#

il
̸= 0).

But, if ε0 = 1, these segments would be followed in the initial sequence
by any segments ending in −1/2. We get that, if there is a j such that
∆j = [−y0,−y0], then A#

y0
= Ay0

∪ {il} \ {i′j}; otherwise A#
y0

= Ay0
∪ {il}.

And if there is a n such that ∆n = [−y0+1,−y0+1], A#
y0−1 = Ay0−1 \ {i′n};

otherwise A#
y0−1 = Ay0−1. As before, if such a j exists, then also such a n

exists, and ij /∈ Ac
y0

.
Let us show that il ∈ Ac,#

y0
. If Λ#

il
̸= [y0, y0] then we have il ∈ Ac,#

y0
since

for all i ∈ A#
y0−1, Λ

#
i = [y0−1, y0−1]. If Λ#

il
= [y0, y0] and Λil = [y0, y0+1],

then the only segments of m ending in y0 are [y0, y0] and il ∈ Ac,#
y0

. If
Λ#

il
= [y0, y0] and Λil = [y0 − 1, y0 + 1], then [−y0 − 1,−y0 + 1] is in the

sequence of the algorithm, so [y0 − 1, y0 − 1] /∈ m and il ∈ Ac,#
y0

. Finally, we
get A#,c

y0
= Ac

y0
∪ {il}.

• If e(∆l) = y0 +1 and ε0 = −1. Then Λ#
il

= 0. Similarly as before, if there is
a j such that ∆j = [−y0,−y0], then A#

y0
= Ay0 \ {i′j}; otherwise A#

y0
= Ay0 .

If there is a n such that ∆n = [−y0 + 1,−y0 + 1], A#
y0−1 = Ay0−1 \ {i′n};

otherwise A#
y0−1 = Ay0−1. Hence, we see that A#,c

y0
= Ac

y0
.

□

50 THOMAS LANARD AND ALBERTO MÍNGUEZ

Now, we want to compute the effect of AD on Dy0
(m, ε). We denote by (m̃, ε̃) :=

Dy0
(m, ε) and by ∆̃1, · · · , ∆̃l̃ the initial sequence in the algorithm for (m̃, ε̃).

10.4.3. Lemma. (1) If e(∆l) = y0, then l̃ = l − 1 and if not l̃ = l.
(2) For 1 ≤ i ≤ l̃, if b(∆i) = −y0 and ∆i ̸= [−y0,−y0] then ∆̃i = −∆i,

otherwise ∆̃i = ∆i.

Proof. First, notice that in the algorithm, when ∆i is defined then ∆i+1 just depends
on the segments smaller than ∆i which terminates by e(∆i)− 1 (together with a
sign condition). In particular, if ∆i appears in the initial sequence of the algorithm
for m and m̃ and e(∆i) ̸= y0 + 1, then Dy0

does not change the previous set of
segments, and ∆i+1 is the next segment in the algorithm for both m and m̃.

Note that by definition e(∆1) = emax is the maximum of the coefficients of the
segments. Since by definition of y0, ∆1 ̸= [−y0,−y0], after taking the derivative ∆1

does not vanish. Hence emax is still the maximum of the coefficients in m̃.
Let i0 = emax − y1 + 2. Then, for all 0 < i < i0, ∆i = [emax − i+ 1, emax − i+ 1].

All of these segments belong to m̃, so l̃ ≥ i0 − 1 and for all 0 < j < i0, ∆̃i = ∆i =
[emax − i+ 1, emax − i+ 1].

If there is an integer i such that b(∆i) = −y0 then i ≤ i0. If i < i0, we have
treated the case before. Suppose that b(∆i0) = −y0. If ∆i0 = [−y0,−y0]. Then
∆i0−1 = [−y0 + 1,−y0 + 1], thus one ∆i0 is not modified by Dy0 . Hence l̃ ≥ i0 and
∆̃i0 = ∆i0 . If ∆i0 ̸= [−y0,−y0], then Dy0

transforms ∆i0 into −∆i0 and we get that
∆̃i0 = −∆i0 .

In the case that ∆̃i0 = −∆i0 and l ≥ i0 + 1, we have ∆̃i0+1 = ∆i0+1. Indeed,
∆i0+1 is unchanged in m̃, we still have ∆i0+1 ≺ −∆i0 , and the only segment smaller
than −∆i0 but not than ∆i0 ending in e(∆i0+1) is [−y0, e(∆i0+1)]. Then only
possibility to have such a segment in m̃ is to have e(∆i0+1) = −y0 and that there is
a segment of the form [−y0 + 1,−y0 + 1] in m. But then ∆i0 = [−y0,−y0 + 1] and
this contradicts the maximality of ∆i0 as [−y0 + 1,−y0 + 1] ≺ ∆i0−1.

By Lemma 10.4.1, e(∆il) ≥ y0, thus l̃ ≥ l − 1 and for all j0 < i < l, ∆̃i = ∆i.
If e(∆l) ̸= y0, then l̃ = l and ∆̃l = ∆l. If e(∆l) = y0, then ∆l ̸= [y0, y0] or if
∆l = [y0, y0] there is no [y0 − 1, y0 − 1]. Thus ∆l is changed by the derivative and
l̃ = l − 1. □

10.4.4. Lemma. (1) If e(∆l) ≥ y0+2, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) =
Dy0(m

#, ε#).
(2) If e(∆l) = y0, then (m̃1, ε̃1) = D−y0(m1, ε1) and (m̃#, ε̃#) = Dy0(m

#, ε#).
(3) If e(∆l) = y0 + 1 and ε0 = 1, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) =

Dmax−1
y0

(m#, ε#).
(4) If e(∆l) = y0 + 1 and ε0 = −1, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) =

Dy0
(m#, ε#).

Proof. Let us start with m̃1. We know that by definition m1 = [−e(∆1), e(∆1)] or
m1 = [e(∆l), e(∆1)]+ [−e(∆1),−e(∆l)] = [e(∆1)− l+1, e(∆1)]+ [−e(∆1),−e(∆1)+

l− 1]; and m̃1 = [−e(∆̃1), e(∆̃1)] or m̃1 = [e(∆̃1)− l̃+1, e(∆̃1)]+ [−e(∆̃1),−e(∆̃1)+

l̃ − 1]. Lemma 10.4.3 implies that e(∆1) = e(∆̃1) and l = l̃ unless e(∆l) = −y0 and
in this case l̃ = l − 1. Thus (m̃1, ε̃1) = (m1, ε1) unless e(∆l) = −y0 and in this case
m̃1 = [y0 + 1, e(∆1)] + [−e(∆1),−y0 − 1] = D−y0(m1).

Now, let us calculate m̃#. Let Ac
y0

be the set of indices of segments in m ending
in y0 and modified by Dy0

; and A#,c
y0

be the set of indices of segments in m# ending
in y0 and modified by Dy0 . Let E# be the set of indices of the segments in m such
that the end is modified by AD; and Ẽ# be the same for m̃. In all these cases,
all the symmetrics of these segments are also modified. From Lemma 10.4.3, we

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 51

see that the ∆̃i are the same as the ∆i apart when b(∆i) = −y0 or e(∆l) = y0.
Hence, if e(∆l) ̸= y0, Ẽ# = E#, and if e(∆l) = y0, Ẽ# = E# \ {il}. If e(∆l) ̸= y0,
we define Ẽ′ = Ac

y0
; otherwise Ẽ′ = Ac

y0
\ {il}. We get m̃# is obtained from m#

by suppressing the end of the segments indexed by Ẽ′ and the beginning of their
symmetrics. To compare m̃# and Dy0

(m#, ε#), we need to compare Ẽ′ and A#,c
y0

.

• If e(∆l) > y0 + 1. By Lemma 10.4.2, A#,c
y0

= Ac
y0

. Thus A#,c
y0

= Ẽ′, and
(m̃#, ε̃#) = Dy0

(m#, ε#).
• If e(∆l) = y0. By Lemma 10.4.2, A#,c

y0
= Ac

y0
\ {il}. Thus A#,c

y0
= Ẽ′, and

(m̃#, ε̃#) = Dy0
(m#, ε#).

• If e(∆l) = y0 + 1 and ε0 = 1. By Lemma 10.4.2, A#,c
y0

= Ac
y0

∪ {il}. Let
us show that in m̃#, Λ̃#

il
is modified by Dy0

. The possible segments of m̃#

ending in y0 − 1 are possibly [y0 − 1, y0 − 1] or coming from a segment of
m ending in y0 and modified by Dy0 . If they were a segment Λ ∈ m such
that e(Λ) = y0 and Λ− ≤ Λ−

il
or −Λ− ≤ Λ−

il
this would imply that Λ ≺ Λil

contradicting the fact that ∆l is the last segment in the sequence of the
algorithm. The segments [y0−1, y0−1] only protect the segments [y0, y0]. If
Λ#
il

= [y0, y0] and Λil = [y0, y0+1], then the only segments of m ending in y0

are [y0, y0]. If Λ#
il

= [y0, y0] and Λil = [y0−1, y0+1], then [−y0−1,−y0+1]
is in the sequence of the algorithm, so [y0 − 1, y0 − 1] /∈ m.

Thus we get that Dy0(m
#, ε#) = D1

y0
(m̃#, ε̃#), or that (m̃#, ε̃#) =

Dmax−1
y0

(m#, ε#).
• If e(∆l) = y0 + 1 and ε0 = −1. Again by Lemma 10.4.2, A#,c

y0
= Ac

y0
. Thus

(m̃#, ε̃#) = Dy0
(m#, ε#).

□

We can gather all the previous lemmas to obtain the desired equality.

10.4.5. Proposition. We have AD(Dy0(m, ε)) = D−y0(AD(m, ε)).

Proof. Recall that (m̃, ε̃) denotes Dy0
(m, ε). By definition of AD we have AD(m̃, ε̃) =

(m̃1, ε̃1) + AD(m̃#, ε̃#). Now we have different cases by Lemma 10.4.4.
• If e(∆l) > y0 + 1. Then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dy0

(m#, ε#).
Thus AD(m̃, ε̃) = (m1, ε1)+AD(Dy0

(m#, ε#)). By Lemma 10.2.3, AD(Dy0
(m#, ε#)) =

D−y0
(AD(m#, ε#)). Since −e(∆l) is different from −y0 and −y0 − 1

and −e(∆1) < y0, by Lemma 9.4.1, (m1, ε1) + D−y0
(AD(m#, ε#)) =

D−y0((m1, ε1) + AD(m#, ε#)) = D−y0(AD(m, ε)).
• If e(∆l) = y0. Then (m̃1, ε̃1) = D−y0(m1, ε1) and (m̃#, ε̃#) = Dy0(m

#, ε#).
This time AD(m̃, ε̃) = D−y0(m1, ε1) + AD(Dy0(m

#, ε#)) = D−y0(m1, ε1) +
D−y0(AD(m#, ε#)) (the last equality follows from Lemma 10.2.3). Since
−e(∆1) is the smallest coefficient and −e(∆1) < y0, so Lemma 9.4.1 tells us
that D−y0

(m1, ε1) +D−y0
(AD(m#, ε#)) = D−y0

((m1, ε1) +AD(m#, ε#)) =
D−y0

(AD(m, ε)).
• If e(∆l) = y0+1. Then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dmax−1

y0
(m#, ε#).

Thus AD(m̃, ε̃) = (m1, ε1) + AD(Dmax−1
y0

(m#, ε#)). By Lemmas 10.2.3 and
10.2.4, AD(m̃, ε̃) = (m1, ε1) + Dmax−1

−y0
(AD(m#, ε#)). Now −e(∆1) is the

smallest coefficient and −e(∆1) < y0. To show that the hypotheses of
Lemma 9.4.1 are satisfied, we are left to prove that there are no segments of
the form [−e(∆1),−y0] in AD(m#, ε#), but this follows from Proposition
6.0.6. Thus Lemma 9.4.1 tells us that (m1, ε1) + AD(Dmax−1

y0
(m#, ε#)) =

D−y0((m1, ε1) + AD(m#, ε#)) = D−y0(AD(m, ε)).
□

52 THOMAS LANARD AND ALBERTO MÍNGUEZ

10.5. The L([−1, 0])-derivative. In this section, we assume that emax > 1 and
that for all −emax < y < 0, (m, ε) is y-reduced. We also assume that ρ is of
the same type as G and that (m, ε) is not L([−1, 0])-reduced. We want to prove
AD(DL([−1,0])(m, ε)) = DZ([0,1])(AD(m, ε)).

The hypotheses made on (m, ε) imply that if y < 0, then the only possible segment
∆ ∈ m such that e(∆) = y is [y, y]. Moreover, mm([y, y]) ≤ mm([y − 1, y − 1]).

The derivative DL([−1,0]) performs the following transformations (see [AM23,
Prop. 3.8.]):

• If e(∆) = 0, and ∆ ̸= [0, 0], [−1, 0], ∆ is transformed into ∆−−.
• If b(∆) = 0, and ∆ ̸= [0, 0], [0, 1], ∆ is transformed into −−∆.
• max{mm([−1, 0] − mm([−2,−2]) + mm([−1,−1]), 0} segments [−1, 0] are

suppressed.
• max{mm([−1, 0]) − mm([−2,−2]) + mm([−1,−1]), 0} segments [0, 1] are

suppressed.

10.5.1. Lemma. We have that e(∆l) ≥ 0.

Proof. Let us assume by contradiction that e(∆l) < 0. Thus ∆l = [−y,−y] with
y < 0. Since ∆l is the last segment in the initial sequence of the algorithm,
∆l = [−emax,−emax] contradicting Lemma 7.2.1. □

Let A[−1,0] be the set of indices i of segments Λi in m ending in 0 modified by
DL([−1,0]). The multisegment (m#, ε#) may not be −1-reduced. Let A#

−1 be the set
of indices of segments ending in −1 modified by D−1 in (m#, ε#). And let A#

[−1,0]

be the set of segments ending in 0 modified by DL([−1,0]) in D−1(m
#, ε#).

10.5.2. Lemma. (1) If e(∆l) ≥ 2, then A#
−1 = ∅ and A#

[−1,0] = A[−1,0].
(2) If e(∆l) = 0, p(∆l) ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) > mm([−1,−1]);

then we can assume that il ∈ A[−1,0], and we get that A#
−1 = {il} and

A#
[−1,0] = A[−1,0] \ {il}.

(3) If e(∆l) = 0 and p(∆l) = [0, 0] or ∆l = [−1, 0] with mm([−2,−2]) >

mm([−1,−1]), then A#
−1 = ∅ and A#

[−1,0] = A[−1,0].

(4) If e(∆l) = 1, then A#
−1 = ∅ and A#

[−1,0] = A[−1,0] ∪ {il}.

Proof. • Suppose e(∆l) ≥ 2. Then all the segments of m# ending in 0
(resp. −1, resp. −2) come from a segment of m ending in 0 (resp. −1,
resp. −2). First, let us check that (m#, ε#) is −1-reduced. We have seen
that there are no “new segments” in m# ending in −1 or −2. The only
segments of m ending in −1 (resp. −2) are [−1,−1] (resp. [−2,−2]). If a
[−2,−2] is suppressed, it means that ∆l = [2, 2] and therefore mm([1, 1]) = 0.
Hence (m#, ε#) is −1-reduced, that is A#

−1 = ∅. Now, let us compute A#
[−1,0].

As we have seen, if a segment [−2,−2] is suppressed then there is no [−1,−1]
in m and no [−1, 0]. Also, a segment [2, 2] or [1, 1] cannot be created (as
e(∆l) ≥ 2 they cannot come from −Λ or −Λ−; and by hypothesis there are
no segments [2, 3] or [1, 2] in m). If a segment [0, 1] is created in m#, then
∆l = [0, 2]. Hence mm([2, 2]) = 0 and this segment is modified by DL([−1,0]).
Thus A#

[−1,0] = A[−1,0].
• Suppose e(∆l) = 0, p(∆l) ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) >
mm([−1,−1]). In (m#, ε#) there is a new segment ending in −1 which is
Λ#

il
. First, note that Λ#

il
̸= 0. Indeed, Λil ̸= [0, 0] and if Λil = [−1, 0] with

Λ#
il
= −Λ−

il
, it means that ∆l−1 = [0, 1]. Thus ∆l−2 = [2, 2] and therefore

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 53

mm([−2,−2]) ̸= 0 and mm([−1,−1]) = 0 contradicting the hypothesis.
If Λ#

il
= [−1,−1], it means that Λil = [−1, 0]. Thus mm([−2,−2]) =

mm([−1,−1]) and Λ#
il

is modified by D−1. In all cases, it is easy to see that
D−1 modifies Λ#

il
, hence A#

−1 = {il}.
In D−1(m

#, ε#) there is a new segment ending in 0. It is Λ#
il−1

. But,
from the definition of the initial sequence in the algorithm, Λ#−

il
protects

Λ#
il−1

and is the smallest to protect it, so DL([−1,0]) does not modify it. The
situation is similar to the previous case for the suppression and creation of
[−2,−2], [−1,−1] and [−1, 0]. At the end we get that A#

[−1,0] = A[−1,0]\{il}.
• Suppose e(∆l) = 0 and p(∆l) = [0, 0] or ∆l = [−1, 0] with mm([−2,−2]) >

mm([−1,−1]). If p(∆l) = [0, 0] there is no new segment ending in −1 in m#.
And if ∆l = [−1, 0] with mm([−2,−2]) > mm([−1,−1]), either Λ#

il
= 0 or

Λ#
il

= [−1,−1]. If Λ#
il

= [−1,−1], then we have in m# that mm#([−2,−2]) ≥
mm#([−1,−1]). In all cases, since the only possible segments ending in
−1 in m# are [−1,−1] with mm#([−2,−2]) ≥ mm#([−1,−1]), (m#, ε#) is
−1-reduced and A#

−1 = ∅.
There could be one new segment ending in 0, Λ#

il−1
. Moreover, p(∆l) =

[0, 0] or ∆l = [−1, 0], so ∆l−1 cannot be a negative segment and ∆l−1 =

[−1, 1] or [0, 1] or [1, 1]. In all the cases, either Λ#
il−1

= 0 or Λ#
il−1

= [0, 0],
and it is not modified by DL([−1,0]). We get that A#

[−1,0] = A[−1,0].
• Suppose e(∆l) = 1. In m# there is a no new segment ending in −1 and

A#
−1 = ∅. First, let us show that ∆l ̸= [−1, 1]=0, [−1, 1]≥0 and [0, 1]. The

case where ∆l = [0, 1] implies that [−1, 0] ∈ m and contradicts the fact
that ∆l is the last segment in the algorithm. If ∆l = [−1, 1]=0 or [−1, 1]≥0,
then any segment ∆ such that e(∆) = 0 and c(∆) < 0 satisfies ∆ ≺ ∆l,
contradicts the fact that ∆l is the last segment in the algorithm ((m, ε) is
not L([−1, 0])-reduced). Therefore, Λ#

il
̸= [0, 0]. The segment Λ#

il
could be

[−1, 0] if ∆l = [−1, 1]≤0 or ∆l = [−2, 1]. If ∆l = [−1, 1]≤0 or ∆l = [−2, 1]

with Λ#
il
= [−1, 0], then ∆l−1 ≠ [2, 2], and mm([−2,−2]) = 0. Hence, the

new segment [−1, 0] is modified by DL([−1,0]). In all cases, Λ#
il

is modified
by DL([−1,0]) and A#

[−1,0] = A[−1,0] ∪ {il}.
□

We denote by (m̃, ε̃) := DL([−1,0])(m, ε) and by ∆̃1, · · · , ∆̃l̃ the initial sequence
in the algorithm for (m̃, ε̃).

10.5.3. Lemma. (1) If e(∆l) = 0, p(∆l) ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) >

mm([−1,−1]) then l̃ = l − 1; otherwise l̃ = l.
(2) For 1 ≤ i ≤ l̃, if b(∆i) = 0 and ∆i ̸= [0, 1] and p(∆i) ̸= [0, 0] then

∆̃i =
−−∆i; otherwise ∆̃i = ∆i.

Proof. Note that by definition e(∆1) = emax is the maximum of the coefficients of the
segments. Since by assumption emax > 1, after taking the L([−1, 0])-derivative ∆1

does not vanish. Hence emax is still the maximum of the coefficients in m̃. Moreover,
if b(∆1) ̸= 0, ∆1 stays the biggest segment ending in emax and if b(∆1) = 0, the
biggest segment is now −−∆1.

As in Lemma 10.4.3, if [emax, emax] /∈ m, let y1 = emax + 1; otherwise, let
y1 ∈ (1/2)N∗ be the smallest positive half-integer such that [y1, y1] ∈ m. Let
i0 = emax − y1 + 2. Then, for all 0 < i < i0, ∆i = [emax − i+ 1, emax − i+ 1]. We
get that l̃ ≥ i0, and for all 0 < i < i0, ∆̃i = ∆i = [emax − i+ 1, emax − i+ 1].

54 THOMAS LANARD AND ALBERTO MÍNGUEZ

The only possible integer i such that b(∆i) = 0 and p(∆i) ̸= [0, 0] is i0. If
∆i0 = [0, 1], then ∆i0−1 = [2, 2] and [1, 1] /∈ m, thus ∆i0 is not modified by
DL([−1,0]). Hence l̃ ≥ i0 and ∆̃i0 = ∆i0 . If ∆i0 ̸= [0, 1], then DL([−1,0]) transforms
∆i0 into −−∆i0 and we get that ∆̃i0 = −−∆i0 .

In the case that ∆̃i0 = −−∆i0 , if l ≥ i0 + 1 then ∆̃i0+1 = ∆i0+1. Indeed, ∆i0+1

is unchanged in m̃, we still have ∆i0+1 < −−∆i0 , and the only segments smaller
than −−∆i0 but not than ∆i0 ending in e(∆i0+1) are [0, e(∆i0+1)] and [1, e(∆i0+1)].
Then only possibility to have such segments in m̃ is to have e(∆i0+1) = 0 or 1. First,
e(∆i0+1) = 0 is impossible since e(∆i0) > 1. If e(∆i0+1) = 1, then e(∆i0) = 2, and
by definition of i0 we see that there is no [2, 2] in m and thus no [1, 1] or [0, 1] in m̃.

By Lemma 10.5.1, e(∆i) ≥ 0, thus l̃ ≥ l − 1 and for all i0 < i < l, ∆̃i = ∆i.
Now, notice that if x < 0 then [x, 0] < [0, 0]≤0 < [0, 0]=0 < [0, 0]≥0. Thus, if

e(∆l) = 0, p(∆l) ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) > mm([−1,−1]), then
l̃ = l − 1 and if not l = l̃ and ∆̃l = ∆l. □

10.5.4. Lemma. (1) If e(∆l) ≥ 2 then (m̃1, ε̃1) = (m1, ε1), (m#, ε#) is −1-
reduced and (m̃#, ε̃#) = DL([−1,0])(m

#, ε#).
(2) If e(∆l) = 0 and p(∆l) ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) >

mm([−1,−1]), then m̃1 = [1, emax]+[−emax,−1], (m#, ε#) is not −1-reduced
and (m̃#, ε̃#) = DL([−1,0])(D−1(m

#, ε#)).
(3) If e(∆l) = 0 and p(∆l) = [0, 0] or ∆l = [−1, 0] with mm([−2,−2]) >

mm([−1,−1]), then (m̃1, ε̃1) = (m1, ε1), (m#, ε#) is −1-reduced and (m̃#, ε̃#) =
DL([−1,0])(m

#, ε#).
(4) If e(∆l) = 1 then (m̃1, ε̃1) = (m1, ε1), (m#, ε#) is −1-reduced and (m̃#, ε̃#) =

Dmax−1
L([−1,0])(m

#, ε#).

Proof. Let us start with (m̃1, ε̃1). The multisegment m1 is determined uniquely by
∆1 and ∆l. Similarly for m̃1 with ∆̃1 and ∆̃l̃. We get the result for m1 and m̃1 by
Lemma 10.5.3. If ∆l ̸= [0, 0]=0 or [0, 0]≥0, then neither m1 nor m̃1 are centered and
we are done. If ∆l = [0, 0]=0 or [0, 0]≥0, we also need to check that ε1 = ε̃1. By
definition ε1(m1) := (−1)n0+1ε([0, 0]ρ) and ε̃1(m̃1) := (−1)ñ0+1ε̃([0, 0]ρ) where n0 is
the number of centered segments in m and ñ0 in m̃. The derivative DL([−1,0]) does
not create or suppress any centered segments in m, so n0 = ñ0. Also, it does not
change the sign of [0, 0], that is ε([0, 0]ρ) = ε̃([0, 0]ρ). Hence ε1 = ε̃1 and we get the
result.

Now let us study the case of (m̃#, ε̃#). We do a similar proof as in Lemma
10.4.4. Let A[−1,0] be the set of indices i of segments of m ending in 0 modified
by DL([−1,0]), A

#
−1 be the set of indices of segments of m# ending in −1 modified

by D−1, and A#
[−1,0] be the set of segments ending in 0 modified by DL([−1,0]) in

D−1(m
#, ε#). Let E be the set of indices of segments of m such that the end is

modified by AD and Ẽ be the set of indices of segments of m̃ such that the end
is modified by AD. We denote by (∗) the condition e(∆l) = 0, p(∆l) ̸= [0, 0] and
∆l ̸= [−1, 0] if mm([−2,−2]) > mm([−1,−1]). From Lemma 10.5.3, we get that if
(∗) is satisfied then Ẽ = E \ {il}; otherwise Ẽ = E. Moreover, Ẽ ∩ A[−1,0] = ∅.
More precisely, if (∗) is satisfied then E ∩A[−1,0] = {il}; otherwise E ∩A[−1,0] = ∅.

Let Ẽ#
2 = A[−1,0] \ {il} if (∗) is satisfied; and Ẽ#

2 = A[−1,0] otherwise. Let
Ẽ#

1 = {il} if (∗) is satisfied; and Ẽ#
1 = ∅ otherwise. Note that Ẽ#

1 ∩ Ẽ#
2 = ∅. Then

we see that m̃# is obtained from m# by transforming the segment Λ#
i into Λ#−

i

for i ∈ Ẽ#
1 (and Λ#∨

i into −(Λ#∨
i)); and then transforming the segments Λ#

i into
Λ#−−
i for i ∈ Ẽ#

2 (and Λ#∨
i into −−(Λ#∨

i)).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 55

• Suppose e(∆l) ̸= 1. From Lemma 10.5.2, Ẽ#
1 = A#

−1 and Ẽ#
2 = A#

[−1,0]

giving us the result.
• Suppose e(∆l) = 1. From Lemma 10.5.2, Ẽ#

1 = A#
−1 and Ẽ#

2 ∪{il} = A#
[−1,0].

Similarly as in Lemma 10.4.4, we see that DL([−1,0]) modifies Λ#
il

in (m̃#, ε̃#).
Hence DL([−1,0])(m̃

#, ε̃#) = D1
L([−1,0])(m̃

#, ε̃#) = DL([−1,0])(m
#, ε#) and

we get the desired result.
□

To make sense of the formula AD(DL([−1,0])(m, ε)) = DZ([0,1])(AD(m, ε)), we
need to check that AD(m, ε) is 1-reduced.

10.5.5. Lemma. The multisegment AD(m, ε) is 1-reduced.

Proof. By Lemma 10.5.1, e(∆l) ≥ 0.
• Suppose e(∆l) > 0 or p(∆l) = [0, 0] or ∆l = [−1, 0] with mm([−2,−2]) >
mm([−1,−1]). From Lemma 10.5.4, (m#, ε#) is −1-reduced. And by
Lemma 10.2.3, D1(AD(m#, ε#)) = AD(D−1(m

#, ε#)), hence AD(m#, ε#)
is 1-reduced. By Lemma 9.4.1, D1(AD(m, ε)) = (m1, ε1)+D1(AD(m#, ε#)),
and we get the desired result.

• Suppose e(∆l) = 0, p(∆l) ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) >
mm([−1,−1]). This time from Lemma 10.5.4 (m#, ε#) is not −1-reduced.
Moreover, we have D−1(m

#, ε#) = D1
−1(m

#, ε#). Since ∆l ̸= [0, 0]=0 or
[0, 0]≥0, from the definition m1 = [0, emax] + [−emax, 0]. Then Lemma 9.4.1
and Proposition 6.0.6 tell us that D1(AD(m, ε)) = (m1, ε1)+Dmax−1

1 (AD(m#, ε#)).
By Lemmas 10.2.3 and 10.2.4, Dmax−1

1 (AD(m#, ε#)) = AD(Dmax−1
−1 (m#, ε#)).

But, as D−1(m
#, ε#) = D1

−1(m
#, ε#), we have Dmax−1

−1 (m#, ε#) = (m#, ε#)
and we get the desired result.

□

We can now prove the desired proposition.

10.5.6. Proposition. We have AD(DL([−1,0])(m, ε)) = DZ([0,1])(AD(m, ε)).

Proof. The proof is similar to Proposition 10.4.5 and follows from Lemmas 10.5.4
and 9.4.2. □

10.6. The positive derivative with ρ of same type. In this section, we assume
that emax > 1, that for all −emax < y < 0, (m, ε) is y-reduced, that (m, ε) is
L([−1, 0])-reduced, and that there exists y > 0 with y ≠ emax such that (m, ε) is
not y-reduced. We also assume that ρ is of the same type as G.

We define y0 ∈ Z to be the smallest y ∈ Z∗ such that y ̸= −emax, y ̸= emax and
(m, ε) is not y-reduced. With our hypotheses on (m, ε) necessarily y0 > 0. Let us
describe more precisely the conditions satisfied by (m, ε) and y0 using the explicit
formula of the derivative recalled in Section 9.

We have assumed that for all −emax < y < 0, (m, ε) is y-reduced. Hence, if
∆ ∈ m is a segment such that e(∆) < 0, then ∆ = [y, y] (where y = e(∆)) and
mm([y, y]) ≤ mm([y − 1, y − 1]). Let y1 ∈ N∗ be the smallest positive half-integer
such that [y1, y1] ∈ m.

Let t0 = mm([−1, 0]). We have also assumed that (m, ε) is L([−1, 0])-reduced.
Hence, if ∆ ∈ m is a segment such that e(∆) = 0, then ∆ = [0, 0] or ∆ = [−1, 0]
with t0 ≤ mm([−2,−2])−mm([−1,−1]).

Now, we recall the formula for Dy0
. First let us do D1.

56 THOMAS LANARD AND ALBERTO MÍNGUEZ

We have seen that the segments ∆ ∈ m with e(∆) = 0 are of the form: [0, 0] or
[−1, 0]. And the segments ∆ ∈ m with e(∆) = 1 are of the form: [a, 1], with a < −1,
[−1, 1], [1, 1] or [0, 1]. Let (∗) be the condition: mm([−1, 1]) ̸= 0, mm([0, 0]) ̸= 0 and
ε([0, 0])ε([−1, 1]) = (−1)t0+1.

Then D1 does the following transformations. All the negative segments of the
form [a, 1], with a < −1, are transformed into [a, 0] (and their symmetric [−1,−a]
are transformed into [0,−a]).

• If (∗) is not satisfied, mm([−1, 1]) is odd and t0 ≥ 1; then all the segments
[−1, 1] except one are transformed into [0, 0] and one [−1, 0] + [0, 1] is
transformed into [0, 0] + [0, 0].

• If (∗) is not satisfied and, mm([−1, 1]) is even or t0 = 0; then all the segments
[−1, 1] are transformed into [0, 0].

• If (∗) is satisfied and mm([−1, 1]) is odd; then all the segments [−1, 1] except
one are transformed into [0, 0].

• If (∗) is satisfied and mm([−1, 1]) is even; then two segments [−1, 1] are
transformed into [−1, 0] + [0, 1]. The other segments [−1, 1] are transformed
into [0, 0].

And finally, it suppresses n segments [1, 1] and [−1,−1], where n = max{mm([1, 1])−
mm([0, 0]), 0} if (∗) is not satisfied; and n = max{mm([1, 1]) − mm([0, 0]) + 1, 0}
otherwise.

In particular, we see that if D1(m, ε) = 0, then
• There is no segment [a, 1] with a < −1;
• mm([−1, 1]) = 0 or 1;
• if mm([−1, 1]) = 1, then mm([0, 0]) ̸= 0 and ε([0, 0])ε([−1, 1]) = (−1)t0+1;
• mm([1, 1]) ≤ mm([0, 0]) if mm([−1, 1]) = 0; and mm([1, 1]) ≤ mm([0, 0])− 1

if mm([−1, 1]) = 1.

Let y > 1 be such that for all 1 ≤ x < y, Dx(m, ε) = 0. We prove by induction on
y that if ∆ ∈ m is a segment with 0 < e(∆) < y, then c(∆) ≥ 0. We make explicit
the formula for Dy.

Using the induction hypothesis, if 1 < x < y and ∆ ∈ m with e(∆) = x, then
b(∆) ≥ −x. We also know that if b(∆) ̸= x, then b(∆) < 0. But ∆∨ ∈ m, so if
b(∆) ̸= x then b(∆) = −x. Hence, the only segments ending in x are [x, x] and
[−x, x]. In particular, note that there are no segments [−y + 1, y] in m. Also the
segments ∆ ∈ m with e(∆) = y−1 are of the form: [y−1, y−1], [1−y, y−1] or [0, 1]
if y = 2. And the segments ∆ ∈ m with e(∆) = y are of the form: [a, y], with a < −y,
[−y, y], [y, y]. Let (∗) be the condition: mm([−y, y]) ̸= 0, mm([1− y, y− 1]) ̸= 0 and
ε([y, y])ε([1− y, y − 1]) = (−1).

Then, Dy does the following transformations. All the negative segments of the
form [a, y], with a < −y, are transformed into [a, y − 1] (and their symmetric
[−y,−a] are transformed into [−y + 1,−a]). For the centered segments [−y, y]:

• If (∗) is not satisfied; then all the segments [−y, y] are transformed into
[−y + 1, y − 1].

• If (∗) is satisfied and mm([−y, y]) is odd; then all the segments [−y, y] except
one are transformed into [−y + 1, y − 1].

• If (∗) is satisfied and mm([−y, y]) is even; then, two segments [−y, y] are
transformed into [−y, y − 1] + [−y + 1, y]. The other segments [−y, y] are
transformed into [−y + 1, y − 1].

It also suppresses n segments [y, y] and [−y,−y], where n = max{mm([y, y]) −
mm([y − 1, y − 1]) − mm([1 − y, y − 1]), 0} if y > 2 and (∗) is not satisfied; n =
max{mm([y, y]) − mm([y − 1, y − 1]) − mm([1 − y, y − 1]) + 1, 0} if y > 2 and (∗)
is satisfied; n = max{mm([y, y]) −mm([y − 1, y − 1]) −mm([1 − y, y − 1]) − t0, 0}

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 57

if y = 2 and (∗) is not satisfied; and n = max{mm([y, y]) − mm([y − 1, y − 1]) −
mm([1− y, y − 1])− t0 + 1, 0} if y = 2 and (∗) is satisfied. Note that we will show
that mm([1− y, y − 1]) = 0 or 1.

In particular, we see that if Dy(m, ε) = 0, then
• There is no segment [a, y] with a < −y;
• mm([−y, y]) = 0 or 1;
• if mm([−y, y]) = 1, then mm([1−y, y−1]) ̸= 0 and ε([−y, y])ε([1−y, y−1]) =
−1;

• mm([y, y]) ≤ mm([y− 1, y− 1]) +mm([1− y, y− 1]) if mm([−y, y]) = 0; and
mm([y, y]) ≤ mm([y − 1, y − 1]) if mm([−y, y]) = 1.

This proves our induction hypothesis.

The formulas above gave us an explicit formula for Dy0 (depending on whether
y0 = 1 or not). Moreover, we see that if ∆ ∈ m is such that e(∆) < y0 then
either ∆ = [y, y] for some y, ∆ = [−1, 0], ∆ = [0, 1], or ∆ = [−y, y] and in this
case, mm([−y, y]) = 1 (if y ̸= 0), moreover, if y > 1, mm([−y + 1, y − 1]) = 1 and
ε([−y, y])ε([1− y, y− 1]) = −1; and if y = 1, mm([0, 0]) ̸= 0 and ε([−1, 1])ε([0, 0]) =
(−1)t0+1.

For the rest of the section, let (∗) denote the condition:
(1) If y0 = 1: mm([−1, 1]) ̸= 0, mm([0, 0]) ̸= 0 and ε([0, 0])ε([−1, 1]) = (−1)t0+1.
(2) If y0 > 1: mm([−y0, y0]) ̸= 0, mm([−y0+1, y0−1]) ̸= 0 and ε([−y0, y0])ε([1−

y0, y0 − 1]) = −1.

10.6.1. Lemma. If e(∆l) < y0 then e(∆l) = 0.

Proof. We assume that e(∆l) < y0. From Lemma 10.5.1, we have that e(∆l) ≥ 0.
Thus ∆l is one of the following segments : [−1, 0], [0, 1], [−y, y], or [y, y]. Since
[−1, 0] ≺ [0, 1], ∆l ̸= [0, 1]. If ∆l = [−y, y] or [y, y] with y ̸= 0, the fact that (m, ε)
is y-reduced implies that there exists a segment ∆ ending in y − 1 suitable for the
algorithm such that ∆ ≺ ∆l which is a contradiction. □

We denote by (m̃, ε̃) := Dy0
(m, ε) and by ∆̃1, · · · , ∆̃l̃ the initial sequence in the

algorithm for (m̃, ε̃).

10.6.2. Lemma. If y1 < y0, then
(1) e(∆l) = 0;
(2) l̃ = l;
(3) for all 1 ≤ i ≤ l, ∆̃i = ∆i.

Proof. We are in the case where ∆1 = [emax, emax]. As y0 ̸= emax, Dy0
does not

suppress ∆1 and ∆̃1 = ∆1. Let i0 = emax − y1 + 2. Then, for all 0 < i < i0,
∆i = [emax − i+ 1, emax − i+ 1]. Among all these segments, the only one that can
be modified by Dy0

is [y0, y0]. But as y1 < y0, [y0 − 1, y0 − 1] ∈ m, thus at least one
segment of the form [y0, y0] is not suppressed by Dy0

. We see that l̃ ≥ i0 − 1 and
for all 0 < i < i0, ∆̃i = ∆i = [emax − i+ 1, emax − i+ 1].

We know that (m, ε) is y1-reduced. If y1 = 1, it means that mm([0, 0]) ̸= 0. In
particular, ∆i0 = [0, 0]≥0 or [0, 0]=0 and l = i0. The derivative Dy0

does not create
or suppress any new segment [0, 0], so ∆̃i0 = ∆i0 and l̃ = l. Now, we assume that
y1 > 1. By definition of y1, we know that [y1 − 1, y1 − 1] /∈ m, and since (m, ε) is
y1-reduced, we get that mm([1− y1, y1 − 1]) = 1. In this case, we also know that
for all y1 − 1 ≥ y > 1, mm([−y + 1, y − 1]) = 1 and ε([−y, y])ε([1− y, y − 1]) = −1;
and mm([0, 0]) ̸= 0 and ε([−1, 1])ε([0, 0]) = (−1)t0+1. Thus for all i0 ≤ i < l,
∆i = [−emax + i− 1, emax − i+ 1]=0; and ∆l = [0, 0]=0 or [0, 0]≤0 if t0 is even, and

58 THOMAS LANARD AND ALBERTO MÍNGUEZ

∆l = [−1, 0] if t0 is odd. None of these segments is changed by Dy0
thus l̃ = l and

for all i0 ≤ i ≤ l, ∆̃i = ∆i. □

10.6.3. Lemma. Suppose y1 < y0. Then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) =
Dy0(m

#, ε#).

Proof. By Lemma 10.6.2, we get that (m̃1, ε̃1) = (m1, ε1). Moreover, we know that
for 1 ≤ i ≤ y1, ∆i = [emax − i + 1, emax − i + 1]. Hence, the segments of m#

ending in y0 or y0 − 1 are the same as in m except that one segment [y0, y0] and one
[y0 − 1, y0 − 1] have been suppressed. These segments were not modified by Dy0

.
We deduce that (m̃#, ε̃#) = Dy0

(m#, ε#). □

10.6.4. Proposition. If y1 < y0, then AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).

Proof. Remember that (m̃, ε̃) denotes Dy0
(m, ε). By definition of AD we have

AD(m̃, ε̃) = (m̃1, ε̃1) + AD(m̃#, ε̃#). By Lemma 10.6.3, (m̃1, ε̃1) = (m1, ε1) and
(m̃#, ε̃#) = Dy0(m

#, ε#). Thus AD(m̃, ε̃) = (m1, ε1) + AD(Dy0(m
#, ε#)). By

Lemma 10.2.3 AD(Dy0
(m#, ε#)) = D−y0

(AD(m#, ε#)). Note that y1 < y0 implies
that y0 ≠ 1. Since e(∆l) = 0, we get by Lemma 9.4.1, (m1, ε1)+D−y0

(AD(m#, ε#)) =
D−y0

((m1, ε1) + AD(m#, ε#)) = D−y0
(AD(m, ε)). □

10.6.5. Lemma. Suppose that y1 = y0. Let j = emax−y0+1, such that ∆j = [y0, y0].
(1) Then, e(∆l) = y0 or 0.
(2) If e(∆l) = y0, then l̃ = l − 1; otherwise l̃ = l.
(3) For all 1 ≤ i ≤ l̃, if i ̸= j, j + 1, then ∆̃i = ∆i.
(4) Assume e(∆l) = 0.

(a) If y0 = 1, mm([0, 0]) = 0, mm([−1, 1]) is odd and t0 ≥ 2, then ∆j+1 =

[−1, 0], ∆̃j = [0, 1] and ∆̃j+1 = [0, 0]≤0.
(b) If y0 = 1, mm([0, 0]) = 0, mm([−1, 1]) is odd and t0 = 1, then ∆j+1 =

[−1, 0], ∆̃j = [−1, 1]=0 and ∆̃j+1 = [0, 0]≤0.
(c) If y0 = 1, mm([0, 0]) = 0 and mm([−1, 1]) = 0, then ∆j+1 = [−1, 0],

∆̃j = [0, 1] and ∆̃j+1 = [−1, 0].
(d) If y0 = 1, mm([0, 0]) = 0, mm([−1, 1]) ̸= 0 and mm([−1, 1]) is even,

then ∆j+1 = [−1, 0], ∆̃j = [0, 1] and ∆̃j+1 = [0, 0]≤0.
(e) If y0 = 1, mm([0, 0]) ̸= 0 and (∗) is not satisfied, then ∆j+1 = [0, 0]=0

or [0, 0]≥0, ∆̃j = [1, 1] and ∆̃j+1 = [0, 0]=0 or [0, 0]≥0.
(f) If y0 = 1, mm([0, 0]) > 1 and (∗) is satisfied, then ∆j+1 = [0, 0]=0 or

[0, 0]≥0,∆̃j = [1, 1] and ∆̃j+1 = [0, 0]=0 or [0, 0]≥0.
(g) If y0 = 1, mm([0, 0]) = 1, t0 ̸= 0 and (∗) is satisfied, then ∆j+1 =

[0, 0]=0 or [0, 0]≥0, ∆̃j = [0, 1] and ∆̃j+1 = [0, 0]=0.
(h) If y0 = 1, mm([0, 0]) = 1, t0 = 0, mm([−1, 1]) is odd and (∗) is satisfied,

then ∆j+1 = [0, 0]=0 or [0, 0]≥0, ∆̃j = [−1, 1] and ∆̃j+1 = [0, 0]=0.
(i) If y0 = 1, mm([0, 0]) = 1, t0 = 0, mm([−1, 1]) is even and (∗) is satisfied,

then ∆j+1 = [0, 0]=0 or [0, 0]≥0, ∆̃j = [0, 1] and ∆̃j+1 = [0, 0]=0.
(j) If y0 = 2, t0 ̸= 0, then ∆j+1 = [0, 1], ∆̃j = [y0, y0] and ∆̃j+1 = [0, 1].
(k) If y0 > 1, t0 = 0 if y0 = 2 and (∗) is not satisfied, then ∆j+1 =

[−y0 + 1, y0 − 1]=0, ∆̃j = [y0, y0] and ∆̃j+1 = [1 − y0, y0 − 1]≥0 or
[1− y0, y0 − 1]=0.

(l) If y0 > 1, t0 = 0 if y0 = 2, (∗) is satisfied and mm([−y0, y0]) is
odd, then ∆j+1 = [−y0 + 1, y0 − 1]=0, ∆̃j = [−y0, y0]

=0 and ∆̃j+1 =
[1− y0, y0 − 1]=0.

(m) If y0 > 1, t0 = 0 if y0 = 2, (∗) is satisfied and mm([−y0, y0]) is
even, then ∆j+1 = [−y0 + 1, y0 − 1]=0, ∆̃j = [1− y0, y0] and ∆̃j+1 =
[1− y0, y0 − 1]=0 or [1− y0, y0 − 1]≥0.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 59

Proof. As in Lemma 10.6.2, let i0 = emax − y1 + 2. Then, for all 0 < i < i0,
∆i = [emax − i+ 1, emax − i+ 1]. This time, ∆i0−1 = [y0, y0] could be modified by
Dy0

. We get that l̃ ≥ i0 − 2, and for all i ≤ i0 − 2, ∆̃i = ∆i.
• Suppose y0 = 1 and e(∆l) = 1. In particular [0, 0] /∈ m, t0 = 0 and (∗) is

not satisfied. The derivative D1 suppresses all the segments [1, 1] and all
the [−1, 1]. In m̃ there are no other segments ending in 1, so l̃ = l − 1.

• Suppose y0 = 1 and e(∆l) < 1. If mm([0, 0]) ̸= 0 then ∆l = [0, 0]=0 or
[0, 0]≥0. And if mm([0, 0]) = 0 then ∆l = [−1, 0].

– Suppose mm([0, 0]) = 0, that is ∆l = [−1, 0]. Then (∗) is not satisfied.
And D1 suppresses all the [1, 1]. If mm([−1, 1]) is odd and t0 ≥ 2;
then l̃ = l, ∆̃l−1 = [0, 1] and ∆̃l = [0, 0]≤0. If mm([−1, 1]) is odd and
t0 = 1; then l̃ = l, ∆̃l−1 = [−1, 1]=0 and ∆̃l = [0, 0]≤0. If mm([−1, 1])

is even then l̃ = l, ∆̃l−1 = [0, 1], ∆̃l = [−1, 0] if mm([−1, 1]) = 0 and
∆̃l = [0, 0]≤0 if mm([−1, 1]) ̸= 0.

– Suppose mm([0, 0]) ̸= 0, that is ∆l = [0, 0]=0 or [0, 0]≥0. Suppose that
(∗) is not satisfied. Then l̃ = l, ∆̃l−1 = [1, 1] and ∆̃l = [0, 0]=0 or
[0, 0]≥0. Now suppose that (∗) is satisfied. If mm([0, 0]) > 1, then l̃ = l,
∆̃l−1 = [1, 1] and ∆̃l = [0, 0]=0 or [0, 0]≥0. If mm([0, 0]) = 1 and t0 ̸= 0,
then l̃ = l, ∆̃l−1 = [0, 1] and ∆̃l = [0, 0]=0. If mm([0, 0]) = 1, t0 = 0

and mm([−1, 1]) is odd, then l̃ = l, ∆̃l−1 = [−1, 1] and ∆̃l = [0, 0]=0. If
mm([0, 0]) = 1, t0 = 0 and mm([−1, 1]) is even, then l̃ = l, ∆̃l−1 = [0, 1]

and ∆̃l = [0, 0]=0.
• Suppose y0 > 1 and e(∆l) = y0. Then there are no segments ending in y0

in m. The derivative Dy0
suppresses all the segments [y0, y0] and all the

[−y0, y0]. In m̃ there are no other segments ending in y0, so l̃ = l − 1.
• Suppose y0 > 1, e(∆l) < y0 and t0 = 0 if y0 = 2. Then e(∆l) = 0 by Lemma

10.6.1. Then ∆i0 = [−y0 + 1, y0 − 1]=0. If (∗) is not satisfied, then l̃ = l,
∆̃i0−1 = [y0, y0] and ∆̃i0 = [1+y0, y0−1]≥0 or [1+y0, y0−1]=0. Suppose that
(∗) is satisfied. Then mm([1− y0, y0 − 1]) = 1. If mm([−y0, y0]) is odd, l̃ = l,
∆̃i0−1 = [−y0, y0]

=0 and ∆̃i0 = [1− y0, y0 − 1]=0. If mm([−y0, y0]) is even,
l̃ = l, ∆̃i0−1 = [1− y0, y0] and ∆̃i0 = [1− y0, y0 − 1]=0 or [1− y0, y0 − 1]≥0.

• Suppose y0 = 2, t0 ≠ 0 and e(∆l) < y0. Then e(∆l) = 0 by Lemma 10.6.1.
Then ∆i0 = [0, 1]. Then l̃ = l, ∆̃i0−1 = [2, 2] and ∆̃i0 = [0, 1].

□

10.6.6. Lemma. Suppose that y1 = y0.
(1) If e(∆l) = y0, then (m̃1, ε̃1) = D−y0(m1, ε1) and (m̃#, ε̃#) = Dy0(m

#, ε#).
(2) If e(∆l) = 0, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dy0(m

#, ε#).

Proof. The result for (m̃1, ε̃1) follows directly from Lemma 10.6.5. If e(∆l) = y0,
then, for all 1 ≤ i ≤ l, ∆i = [emax − i+ 1, emax − i+ 1], and these segments are just
suppressed by AD. It is easy to see that (m̃#, ε̃#) = Dy0

(m#, ε#).
If e(∆l) = 0, in each case of Lemma 10.6.5 we get that (m̃#, ε̃#) = Dy0

(m#, ε#)
by examining the formula of the derivative. Let us treat the first case; the others
are handled similarly. Suppose that y0 = 1, mm([0, 0]) = 0, mm([−1, 1]) is odd
and t0 ≥ 2 then ∆j = [1, 1], ∆j+1 = [−1, 0], ∆̃j = [0, 1] and ∆̃j+1 = [0, 0]≤0.
Let us look at the effect of AD and D1 on the segments ending in 1 and 0. The
algorithm in (m, ε) suppresses one [−1,−1] + [1, 1] and transforms [−1, 0] + [0, 1]
into [−1,−1] + [1, 1]. Thus it is similar to just suppressing [−1, 0] + [0, 1]. The
algorithm AD in D1(m, ε), transforms [−1, 0]+ [0, 1] into [0, 0]+ [0, 0] and suppresses
[0, 0] + [0, 0]. Therefore, it is also similar to just suppressing [−1, 0] + [0, 1]. We

60 THOMAS LANARD AND ALBERTO MÍNGUEZ

can conclude by examining the formula of D1. In both (m, ε) and (m#, ε#), the
derivative suppresses all the [1, 1]+ [−1, 1], transforms all the [a, 1] with a < −1 into
[a, 0], transforms all the [−1, 1] except one into [0, 0] and transforms [−1, 0] + [0, 1]
into [0, 0] + [0, 0]. We get that (m̃#, ε̃#) = Dy0(m

#, ε#). □

10.6.7. Proposition. If y1 = y0, then AD(Dy0(m, ε)) = D−y0(AD(m, ε)).

Proof. It follows from Lemmas 10.6.6, 10.2.3 and 9.4.1. □

10.6.8. Lemma. Suppose that y1 > y0.
(1) If e(∆l) = y0 then l̃ = l − 1; otherwise l̃ = l.
(2) For 1 ≤ i ≤ l̃:

(a) If e(∆i) ̸= y0
(i) If y0 = 1, ∆i = [−1, 0] and mm([−1, 1]) ̸= 0, then ∆̃i = [0, 0]≤0.
(ii) If (i) is not satisfied, b(∆i) = −y0 and ∆i ̸= [−1, 0], then ∆̃i =

−∆i

(iii) Otherwise, ∆̃i = ∆i.
(b) If e(∆i) = y0

(i) If ∆i = [0, 1], (∗) is not satisfied, mm([−1, 1]) is odd and t0 = 1,
then ∆̃i = [−1, 1]=0.

(ii) If ∆i = [−y0, y0], (∗) is satisfied, mm([−y0, y0]) is even and
∆i−1 = [y0 + 1, y0 + 1], then ∆̃i = [−y0 + 1, y0].

(iii) If ∆i = [−y0, y0], (∗) is satisfied and mm([−y0, y0]) is odd, then
∆̃i = [−y0, y0]

=0.
(iv) Otherwise, ∆̃i = ∆i.

Proof. Note that by definition e(∆1) = emax is the maximum of the coefficients
of the segments. Since by definition of y0, ∆1 ≠ [−y0,−y0] and [−y0, y0], after
taking the derivative, ∆1 does not vanish. Hence emax is still the maximum of the
coefficients in m̃.

Let i0 = emax − y1 + 2. Then, for all 0 < i < i0, ∆i = [emax − i+ 1, emax − i+ 1].
All of these segments belong to m̃, so l̃ ≥ i0 − 1 and for all 0 < i < i0, ∆̃i = ∆i =
[emax − i+ 1, emax − i+ 1].

Since y0 < y1, there are no segments [−y0,−y0] or [y0, y0] in m. The segments
starting at −y0 are of the form: [−y0, a] with a > y0, [−y0, y0] and [−1, 0] if y0 = 1.

Suppose that e(∆i0) > y0. By definition of y1, l(∆i0) > 1. If b(∆i0) ̸= −y0 then
∆̃i0 = ∆i0 , and if b(∆i0) = −y0 then ∆̃i0 = −∆i0 . Let us study the case where
∆̃i0 = −∆i0 and l ≥ i0 + 1. By hypotheses, ∆i0 is a segment such that c(∆i0) > 0.
Let e = e(∆i0). The only segment smaller than −∆i0 but not than ∆i0 ending in
e− 1 is [−y0, e− 1] (if e− 1 = y0, then it is [−y0, y0]

≥0).
• Suppose e > y0 + 1. Then ∆i0+1 is unchanged in m̃, we still have ∆i0+1 ≺

−∆i0 . It remains maximal since there is no segment of the form [−y0, e− 1]

in m̃. So l̃ ≥ i0 + 1 and ∆̃i0+1 = ∆i0+1.
• Suppose e = y0 + 1. Then e(∆i0+1) = y0 and b(∆i0+1) ≤ −y0. Thus ∆i0+1

is a centered segment or a negative segment.
– Suppose ∆i0+1 is a negative segment. Then l = i0 + 1 as there is no

negative segment ending in y0 − 1. Also [−y0, y0] /∈ m and thus l̃ = i0
(the only possible segment on m̃ ending in y0 is [0, 1] if y0 = 1).

– Suppose y0 > 1, c(∆i0+1) = 0 and (∗) is not satisfied. Then l = i0 + 1

and l̃ = i0 (there is no segment ending in y0 in m̃).
– Suppose y0 = 1, c(∆i0+1) = 0, (∗) is not satisfied, mm([−1, 1]) is odd

and t0 ≥ 1. Then ∆i0+1 = [−1, 1]=0. Also one and only one [−1, 1] is
not changed by the derivative, thus ∆̃i0+1 = ∆i0+1.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 61

– Suppose y0 = 1, c(∆i0+1) = 0, (∗) is not satisfied, mm([−1, 1]) is even
or t0 = 0. Then l = i0 + 1 and l̃ = i0.

– Suppose c(∆i0+1) = 0, (∗) is satisfied and mm([−y0, y0]) is odd. Then
∆i0+1 = [−y0, y0]

=0. In m̃ the only segment ending in y0 different from
[y0, y0] or [0, 1] is [−y0, y0]

=0. Thus ∆̃i0+1 = ∆i0+1.
– Suppose c(∆i0+1) = 0, (∗) is satisfied and mm([−y0, y0]) is even. Then
∆i0+1 = [−y0, y0]

≤0. Thus l = i0 + 1. In m̃ the only segment ending
in y0 different from [y0, y0] is [−y0 + 1, y0]. But, [−y0 + 1, y0] is not
smaller than [−y0 + 1, y0 + 1] = ∆̃i0 . Thus l̃ = i0.

Let i1 ≥ i0 − 1 be the biggest integer smaller than l such that for all i ≤ i1,
e(∆i) ̸= y0. For all i0 + 1 ≤ i ≤ i1, we have that b(∆i) ̸= −y0 and e(∆i) ̸= y0, thus
l̃ ≥ i1 and ∆̃i = ∆i. Moreover, if i1 = l then l̃ = l.

Therefore, let us assume that l > i1. Thus e(∆i1) = y0 + 1 and e(∆i1+1) = y0.
In particular p(∆i1+1) = [−y0, y0], ∆i1+1 = [0, 1] (if y0 = 1) or c(∆i1+1) < 0.

• Suppose c(∆i1+1) < 0, then necessarily l = i1 + 1. In m̃, there is no other
negative segments ending in y0 (and the signs of the centered segments are
not changed), thus l̃ = i1 = l − 1.

• Suppose p(∆i1+1) = [−y0, y0] and (∗) is not satisfied. Note that in the
case y0 = 1, then t0 = 0. Indeed, we have that t0 ≤ mm([−2,−2]) −
mm([−1,−1]) = mm([−2,−2]). Thus if t0 ̸= 0, then mm([−2,−2]) ̸= 0
and y1 = 2. Therefore, ∆i1 = [2, 2]. But [0, 1] ≺ [2, 2], so we would have
∆i1+1 = [0, 1], which is not. Therefore, l = i1 + 1 and l̃ = l − 1.

• Suppose p(∆i1+1) = [−y0, y0], (∗) is satisfied and mm([−y0, y0]) is odd. Then
l = y0+ i1+1, if i1+2 ≤ i < l then ∆i = [−emax+ i−1, emax− i+1]=0, and
∆l = [0, 0] or [−1, 0]. In m̃ there is still a [−y0, y0], so ∆̃i1+1 = [−y0, y0]

=0,
l̃ = l and for all i > i1, ∆̃i = ∆i.

• Suppose ∆i1+1 = [−y0, y0], (∗) is satisfied, mm([−y0, y0]) is even and ∆i1 =
[y0 + 1, y0 + 1]. Then ∆i1+1 = [−y0, y0]

≥0. Then l = y0 + i1 + 1, if
i1 + 2 ≤ i < l then ∆i = [−emax + i− 1, emax − i+ 1]=0, and ∆l = [0, 0] or
[−1, 0]. In m̃, ∆̃i1+1 = [−y0 + 1, y0], l̃ = l and for all i > i1 + 1, ∆̃i = ∆i.

• Suppose ∆i1+1 = [−y0, y0], (∗) is satisfied, mm([−y0, y0]) is even and ∆i1 ̸=
[y0+1, y0+1]. Then b(∆i1) ≤ −y0, thus ∆i1+1 = [−y0, y0]≤0 and l = i1+1.
In m̃, the only segment ending in y0 different from [y0, y0] is [−y0 + 1, y0],
thus l̃ = l − 1.

• Suppose y0 = 1 and ∆i1+1 = [0, 1]. Necessarily [−1, 0] ∈ m thus l = i1 + 2.
If (∗) is not satisfied, mm([−1, 1]) is odd and t0 = 1. Then l̃ = l, ∆̃i1+1 =

[−1, 1]=0, p(∆̃l) = [0, 0]. If mm([0, 0]) ̸= 0, we get that ∆̃l = ∆l (the parity
of the multiplicity of [0, 0] does not change in m̃). Otherwise, ∆̃i1+1 = [0, 1]

and l̃ = l. And if mm([−1, 1]) = 0 or mm([0, 0]) ̸= 0, then ∆̃l = ∆l; otherwise
∆̃l = [0, 0]≤0.

□

10.6.9. Lemma. Suppose that y1 > y0.

(1) If e(∆l) ≥ y0 + 2, then A#,c
y0

= Ac
y0

.
(2) If e(∆l) = y0 + 1, then A#,c

y0
= Ac

y0
∪ {il}.

(3) If e(∆l) = y0. We can assume that il ∈ Ac
y0

. If ∆l = [−y0, y0]
≤0 and (∗) is

not satisfied in (m, ε), then we can also assume that i′l ∈ Ac
y0

and we get
that A#,c

y0
= Ac

y0
∪ {il−1} \ {il, i′l}; otherwise A#,c

y0
= Ac

y0
\ {il}.

(4) If e(∆l) = 0. Let j such that e(∆j) = y0. We can assume that ij /∈ Ac
y0

.
Then A#,c

y0
= Ac

y0
.

62 THOMAS LANARD AND ALBERTO MÍNGUEZ

Proof. Let us recall that the segments ending in y0 are of the form [a, y0], with
a < −y0, [−y0, y0] and [0, 1], if y0 = 1 (there are no [y0, y0] since y0 < y1). And
the segments ending in y0 − 1 are of the form [1− y0, y0 − 1] (with multiplicity 1 if
y0 ̸= 1), [0, 1] if y0 = 2, and [−1, 0] if y0 = 1. We have:

Ac
y0

=


Ay0 if y0 ̸= 1 and (∗) is not satisfied
Ay0 \ {j} if y0 ̸= 1 and (∗) is satisfied, with Λj = [−y0, y0]
Ay0

\ {i,Λi = [0, 1]} if y0 = 1 and (∗) is not satisfied
Ay0

\ ({i,Λi = [0, 1]} ∪ {j}) if y0 = 1 and (∗) is satisfied, with Λj = [−1, 1]

Now, A#
y0

= {i ∈ Ay0 ,Λ
#
i ̸= 0} ∪ {i ∈ {i1, · · · , il}, e(Λi) = y0 + 1 and Λ#

i ̸=
0}\{i ∈ {i1, · · · , il}, e(Λi) = y0} and we have a similar description for A#

y0−1. Since,
there are no [y0, y0] in Ay0 , if i /∈ {i1, · · · , il} and e(Λi) = y0 then Λ#

i ̸= 0. Let
i /∈ {i1, · · · , il} such that e(Λi) = y0 − 1 and Λ#

i = 0. Then necessarily y0 = 1
and there exists a j such that ∆j = [0, 0]≤0. In this case, ∆j = ∆l (in particular
e(∆l) = 0) and i = i′l.

• Suppose e(∆l) > y0+1. From the previous description we see that A#
y0

= Ay0

and A#
y0−1 = Ay0−1. Moreover, there are no creation or suppression of

[−y0, y0] or [1 − y0, y0 − 1], so (∗) is satisfied for m# if and only if it is
satisfied for m. Thus A#,c

y0
= Ac

y0
.

• Suppose e(∆l) = y0 + 1. Then Λ#
il

≠ 0, indeed, ∆l ̸= [y0 + 1, y0 + 1]
because this segment would be followed in the initial sequence by any
segment ending in y0. Hence A#

y0
= Ay0 ∪ {il} and A#

y0−1 = Ay0−1. Let
us show that il ∈ Ac,#

y0
. From the description of Ay0−1, we see that for

all i ∈ Ay0−1, Λ
#
i = Λi. We have seen that Λil ̸= [y0 + 1, y0 + 1]. And

Λil ̸= [−y0, y0 + 1] because it would be followed in the initial sequence by
[−y0 − 1, y0]. Thus c(Λil) = 0 or c(Λil) < 0. If c(Λil) < 0, then il ∈ Ac,#

y0
.

If c(Λil) = 0, that is Λil = [−y0 − 1, y0 + 1]. If Λil = [−y0 − 1, y0 + 1]≤0

then Λ#
il

= [−y0 − 1, y0] and il ∈ Ac,#
y0

. If Λil = [−y0 − 1, y0 + 1]=0 or
[−y0−1, y0+1]≥0 then Λ#

il
= [−y0, y0]. Thus we need to investigate condition

(∗). Since Λil = [−y0 − 1, y0 +1]=0 or [−y0 − 1, y0 +1]≥0 is the last segment
in the initial sequence in the algorithm, there are no negative segment ending
in y0. Since Ac

y0
̸= ∅, mm([−y0, y0]) ̸= 0. And since ∆l is the last segment

in the initial sequence in the algorithm, ε([−1− y0, y0 + 1])ε([−y0, y0]) = 1.
Thus (∗) is satisfied for (m, ε) if and only if (∗) is still satisfied in (m#, ε#);
and il ∈ Ac,#

y0
.

• Suppose e(∆l) = y0. First let us examine the case Λ#
il−1

= 0, that is
Λil−1

= [y0+1, y0+1]. As y0 < y1, we get that y1 = y0+1, [y0, y0] /∈ m, and
Λil is the biggest segment ending in y0. Then A#

y0
= Ay0 \ {il} and A#

y0−1 =

Ay0−1 ∪{il}. Since Λil is the biggest segment ending in y0, we have that for
all i ∈ A#

y0
, Λ#

i ≤ Λ#
il

. Thus A#,c
y0

= Ac
y0

\ {il}. If Λil−1
̸= [y0 + 1, y0 + 1].

This time, A#
y0

= Ay0 ∪ {il−1} \ {il} and A#
y0−1 = Ay0−1 ∪ {il}. Since

∆l ̸= [0, 1] (it is the last segment in the initial sequence in the algorithm),
we get that c(∆l) < 0 or c(∆l) = 0.

– Suppose c(∆l) < 0. The situation is similar as in Lemma 10.4.2.
The segment Λ#

il
is the smallest segment ending in y0 − 1 such that

Λ#
il
< Λ#

il−1
. Thus A#,c

y0
= Ac

y0
\ {il}.

– Suppose c(∆l) = 0. Then, Λil−1
= [−y0−1, y0+1]≥0, [−y0−1, y0+1]=0

or [−y0, y0 + 1]; and Λ#
il−1

= [−y0, y0]. Note that if y0 = 1, since ∆l is
the last segment in the initial sequence in the algorithm, then t0 = 0.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 63

∗ Suppose Λil = [−y0, y0]
=0 or [−y0, y0]

≥0. Since Λil is the last
segment in the initial sequence in the algorithm, condition (∗)
cannot be satisfied. We can assume that il ∈ Ac

y0
. Also, Λ#

il
=

[−y0 + 1, y0 − 1]. Then necessarily (∗) is satisfied in (m#, ε#),
and A#,c

y0
= Ac

y0
\ {il}.

∗ Suppose Λil = [−y0, y0]
≤0. There is no segment [−y0, y0]

=0 in m
and mm([−y0, y0]) is even. In particular, we can always assume
that il ∈ Ac

y0
. Moreover, Λ#

il
= [−y0, y0 − 1], so we see that if (∗)

is satisfied in (m, ε) if and only if (∗) is satisfied in (m#, ε#). So
if (∗) is not satisfied in (m, ε), then we can assume that i′l ∈ Ac

y0
,

and A#,c
y0

= Ac
y0

∪ {il−1} \ {il, i′l}. And if (∗) is not satisfied in
(m, ε) then A#,c

y0
= Ac

y0
\ {il}.

– Suppose e(∆l) = 0. Let us split the proof into two cases depending on
whether y0 = 1 or y0 > 1.

∗ Suppose y0 > 1. Let j such that e(∆j) = y0. The segment ∆j+1

cannot be [0, 1] because this segment cannot be in the initial
sequence of the algorithm after a segment of the form [−y0, y0]
or [a, y0], with a < −y0. Thus ∆j+1 = [1− y0, y0 − 1]=0. Thus
∆j = [−y0, y0]

≥0 or [−y0, y0]
=0. In particular, we see that (∗) is

satisfied in (m, ε), and we can assume that ij /∈ Ac
y0

. Moreover
Λ#
ij

= [1− y0, y0 − 1]. The segment ∆j−1 is one of the following :
[y0+1, y0+1], [−y0−1, y0+1]≥0, [−y0−1, y0+1]=0 or [−y0, y0+1].
Hence, Λ#

ij−1
is either 0 or [−y0, y0]. Also, by definition of ∆j

and ∆j−1 in the initial sequence of the algorithm, necessarily
(∗) is satisfied in (m#, ε#), and we see that ij−1 /∈ A#,c

y0
. We get

that A#,c
y0

= Ac
y0

.
∗ Suppose y0 = 1. Then e(∆l−1) = y0. The segment ∆l−1 cannot

be of the form [a, 1] with a < −1, since it is followed in the initial
sequence by ∆l which is [0, 0] or [−1, 0]. Thus ∆l−1 is [−1, 1] or
[0, 1].
Suppose t0 ̸= 0. Since t0 ≤ mm([−2,−2]) −mm([−1,−1]), and
mm([−1,−1]) = 0, we get that mm([−2,−2]) ̸= 0, y1 = 2 and
∆l−2 = [2, 2]. Hence, ∆l−1 = [0, 1]. Examining the two cases
∆l = [0, 0] or ∆l = [−1, 0], we see that (∗) is satisfied in (m, ε) if
and only if (∗) is satisfied in (m#, ε#). Therefore, A#,c

y0
= Ac

y0
.

Suppose t0 = 0. Then necessarily ∆l = [0, 0] and ∆l−1 =
[−1, 1]=0 or ∆l−1 = [−1, 1]≥0. Also mm([−2,−2]) = 0. The
situation is similar as the case y0 ̸= 1. The condition (∗) is
satisfied in (m, ε) and in (m#, ε#); and A#,c

y0
= Ac

y0

□

10.6.10. Lemma. Suppose that y1 > y0.
(1) If e(∆l) ≥ y0 + 2, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dy0(m

#, ε#).
(2) If e(∆l) = y0+1, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dmax−1

y0
(m#, ε#).

(3) If e(∆l) = y0, then (m̃1, ε̃1) = D−y0
(m1, ε1) and (m̃#, ε̃#) = Dy0

(m#, ε#).
(4) If e(∆l) = 0, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dy0

(m#, ε#).

Proof. The proof is similar to Lemma 10.4.4. Lemma 10.6.8 tells us that l̃ = l − 1,
if e(∆l) = y0, and l̃ = l otherwise. It also tells us that ε0 = ε̃0. This gave us the
result for (m1, ε1) in all the cases, apart when ε0 = −1, where we are left to prove
that ε1 = ε̃1. Let n0 = card{∆ ∈ m, c(∆) = 0} and ñ0 = card{∆ ∈ m̃, c(∆) = 0}.

64 THOMAS LANARD AND ALBERTO MÍNGUEZ

From the formula of Dy0
the parity of the number of [−y0, y0] is not changed (in

the case y0 ̸= 1, necessarily there is an i such that ∆i = [−y0, y0], and thus (∗) is
satisfied). Hence n0 ≡ ñ0 (mod 2) and ε1 = ε̃1.

Now, let us examine m̃#. This is mostly similar to Lemma 10.4.4.

• Suppose e(∆l) > y0 + 1. By Lemma 10.6.9, A#,c
y0

= Ac
y0

. Combined with
Lemma 10.6.8, we get that (m̃#, ε̃#) = Dy0(m

#, ε#).
• Suppose e(∆l) = y0+1. This time we have A#,c

y0
= Ac

y0
∪{il}. Similarly as in

Lemma 10.4.4, we can show that in m̃#, Λ̃#
il

is modified by Dy0
. Thus we get

that Dy0
(m#, ε#) = D1

y0
(m̃#, ε̃#), or that (m̃#, ε̃#) = Dmax−1

y0
(m#, ε#).

• Suppose e(∆l) = y0.
– If ∆l = [−y0, y0]

≤0 and (∗) is not satisfied in (m, ε), then by Lemma
10.6.9, A#,c

y0
= Ac

y0
∪ {il−1} \ {il, i′l}. Thus, we almost have the same

modifications, apart from il−1, il and i′l. Since (∗) is not satisfied in
(m, ε), the derivative Dy0(m, ε) transforms Λil = [−y0, y0] and Λi′l

=

[−y0, y0] into 2[−y0 + 1, y0 − 1]. And Λ̃il−1
= ∆l−1, thus Λ̃#

il−1
=

[−y0, y0]. In m#, we add Λ#
il−1

= [−y0, y0] and we transform Λil into
Λ#

il
= [−y0, y0 − 1] and Λi′l

into Λ#
i′l

= [−y0 + 1, y0]. Applying the
modifications of the segments indexed by A#,c

y0
= Ac

y0
∪ {il−1} \ {il, i′l}

transforms the [−y0, y0] into [−y0 + 1, y0 − 1]. But in (m#, ε#), we
get that (∗) is not satisfied, t# ≥ 1 and c# is odd. So, according
to Definition 9.2.2, these modifications are not sufficient to compute
the derivative. We need to transform [−y0, y0 − 1] + [−y0 + 1, y0]
into [−y0, y0] + [−y0 + 1, y0 − 1]. Thus we get the same thing, and
(m̃#, ε̃#) = Dy0(m

#, ε#).
– Otherwise, A#,c

y0
= Ac

y0
\ {il}, and as in Lemma 10.4.4, (m̃#, ε̃#) =

Dy0
(m#, ε#).

• Suppose e(∆l) = 0. Then A#,c
y0

= Ac
y0

. Then in all the cases of Lemma
10.6.8, we see that (m̃#, ε̃#) = Dy0

(m#, ε#). Let us do one for illustration.
Suppose that y0 = 1, ∆l−1 = [0, 1], (∗) is not satisfied, mm([−1, 1]) is odd,
mm([0, 0]) ̸= 0 and t0 = 1. Since ∆l−1 = [0, 1], applying the algorithm
transforms [0, 1] + [−1, 0] into 2[0, 0]. Then, we modify the segments in
A#,c

y0
= Ac

y0
to get Dy0

(m#, ε#). To compute (m̃, ε̃), we modify the segments
indexed by Ac

y0
. But since (∗) is not satisfied, c is odd and t0 ≥ 1, we also

need to transform [0, 1] + [−1, 0] into [−1, 1] + [0, 0]. But then ∆̃l−1 =
[−1, 1]=0 by Lemma 10.6.8, so one [−1, 1] is transformed into [0, 0] and we
get that (m̃#, ε̃#) = Dy0

(m#, ε#). The other cases are treated similarly.

□

10.6.11. Proposition. If y1 > y0, then AD(Dy0(m, ε)) = D−y0(AD(m, ε)).

Proof. It follows from Lemmas 10.6.10, 10.2.3 and 9.4.1. □

10.7. The positive derivative with ρ not of same type. In this section, we
assume that ρ is not of the same type as G. We also assume that emax > 1, that for
all −emax < y < 0, (m, ε) is y-reduced, and that there exists y > 0 with y ̸= emax

such that (m, ε) is not y-reduced.
We define y0 ∈ (1/2)Z\Z to be the smallest y ∈ (1/2)Z∗ \Z such that y ̸= −emax,

y ̸= emax, and (m, ε) is not y-reduced. With our hypotheses on (m, ε), necessarily
y0 > 0. Let us describe more precisely the conditions satisfied by (m, ε) and y0 using
the explicit formula of the derivative recalled in Section 9.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 65

We have assumed that for all −emax < y < 0, (m, ε) is y-reduced. Hence, if
∆ ∈ m is a segment such that e(∆) < 0, then ∆ = [y, y] (where y = e(∆)) and
mm([y, y]) ≤ mm([y − 1, y − 1]). Let y1 ∈ (1/2)N∗ \ N be the smallest positive
half-integer such that [y1, y1] ∈ m.

Now, we recall the formula for Dy0
. First let us do D1/2.

By convention, when y = 1/2, we set [−y + 1, y− 1] = 0, mm([−y + 1, y− 1]) = 1
and ε([−y + 1, y − 1]) = 1. Let t1/2 be the number of [1/2, 1/2] in m.

The segments ∆ ∈ m with e(∆) = −1/2 are of the form: [−1/2,−1/2]. And
the segments ∆ ∈ m with e(∆) = 1/2 are of the form: [a, 1/2], with a < −1/2,
[−1/2, 1/2] or [1/2, 1/2]. Let (∗) be the condition: mm([−1/2, 1/2]) ̸= 0 and
ε([−1/2, 1/2]) = (−1)t1/2+1.

Then D1/2 does the following transformations. All the negative segments of the
form [a, 1/2], with a < −1/2, are transformed into [a,−1/2] (and their symmetric
[−1/2,−a] are transformed into [1/2,−a]).

• If (∗) is not satisfied, mm([−1/2, 1/2]) is odd and t1/2 ≥ 1; then all the
segments [−1/2, 1/2] except one are suppressed and one [−1/2,−1/2] +
[1/2, 1/2] is also suppressed.

• If (∗) is not satisfied and, mm([−1/2, 1/2]) is even or t1/2 = 0; then all the
segments [−1/2, 1/2] are suppressed.

• If (∗) is satisfied and mm([−1/2, 1/2]) is odd; then all the segments [−1/2, 1/2]
except one are suppressed.

• If (∗) is satisfied and mm([−1/2, 1/2]) is even; then all the [−1/2, 1/2] are
suppressed and two [−1/2,−1/2] + [1/2, 1/2] are added.

In particular, we see that if D1/2(m, ε) = 0, then
• There is no segment [a, 1/2] with a < −1/2;
• mm([−1/2, 1/2]) = 0 or 1;
• if mm([−1/2, 1/2]) = 1 then ε([−1/2, 1/2]) = (−1)t1/2+1.

Let y > 1/2 such that for all 1/2 ≤ x < y, Dx(m, ε) = 0. We prove by induction
on y, that if ∆ ∈ m is a segment with 0 < e(∆) < y then c(∆) ≥ 0. We make
explicit the formula for Dy.

Using the induction hypothesis, if 1/2 < x < y, and ∆ ∈ m with e(∆) = x then
b(∆) ≥ −x. We also know that if b(∆) ̸= y then b(∆) < 0. But ∆∨ ∈ m, so if
b(∆) ̸= y then b(∆) = −x. Hence, the only segments ending in y are [x, x] and
[−x, x]. In particular, note that there are no segments [−y + 1, y] in m. Also the
segments ∆ ∈ m with e(∆) = y − 1 are of the form: [y − 1, y − 1] or [1− y, y − 1].
And the segments ∆ ∈ m with e(∆) = y are of the form: [a, y], with a < −y,
[−y, y], [y, y]. Let (∗) be the condition: mm([−y, y]) ̸= 0, mm([1− y, y− 1]) ̸= 0 and
ε([y, y])ε([1− y, y − 1]) = −1.

Then Dy does the following transformations. All the negative segments of the
form [a, y], with a < −y, are transformed into [a, y − 1] (and their symmetric
[−y,−a] are transformed into [−y + 1,−a]). For the centered segments [−y, y]:

• If (∗) is not satisfied; then all the segments [−y, y] are transformed into
[−y + 1, y − 1].

• If (∗) is satisfied and mm([−y, y]) is odd; then all the segments [−y, y] except
one are transformed into [−y + 1, y − 1].

• If (∗) is satisfied and mm([−y, y]) is even; then two segments [−y, y] are
transformed into [−y, y − 1] + [−y + 1, y]. The other segments [−y, y] are
transformed into [−y + 1, y − 1].

It also suppresses n segments [y, y] and [−y,−y], where n = max{mm([y, y]) −
mm([y−1, y−1])−mm([1−y, y−1]), 0} if (∗) is not satisfied; and n = max{mm([y, y])−

66 THOMAS LANARD AND ALBERTO MÍNGUEZ

mm([y − 1, y − 1])−mm([1− y, y − 1]) + 1, 0} if (∗) is satisfied. Note that we will
show that mm([1− y, y − 1]) = 0 or 1.

In particular, we see that if Dy(m, ε) = 0, then
• There is no segment [a, y] with a < −y;
• mm([−y, y]) = 0 or 1;
• if mm([−y, y]) = 1 then mm([1−y, y−1]) ̸= 0 and ε([−y, y])ε([1−y, y−1]) =
−1;

• mm([y, y]) ≤ mm([y− 1, y− 1]) +mm([1− y, y− 1]) if mm([−y, y]) = 0; and
mm([y, y]) ≤ mm([y − 1, y − 1]) if mm([−y, y]) = 1.

This proves our induction hypothesis.

The formulas above give us an explicit formula for Dy0
, depending on whether

y0 = 1/2 or not. Moreover, we see that if ∆ ∈ m is such that e(∆) < y0, then
either ∆ = [y, y] for some y, or ∆ = [−y, y], and in this case mm([−y, y]) = 1.
Furthermore, if y > 1/2, then ε([−y, y])ε([1− y, y − 1]) = −1; and if y = 1/2, then
ε([−1/2, 1/2]) = (−1)t1/2+1.

For the rest of the section, let (∗) denote the condition:
(1) If y0 = 1/2: mm([−1/2, 1/2]) ̸= 0 and ε([−1/2, 1/2]) = (−1)t1/2+1.
(2) If y0 > 1/2: mm([−y0, y0]) ̸= 0, mm([−y0+1, y0−1]) ̸= 0 and ε([−y0, y0])ε([1−

y0, y0 − 1]) = −1.

10.7.1. Lemma. If e(∆l) < y0 then e(∆l) = 1/2.

Proof. We assume that e(∆l) < y0. From Lemma 10.5.1, we have that e(∆l) ≥ 0.
Thus ∆l is one of the following segments : [−y, y] or [y, y]. If ∆l = [−y, y] or [y, y]
with y ̸= 1/2, the fact that Dy(m, ε) implies that there exists a segment ∆ ending
in y − 1 suitable for the algorithm such that ∆ ≺ ∆l which is a contradiction. □

We denote by (m̃, ε̃) := Dy0(m, ε) and by ∆̃1, · · · , ∆̃l̃ the initial sequence in the
algorithm for (m̃, ε̃).

10.7.2. Lemma. If y1 < y0, then
(1) e(∆l) = 1/2;
(2) l̃ = l;
(3) for all 1 ≤ i ≤ l, ∆̃i = ∆i.

Proof. We are in the case where ∆1 = [emax, emax]. As y0 ̸= emax, Dy0
does not

suppress ∆1 and ∆̃1 = ∆1. Let i0 = emax − y1 + 2. Then, for all 0 < i < i0,
∆i = [emax − i + 1, emax − i + 1]. In all these segments, the only that can be
modified by Dy0

is [y0, y0]. But as y1 < y0, [y0 − 1, y0 − 1] ∈ m, thus at least one
[y0, y0] is not suppressed by Dy0 . We see that l̃ ≥ i0 − 1 and for all 0 < i < i0,
∆̃i = ∆i = [emax − i+ 1, emax − i+ 1].

If y1 = 1/2, then ∆l = [1/2, 1/2]. Now, we assume that y1 > 1/2. By definition of
y1, we know that [y1−1, y1−1] /∈ m, and since Dy1(m, ε) = 0, we get mm([1−y1, y1−
1]) = 1. In this case, we also know that for all y1−1 ≥ y > 1/2, mm([−y+1, y−1]) = 1
and ε([−y, y])ε([1− y, y − 1]) = −1; and mm([−1/2, 1/2]) = 1 and ε([−1/2, 1/2]) =
(−1)t1/2+1. But t1/2 = 0 (as y1 > 1/2), thus ε([−1/2, 1/2]) = −1. Thus for all
i0 ≤ i ≤ l, ∆i = [−emax + i − 1, emax − i + 1]=0; and ε([−1/2, 1/2]) = −1 (hence
ε0 = −1). None of these segments are changed by Dy0 thus l̃ = l and for all
i0 ≤ i ≤ l, ∆̃i = ∆i. □

10.7.3. Lemma. Suppose y1 < y0. Then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) =
Dy0

(m#, ε#).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 67

Proof. By Lemma 10.7.2, we get that (m̃1, ε̃1) = (m1, ε1). Moreover, we know that
for 1 ≤ i ≤ y1, ∆i = [emax − i + 1, emax − i + 1]. Hence, the segments of m#

ending in y0 or y0 − 1 are the same as in m except that one segment [y0, y0] and one
[y0 − 1, y0 − 1] have been suppressed. These segments were not modified by Dy0 .
We deduce that (m̃#, ε̃#) = Dy0(m

#, ε#). □

10.7.4. Proposition. If y1 < y0, then AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).

Proof. It follows from Lemmas 10.7.3, 10.2.3 and 9.4.1. □

10.7.5. Lemma. Suppose that y1 = y0. Let j = emax−y0+1, such that ∆j = [y0, y0].
(1) Then e(∆l) = y0 or 1/2.
(2) If e(∆l) = y0 and y0 ̸= 1/2, then l̃ = l − 1; otherwise l̃ = l.
(3) For all 1 ≤ i ≤ l̃, if i ̸= j, j + 1 then ∆̃i = ∆i.
(4) If y0 = 1/2. If mm([−1/2, 1/2]) is odd, ε([−1/2, 1/2]) = −1 and t1/2 = 1,

then ∆̃l = [−1/2, 1/2]=0 and ε̃([−1/2, 1/2]) = −1; otherwise ∆̃l = ∆l.
(5) If y0 > 1/2 and e(∆l) = 1/2. Then ∆j = [y0, y0] and ∆j+1 = [1− y0, y0 −

1]=0. And ∆̃j = ∆j, ∆̃j+1 = ∆j+1, unless
(a) If (∗) is not satisfied and mm([−y0, y0]) ̸= 0, then ∆̃j+1 = [1− y0, y0 −

1]≥0.
(b) If (∗) is satisfied and mm([−y0, y0]) is odd, then ∆̃j = [−y0, y0]

=0.
(c) If (∗) is satisfied and mm([−y0, y0]) is even, then ∆̃j = [1− y0, y0].

Proof. Let i0 = emax−y1+2, then, for all 0 < i < i0, ∆i = [emax−i+1, emax−i+1].
The segment ∆i0−1 = [y0, y0] could be modified by Dy0

. We get that l̃ ≥ i0 − 2, and
for all i ≤ i0 − 2, ∆̃i = ∆i.

• Suppose y0 = 1/2. Then ∆l = ∆i0 = [1/2, 1/2] and ε0 = 1. If (∗) is satisfied
or mm([−1/2, 1/2]) is even or t1/2 ̸= 1, then in m̃ there is still a [1/2, 1/2].
Thus l̃ = l and ∆̃l = ∆l. If (∗) is not satisfied, mm([−1/2, 1/2]) is odd
and t1/2 = 1. The only segment ending in 1/2 in m̃ is [−1/2, 1/2]=0 with
ε̃([−1/2, 1/2]) = −1. Thus l̃ = l and ∆̃l = [−1/2, 1/2]=0.

• Suppose y0 > 1/2 and e(∆l) = y0. Then mm([1 − y0, y0 − 1]) = 0 and in
particular (∗) is not satisfied. Therefore, Dy0

transforms all the segments
[−y0, y0] into [1− y0, y0 − 1] and suppresses all the [y0, y0]. Thus l̃ = l − 1.

• Suppose y0 > 1/2 and e(∆l) = 1/2. As y1 = y0 > 1/2, then t1/2 = 0. Also,
as e(∆l) = 1/2, we get that mm([1− y0, y0 − 1]) = 1.

– Suppose (∗) is not satisfied. Then Dy0
does not suppress all the

[y0, y0] thus ∆̃i0−1 = [y0, y0] = ∆i0−1. If mm([−y0, y0]) ̸= 0 then
∆̃i0 = [1− y0, y0 − 1]≥0; otherwise ∆̃i0 = [1− y0, y0 − 1]=0 = ∆i0 . In
both cases, l̃ = l and for all j > i0, ∆̃j = ∆j .

– Suppose (∗) is satisfied. This time all the [y0, y0] are suppressed by
Dy0

. If mm([−y0, y0]) is odd, then ∆̃i0−1 = [−y0, y0]
=0, ∆̃i0 = [1 −

y0, y0 − 1]=0 = ∆i0 , l̃ = l and for all j > i0, ∆̃j = ∆j . If mm([−y0, y0])

is even, then ∆̃i0−1 = [1− y0, y0], ∆̃i0 = [1− y0, y0 − 1]=0 = ∆i0 , l̃ = l

and for all j > i0, ∆̃j = ∆j .
□

10.7.6. Lemma. Suppose that y1 = y0.
(1) If e(∆l) = y0 and y0 ̸= 1/2, then (m̃1, ε̃1) = D−y0(m1, ε1) and (m̃#, ε̃#) =

Dy0
(m#, ε#).

(2) Otherwise, (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dy0
(m#, ε#).

68 THOMAS LANARD AND ALBERTO MÍNGUEZ

Proof. The result for (m̃1, ε̃1) follows directly form Lemma 10.7.5 (note that in
the case e(∆l) = y0 and y0 = 1/2 then ε0 = −1 and by Lemma 10.7.5 we also
have ε̃0 = −1). If e(∆l) = y0 and y0 ≠ 1/2, then for all 1 ≤ i ≤ l, ∆i =
[emax − i+1, emax − i+1], and these segments are just suppressed by AD. It is easy
to see that (m̃#, ε̃#) = Dy0

(m#, ε#).
In the other cases, it is easy to prove that (m̃#, ε̃#) = Dy0

(m#, ε#), checking all
the cases of Lemma 10.7.5 and looking at the formula of Dy0

.
Let us do one to show an example. Suppose that y0 = 1/2, mm([−1/2, 1/2]) is odd,

ε([−1/2, 1/2]) = −1 and t1/2 = 1. Then ∆̃l = [−1/2, 1/2]=0 and ε̃([−1/2, 1/2]) =

−1. Note that m# is just m where we have suppressed [emax, emax]+ · · ·+[1/2, 1/2]+
[−1/2,−1/2]+ · · ·+[−emax,−emax]. Let us focus on the segments ending in 1/2. So
AD suppresses one [1/2, 1/2]. Then in m#, t#1/2 = 0 and (∗) is not satisfied. So D1/2

suppresses all the segments [−1/2, 1/2]. At the end, the are no segments ending
in 1/2 in Dy0

(m#, ε#). Now in m, Dy0
suppresses all the [−1/2, 1/2] except one

and one [1/2, 1/2]. As ∆̃l = [−1/2, 1/2]=0, AD(m̃, ε̃) suppresses ∆̃l. So we see that
(m̃#, ε̃#) = Dy0

(m#, ε#). The other cases are treated similarly. □

10.7.7. Proposition. If y1 = y0, then AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).

Proof. It follows from Lemmas 10.7.6, 10.2.3 and 9.4.1. □

10.7.8. Lemma. Suppose that y1 > y0.
(1) If e(∆l) = y0 and ε0 = 1 then l̃ = l − 1; otherwise l̃ = l.
(2) For 1 ≤ i ≤ l̃:

(a) If e(∆i) ̸= y0
(i) If b(∆i) = −y0, then ∆̃i =

−∆i

(ii) Otherwise, ∆̃i = ∆i.
(b) If e(∆i) = y0

(i) If ∆i = [−y0, y0], (∗) is satisfied, mm([−y0, y0]) is even and
∆i−1 = [y0 + 1, y0 + 1], then ∆̃i = [−y0 + 1, y0].

(ii) If ∆i = [−y0, y0], (∗) is satisfied and mm([−y0, y0]) is odd, then
∆̃i = [−y0, y0]

=0.
(iii) Otherwise, ∆̃i = ∆i.

Proof. Note that since y0 < y1, then t1/2 = 0. Then the proof is the same as Lemma
10.6.8. □

10.7.9. Lemma. Suppose that y1 > y0.
(1) If e(∆l) ≥ y0 + 2, then A#,c

y0
= Ac

y0
.

(2) If e(∆l) = y0 + 1, then A#,c
y0

= Ac
y0

∪ {il}.
(3) If e(∆l) = y0.

(a) If ∆l = [−y0, y0]
≤0 and (∗) is not satisfied in (m, ε), then we can also

assume that il, i′l ∈ Ac
y0

and we get that A#,c
y0

= Ac
y0

∪ {il−1} \ {il, i′l}.
(b) If ∆l = [−1/2, 1/2]≥0 or [−1/2, 1/2]=0, and (∗) is satisfied. We can

assume that il /∈ Ac
y0

, and A#,c
y0

= Ac
y0

.
(c) If ∆l = [−1/2, 1/2]≤0 and (∗) is satisfied. We can assume that il /∈ Ac

y0
,

and A#,c
y0

= Ac
y0

\ {i′l}.
(d) Otherwise, we can assume that il ∈ Ac

y0
and A#,c

y0
= Ac

y0
\ {il}.

(4) If e(∆l) = 1/2 and y0 ̸= 1/2. Let j such that e(∆j) = y0. We can assume
that ij /∈ Ac

y0
. Then A#,c

y0
= Ac

y0
.

Proof. The proof is similar to the proof of Lemma 10.6.9. The only main difference
is when e(∆l) = 1/2, y0 = 1/2 and c(∆l) = 0. We give details only in this case.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 69

• Suppose ∆l = [−1/2, 1/2]≥0 or [−1/2, 1/2]=0, and (∗) is satisfied. Then
ε0 = −1. In m#, we get that ε#([−1/2, 1/2]) = 1, so (∗) is not satisfied.
We can assume that il /∈ Ac

y0
, and A#,c

y0
= Ac

y0
.

• Suppose ∆l = [−1/2, 1/2]≤0 and (∗) is satisfied. Now ε0 = 1. Af-
ter the algorithm, Λ#

il
= [−1/2,−1/2]. Thus, in m#, t#1/2 = 1, and

ε#([−1/2, 1/2]) = −1, so (∗) is not satisfied. We assume that il /∈ Ac
y0

, and
A#,c

y0
= Ac

y0
\ {i′l}.

• Suppose ∆l = [−1/2, 1/2]≥0 or [−1/2, 1/2]=0, and (∗) is not satisfied. Then
ε0 = 1. If Λ#

il−1
= −1/2, 1/2], then ε#([−1/2, 1/2]) = −1 and (∗) is satisfied

in (m#, ε#), so il−1 /∈ A#,c
y0

. Otherwise, (∗) is not satisfied in (m#, ε#).
And we get that A#,c

y0
= Ac

y0
\ {il}.

• Suppose ∆l = [−1/2, 1/2]≤0 and (∗) is not satisfied. Then ∆l−1 =
[−1/2, 3/2] and (∗) is not satisfied in (m#, ε#). We get that A#,c

y0
=

Ac
y0

∪ {il−1} \ {il, i′l}.
□

10.7.10. Lemma. Suppose that y1 > y0.
(1) If e(∆l) ≥ y0 + 2, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dy0(m

#, ε#).
(2) If e(∆l) = y0+1, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dmax−1

y0
(m#, ε#).

(3) If e(∆l) = y0 and y0 ̸= 1/2 or ε0 = 1, then (m̃1, ε̃1) = D−y0
(m1, ε1) and

(m̃#, ε̃#) = Dy0
(m#, ε#).

(4) If e(∆l) = y0, y0 = 1/2 and ε0 = −1, then (m̃1, ε̃1) = (m1, ε1) and
(m̃#, ε̃#) = Dy0

(m#, ε#).
(5) If e(∆l) = 1/2 and y0 ̸= 1/2, then (m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) =

Dy0
(m#, ε#).

Proof. The proof is similar to the proof of Lemma 10.6.10 and follows from Lemma
10.7.9 and Lemma 10.7.8. □

10.7.11. Proposition. If y1 > y0, then AD(Dy0(m, ε)) = D−y0(AD(m, ε)).

Proof. It follows from Lemmas 10.7.10, 10.2.3 and 9.4.1. □

10.8. The derivatives Demax
. In this section, we assume that emax > 1, that for all

−emax < y < emax with y ̸= 0, (m, ε) is y-reduced, that (m, ε) is L([−1, 0])-reduced,
and that (m, ε) is not emax-reduced. Let y0 = emax. We have recalled the formula
to compute Dy0

in Section 10.6.

We start by assuming that ρ is of the same type as G. Then m is of the following
form

m =

emax∑
y=1

ny([y, y]+[−y,−y])+n0[0, 0]+t0([−1, 0]+[0, 1])+

z∑
y=1

[−y, y]+m[−emax, emax].

10.8.1. Proposition. We have that AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).

Proof. First, let us consider the case where nemax−1 ̸= 0. In this case, we also get that
nemax

≠ 0. Thus, we have l ≥ 2, ∆1 = [y0, y0], and ∆2 = [y0 − 1, y0 − 1]. Moreover,
since nemax−1 ̸= 0, after applying the derivative Demax

, none of the [emax, emax]

are suppressed. Hence, ∆̃1 = [y0, y0] = ∆1 and ∆̃2 = [y0 − 1, y0 − 1] = ∆2. We
deduce from this that l̃ = l and for all 1 ≤ j ≤ l, ∆̃j = ∆j . This gives us that
(m̃1, ε̃1) = (m1, ε1) and (m̃#, ε̃#) = Dy0

(m#, ε#). Also m1 ̸= [y0, y0] + [−y0,−y0].
Finally we get that AD(Dy0

(m, ε)) = D−y0
(AD(m, ε)).

Now, let us assume that nemax−1 = 0. In particular, for all 1 ≤ i ≤ emax − 1,
ni = 0. Note that if t0 ̸= 0, then y0 = 2 and n2 ̸= 0. Thus m is of the form

70 THOMAS LANARD AND ALBERTO MÍNGUEZ

m = n0[0, 0]+

z∑
y=1

[−y, y]+my0 [−y0, y0]+ny0([y0, y0]+[−y0,−y0])+t0([−1, 0]+[0, 1]),

First, let us notice that for any (m′, ε′) ∈ Symmε
ρ(G), if y0 is the maximum of

the coefficients of m′ then D−y0
(m′, ε′) just removes all the segments [y0, y0] and

[−y0,−y0]. In particular D−y0
(AD(m, ε)) = D−y0

(m1, ε1) +D−y0
(AD(m#, ε#)) =

D−y0
(m1, ε1) + AD(Dy0

(m#, ε#)). We will compute AD(m, ε) (that is (m1, ε1) and
(m#, ε#)), Dy0

(m, ε) and AD(Dy0
(m, ε)) (that is (m̃1, ε̃1) and (m̃#, ε̃#)) to see that

AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).
Let us start by computing AD(m, ε). We get that

• Suppose t0 ̸= 0 and n0 is odd. Then m1 = [−2, 2], ε1([−2, 2]) = (−1)m2+zε([0, 0]),
and m# = (n0 + 1)[0, 0] +

∑z
y=1[−y, y] + ny0

[−y0, y0] + (ny0
− 1)([y0, y0] +

[−y0,−y0]) + (t0 − 1)([−1, 0] + [0, 1]) and ε#([−y0, y0]) = −ε([−y0, y0]) and
for y < y0, ε#([−y, y]) = ε([−y, y]).

• Suppose t0 ̸= 0, n0 ̸= 0 and n0 is even. Then m1 = [−y0, 0] + [0, y0],
m# = n0[0, 0]+

∑z−1
y=1[−y, y]+my0

[−y0, y0]+(ny0
−1)([y0, y0]+[−y0,−y0])+

(t0 − 1)([−1, 0] + [0, 1]), ε#([0, 0]) = −ε([0, 0]) and ε#([−y, y]) = ε([−y, y])
for y ̸= 0.

• Suppose t0 ̸= 0 and n0 = 0. Then m1 = [−y0, 0]+[0, y0], m# = my0
[−y0, y0]+

(ny0
− 1)([y0, y0] + [−y0,−y0]) + (t0 − 1)([−1, 0]+ [0, 1]) and ε#([−y0, y0]) =

ε([−y0, y0]).
• Suppose t0 = 0, ny0

̸= 0 and z < y0−1. Then m1 = [−y0,−y0]+[y0, y0] and
m# = n0[0, 0]+

∑z
y=1[−y, y]+my0

[−y0, y0]+(ny0
−1)([y0, y0]+ [−y0,−y0]).

• Suppose t0 = 0, ny0
̸= 0, z = y0 − 1 and n0 is even. Then m1 = [−y0, 0] +

[0, y0], m# = (n0−1)[0, 0]+
∑z−1

y=1[−y, y]+my0
[−y0, y0]+(ny0

−1)([y0, y0]+

[−y0,−y0]), ε#([−y0, y0]) = ε([−y0, y0]) and ε#([−y, y]) = −ε([−y, y]) for
0 ≤ y < z.

• Suppose t0 = 0, ny0
̸= 0, z = y0 − 1 and n0 is odd. Then m1 =

[−y0, y0], ε1(y0) = (−1)my0+zε([0, 0]), m# = n0[0, 0] +
∑z−1

y=1[−y, y] +

my0
[−y0, y0] + (ny0

− 1)([y0, y0] + [−y0,−y0]), ε#([−y0, y0]) = −ε([−y0, y0])
and ε#([−y, y]) = −ε([−y, y]) for 0 ≤ y < z.

• Suppose (∗) is not satisfied and ny0 = 0, then m1 = [−y0,−y0] + [y0, y0] and
m# = n0[0, 0] +

∑z
y=1[−y, y] + [−y0 + 1, y0 − 1] + (my0 − 1)[−y0, y0]. And

ε#([1 − y0, y0 − 1]) = ε([−y0, y0]), if n0 ≥ 2, ε#([−y0, y0]) = ε([−y0, y0]),
and for y ≤ z, ε#([−y, y]) = ε([−y, y]).

• Suppose (∗) is satisfied, ny0
= 0 and n0 is odd. Then m1 = [−y0, y0],

ε1([−y0, y0]) = −ε([−y0, y0]), and m# = n0[0, 0] +
∑z

y=1[−y, y] + (my0
−

1)[−y0, y0] and ε#([−y0, y0]) = −ε([−y0, y0]) and for y < y0, ε#([−y, y]) =
ε([−y, y]).

• Suppose (∗) is satisfied, ny0
= 0 and n0 is even. Then m1 = [−y0, 0]+ [0, y0],

m# = (n0 − 1)[0, 0] +
∑z

y=1[−y, y] + (my0
− 1)[−y0, y0], ε#([−y0, y0]) =

ε([−y0, y0]) and ε#([−y, y]) = −ε([−y, y]) for 0 ≤ y ≤ z.
Now, we will compute Dy0

(m, ε).
• Suppose y0 = 2, (∗) is not satisfied, ny0 ≠ 0 and z = y0 − 1. Then

Dy0
(m, ε) = n0[0, 0] +

∑z
y=1[−y, y] + my0

[−y0 + 1, y0 − 1] + min{t0 +

1, n2}([y0, y0] + [−y0,−y0]).
• Suppose y0 = 2, (∗) is not satisfied and ny0

= 0 or z < y0 − 1. Then
Dy0

(m, ε) = n0[0, 0]+
∑z

y=1[−y, y]+my0
[−y0+1, y0−1]+min{t0, n2}([y0, y0]+

[−y0,−y0]).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 71

• Suppose y0 = 2, (∗) is satisfied and my0
is odd. Then Dy0

(m, ε) = n0[0, 0] +∑z
y=1[−y, y] + (my0

− 1)[−y0 + 1, y0 − 1] + [−y0, y0] +min{t0, n2}([y0, y0] +
[−y0,−y0]).

• Suppose y0 = 2, (∗) is satisfied and my0 is even. Then Dy0(m, ε) = [−y0, y0−
1] + [−y0 + 1, y0] + n0[0, 0] +

∑z
y=1[−y, y] + (my0 − 2)[−y0 + 1, y0 − 1] +

min{t0, n2}([y0, y0] + [−y0,−y0]).
• Suppose y0 ̸= 2, (∗) is not satisfied, ny0

≠ 0 and z = y0 − 1. Then
Dy0

(m, ε) = n0[0, 0] +
∑z

y=1[−y, y] + my0
[−y0 + 1, y0 − 1] + ([y0, y0] +

[−y0,−y0]).
• Suppose y0 ̸= 2,(∗) is not satisfied and ny0 = 0 or z < y0 − 1. Then

Dy0(m, ε) = n0[0, 0] +
∑z

y=1[−y, y] +my0 [−y0 + 1, y0 − 1].
• Suppose y0 ≠ 2,(∗) is satisfied and my0 is odd. Then Dy0(m, ε) = n0[0, 0] +∑z

y=1[−y, y] + (my0
− 1)[−y0 + 1, y0 − 1] + [−y0, y0].

• Suppose y0 ̸= 2, (∗) is satisfied and my0
is even. Then Dy0

(m, ε) = [−y0, y0−
1] + [−y0 + 1, y0] + n0[0, 0] +

∑z
y=1[−y, y] + (my0

− 2)[−y0 + 1, y0 − 1].
Examining all the cases we find that, when m1 = [y0, y0] + [−y0,−y0] then

Dy0
(m, ε) = Dy0

(m#, ε#) and in all the other cases m̃1 = m1 and (m̃#, ε̃#) =
Dy0

(m#, ε#). Hence we get that AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)). □

Now, we suppose that ρ is not of the same type as G. Then m is of the following
form

m =

emax∑
y=1/2

ny([y, y] + [−y,−y]) +

z∑
y=1/2

[−y, y] +m[−emax, emax].

10.8.2. Proposition. We have that AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).

Proof. The proof is similar to the proof of Proposition 10.8.1. When nemax−1 ̸= 0,
it is exactly the same. Now suppose that nemax−1 = 0. Thus m is of the form

m =

z∑
y=1/2

[−y, y] +my0
[−y0, y0] + ny0

([y0, y0] + [−y0,−y0]),

Let us start by computing AD(m, ε). We get that
• Suppose ny0

≠ 0 and z < y0 − 1. Then m1 = [−y0,−y0] + [y0, y0] and
m# =

∑z
y=1/2[−y, y] +my0

[−y0, y0] + (ny0
− 1)([y0, y0] + [−y0,−y0]).

• Suppose ny0 ̸= 0 and z = y0 − 1. Then m1 = [−y0, y0], ε1(y0) =

(−1)z+my0
+1, m# =

∑z−1
y=1/2[−y, y] + my0 [−y0, y0] + (ny0 − 1)([y0, y0] +

[−y0,−y0]), ε#([−y0, y0]) = −ε([−y0, y0]) and ε#([−y, y]) = −ε([−y, y]) for
1/2 ≤ y < z.

• Suppose (∗) is not satisfied and ny0 = 0. Then m1 = [−y0,−y0] + [y0, y0],
m# =

∑z
y=1/2[−y, y] + [−y0 + 1, y0 − 1] + (my0 − 1)[−y0, y0], and ε#([1−

y0, y0 − 1]) = ε([−y0, y0]), if n0 ≥ 2, ε#([−y0, y0]) = ε([−y0, y0]), and for
y ≤ z, ε#([−y, y]) = ε([−y, y]).

• Suppose (∗) is satisfied and ny0
= 0. Then m1 = [−y0, y0], ε1([−y0, y0]) =

(−1)z+my0+1, m# =
∑z

y=1/2[−y, y] + (my0
− 1)[−y0, y0], ε#([−y0, y0]) =

−ε([−y0, y0]) and for y < y0, ε#([−y, y]) = ε([−y, y]).
Now, we compute Dy0(m, ε).

• Suppose (∗) is not satisfied, ny0
≠ 0 and z = y0 − 1. Then Dy0

(m, ε) =∑z
y=1/2[−y, y] +my0

[−y0 + 1, y0 − 1] + ([y0, y0] + [−y0,−y0]).
• Suppose (∗) is not satisfied and ny0

= 0 or z < y0 − 1. Then Dy0
(m, ε) =∑z

y=1/2[−y, y] +my0
[−y0 + 1, y0 − 1].

72 THOMAS LANARD AND ALBERTO MÍNGUEZ

• Suppose (∗) is satisfied and my0
is odd. Then Dy0

(m, ε) =
∑z

y=1/2[−y, y] +

(my0 − 1)[−y0 + 1, y0 − 1] + [−y0, y0].
• Suppose (∗) is satisfied and my0

is even. Dy0
(m, ε) = [−y0, y0 − 1] + [−y0 +

1, y0] +
∑z

y=1/2[−y, y] + (my0
− 2)[−y0 + 1, y0 − 1].

We finish as in the proof of Proposition 10.8.1. □

10.9. The derivatives D−emax
. In this section, we assume that emax > 1, that

for all −emax < y ≤ emax with y ̸= 0, (m, ε) is y-reduced, that (m, ε) is L([−1, 0])-
reduced, and that (m, ε) is not −emax-reduced. Let y0 = −emax. The derivative
Dy0

(m, ε) just suppresses all the segments [y0, y0] + [−y0,−y0] from m and doesn’t
change ε.

10.9.1. Proposition. If mm([−emax, emax]) = 0, then D−y0
(AD(m, ε)) = AD(Dy0

(m, ε)).

Proof. Let (m̃, ε̃) = Dy0
(m, ε). With the hypotheses made, ∆1 = [−y0,−y0], l ≥ 2

(because D−y0
(π) = 0) and ∆2 is the biggest segment ending in −y0−1. Hence, ∆̃1 =

∆2, l̃ = l − 1 and for all 1 ≤ j < l, ∆̃j = ∆j+1. Thus (m̃1, ε̃1) = D−y0
(m1, ε1) and

(m̃#, ε̃#) = Dy0
(m#, ε#). From Lemma 9.4.1 and Lemma 10.2.3, D−y0

(AD(m, ε)) =
D−y0

(m1, ε1)+D−y0
(AD(m#, ε#)) = (m̃1, ε̃1)+AD(m̃#, ε̃#) = AD(Dy0

(m, ε)). □

Now we assume that mm([−emax, emax]) ̸= 0. First, we assume that ρ is of the
same type as G. From the hypotheses made on the derivative (recalled at the
beginning of Section 10.8), we get that for all 2 ≤ y ≤ emax, mm([−y, y]) = 1,
ε([−y, y]) = −ε([1 − y, y − 1]) and ε([0, 0])ε([−1, 1]) = (−1)t0+1. Let nemax

=
mm([emax, emax]), n2 = mm([2, 2]), n1 = mm([1, 1]), n0 = mm([0, 0]) and t0 =
mm([0, 1]). Then, nemax

= mm([emax, emax]) = · · · = mm([2, 2]), t0 = nemax
− n1 and

n0 ≥ n1 + 1.

10.9.2. Lemma. Suppose that mm([−emax, emax]) ̸= 0. Then AD(m, ε) = (m′, ε′)
with :

(1) If n0 − n1 is odd,

m′ = (n1+1)[−emax, emax]+(nemax
−n1)([−emax, 0]+[0, emax])+(n0−n1)[0, 0]+

emax−1∑
y=1

[−y, y],

ε′([−emax, emax]) = (−1)n0+emax+1ε([0, 0]), ε′([0, 0]) = (−1)nemax ε([0, 0])
and ε′([−y, y]) = (−1)n1ε([−y, y]) for y ̸= 0, emax.

(2) If n0 − n1 is even,

m′ = n1[−emax, emax]+(nemax
−n1+1)([−emax, 0]+[0, emax])+(n0−n1−1)[0, 0]+

emax−1∑
y=1

[−y, y],

ε′([−emax, emax]) = (−1)n0+emax+1ε([0, 0]), ε′([0, 0]) = (−1)nemax+1ε([0, 0])
and ε′([−y, y]) = (−1)n1+1ε([−y, y]) for y ̸= 0, emax.

Proof. First, we apply the algorithm n1 times to (m, ε). Each time we get l = emax+1,
∆1 = [emax, emax], ∆2 = [emax−1, emax−1], ...,∆l−1 = [1, 1], ∆l = [0, 0]≥0 or [0, 0]=0.
Thus we get that m1 = [−emax, emax], with ε1(m1) = (−1)n0+emax+1ε([0, 0]), and m#

is m where we have removed the segments [y, y] and [−y,−y] for 1 ≤ y ≤ emax and
[0, 0], and ε#([−y, y]) = −ε([−y, y]). Hence after applying n1 times the algorithm
we get that

AD(m, ε) = n1[−emax, emax] + AD(m′, ε′)

with ε1([−emax, emax]) = (−1)n0+emax+1ε([0, 0]), m′ = n
∑emax

y=2 ([y, y] + [−y,−y]) +

(n0−n1)[0, 0]+n([−1, 0]+[0, 1])+
∑emax

y=1 [−y, y], with n = nemax
−n1, and ε′([−y, y]) =

(−1)n1ε([−y, y]).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 73

Now apply again the algorithm to (m′, ε′). We get l = emax+1, ∆1 = [emax, emax],
∆2 = [emax − 1, emax − 1], ...,∆l−2 = [2, 2], ∆l−1 = [0, 1] and ∆l = [0, 0]. If n0 − n1

is odd then m1 = [−emax, emax] and m# is m′ where we have removed the segments
[y, y] and [−y,−y] for 2 ≤ y ≤ emax, we have removed [−1, 0] + [0, 1] and we have
added a [0, 0] and ε#([0, 0]) = ε′([0, 0]) and for y ≠ 0, ε#([−y, y]) = −ε′([−y, y]).
If n0 − n1 is even then m1 = [−emax, 0] + [0, emax] and m# is m′ where we have
removed the segments [y, y] and [−y,−y] for 2 ≤ y ≤ emax and [−1, 0] + [0, 1]; if
y ̸= 0, ε#([−y, y]) = ε′([−y, y]) and ε#([0, 0]) = −ε′([0, 0]). Hence after applying n
times the algorithm to (m′, ε′) we get that:

• If n0 − n1 is even:

AD(m, ε) = n1[−emax, emax] + (ny0
− n1)([−emax, 0] + [0, emax]) + AD(m′′, ε′′)

with m′′ = n′[0, 0] +
∑emax

y=1 [−y, y], where n′ = n0 − n1, ε′′([0, 0]) =

(−1)nemax ε([0, 0]) and for y ̸= 0, ε′([−y, y]) = (−1)n1ε([−y, y]).
• If n0 − n1 is odd:

AD(m, ε) = (n1+1)[−emax, emax]+(ny0
−n1−1)([−emax, 0]+[0, emax])+AD(m′′, ε′′)

with m′′ = n′[0, 0] +
∑emax

y=1 [−y, y], where n′ = n0 − n1 + 1, ε′′([0, 0]) =

(−1)nemax+1ε([0, 0]) and for y ̸= 0, ε′′([−y, y]) = (−1)n1+1ε([−y, y]).
Now, ε′′([0, 0])ε′′([−1, 1]) = (−1)nemax+n1ε([0, 0])ε([−1, 1]) = (−1)nemax+n1+t0+1 =

−1. We have computed AD(m′′, ε′′) in Lemma 10.1.1, as n′ is even we have
AD(m′′, ε′′) = (n′−1)[0, 0]+

∑emax−1
y=1 [−y, y]+ [−emax, 0]+ [0, emax] and all the signs

of the segments [−y, y] for y ̸= emax change, which gives the result. □

We can prove the wanted result.

10.9.3. Proposition. If mm([−emax, emax]) ̸= 0, then D−y0(AD(m, ε)) = AD(Dy0(m, ε)).

Proof. Lemma 10.9.2 computes explicitly AD(m, ε). Using the formulas for the
derivative recalled in Section 9, we get D−y0

(AD(m, ε)). Thus let us compute
AD(Dy0

(m, ε)) and check that we get the same formula.
Now, Dy0(m, ε) is just (m, ε) where we have removed all the segments [y0, y0].

We apply the algorithm to Dy0(m, ε).
• If t0 is even (hence ε(0)ε(1) = −1), then ∆1 = [−emax, emax]

=0, ..., ∆emax
=

[−1, 1]=0 and ∆emax+1 = [0, 0]=0 or [0, 0]≤0 depending on the parity of n0.
– If n0 is odd, then ∆emax+1 = [0, 0]=0 and l = emax + 1. Thus m1 =

[−emax, emax] and m# = nemax

∑emax−1
y=2 ([y, y] + [−y,−y]) + n1([1, 1] +

[−1,−1]) + n0[0, 0] + t0([−1, 0] + [0, 1]) +
∑emax−1

y=1 [−y, y].
– If n0 is even and n1 = 0, then l = emax + 1 and ∆l = [0, 0]≤0. Thus

m1 = [−emax, 0]+[0, emax] and m# = nemax

∑emax−1
y=2 ([y, y]+[−y,−y])+

n1([1, 1]+[−1,−1])+(n0−1)[0, 0]+t0([−1, 0]+[0, 1])+
∑emax−1

y=1 [−y, y].
– If n0 is even and n1 ̸= 0, then l = 2emax, ∆emax+2 = [−1,−1],...,∆l =

[−emax+1,−emax+1]. Thus m1 = [−emax, emax−1]+[−emax+1, emax]

and m# = (nemax
− 1)

∑emax−1
y=2 ([y, y] + [−y,−y]) + (n1 − 1)([1, 1] +

[−1,−1]) + (n0 − 1)[0, 0] + t0([−1, 0] + [0, 1]) +
∑emax−1

y=1 [−y, y].
• If t0 is odd (hence ε(0)ε(1) = 1), then l = emax+1, ∆1 = [−emax, emax]

=0, ...,
∆l−1 = [−1, 1]=0 and ∆l = [−1, 0]. We get that m1 = [−emax, 0] + [0, emax]

and m# = nemax

∑emax−1
y=2 ([y, y] + [−y,−y]) + (n1 + 1)([1, 1] + [−1,−1]) +

(n0 + 1)[0, 0] + (t0 − 1)([−1, 0] + [0, 1]) +
∑emax−1

y=1 [−y, y].

In all those cases, AD(m#, ε#) has been computed in Lemma 10.9.2. We get (with
the signs as in Lemma 10.9.2):

• Suppose that t0 is even and n0 is odd.

74 THOMAS LANARD AND ALBERTO MÍNGUEZ

– If n0−n1 is odd, then AD(Dy0
(m, ε)) = [−emax, emax]+(n1+1)[−emax+

1, emax−1]+(nemax
−n1)([−emax+1, 0]+[0, emax−1])+(n0−n1)[0, 0]+∑emax−2

y=1 [−y, y].
– If n0 − n1 is even, then AD(Dy0(m, ε)) = [−emax, emax] + n1[−emax +

1, emax − 1] + (nemax
− n1 + 1)([−emax + 1, 0] + [0, emax − 1]) + (n0 −

n1 − 1)[0, 0] +
∑emax−2

y=1 [−y, y].
• Suppose that t0 is even, n0 is even and n1 = 0. Then n0 − n1 is even. Thus
AD(Dy0

(m, ε)) = [−emax, 0]+[0, emax]+[−emax+1, emax−1]+nemax
([−emax+

1, 0] + [0, emax − 1]) + (n0 − 1)[0, 0] +
∑emax−2

y=1 [−y, y].
• Suppose that t0 is even, n0 is even and n1 ̸= 0.

– If n0 − n1 is odd, then AD(Dy0(m, ε)) = [−emax, emax − 1] + [−emax +
1, emax]+n1[−emax+1, emax−1]+(nemax

−n1)([−emax+1, 0]+[0, emax−
1]) + (n0 − n1)[0, 0] +

∑emax−2
y=1 [−y, y].

– If n0 − n1 is even, then AD(Dy0
(m, ε)) = [−emax, emax − 1] + [−emax +

1, emax] + (n1 − 1)[−emax + 1, emax − 1] + (nemax
− n1 + 1)([−emax +

1, 0] + [0, emax − 1]) + (n0 − n1 − 1)[0, 0] +
∑emax−2

y=1 [−y, y].
• Suppose that t0 is odd.

– If n0 − n1 is odd, then AD(Dy0
(m, ε)) = [−emax, 0] + [0, emax] + (n1 +

2)[−emax + 1, emax − 1] + (nemax − n1 − 1)([−emax + 1, 0] + [0, emax −
1]) + (n0 − n1)[0, 0] +

∑emax−2
y=1 [−y, y].

– If n0 − n1 is even, then AD(Dy0
(m, ε)) = [−emax, 0] + [0, emax] + (n1 +

1)[−emax + 1, emax − 1] + (nemax
− n1)([−emax + 1, 0] + [0, emax − 1]) +

(n0 − n1 − 1)[0, 0] +
∑emax−2

y=1 [−y, y].
Looking at the formulas of the derivative recalled in Section 9, we see that

D−y0
(AD(m, ε)) = AD(Dy0

(m, ε)). □

We now treat the case where ρ is not of the same type as G. We still assume
that mm([−emax, emax]) ̸= 0. Let nemax

= mm([emax, emax]). We get that for all
1/2 ≤ y ≤ emax, mm([y, y]) = nemax

and mm([−y, y]) = 1. Also, ε([−1/2, 1/2]) =
(−1)nemax+1, and for y > 1/2, ε([−y, y])ε([1− y, y − 1]) = −1.

10.9.4. Lemma. Suppose that mm([−emax, emax]) ̸= 0. Then AD(m, ε) = (m′, ε′)
with :

m′ = (nemax
+ 1)[−emax, emax] +

emax−1/2∑
y=1

[−y + 1/2, y − 1/2]

ε′([−emax, emax]) = (−1)emax+1/2 and ε′([−y, y]) = (−1)nemax ε([−y, y]), for y <
emax.

Proof. First, we apply the algorithm nemax times to (m, ε). Each time we get
l = emax + 1/2, ∆1 = [emax, emax], ∆2 = [emax − 1, emax − 1], ..., ∆l = [1/2, 1/2].
Thus we get that m1 = [−emax, emax], with ε1(m1) = (−1)emax+1/2, and m# is m
where we have removed the segments [y, y] and [−y,−y] for 1/2 ≤ y ≤ emax and
ε#([−y, y]) = −ε([−y, y]). Hence after applying nemax

times the algorithm we get
that

AD(m, ε) = nemax
[−emax, emax] + AD(m′, ε′)

with ε1([−emax, emax]) = (−1)emax+1/2, m′ =
∑emax

y=1/2[−y, y] and ε′([−y, y]) =

(−1)nemax ε([−y, y]).
By Lemma 10.1.2, AD(m′, ε′) = (m′, ε′) and we get the result. □

10.9.5. Proposition. If mm([−emax, emax]) ̸= 0, then D−y0(AD(m, ε)) = AD(Dy0(m, ε)).

Proof. The derivative Dy0
(m, ε) is just (m, ε) where we have removed all the segments

[y0, y0]. We apply the algorithm to Dy0
(m, ε). We get ∆1 = [−emax, emax]

=0, ...,

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 75

∆emax
= [−1, 1]=0 and ∆l = [0, 0]=0. The sign of ∆l, which depends on the parity

of nemax
, determines if ε0 is 1 or −1.

• If nemax is even, then ε0 = −1, m1 = [−emax, emax] and m# = nemax

∑emax−3/2
y=0 ([y+

1/2, y + 1/2] + [−y − 1/2,−y − 1/2]) +
∑emax−3/2

y=1 [−y + 1/2, y − 1/2].
• If nemax is odd, then ε0 = 1, m1 = [−emax, emax − 1] + [−emax +1, emax] and

m# = (nemax
− 1)

∑emax−3/2
y=0 ([y + 1/2, y + 1/2] + [−y − 1/2,−y − 1/2]) +∑emax−3/2

y=1 [−y + 1/2, y − 1/2].

We can then compute AD(m#, ε#) with Lemma 10.9.4. We get (with the signs
as in Lemma 10.9.4),

• If nemax
is even, then AD(Dy0

(m, ε)) = [−emax, emax] + (nemax
+ 1)[−emax +

1, emax − 1] +
∑emax−3/2

y=1 [−y + 1/2, y − 1/2].
• If nemax is odd, then AD(Dy0(m, ε)) = [−emax, emax−1]+[−emax+1, emax]+

nemax [−emax + 1, emax − 1] +
∑emax−3/2

y=1 [−y + 1/2, y − 1/2].
Looking at the formulas of the derivative recalled in Section 9, we see that

D−y0
(AD(m, ε)) = AD(Dy0

(m, ε)). □

11. Proof in the bad parity case

Let ρ ∈ CGL be of bad parity, and denote by ρu its unitarization. The goal of
this section is to prove Theorem 5.4.1 in the case of an irreducible representation of
ρ-bad parity. To do so, we will work with symmetrical Langlands data throughout
this section. More precisely, we will establish the following equivalent formulation
of the theorem.

11.0.1. Theorem. Let π ∈ IrrG be ρ-bad with symmetrical Langlands data (m, ε).
Then we have

π̂ ≃ L(AD(m, ε)).

11.1. The strategy of the proof. An element of Symmε
ρ(G) has all its signs

trivial since ρ is bad, hence we will just write m ∈ Symmε
ρ(G). Unlike in Section 10,

here we do not have any issues with the signs. Therefore, we can directly prove by
induction on N ∈ N the following theorem.

11.1.1. Theorem. Let N ∈ N. Let m ∈ Symmε
ρ(G) and π = L(m) ∈ IrrG. If

l(m) ≤ N ; then π̂ ≃ L(AD(m)).

We prove Theorem 11.1.1 by induction of N . The case N = 0 is trivial. Let
N ∈ N∗.

11.1.2. Hypothesis. We assume that Theorem 11.1.1 is true for all N ′ < N

Until the end of the section, we will assume that Hypothesis 11.1.2 is true. We
want to prove now that Theorem 11.1.1 is true for N . To do that, we will prove
that the algorithm AD commutes with the derivatives.

11.1.3. Lemma. We assume that for all non-reduced m ∈ Symmε
ρ(G) with l(m) = N ,

we have either
(1) there exists x ̸= 0, such that m is not ρu| · |x-reduced and AD(Dρu|·|x(m)) =

Dρu|·|−x(AD(m))
(2) or, if it is defined, m is not L([−1, 0]ρu)-reduced and AD(DL([−1,0]ρu)(m)) =

DZ([0,1]ρu)(AD(m)).
Then Theorem 11.1.1 is true for N .

76 THOMAS LANARD AND ALBERTO MÍNGUEZ

Proof. Let π and m be as in Theorem 11.1.1. If m is reduced, then m = n[0, 0]ρu

for some even integer n. Then AD(m) = m and π̂ = π, which proves the theorem.
Hence, we can assume that m is not reduced. Let us suppose that there exists
x ̸= 0 such that m is not ρu| · |x-reduced (the case L([−1, 0]ρu)-reduced is treated
similarly). By hypothesis, AD(Dρu|·|x(m)) = Dρu|·|−x(AD(m)). Then we get

Dρ|·|−x(L(AD(m))) = L(Dρ|·|−x(AD(m))) by Lemma 9.3.3
= L(AD(Dρ|·|x(m)))

= L(Dρ|·|x(m))̂ by Hypothesis 11.1.2

= Dρ|·|x(L(m))̂ by Lemma 9.3.3
= Dρ|·|−x(π̂) by [AM23, Prop. 3.9.]

By the injectivity of Dρu|·|−x , we get that π̂ = L(AD(m)). □

As in Section 10, the rest of this section is devoted to prove that the conditions
(1) or (2) of the above Lemma are satisfied. We will need the following lemmas.

11.1.4. Lemma. For all m ∈ Symmε
ρ(G) such that l(m) < N and for all x ̸= 0,

AD(Dρu|·|x(m)) = Dρu|·|−x(AD(m))

and, if it is well-defined,

AD(DL([−1,0]ρu)(m)) = DZ([0,1]ρu)(AD(m)).

Proof. It follows from Proposition 8.5.1. □

11.1.5. Lemma. For all m ∈ Symmε
ρ(G) such that l(m) < N − 2 and for all x ̸= 0,

AD(S
(1)
ρu|·|x(m)) = S

(1)
ρu|·|−x(AD(m))

and, if it is well-defined,

AD(S
(1)
L([−1,0]ρu)(m)) = S

(1)
Z([0,1]ρu)(AD(m)).

Proof. The proof follows from [Ber92, Thm. 31 (4)]. □

The remainder of this section follows the structure of the proof in Section 10. The
algorithm is simpler in the bad parity case, as already observed in this subsection.
Since all the proofs are very similar, we will only provide a sketch. To simplify the
notations, until the end of Section 11, we will write all the segments with respect to
ρu and we will omit ρ and ρu in the notations. That is AD := ADρ, [x, y] := [x, y]ρu

,
Dx := Dρu|·|x , DZ([0,1]) := DZ([0,1]ρu) and DL([−1,0]) := DL([−1,0]ρu). We will also
say that m is x-reduced if it is ρu| · |x-reduced, and similarly for L([−1, 0])-reduced
and Z([−1, 0])-reduced.

11.2. The case emax ≤ 1. In this section we assume that emax ≤ 1. The goal is to
compute explicitly AD(m).

We start with the easiest case which is when ρ is of the same type as G. Then m
is of the form

m = c[−1/2, 1/2] + n([−1/2,−1/2] + [1/2, 1/2])

with c, n ∈ N and c even.
Let m′ = AD(m). The maximum of the coefficients of m′ is also smaller than 1,

so m′ is of the form as above. We denote by c′, n′ ∈ N the constants relative to m′.
A direct computation shows that:

11.2.1. Proposition. The dual AD(m) = m′ is given by the following formula.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 77

(1) If n is even, then c′ = n and n′ = c.
(2) If n is odd, then c′ = n− 1 and n′ = c+ 1.

Looking at the formulas for the derivatives we see that

11.2.2. Proposition. (1) If n ̸= 0, then AD(D−1/2(m)) = D1/2(AD(m)).
(2) If n = 0, then AD(D1/2(m)) = D−1/2(AD(m)).

Now, let us assume that ρ is of the opposite type as G. Then m has the following
form

m = c0[0, 0] + c1[−1, 1] + t([−1, 0] + [0, 1]) + n([−1,−1] + [1, 1])

with c0, c1, t, n ∈ N, and c0, c1 even.
Let m′ = AD(m). The maximum of the coefficients of m′ is also smaller than 1,

so m′ is of the form as above. We denote by c′0, c
′
1, t

′, n′ ∈ N the constants relative
to m′. A direct computation shows that:

11.2.3. Proposition. The dual AD(m) = m′ is given by the following formula.
(1) If n > c0; then c′0 = c1, c′1 = c0, t′ = t and n′ = n− c0 + c1.
(2) If n ≤ c0, n is even and t is even; then c′0 = c0 − n+ c1, c′1 = n, t′ = t and

n′ = c1.
(3) If n ≤ c0, n is even and t is odd; then c′0 = c0−n+ c1+2, c′1 = n, t′ = t− 1

and n′ = c1 + 1.
(4) If n ≤ c0, n is odd and t is even; then c′0 = c0 − n − 1 + c1, c′1 = n − 1,

t′ = t+ 1 and n′ = c1.
(5) If n ≤ c0, n is odd and t is odd; then c′0 = c0 −n+ c1 +1, c′1 = n− 1, t′ = t

and n′ = c1 + 1.

We also check the commutativity with the derivative by an explicit computation.

11.2.4. Proposition. (1) If n ̸= 0, then AD(D−1(m)) = D1(AD(m)).
(2) If n = 0 and t ̸= 0, then AD(DL([−1,0])(m)) = DZ([0,1])(AD(m)).
(3) If n, t = 0, then AD(D1(m)) = D−1(AD(m)).

11.3. The negative derivative. In this section, we assume that emax > 1 and
there exists y < 0, y ̸= −emax such that m is not y-reduced.

We define y0 ∈ (1/2)Z to be the smallest y ∈ (1/2)Z such that y ̸= −emax and m
is not y-reduced. With our hypotheses on m necessarily y0 < 0.

11.3.1. Proposition. We have AD(Dy0(m)) = D−y0(AD(m)).

Proof. The proof is similar to what is done in Section 10.4 with some slight mod-
ifications. First, the formula for the negative derivative in the bad parity case is
identical to the formula in the good parity case. So we have a similar description of
y0.

Let ∆1, · · · ,∆l be the initial sequence in the algorithm for m. This time we
get that if e(∆l) < y0, then e(∆l) = −emax. We denote by m̃ := Dy0

(m) and by
∆̃1, · · · , ∆̃l̃ the initial sequence in the algorithm for m̃.

(1) If e(∆l) = y0, then l̃ = l − 1 and if not l̃ = l.
(2) For 1 ≤ i ≤ l̃, if b(∆i) = −y0 and ∆i ̸= [−y0,−y0] then ∆̃i =

−∆i, otherwise
∆̃i = ∆i.

This gives us that
(1) If e(∆l) ≥ y0 + 2, then m̃1 = m1 and m̃# = Dy0(m

#).
(2) If e(∆l) = y0 + 1, then m̃1 = m1 and m̃# = Dmax−1

y0
(m#).

(3) If e(∆l) = y0, then m̃1 = D−y0
(m1) and m̃# = Dy0

(m#).
(4) If e(∆l) < y0, then m̃1 = m1 and m̃# = Dy0

(m#).
We conclude with Lemmas 11.1.4 and 9.4.1. □

78 THOMAS LANARD AND ALBERTO MÍNGUEZ

11.4. The L([−1, 0])-derivative. In this section, we assume that emax > 1 and
that for all −emax < y < 0, m is y-reduced. We also assume that m is not L([−1, 0])-
reduced. We want to prove AD(DL([−1,0])(m)) = DZ([0,1])(AD(m,)).

Similarly to Lemma 10.5.5, the multisegment AD(m) is 1-reduced.

11.4.1. Proposition. We have AD(DL([−1,0])(m)) = DZ([0,1])(AD(m)).

Proof. This proof is similar to the proof of Section 10.5. We get that if e(∆l) < 0

then e(∆l) = −emax. We denote by (m̃, ε̃) := DL([−1,0])(m, ε) and by ∆̃1, · · · , ∆̃l̃

the initial sequence in the algorithm for (m̃, ε̃).
(1) If e(∆l) = 0, ∆l ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) > mm([−1,−1]) >

0 or mm([−2,−2]) > 1 with mm([−1,−1]) = 0 then l̃ = l − 1; otherwise
l̃ = l.

(2) For 1 ≤ i ≤ l̃, if b(∆i) = 0 and ∆i ≠ [0, 1] and p(∆i) ̸= [0, 0] then
∆̃i =

−−∆i; otherwise ∆̃i = ∆i.
We also get
(1) If e(∆l) ≥ 2 then m̃1 = m1, m# is −1-reduced and m̃# = DL([−1,0])(m

#).
(2) If e(∆l) = 0 and ∆l ̸= [0, 0] and ∆l ̸= [−1, 0] if mm([−2,−2]) > mm([−1,−1]) >

0 or mm([−2,−2]) > 1 with mm([−1,−1]) = 0, then m̃1 = [1, emax] +
[−emax,−1], m# is not −1-reduced and m̃# = DL([−1,0])(D−1(m

#)).
(3) Else, if e(∆l) = 0, then m̃1 = m1, m# is −1-reduced and m̃# = DL([−1,0])(m

#).
(4) If e(∆l) = 1 then m̃1 = m1, m# is −1-reduced and m̃# = Dmax−1

L([−1,0])(m
#).

(5) If e(∆l) < 0 then m̃1 = m1, m# is −1-reduced and m̃# = DL([−1,0])(m
#).

Similarly to Lemma 10.5.5 this implies that the multisegment AD(m) is 1-reduced.
And we conclude with Lemma 9.4.2. □

11.5. The positive derivative. In this section, we assume that emax > 1, that
for all −emax < y < 0, m is y-reduced, that m is L([−1, 0])-reduced, and that there
exists y > 0 with y ̸= emax such that m is not y-reduced.

We define y0 ∈ (1/2)Z to be the smallest y ∈ (1/2)Z∗ such that y ̸= −emax,
y ̸= emax and m is not y-reduced. With our hypotheses on m necessarily y0 > 0.

Let y1 ∈ (1/2)N∗ be the smallest positive half-integer such that [y1, y1] ∈ m.
We denote by m̃ := Dy0

(m) and by ∆̃1, · · · , ∆̃l̃ the initial sequence in the
algorithm for m̃.

11.5.1. Proposition. We have AD(Dy0(m)) = D−y0(AD(m)).

Proof. This proof is similar to the proof of Sections 10.6 and 10.7.
Indeed, let y1 ∈ (1/2)N∗ be the smallest positive half-integer such that [y1, y1] ∈ m.

We get that if e(∆l) < 0 then e(∆l) = 0 or e(∆l) = −emax (and necessarily y1 = 1

or 1/2). We denote by m̃ := Dy0
(m) and by ∆̃1, · · · , ∆̃l̃ the initial sequence in

the algorithm for m̃. The proof is divided into three parts, depending on whether
y1 < y0, y1 = y0 or y1 > y0.

• Suppose that y1 < y0. Then l̃ = l; and for all 1 ≤ i ≤ l, ∆̃i = ∆i. From
there, we get that m̃1 = m1 and m̃# = Dy0

(m#). This easily gives us the
result.

• Suppose that y1 = y0. Let t0 = mm([0, 1]) and j = emax − y0 + 1, such that
∆j = [y0, y0]. We get that
(1) If e(∆l) = y0, then l̃ = l − 1; otherwise l̃ = l.
(2) Let 1 ≤ i ≤ l̃.

(a) If y0 = 1, mm([0, 0]) = 0, t0 ̸= 0, t0 is even and i = j; then
∆̃i = [0, 1].

(b) If y0 = 1, mm([0, 0]) = 0, t0 is odd and i = j+1; then ∆̃i = [0, 0].

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 79

(c) Otherwise, ∆̃i = ∆i.
This gives us that
(1) If e(∆l) = y0, then m̃1 = D−y0(m1) and m̃# = Dy0(m

#).
(2) Otherwise, m̃1 = m1 and m̃# = Dy0(m

#).
We conclude with Lemmas 11.1.4 and 9.4.1.

• Suppose that y0 < y1. Then
(1) If e(∆l) = y0 then l̃ = l − 1; otherwise l̃ = l.
(2) For 1 ≤ i ≤ l̃:

(a) If e(∆i) ̸= y0, b(∆i) = −y0 and ∆i ̸= [−1, 0], then ∆̃i =
−∆i.

(b) Otherwise, ∆̃i = ∆i.
This leads to
(1) If e(∆l) ≥ y0 + 2, then m̃1 = m1 and m̃# = Dy0

(m#).
(2) If e(∆l) = y0 + 1, then m̃1 = m1 and m̃# = Dmax−1

y0
(m#).

(3) If e(∆l) = y0, then m̃1 = D−y0(m1) and m̃# = Dy0(m
#).

(4) If e(∆l) = 0, then m̃1 = m1 and m̃# = Dy0(m
#).

We conclude with Lemmas 11.1.4 and 9.4.1.
□

11.6. The derivatives Demax
. In this section, we assume that emax > 1, that for

all −emax < y < emax with y ̸= 0, m is y-reduced, that m is L([−1, 0])-reduced, and
that m is not emax-reduced. Let y0 = emax.

11.6.1. Proposition. We have that AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).

Proof. We follow the same proof as in Section 10.8. We denote by m̃ := Dy0(m) and
by ∆̃1, · · · , ∆̃l̃ the initial sequence in the algorithm for (m̃, ε̃).

First, let us assume that mm([emax−1, emax−1]) ̸= 0. Then also mm([emax, emax]) ̸=
0 and l ≥ 2, ∆1 = [y0, y0] and ∆2 = [y0 − 1, y0 − 1]. We also have that
mm̃([emax, emax]) ̸= 0, so ∆̃1 = [y0, y0] = ∆1 and ∆̃2 = [y0 − 1, y0 − 1] = ∆2.
We deduce from this that l̃ = l and for all 1 ≤ j ≤ l, ∆̃j = ∆j . This gives us that
m̃1 = m1 and m̃# = Dy0

(m#). Finally, we get AD(Dy0
(m, ε)) = D−y0

(AD(m, ε)).
Now we assume that mm([emax − 1, emax − 1]) = 0. Notice that since y0 is the

maximum of the coefficients of m′ then D−y0
(m′) just removes all the segments

[y0, y0] and [−y0,−y0]. In particular D−y0
(AD(m)) = D−y0

(m1)+D−y0
(AD(m#)) =

D−y0
(m1) + AD(Dy0

(m#)). We will compute AD(m), Dy0
(m) and AD(Dy0

(m)) to
see that AD(Dy0

(m)) = D−y0
(AD(m)).

If ρ is not of the same type as G, then m has the following form

m = n0[0, 0] +my0
[−y0, y0] + ny0

([y0, y0] + [−y0,−y0]) + t0([−1, 0] + [0, 1]),

with t0 even. Necessarily, if t0 ̸= 0 then y0 = 2. We start by computing AD(m). We
get that

• Suppose that ny0
= 0. Then m1 = [−y0,−y0] + [y0, y0] and m# = n0[0, 0] +

(my0
− 2)[−y0, y0] + t0([−1, 0] + [0, 1]) + ([−y0, y0 − 1] + [−y0 + 1,−y0]).

• Suppose that ny0
̸= 0 and t0 = 0. Then m1 = [−y0,−y0]+[y0, y0] and m# =

n0[0, 0] +my0
[−y0, y0] + (ny0

− 1)([y0, y0] + [−y0,−y0]) + t0([−1, 0] + [0, 1]).
• Suppose that ny0 ̸= 0 and t0 ̸= 0. Then m1 = [−y0, 0] + [0, y0] and
m# = n0[0, 0]+my0 [−y0, y0]+(ny0−1)([y0, y0]+[−y0,−y0])+(t0−2)([−1, 0]+
[0, 1]) + ([−1,−1] + [1, 1]) + ([0, 0] + [0, 0]).

Now, we get that Dy0
(m) = n0[0, 0] +my0

[−y0 + 1, y0 − 1] + (ny0
− t0)([y0, y0] +

[−y0,−y0]) + t0([−1, 0] + [0, 1]). This leads to AD(Dy0
(m)) = D−y0

(AD(m)).
If ρ is of the same type as G, then m has the following form

m = my0
[−y0, y0] + ny0

([y0, y0] + [−y0,−y0]).

80 THOMAS LANARD AND ALBERTO MÍNGUEZ

We get that AD(m) is given by the following formula.
• Suppose that ny0

= 0. Then m1 = [−y0,−y0] + [y0, y0] and m# = (my0
−

2)[−y0, y0] + ([−y0, y0 − 1] + [−y0 + 1,−y0]).
• Suppose that ny0

̸= 0. Then m1 = [−y0,−y0] + [y0, y0] and m# =
my0 [−y0, y0] + (ny0 − 1)([y0, y0] + [−y0,−y0]).

As for the derivative, Dy0
(m) = my0

[−y0 + 1, y0 − 1] + ny0
([y0, y0] + [−y0,−y0]).

This leads to AD(Dy0(m)) = D−y0(AD(m)). □

11.7. The derivatives D−emax
. In this section, we assume that emax > 1, that for

all −emax < y ≤ emax with y ̸= 0, m is y-reduced, that m is L([−1, 0])-reduced, and
that m is not −emax-reduced. Let y0 = −emax.

11.7.1. Proposition. We have that D−y0
(AD(m)) = AD(Dy0

(m)).

Proof. Let ∆1, · · · ,∆l be the initial sequence for m. Let m̃ = Dy0
(m) and ∆̃1, · · · , ∆̃l̃

the initial sequence in the algorithm for m̃. The derivative Dy0
(m) just suppresses

all the segments [y0, y0] + [−y0,−y0] from m.
With the hypotheses made, we have ∆1 = [−y0,−y0], l ≥ 2 (because m is −y0-

reduced) and ∆2 is the biggest segment ending in −y0 − 1. Hence, ∆̃1 = ∆2. We
get that if mm([1/2, 1/2]) > 1 or mm([1, 1]) > 1 (depending on the type of ρ) then
l̃ = l − 2. Otherwise, l̃ = l − 1. In both cases, for all 1 ≤ j < l, ∆̃j = ∆j+1. Thus
m̃1 = D−y0

(m1) and m̃# = Dy0
(m#). We get the result from Lemma 9.4.1 and

Lemma 10.2.3. □

12. Proof in the ugly case

Let σ ∈ CG be a cuspidal representation with Langlands data (ϕσ, ησ). Let
ρ ∈ CGL be ugly, and let π ∈ Irrσ be a ρ− ugly representation. Then there exists
m ∈ Multρ such that π ≃ L(m)⋊ σ (see [AM23, Prop. 2.6]).

We deduce that

π̂ = ̂L(m)⋊ σ ≃ L̂(m)⋊ σ ≃ L(mt)⋊ σ,

where mt is the Mœglin–Waldspurger dual of the multisegment m (see Paragraph 3.6).
Let y and y′ denote the Langlands data of π and π̂, respectively. Since ρ is ugly,

all the signs in transρ(y) and transρ(y
′) are trivial. Therefore, we identify transρ(y)

and transρ(y
′) with their underlying multisegments, which we denote by s and s′,

respectively.
By Theorem 4.5.5(3), the Langlands data y of π can be written as

(nρ + nρ∨ ; ϕρ + ϕρ∨ + ϕσ, ησ).

From [AM23, Remark 2.7], we deduce that

m = nρ + n∨ρ∨ +mϕρ .

On the other hand, by the definition of transρ, it follows that

s = nρ + n∨ρ∨ +mϕρ + (nρ + n∨ρ∨ +mϕρ)
∨ = m+m∨.

Similarly, we have s′ = mt +mt∨.
Now, Remark 5.1.3 implies that AD(s) = s′.

Appendix A. On machine learning

When we began working on this article, we initially used machine learning to
develop some intuition about the formulas presented here. We began this process
without making any mathematical assumptions or conjectures, in order to explore
what structures the machine learning model might reveal on its own. For interested
readers, we summarize this exploratory process in this appendix.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 81

Machine learning excels at detecting patterns in large datasets. As mathemati-
cians, we often focus on small, concrete examples, which can sometimes make us
overlook broader structures. In this work, we used machine learning, specifically
supervised learning, to develop intuitions and formulate conjectures related to the
Aubert–Zelevinsky duality. Our approach follows the strategy outlined in [DVB+21].

The idea is as follows: we begin by formulating a hypothesis about a potential
relationship between two mathematical objects, X(z) and Y (z). We then generate
a dataset of pairs (X(z), Y (z)), which serves as input for a supervised learning
model. By analyzing the resulting model, we refine either our dataset or our initial
hypothesis, and repeat the process until meaningful conjectures emerge.

This process is summarized in the following diagram (see [DVB+21, Fig. 1]
for further details). Grey boxes indicate mathematical steps, while blue boxes
correspond to computational procedures.

Formulate Hypothesis

Generate data Train supervised model Interrogate the model

Conjectures

Prove theorem

Let us go back to the Aubert–Zelevinsky involution. We fix ρ ∈ CGL of good
parity of the same type as G, and we want to understand ADρ. We begin by
generating representations using three parameters N, km, kϕ ∈ N. We consider
Langlands data Dataρ(G) of the form (m;ϕ, η) with m =

∑km

i=1[ai, bi], ai, bi ≤ N ,
ϕ = ⊕kϕ

j=1ρ⊠ Scj and cj ≤ 2N + 1. Using [AM23], one can compute the dual of all
these representations.

The numerical results below are based on a dataset of 100,000 representations
with parameters N = 5, km = 5 and kϕ = 3.

The first natural question is:

A.0.1. Question. Is there a “simple” formula to calculate AD(m, ϕ) directly from
(m, ϕ)?

To attempt to answer this, we trained a model to predict the dual of the elements
of our dataset. This approach did not perform well. Even a simpler question, such
as predicting the number of segments in the dual, yielded an accuracy of 37%.
We concluded that predicting directly the dual from (m, ϕ) was too much to ask
for. Inspired by the Mœglin–Waldspurger algorithm, we then assumed a recursive
structure of the form AD(m, ϕ) was given by AD(m, ϕ) = (m1, ϕ1) + AD(m#, ϕ#).

82 THOMAS LANARD AND ALBERTO MÍNGUEZ

A.0.2. Question. Is it possible to predict a specific segment in the dual? If so, which
one?

A.0.3. Remark. If we identify (m1, ϕ1) in the dual that can be produced from (m, ϕ)
then (m#, ϕ#) is uniquely determined by (m#, ϕ#) = AD(AD(m, ϕ)− (m1, ϕ1)).

We used a simple dense neural network to produce one segment of the dual. The
specific architecture or optimization of the model was not our focus—better results
could likely be obtained with more training or more refined models. Our goal was
not optimal prediction, but rather mathematical intuition.

We tried to predict the biggest or smallest segment according to the lexicographical
order. The following results were obtained:

Segment predicted Accuracy Accuracy b(m1) Accuracy e(m1)
Biggest 64.7% 93.2% 67.4%
Smallest 92.5% 100% 92.5%

We observe that predicting the smallest segment yields significantly better results,
and that the beginning of the segment is predicted almost perfectly.

Next, we aimed to interrogate the model to extract the elements of a formula for
predicting b(m1) and e(m1). To understand how each input coefficient influences
the output, we computed the average gradient of the model. We began with the
model predicting b(m1). The following diagram represents the absolute values of
the average gradient:

b1 e1 b2 e2 b3 e3 b4 e4 b5 e5 c1 ε1 c2 ε2 c3 ε3
0

2

4

6

8

10

12

Coefficients

G
ra

di
en

t

In this setup, b1 is the smallest beginning of any segment in m, and c3 is the largest
ci from ϕ. Computational experiments suggest that:

b(m1) = min{min{b(∆),∆ ∈ m},−max{ci ∈ ϕ}}.

Now, we examine the model that predicts e(m1).

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 83

b1 e1 b2 e2 b3 e3 b4 e4 b5 e5 c1 ε1 c2 ε2 c3 ε3
0

2

4

6

8

10

12

14

Coefficients

G
ra

di
en

t

Its interpretation is more subtle. To help with this, we applied the same gradient
technique to GLn, where the Mœglin–Waldspurger algorithm (as described in 3.6)
is well understood, and compared the results.

The gradients for predicting the end in GLn are as follows:

b1 e1 b2 e2 b3 e3 b4 e4 b5 e5
0

5

10

15

20

Coefficients

G
ra

di
en

t

And for the beginning, we get:

84 THOMAS LANARD AND ALBERTO MÍNGUEZ

b1 e1 b2 e2 b3 e3 b4 e4 b5 e5
0

5

10

15

20

Coefficients

G
ra

di
en

t

Comparing with the diagram for G, it appears that the part concerning m is
the mirror image of the one in GLn. Combined with the fact that the quantity
min {min{b(∆) | ∆ ∈ m}, −max{ci ∈ ϕ}} is preserved under duality, this obser-
vation led us to define symmetrical Langlands data and to conjecture that the
Aubert–Zelevinsky dual can be obtained via an analogue of the Mœglin–Waldspurger
algorithm applied to such data.

The conjecture holds almost entirely in the case of bad parity, provided we
impose the additional constraint that “a segment and its own dual cannot be used
simultaneously”. Further experimentation and analysis of examples then guided us
toward the correct formula in the good parity case.

This behavior is far from obvious when examining examples, as it is often obscured
by various interfering phenomena, such as the presence of a tempered part, sign
alternations, and parity conditions. In practice, it was only through AI-assisted
exploration that this underlying symmetry became apparent, as it was difficult for
us to discern from examples alone.

References

[AGI+24] Hiraku Atobe, Wee Teck Gan, Atsushi Ichino, Tasho Kaletha, Alberto Mínguez, and
Sug Woo Shin, Local intertwining relations and co-tempered a-packets of classical
groups, 2024, arXiv 2410.13504.

[Alv79] Dean Alvis, The duality operation in the character ring of a finite Chevalley group,
Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 907–911.

[Alv82] , Duality and character values of finite groups of Lie type, J. Algebra 74
(1982), no. 1, 211–222.

[AM23] Hiraku Atobe and Alberto Mínguez, The explicit Zelevinsky-Aubert duality, Compos.
Math. 159 (2023), no. 2, 380–418.

[Art13] James Arthur, The endoscopic classification of representations, American Mathe-
matical Society Colloquium Publications, vol. 61, American Mathematical Society,
Providence, RI, 2013, Orthogonal and symplectic groups.

[Ato20] Hiraku Atobe, Jacquet modules and local Langlands correspondence, Invent. Math.
219 (2020), no. 3, 831–871.

[Ato22a] , Construction of local A-packets, J. Reine Angew. Math. 790 (2022), 1–51.
[Ato22b] , On an algorithm to compute derivatives, Manuscripta Math. 167 (2022),

no. 3-4, 721–763.
[Ato22c] , On the socles of certain parabolically induced representations of p-adic

classical groups, Represent. Theory 26 (2022), 515–541.
[Ato24] , An analogue of ladder representations for classical groups, Int. Math. Res.

Not. IMRN (2024), no. 9, 7891–7913.

AN ALGORITHM FOR AUBERT–ZELEVINSKY DUALITY 85

[Aub95] Anne-Marie Aubert, Dualité dans le groupe de Grothendieck de la catégorie des
représentations lisses de longueur finie d’un groupe réductif p-adique, Trans. Amer.
Math. Soc. 347 (1995), no. 6, 2179–2189.

[BBK18] Joseph Bernstein, Roman Bezrukavnikov, and David Kazhdan, Deligne-Lusztig duality
and wonderful compactification, Selecta Math. (N.S.) 24 (2018), no. 1, 7–20.

[Ber92] J. Bernstein, Representations of p-adic groups., Lectures by Joseph Bernstein. Harvard
University (1992), https://personal.math.ubc.ca/ cass/research/pdf/bernstein.pdf.

[BLM13] Ioan Badulescu, Erez Lapid, and Alberto Mínguez, Une condition suffisante pour
l’irréductibilité d’une induite parabolique de GL(m,D), Ann. Inst. Fourier (Grenoble)
63 (2013), no. 6, 2239–2266.

[Bor76] Armand Borel, Admissible representations of a semi-simple group over a local field
with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259.

[BZ77] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic
groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172

[CMBO23] Dan Ciubotaru, Lucas Mason-Brown, and Emile Okada, Wavefront sets of unipotent
representations of reductive p-adic groups i, 2023, arXiv 2112.14354.

[CMBO24a] , Some unipotent Arthur packets for reductive p-adic groups, Int. Math. Res.
Not. IMRN (2024), no. 9, 7502–7525.

[CMBO24b] , The wavefront sets of unipotent supercuspidal representations, Algebra
Number Theory 18 (2024), no. 10, 1863–1889.

[Cur80] Charles W. Curtis, Truncation and duality in the character ring of a finite group of
Lie type, J. Algebra 62 (1980), no. 2, 320–332.

[DVB+21] Alex Davies, Petar Velickovic, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad
Tomasev, Richard Tanburn, Peter W. Battaglia, Charles Blundell, András Juhász,
Marc Lackenby, Geordie Williamson, Demis Hassabis, and Pushmeet Kohli, Advancing
mathematics by guiding human intuition with ai., Nature 600 (2021), no. 7887, 70–74.

[HLLS24] Alexander Hazeltine, Baiying Liu, Chi-Heng Lo, and Freydoon Shahidi, On the upper
bound of wavefront sets of representations of p-adic groups, 2024, arXiv 2403.11976.

[Jan97] Chris Jantzen, On supports of induced representations for symplectic and odd-
orthogonal groups, Amer. J. Math. 119 (1997), no. 6, 1213–1262.

[Jan18] , Duality for classical p-adic groups: the half-integral case, Represent. Theory
22 (2018), 160–201.

[Kat93] Shin-ichi Kato, Duality for representations of a Hecke algebra, Proc. Amer. Math.
Soc. 119 (1993), no. 3, 941–946.

[Kon03] Takuya Konno, A note on the Langlands classification and irreducibility of induced
representations of p-adic groups, Kyushu J. Math. 57 (2003), no. 2, 383–409.

[KZ96] Harold Knight and Andrei Zelevinsky, Representations of quivers of type A and the
multisegment duality, Adv. Math. 117 (1996), no. 2, 273–293.

[La24] Ruben La, The iwahori–matsumoto dual for tempered representations of lusztig’s
geometric hecke algebras, 2024, arXiv 2403.14528.

[LM16] Erez Lapid and Alberto Mínguez, On parabolic induction on inner forms of the
general linear group over a non-archimedean local field, Selecta Math. (N.S.) 22
(2016), no. 4, 2347–2400.

[Mœg11] Colette Mœglin, Multiplicité 1 dans les paquets d’Arthur aux places p-adiques, On
certain L-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI,
2011, pp. 333–374.

[Mok15] Chung Pang Mok, Endoscopic classification of representations of quasi-split unitary
groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248.

[MW86] Colette Mœglin and Jean-Loup Waldspurger, Sur l’involution de Zelevinski, J. Reine
Angew. Math. 372 (1986), 136–177.

[SS97] Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-
Tits building, Inst. Hautes Études Sci. Publ. Math. (1997), no. 85, 97–191.

[Wal18] Jean-Loup Waldspurger, Représentations de réduction unipotente pour SO(2n+ 1),
III: exemples de fronts d’onde, Algebra Number Theory 12 (2018), no. 5, 1107–1171.

[Xu17] Bin Xu, On Mœglin’s parametrization of Arthur packets for p-adic quasisplit Sp(N)
and SO(N), Canad. J. Math. 69 (2017), no. 4, 890–960.

[Zel80] A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible
representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210.

[Zel81] , The p-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i
Prilozhen. 15 (1981), no. 2, 9–21, 96.

86 THOMAS LANARD AND ALBERTO MÍNGUEZ

Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-
Saclay, 78035 Versailles, France

Email address: thomas.lanard@uvsq.fr

Departamento de Álgebra and Instituto de Matemáticas (IMUS), Universidad de
Sevilla, C/ Tarfia s/n, 41012 Sevilla
University of Vienna, Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, 1090
Wien

Email address: alberto.minguez@univie.ac.at

	1. Introduction
	2. Preliminaries
	3. Representation theory of GLn(F)
	4. Representation theory of classical groups
	5. Definition of the algorithm
	6. Well-definedness of the algorithm in the good parity case
	7. Important properties
	8. The theory of derivatives and the Atobe–Mínguez algorithm
	9. Explicit formulas for the derivatives
	10. Proof in the good parity case
	11. Proof in the bad parity case
	12. Proof in the ugly case
	Appendix A. On machine learning
	References

