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ABSTRACT. Let F be a locally compact non-Archimedean field of characteristic
0, and let G be either the split special orthogonal group SOa2,+1(F) or the
symplectic group Sps, (F). The goal of this paper is to give an explicit
description of the Aubert—Zelevinsky duality for G in terms of Langlands
parameters. We present a new algorithm, inspired by the Moeglin—-Waldspurger
algorithm for GLy, (F'), which computes the dual Langlands data in a recursive
and combinatorial way. Our method is simple enough to be carried out by
hand and provides a practical tool for explicit computations. Interestingly, the
algorithm was discovered with the help of machine learning tools, guiding us
toward patterns that led to its formulation.
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1. INTRODUCTION

1.1. Let F be a locally compact non-Archimedean field. In 1980, A. Zelevinsky
[Zel80] introduced an involution of the Grothendieck group of (smooth complex)
finite-length representations of GL, (F), for n > 1. Notably, this involution maps the
trivial representation to the Steinberg representation and fixes every supercuspidal
representation. He conjectured that this involution preserves irreducibility.

Inspired by the Alvis—Curtis duality [AIv79, [ATv82] [Cur80], S.-I. Kato [Kat93]
introduced an involution on the Grothendieck group of finite-length Iwahori-fixed
representations of a split connected reductive group defined over F'. Using properties
of the functor of invariants under an Iwahori subgroup [Bor76|, Kato was able to
prove that his involution preserves irreducibility, up to a sign.

Some years later, in 1995, A.-M. Aubert [Aub95] showed that Kato’s construction
can be generalized to define an involution on the Grothendieck group of finite-length
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representations of any connected reductive group defined over F (see Paragraph ,
and proved that her involution preserves irreducibility, up to a sign. In the case of
GL,,(F), it coincides with Zelevinsky’s involution up to a sign, thereby confirming
Zelevinsky’s conjecture. Using the theory of coefficient systems on the Bruhat—Tits
building, P. Schneider and U. Stuhler [SS97] similarly defined a duality and proved
that it preserves irreducibility and, at the level of the Grothendieck groups, coincides
with Aubert’s involution up to the contragredient. Another approach to this duality
can be found in the work of J. Bernstein, R. Bezrukavnikov, and D. Kazhdan
[BBK1S].

For simplicity, when restricted to the set of irreducible representations of a
connected reductive group G defined over F', in this article, this involution will be
referred to as the Aubert—Zelevinsky duality and will be denoted 7 +— 7.

1.2.  One of the most exciting accomplishments in recent years in Number Theory
has been the proof of the Local Langlands Correspondence for quasi-split classical
groups, namely unitary, symplectic, and orthogonal groups. In the case when the
characteristic of F' is 0, using the twisted trace formula and an inductive process
known as endoscopy, J. Arthur [Art13] established a natural bijection between the
set of isomorphism classes of irreducible representations of quasi-split orthogonal
and symplectic groups and the set of so-called Langlands data, thereby proving the
Local Langlands Correspondence for these groups. It should be noted that these
results are conditional (only) on the validity of the twisted weighted fundamental
lemma; see [AGIT24] and the discussion in §0.4 therein for details.

A natural question then arises: can the Aubert—Zelevinsky duality be explicitly
described in terms of Langlands data? In other words, given the Langlands data of
an irreducible representation 7 of a classical group G, what are the Langlands data
of 77

1.3.  The answer to this question is known for GL, (F). In 1986, C. Meeglin and
J.-L. Waldspurger [MWS6] studied the Zelevinsky involution and developed an
algorithm for computing the Langlands data of 7 for every irreducible representation
7 of GL,,(F). For GL,(F), Zelevinsky established that the set Irr“" of isomorphism
classes of irreducible representations of GL,,(F'), for n > 0, is parametrized by Mult,
a set consisting of certain combinatorial objects known as multisegments (see Section
for a precise definition). We denote this correspondence by m — L(m). Given an
irreducible representation 7 of GL,, (F') with corresponding multisegment m, Moeglin
and Waldspurger provided an algorithm to compute the multisegment m? € Mult
such that 7 = L(m?").

The algorithm goes as follows. Given a multisegment m = Ay 4 --- 4+ Ay, one
constructs a segment A’ using certain ends of the segments A; (see Paragraph
for more precisions), and then forms a multisegment m(;) by removing these ends
from m. They then proved that m* = A} + (my))’, which allows to compute m’
inductively.

1.4. As this will be relevant in the discussion that follows, let us briefly outline how
Moeglin-Waldspurger proved that their algorithm determines the Zelevinsky dual on
the representation side. The category of finite-length representations of GL,,(F'), for
n > 0, has a monoidal structure given by (normalized) parabolic induction, denoted
by m X ma. A key consequence of the commutativity of the Zelevinsky duality with
the parabolic induction functor is that if 7 is a subrepresentation of 7; X 7o, then 7
is a subrepresentation of 75 X 7y.

Given m € Mult and 7 = L(m), where 7 is non-supercuspidal, Maeglin and
Waldspurger showed that there exist a supercuspidal representation p; and a repre-
sentation 71 € Irr®" such that:
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(1) 7 is the unique subrepresentation of p; X 7y.

(2) One can compute the multisegment m; corresponding to ;.

(3) Conversely, given m; € Mult and a supercuspidal representation p;, one can
compute the unique multisegment m € Mult such that L(m) — L(my) X p;.

By induction, their algorithm computes the multisegment m! corresponding to 7,
and the final step is to verify that the candidate m’ satisfies L(m") < L(m}) X p1,
which they confirmed.

1.5. Tt is important to note that Properties (1), (2) and (3) above allow the
computation of m — m even without knowing the Mceglin—Waldspurger’s algorithm.
Indeed, given m € Mult, we construct m; as described above. For my, there
also exists a supercuspidal representation p, and a multisegment m, such that
L(m;) is the unique subrepresentation of ps x L(ms), and this process continues
iteratively. The first step of induction occurs when L(m;) is supercuspidal. For
supercuspidal representations, the involution acts as the identity, so m! = m;. Going
backwards, from m!, one can reconstruct m!_; as the unique multisegment satisfying

K3
L(m!_;) < L(m!) x p;. By continuing this process, one can recover m'.

1.6. Let us return to the case of classical groups. Let G = G,, be either the split
special orthogonal group SOs,11(F) or the symplectic group Sp,,,(F) of rank n,
where F' is a non-Archimedean local field of characteristic 0. The Langlands classifi-
cation asserts that any irreducible representation 7 of GG, is the unique irreducible
subrepresentation of a standard module. We denote this by 7 = L(m, Tyemp), where
m is a negative multisegment and memp is an irreducible tempered representation (see
Section . Tempered irreducible representations are themselves classified by local
Langlands parameters ¢ : Wg x SLy(C) — GL,,(C) together with some character n
of the component group of ¢ (see Section. We write Temp = 7(¢, 7). Altogether,
the irreducible representation 7 is uniquely determined by the triple (m, ¢,n), which
we refer to as the “Langlands data” of m; and we write m ~ L(m; w(¢,n)).

1.7. H. Atobe and the second-named author described an algorithm to compute
the Aubert—Zelevinsky duality, similar to the one in Paragraph [I.5 building on
previous work by Jantzen [Janl8| and Atobe [Ato22b]. Let us provide more details.

For G = Gy, if © (resp. 7;) is a smooth representation of G, (resp. GLg4, (F)),
with di + - - - + d,- + ng = n, it is customary to denote

TIX oo X Tp X

the normalized parabolically induced representation of 71 K --- X 7, X 7 from the
standard parabolic subgroup P of G,, with Levi subgroup isomorphic to GLg4, (F') x
- X GLg, (F) X Gp,-

Given an irreducible representation 7 of GG,, and a supercuspidal non-self-dual
representation p of GL4(F), there exist a unique k > 0 and a unique irreducible
representation mg of Gy, with n = dk + ng, such that:

e 7 is the unique irreducible subrepresentation of

(1) P X e X pXT.
—_——
k times
e k is maximal, in the sense that for every irreducible representation 7(, of
Gro—ds To 18 nOt a subrepresentation of p x 7).
We call my the highest p-derivative of m and denote it by D}'**(r). Note that,
when p is self-dual, a representation of the form may have several irreducible
subrepresentations, and there is no simple way to distinguish them.
Furthermore, Atobe and the second-named author provided an explicit formula
for the Langlands data of D}'**(7) in terms of those of 7. Conversely, they found
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a formula to explicitly determine the Langlands data of 7 in terms of those of

DP®(mr), just as Maeglin-Waldspurger did for linear groups in Paragraph
Since the Aubert—Zelevinsky duality commutes with Jacquet functors, we have:

Dpax(m) = D™ (w),

where p¥ denotes the contragredient of p. The algorithm in [AM23] follows the

same lines as the one in Paragraph [I.5} given an irreducible representation 7 of

G, if there exists a supercuspidal non-self-dual representation p of GL4(F') such

that D;“ax(w) # m, then, by induction, we can compute the Langlands data of

—

Dyax(m) = D7y (7), which allows us to compute the Langlands data of 7.

The issue, however, lies in the fact that one must assume p is not self-dual,
making the first step of the induction too complicated to handle, and the algorithm
becomes more intricate (see Section 4| for further details). While the algorithm can
be implemented on a computer, unlike the Moeglin—Waldspurger algorithm, it is not
practical for computing the Aubert—Zelevinsky dual of a representation by hand, as
the formulas for the derivatives are rather involved (they are recalled in Section E[)

1.8. The goal of this article is to provide a new algorithm for the case of split
special odd orthogonal groups or symplectic groups, in the spirit of the Moeglin—
Waldspurger algorithm for GL,,(F). Given the Langlands data (m, ¢, n) attached to
a representation 7 of G,,, our algorithm produces AD(m, ¢, n), the Langlands data
associated with the representation 7. The algorithm is described in Section [5] Here,
we will only mention three key points:

e First, given Langlands data (m, ¢, n) attached to a representation 7 of G,,,
the algorithm constructs new Langlands data (my, ¢1,71) and (m#, ¢7 n#).
We then prove that the operator AD is given recursively by AD(m, ¢, n) =
(m17 d)la 771) + AD(m#7 (b#; 77#)

e Asin the case of GL,,, Langlands data for classical groups admit a decompo-
sition along supercuspidal lines. This is known as the Jantzen decomposition
(see Section [£.F). The Aubert—Zelevinsky dual AD(m,¢,n) can then be
computed line by line, by computing AD(m,, ¢,,7,) for each supercusp-
idal representation p. However, in the case of classical groups, we must
distinguish between three different cases. Let p € €S be a supercuspidal
representation of a general linear group, and let Z, := {p| - |" : n € Z}
denote its supercuspidal line (see Paragraph . We fix a supercuspidal
representation o of GG,,. Then

(1) We say that p is ugly if Z, # Z,v.
(2) We say that p is good if Z, = Z,v and p’ x o is reducible for some
p' €Ly
(3) We say that p is bad if Z, = Z,v and p’ x o is irreducible for all p’ € Z,,.
This classification is independent of the choice of . Accordingly, we define
three distinct versions of the duality operator AD, corresponding to the
good, the bad and the ugly cases respectively.

e Finally, regarding the proof: once we have a tentative algorithm, in order
to prove that it corresponds to the Aubert—Zelevinsky duality, one only
needs to check, as in the case of general linear groups, that the algorithm
commutes with derivatives. However, this is not as straightforward as one
might expect, due to the complexity of the derivative formulas. In order to
carry out these computations, it was useful to introduce a simplified notation
for derivatives; this streamlined notation turned out to be interesting in
its own right, as it also provides a unified treatment of the positive and
negative cases considered in [AM23] (see Section [J).
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The proof is provided in great detail in Sections and

1.9. Let us give an example to illustrate how the algorithm works in practice.
Here, we treat the case of a cuspidal representation p of good parity. We will
not provide all the details, but just a glimpse into how the process unfolds. Let
p € €T be of good parity and take 7 € Irr® with Langlands data (m, ¢,n) where
m=[-3,—-1], +[-2,0], + [-2,-2], + [-1,0],, ¢ = pX S3, where S, is the unique
irreducible algebraic representation of SLo(C) of dimension a, and n(p X S3) = 1.

The first step of the algorithm is to construct a symmetric multisegment with
signs. This is done by sending each segment A € m to A+AV, and each pX S, to the
segment [—(a—1)/2, (a—1)/2], (see Section. This is almost the transfer to GL,,,
but the centered segments carry signs, so that we can distinguish representations
in the same L-packet (recall that the Aubert—Zelevinsky duality does not preserve
L-packets). In this example, the resulting symmetric multisegment is:

s = [-3,-1],+[1,3],+[-2,0],+(0, 2] ,+[-2, —2] ,+[2, 2] ,+[-1,0] ,+[0, 1] ,+[-1, 1],

with [—1,1], having sign +1. We then order these segments according to an order
< defined in Section [5.3.1} This yields the following diagram:

3 2 -1 0 1 2 3
| | | | | . |
S

We now define a sequence of segments A; = Ag > -+ = A; as follows (see Section
for full details). The segment A is the largest segment with maximal end. Then
recursively, A; is the largest segment such that A; < A;_1, e(A;) =e(Aj_1) — 1,
and if the segments have signs, those signs are opposite. In our example, we have
l=5 A1 =[1,3],, Ay =1(0,2],, Ay =[-1,1],, Ay = [-1,0], and A5 = [-3,—1],.
The ends of these segments are removed, as well as the beginnings of their duals.
These removed ends form the first segment of the dual; the removed beginnings
form the symmetric counterpart. The process is then repeated on the remaining
symmetric multisegment. In our example, this gives:

3 2 -1 0 1 2 3
o

So the first part of the predicted dual is [—3,1], + [-1,3],. We then continue
with the remaining multisegment:

s = [2,2],+(2,2],+[0, 1] ,+[1, 1] ,+[0, 0] ,+[—1, —1] p,+[—2, —2] ,+[—1, 0] ,+[—2, 2],
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with [0,0], having sign +1. It may happen that the two green paths above “meet in
the middle”. In such cases, the result is a centered segment, which corresponds to
an element in the tempered part. This occurs in the current multisegment, where
we obtain:

2 -1 0 1 2
| o
.

4
|
|
|
—_— |
|
|
|
|
|
|
|
|
|
|
|

The resulting segment is [—2, 2|, with sign +1, and the remaining multisegment
becomes
2,2],+[0,1], + [-1,0], + [-2, —2],.
We repeat the process until nothing remains. Here, one more step is required where
[—2,0], + [0,2], is produced. At the end, the symmetric multisegment is:

[-3,1], +[-1,3], + [-2,2], + [-2,0], + [0, 2] ..

Unsymmetrizing this gives the Langlands data of # as L(m;7w(¢,n)) with m =
(3,1, +[-2,0],, ¢ = p® S5 and n(p X S5) = 1.

1.10. Our algorithm generalizes Atobe’s algorithm for the so-called ladder rep-
resentations [Ato24]. For representations of Arthur type, Atobe also provides an
algorithm in terms of his parametrization [Ato22al]. Ruben La describes the Iwahori-
Matsumoto dual of tempered representations with real infinitesimal character in
[La24].

1.11. All algorithms described in this paper are implemented in Python and
SageMath, and are publicly available on GitHubﬂ

1.12.  This duality has numerous interesting applications to the Langlands program.
We will briefly mention two of them.

One notable feature of the Aubert—Zelevinsky duality is that it does not pre-
serve temperedness. In Arthur’s local classification, the first step beyond tempered
representations involves considering the Aubert—Zelevinsky dual of tempered rep-
resentations. One first constructs A-packets and proves the local theorems when
the A-parameters are co-tempered, that is, when they are Aubert-dual to tempered
L-parameters. This is possible provided we understand how Aubert duality interacts
with the local classification and the local intertwining relation. See [Art13l §7],
[AGIT24].

The Aubert—Zelevinsky duality is also a very useful tool in studying the wavefront
set, a fundamental invariant of admissible representations, arising from the Harish-
Chandra—Howe local character expansion. Significant progress has been made in
recent years [CMBO24al, [CMBO24bl [CMBO23, [HLLS24), [La24, Wall8], and we
expect that our algorithm will be valuable in solving some of the conjectures in the
mentioned papers.

However, to be transparent, we did not begin this research with the primary
goal of exploring applications of the Aubert—Zelevinsky duality. Our initial aim

Thttps://github.com/ThomasLanard/aubert-zelevinsky-duality
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was to investigate the potential uses of deep learning in the Langlands program.
Inspired by the work of [DVB™21|, we sought an excuse to determine whether deep
learning could help reveal patterns in problems within our field. The difficult-to-
use algorithm in [AM23] for computing the Aubert—Zelevinsky duality gave us the
perfect opportunity. A discussion of how we applied deep learning and developed our
new algorithm can be found in Appendix [A] For us, it is remarkable and somewhat
paradoxical that we used an Al to create an algorithm that feels more intuitive and
human.

1.13.  We now briefly discuss some issues that are not addressed in this article. The
first concerns the use of symplectic and split special odd orthogonal groups. What
about other (quasi-split) classical groups? With the endoscopic classification being
(almost) complete [Art13, IAGIT24, MokIH], it is natural to ask whether similar
results can be expected for even orthogonal or unitary groups. We believe so, and
the proof should be similar. We focused on symplectic and split odd orthogonal
groups because the work in [Ato22bl [AM23| deals exclusively with these groups.
Now that the results in [Ato20] have been extended to all quasi-split classical groups
(see JAGI™24, Appendix C]), and given that [Jan18] is written for all classical groups,
the extension to quasi-split classical groups should not pose significant challenges.
(A much more challenging task would be to extend our results to the case where F'
has positive characteristic.)

Secondly, one of the goals of Maeglin—Waldspurger’s algorithm was to demonstrate
that Zelevinsky’s involution has a geometric interpretation, as he had conjectured
[ZeI&1]. We aim to explore this problem in future work.

1.14. The contents of this paper are as follows. In Section [2} we recall some general
results on the representation theory of p-adic groups and the Aubert—Zelevinsky
involution. Section [3| reviews the representation theory of GL,, (F'), including the
Zelevinsky classification and the Moeglin—-Waldspurger algorithm. In Section []
we present the representation theory of classical groups and the associated local
Langlands data. Section [| introduces the definition of our algorithm AD. In
Section [6] we verify that this definition is well-posed, particularly in the good
parity case. Section [7] establishes several important properties of AD. Section [§]
recalls the theory of derivatives, while Section [J] provides explicit formulas for these
derivatives. Section [I0] concludes the proof that the algorithm AD indeed realizes
the Aubert—Zelevinsky involution in the good parity case. The bad and ugly cases
are treated in Sections [TT] and respectively. Finally, Appendix [A] explains how
machine learning was used to discover this algorithm.
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2. PRELIMINARIES

Throughout this article, we fix a non-Archimedean, locally compact field F' of
characteristic zero, with normalized absolute value | - |.
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2.1. Let G be the group of F-points of a connected reductive group defined
over I, equipped with its usual topology. We will only consider smooth complex
representations of G, meaning representations on C-vector spaces where the stabilizer
of each vector is an open subgroup of GG. Henceforth, by “representation” we will
always mean “smooth complex representation”. We write Rep(G) for the category
of finite-length representations of G and denote by Irr(G) the set of equivalence
classes of irreducible objects in Rep(G). For m, 7" € Rep(G), we write 7 — =’
(resp. m — 7’) to indicate the existence of an injective (resp. surjective) morphism
from 7 to 7’. For any m € Rep(G), we denote by 7" the contragredient of .

Let m € Rep(G). The socle of 7 is the largest semisimple subrepresentation of 7
and is denoted soc(7). We say that = is socle irreducible (SI) if soc(7) is irreducible
and occurs with multiplicity one in .

Fix a minimal F-parabolic subgroup P, of G. A parabolic subgroup P of G is
called standard if it contains Py. From now on, P will always denote a standard
parabolic subgroup of G, with an implicit standard Levi decomposition P = MU.
Let ¥ denote the set of roots of G with respect to Py, and let A be a basis of
Y. For any subset © C A, let Pg denote the standard parabolic subgroup of G
corresponding to ©, and let Mg be the corresponding standard Levi subgroup.
Finally, let W denote the Weyl group of G.

Let 7 be a representation of M, viewed as a representation of P where U acts
trivially. We denote by IndgT the representation of G parabolically induced from 7,
using normalized induction. We treat Ind$ as a functor, whose left adjoint is the
Jacquet functor with respect to P, denoted by Jacg.

An irreducible representation w of G is called supercuspidal if it is not a composi-
tion factor of any representation of the form Ind%(7), where P is a proper parabolic
subgroup of G and 7 is a representation of M. We denote by € (G) the subset of
Irr(G) consisting of supercuspidal representations. We also let Irryemp, (G) be the set
of equivalence classes of irreducible tempered representations of G.

Let Z(G) denote the Grothendieck group of Rep(G). The canonical map from
the objects of Rep(G) to Z(G) is denoted by 7 +— [r]. Both the induction and
Jacquet functors, IndIGD and J acg, are exact and preserve finite-length representations.
Therefore, they induce morphisms of Z-modules:

md$ : Z2(M) — Z(G),
Jac$ : Z(G) — Z(M).
2.2. The Aubert—Zelevinsky involution. Define:
D¢: Z(G) — Z(G)
T Z(—l)dimAMIndg(Jacg(ﬁ)),
P

where P runs over all standard parabolic subgroups of G and A, is the maximal split
torus of the center of M. A.-M. Aubert [Aub95| showed that if 7 is irreducible, there
exists a sign € € {£1} such that 7 := € - Dg(n) is also an irreducible representation.
We refer to the map:

Irr(G) — Irr(G)
T T
as the Aubert—Zelevinsky duality.
This duality satisfies the following important properties:

(1) The map m — 7 is an involution of Irr(G) [Aub95, Théoréme 1.7 (3)].
(2) If # € €(G), then T = w [Aub95, Théoréme 1.7 (4)].
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(3) Let © C A, and consider the standard parabolic subgroup P = Pg with
Levi decomposition P = M N. Let wy be the longest element in the set
{w e W | w™(©) > 0}, and let P’ be the standard parabolic with Levi
subgroup M’ = wy ' (M). Then, we have (¢f. [Aub95, Théoréme 1.7 (2)]):

(2) Jac$ o Dg = Ad(wg) o Dy o Jach,.

3. REPRESENTATION THEORY OF GL,, (F)

3.1.  The representation theory of the groups GL,,(F'), for n > 0, plays a particularly
important role in the general theory of representations of p-adic groups. Bernstein
and Zelevinsky studied this extensively in their fundamental work in the 1970s
IBZ77, [Zel80], where they emphasized the benefits of considering all n’s together.
We define Irr%" := U, Irr(GL, (F)), and let 6% C Irr®Y denote the subset of
supercuspidal representations. Furthermore, we set Z%L = @, ., Z(GL,(F)).
Let dy, ..., d, be positive integers, and for each 1 < i < r, let 7; € Rep(GLg, (F)).
The normalized parabolically induced representation is customarily denoted by

TLX e X T = Indng”'”“T(F)(Tl K- X7

This operation induces a Z-graded commutative algebra structure on #ZCL. If
T =+ =7, =T, we simplify the notation to 7" =7 x -+ x 7 (7 times).

The Jacquet functor for GL,,, (F'), along the maximal standard parabolic subgroup
Pld,m—q), with Levi decomposition GL4(F) x GL,,—4(F), is simply denoted by
GL,,, (F)

Plam-ay”

For any 7 € Rep(GL,,(F)), we call n its degree and denote it deg(w). Moreover,
if x is a character of F'*, we denote the representation obtained by twisting 7 by
x o det as wy.

A supercuspidal representation is unitary if and only if its central character is
unitary. Therefore, given any supercuspidal representation p, there exists a unique
x > 0 such that p, := p| - |* is unitary. We call p,, the unitarization of p.

Jac(g,m—q) = Jac

3.2. A segment A is a finite, non-empty subset of €S of the form

3) A={pl-[pl- 17l )

where p € €Y, and z,y € R with 2 —y € Z and z < y. We denote such a
segment by [z,y],. Thus, [z,y], = [2/,y'], if and only if p| - |[* = p/| - |*" and
pl- |V = p/| - |V. Hence, one can assume, when needed, that p is unitary. Notice
that our notation differs from [AM23]: our segments are increasing, while in [AM23]
they are decreasing.

We denote by Seg the set of all segments. Let p € € be unitary. We denote
by b([z,y],) = = the beginning of the segment [z, y], and by e([z,y] ) = y its end.
The size of a segment A, also called its length, is denoted by I(A). We denote by
deg(A) its degree, that is deg(p)I(A). If A = [z,y] ,, we call I € R the center of
A and denote it ¢(A). We denote by Seg”” (resp. Seg” or Seg<") the subset of Seg
composed of segments A such that ¢(A) > 0 (resp. ¢(A) =0 or ¢(A) < 0). We say
that A is a centered segment if ¢(A) = 0.

We define the following operations on a segment A = [z, y],:

A~ :[xay_]-]pv TA= [‘T—’_lvy]Pv
A+: [‘T7y+1]p7 +A: [x_lay]pa
AV = (-, _x}PV'

Let A = [z,y], and A" = [2/,y/] » be two segments. We say that A and A’ are
linked if AU A’ forms a segment, but neither A € A’ nor A’ C A.
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If A and A’ are linked and p/| - |V = p| - [v17 with j > 0, we say that A precedes
A’. Thus, if A and A’ are linked, then either A precedes A’ or A’ precedes A, but
not both.

3.3. For any segment A = [z,y],, we define:

Z(B) = soc(p| - |” x p| - [T p] - ),
L(A) = soc(p|- [V x p| - ["71 >+ x p| - 7).

Zelevinsky proved that Z(A) and L(A) are irreducible representations. Moreover,
L(A) is an essentially discrete series representation, and all essentially discrete series
representations are of this form [Zel80, Theorem 9.3].

If A = [z,y], with = y+ 1, we set by convention Z(A) = L(A) to be the trivial
representation of the trivial group GLo(F).

3.4. Classification. Given a set X, write N(X) for the commutative semigroup of
maps from X to N with finite support.

A multisegment is a multiset of segments, that is, an element in Mult := N(Seg).
We will see a multisegment m as a finite sum m = A +---+ Ay, with A; € Seg. We
denote the multiplicity of a segment A in m by my (A). By linearity one extends the
definition of contragredient, length and degree from segments to multisegments. If
m=A;+---+Ay € Mult, we define the support of m to be UA; C FCL. We say m is
positive (resp. negative) if ¢(A;) > 0 (resp. ¢(A;) < 0), for all 1 < < N. We denote
by Mult® the subset of Mult made of segments in Seg"’ where & is one of the following
symbols: > 0, 0 or < 0. The natural map Mult — Mult™" x Mult® x Mult<? will
be denoted m — (m>% m® m=<0).

A sequence of segments (Aq,...,Ay) is said to be arranged if, for every 1 <i <
j <N, A, does not precede A;. This is the case in particular if ¢(A1) > ¢(Ag) >
<o > c(Ay). If m € Mult and (Aq,...,Ay) is an arranged sequence of segments
such that m = Ay +--- + Apn, we say that (Aq,...,Ay) is an arranged form of m.

For any arranged form (A1, As, ..., Ay) of a multisegment m, we define

Am) = L(AN) x -+ x L(Ag) x L(Ay).

Zelevinsky showed that S\(m) is SI and that, up to isomorphism, it does not

depend on the choice of the arranged form of m. Furthermore, if one defines
L(m) := soc(A(m)) € Irr",

the map Mult — Irr“" given by
(4) m— L(m)
is a bijection, providing a classification of the set Irr" in terms of multisegments.
3.5. Reduction to supercuspidal lines. The equivalence relation on €% gener-

ated by p ~ p| - | partitions € into equivalence classes, each of which is called a
supercuspidal line. The supercuspidal line containing p € €S is thus given by

Zy:={p|-|":nelZ}
We denote the set of all such equivalence classes by €%/ ~.

Let p € €C", and denote by Mult, the submonoid of multisegments supported
in Z,, and by IrrSL the image of Mult, under the map , so that IrrSL consists
of irreducible representations with supercuspidal support in Z,. Again, we denote
by Mult:' = Mult, N Mult® where & is one of the following symbols: > 0, 0 or < 0.

There is a natural map
(5) Mult — Mult,

m = om,
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where m,, is the sum of all segments in m with support in Z,. It induces a natural
decomposition:
Lm)= X  L(m,).
pECCL [~
Thus, any © € It can be written uniquely (up to permutation) as m =
m X -+ X ., Where m; € IrrgL with Z,, # Z,, for i # j. In practice, this allows us
to reduce questions about IS to IrrSL.

3.6. The Moeglin—-Waldspurger al/gg‘ithm. Given m € Mult, there exists a
unique m* € Mult such that L(m’) ~ L(m). The map m — m' factors through (f]),
that is,
(m'), = (m,)".
This allows us to fix p € €S for the remainder of this subsection. The combina-
torial description of the map

Mult, — Mult,
m— mt

was provided by Moeeglin and Waldspurger [MWS6], which we recall here.
First, we need to fix an order on the set of segments supported in Z,. We define
that [z1,11], < [x2,y2], if either x; < z2, or 21 = x5 and y1 > yo.

3.6.1. Remark. This is not the classical lexicographical order on segments. This order
has the advantage that if [z1,y1], and [z2,y2], are two segments with yo = y; — 1,
then [x2, y2], < [z1,91], if and only if [z2, y2], precedes [x1, y1],.

Let 0 # m € Mult,. Let p, be the unitarization of p. Let ymax be the maximum
of the ends e(A) of the segments A € m. Let A; € m be the largest segment (with
respect to the above order) such that e(A1) = Ymax- We then define recursively a
sequence A; > --- > Ay, where A; is the largest segment in m such that A; < A;_4
and e(A;) =e(Aj_q) — 1.

Define A7 (m) = [e(A;), e(A1)],,, and

l
mapy =m + Z(A; — Aj).
j=1

The map m — m! is defined recursively by 0! = 0 and

m! = (m(l))t + All, if m £ 0.
4. REPRESENTATION THEORY OF CLASSICAL GROUPS

Throughout this paper, we denote by G,, either the split special orthogonal group
SOg,+1(F) or the symplectic group Sp,,, (F), both of rank n, and maintain this
choice throughout.

4.1. We define
I = U Irr(G,), and %% := @%’(Gn),
n>0 n>0

where the union and direct sum are taken over groups of the fixed type. Similarly, let
€Y c It denote the subset of supercuspidal representations of G,, for all n > 0.

Let P be a standard parabolic subgroup of G,, with a Levi subgroup isomorphic
to GLg, (F) X -+ X GLg,.(F) X Gy, Let m € Rep(Gy,) and 7; € Rep(GLy, (F)) for
1 <i < r. As in the introduction, we denote the normalized parabolically induced
representation by

7-1><--~><TTNW:zIDdIGD"(ﬁ@”'@Tr&W)-
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If 7 € Irr®, there exist p1, ..., p, € €Y and o € €° such that 7 is a subrepre-
sentation of p; X .-+ X p, X o. The set

scusp(7) == {p1,-- s Prs Py -y P 0}

is uniquely determined by 7 and is called the supercuspidal support of w. For o € €,
we set Irr, == {7 € It | & € scusp(r)}.

4.2. The Langlands Subrepresentation Theorem. Let m = Ay +---+ A, be a
negative multisegment, and let memp € Irr® be tempered. A parabolically induced
representation of the form

A(M) X Tiemp
is called a standard module.

The Langlands classification asserts that any standard module has an irreducible
socle, and that any irreducible representation © € Irr¢ is the unique irreducible
subrepresentation (Langlands subrepresentation) of a standard module A(m) X Tiemp,
which is unique up to isomorphism. In this case, we write 7 = L(A1+- - -+ Ap; Tremp)-
For more details, see [Kon03].

4.3. The endoscopic classification. The Langlands subrepresentation theorem
reduces the classification of irreducible representations of G, to the case of tempered
irreducible representations. These representations, in turn, are classified by Local
Langlands parameters, which we briefly recall in this section [Art13].

Let Wr denote the Weil group of F. A homomorphism

¢: Wr x SLa(C) — GL,(C)
is called an L-parameter for GL,, (F) if it satisfies the following conditions:

e ¢(Wg) consists of semisimple elements;
e ¢|w, is smooth, meaning it has an open kernel;
® ¢[sr,(c) is algebraic.

Any irreducible representation of Wg x SLy(C) has the form p X S,, where p
is an irreducible representation of W and S, is the unique irreducible algebraic
representation of SLy(C) of dimension a. For simplicity, we often write p = p X Sj.
For a given L-parameter ¢, the multiplicity of pX.S, in ¢ is denoted by my(p K S, ).

The local Langlands correspondence for GL4(F') establishes a canonical bijection
between the set of irreducible unitary supercuspidal representations of GL4(F') and
the set of irreducible d-dimensional representations of Wy with bounded image.
These sets are identified, and we use the symbol p to refer to their elements.

We say that ¢ is an L-parameter for SOqpn41(F) if it is an L-parameter for
GLo, (F) of symplectic type, i.e.,

¢Z WF X SLQ(C) — Spgn((C)
Similarly, ¢ is called an L-parameter for Sp,,(F) if it is an L-parameter for
GLo,+1(F) of orthogonal type with trivial determinant, i.e.,
¢: WF X SLQ((C) — SOQn+1(C).

For G, = SOg,41(F) (respectively, G,, = Sp,,(F)), let ®(G,,) denote the
set of é;—conjugacy classes of L-parameters for GG,, with bounded image, where
G, = Spa, (C) (respectively, G, = SO2,4+1(C)). We say that ¢ € ®(G,,) is of good
parity if ¢ is a sum of irreducible self-dual representations of the same type as ¢.

Let ®4,(G,) denote the subset of ®(G),) consisting of L-parameters of good

parity. We define the sets
O(G) = ®(Gn) and Dgy(G) = | Pyp(Ga).

n>0 n>0
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For each ¢ € ®(G), a component group Sy is attached, which is defined as follows.
We express ¢ as a direct sum:

(6) s=Psioed e,
i=1
where ¢1, ..., ¢, are irreducible self-dual representations of the same type as ¢, and

¢’ is a sum of irreducible representations that are not of the same type as ¢. We

then denote
r
v =D
i=1

and define the enhanced component group Ay as

r

Ay = @(Z/ZZ)@¢

i=1

Thus, Ay is a free Z/2Z-module of rank r, with a basis {c, } corresponding to the
irreducible components {¢;} of good parity. The element

T
Z¢ = Z Qg
i=1

is called the central element of As.
The component group Sy is defined as the quotient of A4 by the subgroup
generated by ag; + ag,, whenever ¢; = ¢y.

Let S¢ and .A¢ denote the Pontryagin duals of S¢ and Ag, respectlvely Through
the canonical surJectlon Ay — Sg, we may regard S¢ as a subgroup of .A¢ For any

element 7 € A¢, we write (g, ) = 1(¢;). The map ¢ —= dgp, from ®(G) to Pgp(G),
induces canonical isomorphisms:

(7) .A¢ >~ A¢gp, S¢, ~ S¢gp, S¢ >~ S¢gp.

To each ¢ € ®(G,,), one can associate a subset IIy C Irtyemp(Gy), called the
L-packet for G,, attached to ¢, such that:

Ittemp (Gn) = |_| IL4.
Pe®(Gr)
Furthermore, there is a canonical injection
H¢—)S¢, WH<',W>¢,

which satisfies certain endoscopic identities and has image

~ —~
S =A{n €Sy [nlzg) =1}.
For further details, see [Artl3, Theorem 2.2.1] and [Moegll]. When 7 € Il
—+

corresponds to n € Sy, we write m = 7(¢, ).

A useful property of this classification is the following: if we have a decomposition
as in

¢ = ¢I EBngp S d)/vv
—~+

then, for all n € S5 , we have

(8) 71-(¢7 77) =~ 7T¢/ X 7T(¢gp7 77)

See [Xul7l 8.11] for a more general result.
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4.4. Local Langlands data. We denote by Temp(G,,) the set of pairs (¢,n) such
that ¢ € ®(G,) and 1 € Sy. Similarly, we denote by Temp™ (G,,) the set of pairs

—~+
(¢,7n) such that ¢ € &(G,,) and n € Sy .
Again, it will be convenient to work with all G,,’s together so we let:

Temp(G) = |_| Temp(Gy), Temp™ (G) = |_| Temp™ (G,).
n>0 n>0
The set of Langlands data is then defined by:
Data(G) = Mult<° x Temp(G), Data™(G) = Mult<" xTemp™ (G)
It follows from and that for every irreducible representation 7 € Irr%, there
exists a unique triple (m; ¢,n) € Data™(G) such that:
m 2 L(m; (¢, ).
We refer to (m; ¢, n) as the Langlands data of 7.

4.5. The Jantzen Decomposition. We now aim to establish a line decomposition
for classical groups, analogous to the one for GL,, discussed in Paragraph[3.:5] This is
achieved by the Jantzen decomposition, which we recall in this paragraph. However,
in the case of classical groups, we must distinguish between three different cases.
We begin with the parameters. For ¢ = @ie ; PiX Sy, an L-parameter, we define

T = L(my) € Ir“" by

a; — 1 a; — 1
m(ﬁ:;[— 2 ’ 2 ]/)'i'

We define scusp(¢) the support of the parameter ¢ as the support of my. The line

decomposition in Paragraph induces, for every p € €%, a natural map ¢ — Dp
so that

m¢p = (m¢)P
Let p € €CF. Assume that Z, = Z,v. We denote by Temp,,(G) (resp. Temp;(G))

the subset of Temp(G) (resp. Temp™ (G)) consisting of parameters (¢,7) satisfying
scusp(¢) C Z, and let:

Data,(G) = Mult,fo xTemp ,(G), Data:(G) = Mult/fo xTemp:(G)
the set of Langlands parameters in the p-line.
4.5.1. Remark. Consider the natural projection
Data(G) — Data,(G)
Y= (mv¢a7’) = Yp = (mp;¢pan|5¢p)'
Observe that, if ¢, € 4, (G), the image of Data™ (G) is not necessarily contained
in Data} (G).

When Z, # Z,v, the above definition of Temp,(G) is unsuitable, as it would
not give a subset of Temp(G). In this case, we define Temp ,(G) (resp. Temp;(G))
as the subset of Temp(G) (resp. Temp™ (G)) consisting of parameters (¢,7) with
scusp(¢) C Z, U Zyv, and let again:

Data,(G) = Multp<0 X Multjvo xTemp ,(G),
i — <0 <0 +
Data; (G) = Mult >~ x Multy’ x Temp,; (G)

the set of Langlands parameters in the p-line and denote by y — y, the projection
map from Data(G) to Data,(G).
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We say that two supercuspidals p, p’ € € are line equivalent, and we denote it
by p~"p'if p~p'or p~p'V;orequivalently p ~' o/, if Z, UZ,v = Zy UZyv.
We have a natural bijection
Data(G) ~ @, cgor /v Data,(G)
Y=Yy

Remark implies there is no such decomposition for Data™ (G).
The discussion above makes the following definitions natural.

4.5.2. Definition. Let p € €°L. We write p = p,| - |* with p, unitary and z € R.

(1) We say that p is ugly if p,, is not self-dual or = ¢ (1/2)Z (that is Z, # Z,v).
(2) We say that p is good if p, is self-dual and

o If p, is of the same type as G then x € Z.

e If p, is of the opposite type as G then = € (1/2)Z \ Z.
(3) We say that p is bad if p, is self-dual and

e If p, is of the same type as G then x € (1/2)Z \ Z.

e If p, is of the opposite type as G then x € Z.

4.5.3. Remark. Let p € €. By [AM23, Remark 5.1] we see that the following
conditions are equivalent:
(1) pis good (resp. bad)
(2) Forevery w(¢,n) with ¢ € ®q,(G) and n € 3’;7 there exists m € Z (resp. m €
17\ Z) such that p| - |™ x (¢, n) is reducible.

(3) For some m(¢,n) with ¢ € ®u,(G) and n € 3';, there exists m € Z (resp. m €
17\ Z) such that p| - |™ x (¢, n) is reducible.

We denote by €2°°¢ (resp. €24, resp. €"&Y) a set of representatives of good
(resp. bad, resp. ugly) representations under the line equivalence relation ~’.

4.5.4. Definition. Let o € ¥¢ and let 7 € Irr,,.
(1) It

scusp(m) C U Z, | U{c},
pe(ggood
we say that 7 is of good parity. We write Irr8°°d for the set of such
representations.
For any multisegment m, we denote:

Mgp *= E . m,

pecggood

(2) If scusp(m) C Z, U {o} for some bad representation p, we say that m is of
bad parity (or of p-bad parity if we want to specify p). We write Irrg_bad
for the set of such representations.

(3) If scusp(m) C (Z, UZ,v) U {c} for some ugly representation p, we say that
7 is ugly (or p-ugly if we want to specify p). We write Irrg_“gly for the set
of such representations.

Let 7 € Irr,. Jantzen [Jan97] defines the representations m&°°d ¢ Irrg°°d,
ap—bad o Irrg_bad, and wP—uely ¢ Irrg—“gly as follows:

o 78°°d is the unique representation in Irr%‘md such that 7 < 7 x 78°°9 where
no good supercuspidal representations appear in scusp(r).

e If p is a bad supercuspidal representation, then 7724 is the unique repre-
sentation in Irr?~"* such that 7 < 7 x 7°~"2d with scusp(r) N Z, = 0.
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e If p is an ugly supercuspidal representation, then 7#~"8Y is the unique
representation in Irr?~"8Y such that m < 7 x 7~ "8 with scusp(7) N (Z, U
Zpv) = 0.

4.5.5. Theorem. The map

Jz: Trry — Ter80d 1 |_| Trr?~P2d | |_| IrrP—uely
pGCgbad pegugly

T — (,n_good7 {Wpfbad}p’ {ﬂ_pfugly}p)

is a bijection. It commutes with the Aubert—Zelevinsky duality in the following sense:
Ju(7) = (meood, {mo-bad},, {mr=velv}, ).

Furthermore, let y = (¢, M) and (m; ¢, n) denote the Langlands data of o and =,
respectively. Then, we have:

e The Langlands data of w°°d are y8°°% ;= (Mgp; dgp, 7).

e The Langlands data of m*~2d are yP=P2d .= (m,;0, + ¢0y 70 )-

o The Langlands data of 7P~ &Y are yP—1ely .= (my,+myv;dp+ dpv + 0o, 10).

Proof. The theorem is due to C. Jantzen; see [Jan97, Theorem 9.3]. The only point
that needs some explanation is the description of the map Jz in terms of Langlands
data. It is probably well-known, but for the convenience of the reader, we provide
some details. Let’s start with the first bullet point. We write ¢ = ¢’ @ @gp, & ¢'V.
By the Langlands classification, 7 is the socle of :\(m) X w(¢p,n), which is isomorphic,
by [Zel80, 9.7] and to

AMm — mgp) X A(Mgp) X Ty X 7(Pgp, 1)
which is equivalent by [Zel80l 9.7] to

A(m — mgp) X Ty X AM(Mgp) X T(gp, 77)-

We deduce that 7 is the socle of

soc(A(m — Mgp) X Ty ) X soc(;\(mgp) X T (Pap, 1)),
which, by the Langlands subrepresentation theorem, proves the first claim. The
proofs of the second and third bullet points follow a similar approach. By [Jan97,
Theorem 9.3.(8)], we can assume that m = (). Then, for the second bullet, 7 (¢, )
is isomorphic by to My X Tg_g,, which embeds into Tig, X T X (o, M), for
some 7 with scusp(7)NZ, = 0, so isomorphic by [Zel80, 8.6] to T x T1g, XT(Pg;No)-
As Tig, X 7(¢o, M) 18 irreducible by and isomorphic to m(¢, + ¢o, 1,) the result
follows. The third bullet is proved in exactly the same manner. O

A consequence of the explicit description of the Jantzen decomposition is that
the map y — y, factors through Jz. In other words:

4.5.6. Corollary. Let 7 € Irr,, with Langlands data y. Let p € €. Then:

o If p is good then, y, = (ygood)p_
o If p is bad then, y, = (yp—bad)p.
o If p is ugly then, y, = (yP~"8W),.

4.5.7. Remark. One could define p—good representations and obtain a decomposition
similar to that in Theorem [£.5.5] replacing good with p — good. However, Remark
[45.1] implies that such a definition would not allow for a natural description —in
terms of Langlands data— of the corresponding map. Furthermore, the first bullet
point of Corollary would no longer hold if one replaces good with p —good. For
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this reason, following [AM23], we have chosen to define only good representations
and not p — good representations.

4.6. Symmetrization. Our algorithm to compute the Aubert—Zelevinsky invo-
lution is similar to the Moeglin—Waldspurger algorithm and will use symmetrical
multisegments with signs instead of Langlands data.

We will define a transfer map that sends the elements of Data(G) to symmetrical
multisegments. The tempered representations will be sent to centered segments. As
these representations come with a sign, we need to define the notion of a centered
segment with a sign. A centered segment with a sign is a pair (A, e) where A € Seg?
and € € {—1,1}. Let Mult® be the multiset composed of centered segments with
signs and non centered segments, that is formally Mult® is the set of functions
Seg< USeg”™® U (Seg’ x {—1,1}) — N, with finite support. For s € Mult®, we call
the underlying multisegment of s the multisegment of Mult obtained by forgetting
all the signs. We will usually write s € Mult® as s = (m, ), where m € Mult is the
underlying multisegment of s and, if A; € m%, e(A;) € {—1,1} is the sign of A;.

Let Symm C Mult be the set of symmetrical multisegments, that is Symm = {m €
Mult,m" = m}. We also define Symm® C Mult® to be the subset of multisegments
with signs of elements whose underlying multisegment is in Symm.

We have a natural transfer map

trans : Data(G) — Symm®
defined as follows. Let (n;¢,n) € Data(G). Then trans(n; ¢,n) = (m,e) where

mi=Y (Aa+a+ ¥ {_@2+17a;1]p

Aen pXS, €0

and if pX S, € ¢ then

—a+1 a—-1
(|23

L) = n(p8S.).

The map trans is injective, and its image is the subset Symm®(G) of Symm®
consisting of all elements s € Symm® satisfying the following conditions for every
pair of signed centered segments (A, ), (A, &) € s:

(1) A =A"thene =¢.

(2) If A is supported in Z, with p bad or ugly, then ¢ = 1.

(3) If A is supported in Z, with p bad, then the multiplicity of (A, ¢) in s is
even.

Hence, we get a bijection

trans : Data(G) = Symm®(G).
We denote by Symm®™ the image of Data®(G) by trans, that is Symmi’+ is the

subset of Symm; consisting of elements such that the product of the signs of the

centered segments are 1. If 7w € Irr® is an irreducible representation, there exists a
unique element (m,e) € Symm® ™" such that 7 ~ L(trans™!(m,¢)). We will denote
this element as the symmetrical Langlands data of m and we will write 7 = L(m,¢).

Let p € €CL. If pis good or bad (resp. ugly), we define Symm (G) to be the subset
of Symm*®(G) of elements with underlying multiset in Mult, (resp. Mult, x Mult,v ).
This gives us a natural decomposition

Symm®(G) =~ @ pegcr /s Symm, (G).
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The restriction of trans to Data,(G) gives us a bijection
trans, : Data,(G) = Symm;(G)

making the following diagram commute:

Data(G) e Data,(G)
ltrans itmnsp
(.8 (.8 1m,)
Symm®(G) SymmZ (G)

The sets Symm,,, Symm;, and Symm; (G) are endowed with an order < coming
from the order < on Mult, defined in Section @

5. DEFINITION OF THE ALGORITHM

In this section we define a map AD : Data(G) — Data(G). We will prove

later that AD is in fact an involution and that for y € Data™(G) we have 7(y) =
m(AD(y)).

Using the bijection trans : Data(G) = Symm;,(G), it is enough to define AD :
Symm®(G) — Symm®(G), and set AD = trans~' o AD o trans. The definition of
AD is the content of this section. Using Symm®(G) = @ cqcr/~ Symm,(G), we
will define for each p € €%/ ~' a map

AD, : Symm_ (G) — Symm,(G),
and AD = @pechL/N/ ADp

5.0.1. Remark. We will show in Propositionthat for each p € €L, AD, induces
a map AD, : Symm; ™ (G) — Symm$™(G) and AD, : Symm(G) \ Symm; " (G) —
Symm/,(G) \ Symmi’*(G). This implies that AD induces a map AD : Data™ (G) —
Data™(Q).

In the next subsections, we define AD, when p is ugly (Subsection , p is bad
(Subsection and p is good (Subsection [5.3)).

5.1. The ugly case. Let p € €S be ugly and p,, its unitarization. By definition of
Symmj (G), all the signs are trivial. So we can identify an element of Symm? (G) with
its underlying multisegment. Let m € Symm,(G) and we want to define AD,(m) €
Symm (G). The definition is essentially the Moeglin-Waldspurger algorithm (see

Remark below).

Let emax,p be the maximum of the ends e(A) of the segments A € m supported in
Z,. Let Ay be the biggest segment of m supported in Z, such that e(A1) = emax,p-
We then define recursively a sequence A; > --- > A;, where A; is the biggest
segment of m supported in Z, such that A; < A;_; and e(A;) =e(Aj—1) — 1. We
call the sequence Ay, - .-, A; the the initial sequence in the algorithm.

From this sequence, we define

my = [e(A), e(A)]p, + [~e(A1), —e(A)]y

u

and

l
m# —m Y (A7 - A+ TAY —AY).
i=1
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5.1.1. Definition. When p is ugly, we define AD, : Symm}(G) — Symm}(G)
inductively by
AD,(m) = m; + AD,(m%).

5.1.2. Remark. From the construction of AD,, it is clear that AD,(m) is a sym-
metrical multisegment, hence AD, : Symm}(G) — Symm}(G) is a well defined
map.

5.1.3. Remark. Let us write m = m, +m,v with m, € Mult, and m,v € Mult,v. It
is clear from the definition that AD,(m) = m! + (m})", where m/ is the Moeglin—
Waldspurger dual of m, (see Section .

5.1.4. Example. Let p be ugly. Let 7w := L(n; (¢, n)) with n = [-3, —1],+[—2, —1],+
[—2,0], and 7(¢,n) trivial. We associate to m the symmetric multisegment m &
Symm defined by m = [-3, 1], + [-2, —1], + [-2,0], + [1,3],v + [1,2],v + [0, 2] ,v.

In the diagram below, we represent the multisegment m ordered by <. The solid
lines are the segments supported on Z,v and the dotted lines are the segments on
Z,. The thick black lines indicate the initial sequence of segments Ay, ..., A;. The
portions highlighted in green mark the parts of m that are extracted to form the
segment m,; the remaining parts will constitute the multisegment m# after this first
step.

-3 -2 -1 0 1 2 3 -2 -1 0 1 2
S — e
l l l —_— l l l —_— l
| | | T S | |
10 1 10 1 2 10 1 2
| | . | | . | | | . |
R S —
C Y A L
— | | | — | | | | |
| . | | | . | |
The algorithm gives (in five steps) that AD,(m) = ([-3,-2], + [2,3],v) +
([_2, _1]P+[17 2]Pv)+([_27 _2];0"_[2’ Q]Pv)"_([_L 0]P+[07 ]PV)+([_17 _1]P+[1> 1]Pv)
Thus 7 = L([-3,-2], + [-2,—-1], + [-2,-2], + [-1,0], + [-1, —1],; 7(¢, 1)) with

(¢, n) trivial.

5.1.5. Example. With the notation and coloring as above. Let m := L(n;w(¢,n))
with n = [-2,1], and 7(¢, n) trivial. We associate to 7 the symmetric multisegment
m € Symm defined by m = [-2,1], + [—1,2],v.

The algorithm gives (in four steps) that AD,(m) = ([-2,—-2]
([-1,—=1],+[1,1],v)+([0,0] ,4[0, 0] v ) +([1, 1] ,+[-1, —1] ,v). Thus 7
[—1,-1], + [-1,-1],v;m(p K S1 + p¥ W S, 1)).

+ [2,2],v)
L([_27 _2]P

h)

+
+
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5.2. The bad case. Let p € €% be bad. Since p is bad, all the signs of the
elements in Symm;,(G) are trivial. Thus, we can identify an element of Symm_ (G)
with its underlying multisegment.

Let m € Symm;(G). We want to define AD,(m) € Symm(G). The definition
will be similar to the ugly case. The difference here is that all the segments in m lie
on the same line Z, = Z,v. In particular, it may happen that for some A € m, we
have AY < A.

We impose a condition (see (3) below) that must be satisfied so that both A and

AV appear in the initial sequence of the algorithm.

Let emax be the biggest coefficient of the segments of m (hence the biggest end).
Let A; be the biggest segment of m such that e(A;) = emax. We then define
recursively a sequence A; > --- > /Ay, where A; is the biggest segment of m, if it
exists, satisfying

(1) Aj < Aju;
(2) e(Aj) =e(Aj-1) = L
(3) If there exists i < j such that AY = A; then mmn(A;) > 2.
We call the sequence Ay, --- ,A; the the initial sequence in the algorithm.
From this sequence, we define

my = [e(Ar), e(A1)]p, + [—e(A1), —e(Al)],,
and

m# =m+ Y (A7 — A+ TAY — AY).

5.2.1. Remark. Condition (3) ensures that m# is a well-defined multisegment. Indeed,
if A; = A]V for some ¢ # j, then my(4A;) > 2, so we can suppress A, twice from m.

5.2.2. Definition. When p is bad, we define AD, : Symm/(G) — Symm}(G)
inductively by
AD,(m) = my + AD,(m*).

5.2.3. Remark. From the construction it is clear that AD,(m) is a symmetrical
multisegment. It is also very easy to see that all the centered segments in m; and
m# have even multiplicity. Therefore, the image of AD, is indeed in Symmj, (G)
and AD, is well defined.

5.2.4. Example. Let p be of bad parity and unitary. Let m := L(n;w(¢,n)) with
n = [—1,0], and 7(¢,n) trivial. We associate to 7 the symmetric multisegment
m € Symm defined by m = [—-1,0], + [0, 1],.

In the diagram below, we represent the multisegment m ordered by <. The
thick black lines indicate the initial sequence of segments A, ..., A;. The portions
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A H=)

highlighted in green mark the parts of m that are extracted to form the segment
my; the remaining parts will constitute the multisegment m# after this first step.

The algorithm gives (in two steps) that AD,(m) = ([-1,—1],+[1,1],) 4+ ([0,0], +
[0,0],). Thus 7 = L([—1,—1],;7(p X S1 + pK Sy, 1)).

5.2.5. Example. With the notation and coloring as above, we consider now the case
7= L(n;7(¢,n)) with n = [-1,0], + [-1,0], and 7(¢,n) trivial. The symmetric
multisegment m € Symm is now m = [-1,0], + [-1,0], + [0, 1], + [0, 1],..

-1 0 1 -1 0 1
S — e
| "
g L

[0,1],). Thus, 7# = 7.

5.3. The good case. Let p € €% be good and (m,¢) € Symm,. Let p, be the
unitarization of p. The definition of AD, will also resemble the definition in the bad
case; however, there are some differences:

e The signs play a role here.

e A pair of segments (A, AV) can appear in the initial sequence of the algorithm
without any condition on the multiplicity. In this case, in m# the segment
A will be replaced by “A~.

e The parity of the multiplicity of the centered segments also plays a role.

To make these conditions more transparent, we introduce a new set Gymmz

equipped with an order =, in which the definition of AD, closely resembles the
previous cases. We describe it in the following paragraph.

5.3.1. The set Symm® and the order <. The idea of the set Symm®(G) arises from
the structure of maximal parabolic subgroups of G,,, which are of the form

GL,,(F) | = *
0 G, * ,
0 0 | GL,, (F)

where the bottom-right block GL,,, (F') is a copy of the top-left one.

When dealing with a tempered representation that is not discrete, a centered
segment may appear with multiplicity greater than one. Naturally, half of these will
be assigned to the upper GL,,, (F), the other half to the lower GL,,, (F), and if there
is one more left, it will remain in the middle block G,,. This needs to be taken
into account when ordering the segments: some centered segments will be assigned
to the upper GL,, (F), others to the lower GL,, (F), and some may remain in
G, To formalize this, we introduce a set Gymmy,(G), which distinguishes centered
segments more carefully. To this end, we formally enrich segments with a label

& € {>0,=0,< 0} that encodes their position.



22 THOMAS LANARD AND ALBERTO MINGUEZ

Let Geg be the set of labeled pairs (A, &), where A € Seg and & satisfies the
following conditions:

o If ¢(A) > 0, then & is equal to > 0;
o If ¢(A) <0, then & is equal to < 0.

In the case ¢(A) = 0, then & can be any of the three values. So only centered
segments (¢(A) = 0) carry a nontrivial choice of label; in all other cases the label
is determined uniquely and may be omitted. In those cases, we will simply write
A instead of (A, &). For centered segments, we usually indicate the label by a
superscript A®, e.g., [—a,a],?uo, [—a,a};?, or [—a,a}guo.

One can define the contragredient of an element of Geg in the following way. For
A* € Geg, we define (A*)Y € Geg, by

(1) If ¢(A) > 0, then (AZ0)Y = (AY)=0,

(2) If ¢(A) < 0, then (AS?)Y = (AV)=20,

(3) If ¢(A) = 0 and & is < 0 then (AS0)Y = (AV)=0.

(4) If ¢(A) =0 and & is = 0 or > 0, then (A%*)Y = (AV)*.

There is also a natural involution ¢ on Geg defined by ((A, &) = (AV, 1(&)) where
¢ exchanges > 0 and < 0 and fixes = 0. The contragredient and the involution
naturally extend to multisets. Let Gymm denote the multisets in Geg that are
symmetric under the involution, i.e., those satisfying ¢(m) = m.

There is a natural surjection
p: Gymm — Symm
which forgets the labels. This projection has a section
5 : Symm — Gymm

where s(m) equals

Z At Z me(A)J A<0+me(A)J A>0+<mm(A) _9 {mm(A)J> A=0.
2 2 2
Aem,c(A)#0 Aem,c(A)=0
Let Ay, Ay € Symm. We define an order relation < on the segments of Geg
supported in Z, in the following way:
(Al, < O) < (AQ, = 0)
(A1,=0) < (Ag,>0).
If & is > 0 or <0, then A®* < A% if and only if A; < A,.
If & is = 0, then A'l" = Ag’ if and only if e(A1) < e(As).
The transitive closure of these relations defines an order on Geg.
Finally, we add signs to centered segments. Let Gymm®(G) be the set of pairs
(m,e) with m € Gymm and € : {A € m,¢(A) = 0} — {—1,1}. The order < on
Symm extends naturally to an order on Gymm®. The maps p and s give maps
(fixing ¢) p : Symm®(G) — Symm®(G) and s : Symm®(G) — Symm®(G).

5.3.2. The algorithm. Now that we have defined Gymm and < we can describe
AD,.

Let (m,¢) € Symm,(G) and set (y,¢) = s(m,¢) € Gymm®(G).

Let emax be the biggest coefficient of the segments of m (hence the biggest end).
The first step of the algorithm is to define a sequence A; > --- > A; of segments in
y. The segment A; is the biggest (for <) segment of y such that e(A1) = emax. We
define inductively the other segments. Let j > 1 and assume that A; is defined. If
p is of the same type as G, and A; = [0,0]2° or A; = [0,0]5°, then j = I (that is,
we stop the process). If p is not of the same type as G, and A; = [1/2,1/2],,; or
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Aj=[-1/2,1/2]2% or Aj = [-1/2,1/2]7°, and £([-1/2,1/2],,) = —1, then j = L.
Otherwise, Aj44 is (if it exists) the biggest segment of y such that:

o Aji1 2 Ay

e e(Aj1) =e(hy) — 1

o if C(AjJrl) = C(Aj) = 0 then €(A]‘+1) = —€(A]‘).
If such a A;1; does not exist then j = {. Again, we call the sequence Ay, --- | A,
the the initial sequence in the algorithm.

From this sequence, we will define (my,e1) € Symm$(G) and (m#, &%) €
Symm(G) so that we can set AD,(m, &) = (my,e1) + AD,(m#, %)
We start by defining a sign ey € {—1,1}. This sign will determine when m; is a

centered segment.

5.3.1. Definition. We define g € {—1,1} by ¢ := —1 if one of the following
conditions is satisfied:

e py is of the same type as G and A; = [0,0]20 or A; = [0, 0]57;
e py is not of the same type as G and A; = [1/2,1/2],,; or Ay = [-1/2,1/2]2°
or Ay = [-1/2,1/2]70 with e([-1/2,1/2],,) = —1.
Otherwise, eg := 1.

The pair (my,e1):
(1) If g9 = 1. Then

my = [e(Ar), e(A1)],, + [—e(Ar), —e(Ar)],,

5.3.2. Remark. We will show in Lemma that e(A1) + e(A;) # 0 and
thus the segments in m; are not centered segments.

(2) If g = —1. Then
my = [—e(A1), e(A1)]p, -
Since my is centered, we need to define its sign. Let ny be the number of

centered segments in m, that is ng = card{A € m,¢(A) = 0}.
e If p, is of the same type as G then
er(my) := (=1)™*1e((0,0,,).
e If p, is not of the same type as G then
sl(ml) = (—1)”0.

The pair (m#,e#):

To construct m# we will remove the end of the segments Ay, --- ,A; of m and
the beginning of the segments AY,--- ,A). As there can be multiplicities in y, we
need to be precise on which segments we modify. Let us write y = Ay + -+ - + Ay,
with Ay = - = Ay,

From Ay,---,/A; we construct two sequences iy, --- ,4; and @}, - 7). Let 1 <
7 <l and define

ij :=min{i € {1,...,k}, Ay = A}
and
i :=min{i € {1,...,k},A; = A} }.
We define m# = Af& + A# 4+t Ak# (with the Af possibly empty) by

p(Ay) ifi ¢ {ix, -, 0} andigé{i’l,...,i;}

A p(A)~  ified{i,....qtandi ¢ {i,...,q}
: “p(A;)  ifi ¢ {ir,....q and i€ {i,... i)}
“p(AN;)T ifie {iy,...,qfand i e {i,... i}
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We are left to define the signs of the centered segments of m#. Let AfE be a
centered segment of m# supported in Zy.
o If there exists 1 < j <[ such that A¥ = A?j and ¢(A;) = 0; then e#(A%) =
Ep * €(Aj).
o If there exists 1 < j < such that Afﬁ = Af:, c(A;) = 1/2 and AZ‘*é ¢ m;
then e# (A7) = &.
o If there exists 1 < j < [ such that A¥ = Af:, ¢(A;) = 1/2 and A? € m;
then e# (A7) = g % (=1) xe(A¥).
e Otherwise, 7 (Af&) =gp * E(A?).
It is often convenient to see m* as a modification of m where some segments
A € m have been replaced by “A, A~ or “A™. To describe these modifications,
when Az# # p(A;), we will say that the algorithm suppresses A; and creates Af
5.3.3. Definition. When p is good, we define AD, : Symm/(G) — Symm}(G)
inductively by
AD,(m,e) = (my,&1) + AD,(m# %)
5.3.4. Remark. Unlike the ugly and bad case, it is not clear here that AD, is well
defined. At this stage, it is a map Symm_ (G) — Symm}. To ensure that its image

actually lies in Symm;,(G), we need to verify that two centered segments which are
equal have the same sign. This is established in the next section in Proposition [6.0.7]

5.3.5. Example. Let p be of good parity and unitary. Let 7 := L(n;7(¢,n)) with
n = [-1,0], and 7(¢,n) trivial. We associate to 7 the symmetric multisegment
m € Symm defined by m = [—1,0], + [0,1],.

In the diagram below, we represent the multisegment m ordered by <. We
colored in red the segments with label > 0 and in blue those with < 0. The portions
highlighted in green mark the parts of m that are extracted to form the segment
m;; the remaining parts will constitute the multisegment m# after this first step.

The algorithm gives (in one step) that AD,(m) = [-1,0], 4+ [0,1],. Thus # =7
(remark the difference with the bad parity case in Example [5.2.4)).

5.3.6. Example. With the notation and coloring as above, we consider now the case
mi=L(n;m(¢,n)) withn=[-2,-2],, ¢ = pXS; +pKS; +pKSs, n(pXS;) = -1
and 7(pX S3) = 1. The symmetric multisegment (m,e) € Symm*® is m = [—2, —2], +
[0,0], +[0,0], + [-1,1], + [2,2], with £(][0,0],) = —1 and ¢([-1,1],) = 1.

2 10
l .
| | 4

2 -1
- |

1 2

‘ 2 0
| * |
l l ;+
g | |

The algorithm gives (in two steps) that AD,(m,e) = (m’,¢’) with m’ = ([-2,0], +
[0,2],) + [0,0], and €'([0,0],) = 1. Thus 7@ = L([—2,0],;7(p X S1,7n")) with n'(p X
S1) =1.



AN ALGORITHM FOR AUBERT-ZELEVINSKY DUALITY 25

5.3.7. Example. With the notation and coloring as above, we consider now the case
(m,e) € Symm® with m = [-2, 2], +[0,0], + [-1,1], + [2,2],, £([0,0],) = —1 and
e(=1,1],) = 1.

-2 -1 0 1 2 -2 -1 0 1 2
! ! ! ! . ! ! ! ! !
: — | : : ® :
! l s I A ! l ! !
| | + | | | | | | |
. ! ! ! ! ! ! ! ! !

The algorithm gives (in two steps) that AD,(m, &) = (w’,¢’) with m’ =[-2,2], +
[0,0],, €’([-2,2],) = 1 and €'([0,0],) = —1. In this example, we see that the
algorithm also works when the product of the signs is —1, and that it preserves this
product (the general proof of this property is given in Section .

5.3.8. Remark. For GL,, (F'), Knight and Zelevinsky observed in [KZ96] that for a
given multisegment m, the number of segments in m! that contain a given segment
[, 7] is equal to the capacity of the graph whose vertices are pairs (A, z) where
A emand x € ANJi,j] and the edges connect (A, z) and (A’;x + 1) if A precedes
A

A naive transposition of this result in our setting doesn’t work as shown by the
following example. Let p be of good parity and consider 7 := L(n;7(¢,n)) with
n=[-3,-3],, ¢ =pXRS3+pKR S5+ pK S5+ pK S5+ pKS;+pX S5+ pXS7+pK Sy,
n(p®S3) =1, n(pXS;) = —1 and n(p ¥ S7) = 1. The corresponding labelled
symmetric multisegment is (y,e) € SGymm®(G) given by

y=1[3,3], + [-1,1]7° + [-2,2]7° + [-3,3]5°
+ [_27 2};0 + [_L 1]50
+ 11,1050+ [-2,2,15° + [-3,-3], + [-3,3]5°

with e([-1,1],) =1, ([-2,2],) = —1 and ¢([-3,3],) = 1.

Applying AD, we get that # = L(n';7(¢’, 7)) with 0’ =[-3,-1], + [-3,-2], +
[_35 _3]9 + [_25 _2]/) + [_25 _2]/) + [_lv _l]p + [_lv _I]P + [_1’ _1]0 + [_1’ _1]9 +
[71,71];,, (,25/ = p®81+p®51 +p®51 +p®51+p®51 +p®51 +p®53+p&55,
n'(pWS1) =—1, 7 (pXS3) =1 and ' (p X S5) = —1.

Now let us consider the segment [i, j] = [=3, —1],. Its multiplicity in the dual is
1. However, the capacity of the graph is 2 as there are two paths ([—1, 1};0, 1) —
(1-2,212°,2) = ([3,3],,3) and ([-1,1]5°,1) — ([-2,2]7°,2) — ([-3,3]°,3).

5.4. Main Theorem. The above constructions define for all p € €S a map
AD, : Symm}(G) — Symm_(G). As explained at the beginning of the section,
we get a map AD : Symm®(G) — Symm®(G) by AD = @,cgor/w AD,; and a
map AD : Data(G) — Data(G) defined by AD = trans™! o AD o trans. The main

theorem of this paper (proved in the following sections) is:
5.4.1. Theorem. Let 7 € Irr® with Langlands data (m;¢,n). Then
7~ L(AD(m; ¢,n)).
6. WELL-DEFINEDNESS OF THE ALGORITHM IN THE GOOD PARITY CASE

In this section, we verify that, in the good parity case, the algorithm is well-
defined. Let p € €T be of good parity and p, its unitarization. As explained in
Remark [5.3.4} at this stage AD, is a map AD, : Symm}(G) — Symm;. To ensure
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that the image lies in Symm,(G) we need to verify that any two equal centered
segments are assigned the same sign. Establishing this compatibility is the main
goal of this section.

Let (m,e) € Symm®(G). Let Ay, .-+, A; be the initial sequence in the algorithm
for (m,e) and A],---, A}, be the initial sequence in the algorithm for (m#,e#). Let
g0 be the sign in (m, ) and &) the sign in (m#,c#) (see Definition [5.3.1]).

6.0.1. Lemma. Suppose that there exists j > 1 such that j <1, ¢c(Aj41) =0 and
c(A;) =1/2. Then my#(p(Ajq1)) is even.

Proof. Let a € 37 such that p(Aj1) = [—a,a],, and A; = [—a,a + 1],,. If
Mm([—a,al,,) is odd, then Aj ;1 = [—a,a]7°. The algorithm suppresses one [—a, al,,
(namely, A;;,,) and creates two new ones from A;; and Ay . Thus my«([—a,dl,,)
is even. If mm([—a,al,,) is even, then Aj 41 = [—a,a]5". The algorithm suppresses
two [—a, al,, (namely, A;,,, and A%H) and creates two new ones from A;; and A}
Thus my# ([—a, al,, ) is also even. O

u

6.0.2. Lemma. Let us assume that e(A1) = e(A}). Suppose that there exists
J =1 suchthat j <1, j <l, Al < Aj, c(Aj) #0 and c(Ajy1) = 0. Then
Abp 2 A4

Proof. 1f b,, (A1) < by, (Aj41) then (A} ;) <0and Al < Ajiq. We assume
now that by, (A1) = b,,(Aj+1). Let a € 37 such that p(Aj1) = p(Al,) =
[~a,a],,. Notice that, since A’ ; < Aj, ¢(A;) > 0 and thus c¢(A;) > 0. If
by, (Aj) > —a, then Ai # [~a,a],, and since p(A, ;) = [~a,a],, we get that
mm([—a,al,,) > 1. Thus Aj 1 = [—a,a]5% and A} < Aj4,.

We can now assume that b, (A;) = —a, that is A; = [—-a,a + 1],,. By Lemma

6.0.1} my#([—a,al,,) is even. Then Al = [—a,a]5% and A%, < Ajiy. O

6.0.3. Lemma. Let us assume that e(A1) = e(AY). Suppose that there exists j > 1
such that j <1, j <l and c(A;) =0. We also assume that for all i < j, A} < A,.
Then (A 4) # 0.

Proof. We prove the result by contradiction. Assume that ¢(A% ;) = 0. We may
assume that j is minimal among the indices such that c¢(A;) = 0 and ¢(A’, ;) = 0.

Since A%, ; < A} < A; we get that A is also centered. By minimality of
j, j =1orc(Aj_1) #0. Let a € 1Z such that p(A;) = [-a — 1,a + 1],,. If
j = Llorp(A}) # Aﬁil, then e#([—a — 1,a + 1],,) = coe([~a — 1,a + 1],,) and
e#([~a,al,,) = coe([~a — 1,a + 1],,) contradicting the fact that A’ follows A
in the algorithm and thus e#([—a — 1,a + 1],,) = —#([~a, d],,)-

Thus j > 1 and p(A}) = Aﬁ,l- Since ¢(Aj_1) # 0, we get that A;_; =
[~a—1,a+2],,. Now A} < A;_1, thus the label of A’ is either = 0 or < 0. And
Al < Al so the label of A’ is = 0. But by Lemma My#([—a—1,a+1],,)
is even, which contradicts the fact that A} = [-a —1,a 4 1]7°. O

6.0.4. Lemma. Suppose that e(A1) = e(A}). Then

(1) If eg =1 then I <1;

(2) For all j < min{l,1'}, A;- <A
Proof. We prove by induction on 7 < I’ the following result: if, for all & <
min{j, 1}, Ay is not equal to any of [0,0]5°, [0,0]2°, [1/2,1/2],,, [-1/2,1/2]2°
with ¢([-1/2,1/2],,) = —1 or [—1/2,1/2]2u with e([-1/2,1/2],,) = —1, then
necessarily [ > j and A;- =< A;.
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For j = 1, we have [ > 1. Moreover, e(A}]) = enax, and the segments of m#
ending in ep,, are the Af& with i # 41 and e(A;) = emax. Thus, there exists
1 # i1 such that p(A]) = A;# (that is p(A;) or ~“p(A;)). Moreover, by definition
of i1, we have ¢ > iy and thus A; < A;;. If both Ay and A/ are centered, then
necessarily, mp (p(A1)) > 1 and therefore the label of Ay is > 0, which implies that
A} < Ay. We may assume that one of A; and A is not centered. In this case,
as e(A]) = e(A1), we have that A} < A; if and only if b,, (A]) < b,, (A1). Since
A, < Ay, it follows that b,, (A;;) < b,, (A1). And p(A7) = p(A;) or ~p(A;) thus
by, (A}) = b,, (A;) or b, (A;) + 1. Hence, the only possible case where A} < Ay
might not hold would be when b, (A}) =b,,(A;) + 1 (that is p(A]) = “p(A;)) and
p(Ai) = p(Ai;). This implies that ¢ = 4/ for some j. But from the definition of i’
we should have z; = 41 which contradicts i # ;.

Now, let us assume the result for j and prove it for j+1. We assume that A; is not
equal to any of [0,0]5°, [0,0]12°, [1/2,1/2],,, [-1/2,1/2]2° with e([—-1/2,1/2],,) =
—1or [-1/2,1/2]5° with ([-1/2,1/2],,) = —1. First, let us show that [ > j + 1.
We have that A} ; < A} < Aj (the last inequality follows from the induction
hypothesis). There exists an index i such that p(A} ;) = Al#, and p(A},) is one
of the following segments: p(A;), p(A;)~, “p(A;) or “p(A;)~.

o If p(Al, ;) =p(A;). Then A; is a segment ending in emax — j. First, suppose
that A, is not a centered segment. Then p(A’ ;) = p(A;) implies that
A;‘—H = A;. Thus A; < A; and A; satisfies the condition to be in the initial
sequence (but may not be maximal) giving us [ > j + 1. Moreover, by
maximality of Aj; we get that A%, = A; < Aj1. Now suppose that
A’ is centered. By Lemma @l Aj is not centered. Since A%, ; < A; we
get that ¢(A;) > 0. If the label of A; is <0 or = 0 then A; < Aj. And if
Ai = [—a,a]0, then A} :=[—a,a]5" € y and A} < A;. In both cases, A; or
Al satisfies the condition to be in the initial sequence and I > j + 1. Let
A be either A; or A} such that A < A;. By maximality A < Aj;;q1. The
segment A is centered, so c(A;11) > 0. If ¢(Aj11) >0 then A%} < Ajyy.
And if ¢(Aj41) =0, Lemmanives us that A%} <Ay,

e If p(A%,;) = "p(Ai). Then A; is a segment ending in epax — j. Moreover,
as p(Al ;) = “p(Ai), we get that A; < A%, Thus A; < Aj;. Here,
it is impossible to have both A; and A; centered. Indeed, if p(A;) =
[-a —1,a +1],, and p(A;) = [~a,a],,, then A’ = [-a + 1,a],, and
in that case, A’,; < Aj; does not hold. Hence, [ > j + 1 and A; =
Aj+1. Since Az# = 7p(A1'), A; 7é Aij+1' Thus bpu(Ai) < bpu(Aj+1) and
bp, (A% 1) < bp, (Ajyr). T by, (AL) <bp,(Ajr1) or Ajyg is not centered,
then A’ < Aj11. We assume now that b,,(A%,,) = b,,(Aj41) and
Aji1 is centered. Let a € 1Z such that p(Aj41) = [—a,a],,. Hence,
Ai=[-a—1,d],, and A; =AY = [—a,a+1],,. Since, Aj1; < A;, we get
that Aj 1 = [—a,a];? or Aj1 = [—a,a]5% and similarly for A’ . But if
Aji1 = [—a,a]5 then my#([—a,a],,) is even and Af, | = [—a,a]5". In all
cases, A%} < Aji1.

o Ifp(A% ;) =p(Ai)~. Hence, i =i; and A; = A;. Moreover, as AZ# =p(A;)~
we cannot have that A; is a centered segment with label > 0 or = 0.

We first show that A}, is a centered segment. From p(A’, ;) = p(A;)
we get that ¢(A},;) = c(A;) + 1. Hence, if ¢(A},) >0, A%, = A} and
Aj < A%y Similarly, if ¢(Aj) < 0 we get a contradiction. If ¢(A;) = 0,
then ¢(A%, ;) = 1/2 and A; < A, ;. Thus ¢(A, ;) = 0. Let a € (1/2)Z
such that p(A},,) = [~a,a],, and A; = A; = [~a,a + 1]. Since, A; =

u
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[—a,a +1],,, we get that | > j+ 1 as [-a — 1,d],, < [-a,a+1],,. But
Af’: =p(A;)” so Ajy1 # [—a—1,a],,. Hence, p(Aj11) = [—a,al,,. As
Al <Ay =[—a,a+1],,, we get that A, = [—a,a]5° or [—a,d]5". But,
Mm% ([—a,a),,) is even by Lemma so A%, = [—a,a]5" and we get
that A;»Jrl =< Aj+1.

o If p(A%,,) = "p(Ai)”. Again, i = i; and A; = Aj, and if A € Geg is a
segment such that c¢(A) # 0, then A < “A~. Thus ¢(A} ;) = c(A;) = 0.
This contradicts Lemma [6.0.3]

d

6.0.5. Lemma. Suppose that e(A1) = e(AY). If e, = —1 then gg = —1.

Proof. Suppose that ej = —1. Then one of the following conditions is satisfied.

e If p is of the same type as G and A}, = [0,0]2° or A}, = [0,0]7°. Then,
by Lemma I/ <land A}, < Ap. Since e(Ay) = 0, we get that
Ap =10,0]z% or Ay =[0,0]5°. Hence [ =1’ and gg = —1.

o If p is not of the same type as G and A}, = [1/2,1/2],,. By Lemma
we get that A] < A; and as e(A;) = 1/2, we get that A; = [1/2,1/2],,.

Hence ¢g = —1.

e If p is not of the same type as G and A}, = [-1/2,1/2]2° or A}, =
[—1/2,1/2]5° and £#([-1/2,1/2],,) = —1. By Lemma A} = Ay, so
Al/ = [1/2, 1/2]pu or Al/ = [—1/2, 1/2]%? or Al/ = [—1/2, ]./2];?. If Al/ =
[1/2,1/2],, then ey = —1. We now show the other possibilities lead to contra-
dictions. Suppose that Ay = [-1/2,1/2]2% or Ay = [-1/2,1/2]5°. If I =1,

then —1 = e#([-1/2,1/2],.) = €0e([—1/2,1/2],,,) which is impossible. We
assume now that I’ > 1. By Lemma[6.0.3] ¢(A;_;) # 0. By the formula
for e#, if c(Ap_1) # 1, then —1 = ¥ ([-1/2,1/2],.) = coe([—1/2,1/2],.,)
which is impossible. Thus ¢(Ay_1) = 1/2 and Ay = [-1/2,3/2],,. By

Lemma M ([—1/2,1/2],,) is even, and A}, = [-1/2,1/2]2°. From
Lemma we get that Aj,_; satisfies A}, = [-1/2,1/2]2° < A},_; <

Ap_q1 =1[-1/2,3/2],, which is impossible.

The following proposition generalizes [MW86], I1.2.2.] to our setting.

6.0.6. Proposition. Let 11 € m; be the segment ending in emax. Then ny is the
longest among the segments A of AD,(m,e) such that e(A) = emax-

Proof. We prove the result by induction. By definition AD,(m,e) = (my,e1) +
AD,(m#, #). If m¥ = 0 then we are done. If not, let us write AD,(m#, c#) =
(m),e}) + AD,(m'# &'#). Let e, be the maximum of the coefficients of m#. If
€l ax < €max then no segments of AD(m# &%) contain ep,,x and we are done. Hence
we can assume that e . = emax. Let 1] be the segment of m) ending in epyax. By
the induction hypothesis, every segment of ADp(m#, £7) ending in epay has length
smaller than [(n]). We are left to prove that I[(n}) < (). Let Ay,---,A; be the
initial sequence in the algorithm for (m,e) and Af,---, A}, be the initial sequence
in the algorithm for (m#, e#). If g = —1 then I(1;) = 2] — 1, and if not I(n;) = L.
Similarly, I(n}) = 2I' — 1 if ), = —1, and I(n}) = I otherwise. Thus I(n}) < I(m)
follows from Lemma [6.0.4] and Lemma [6.0.5 (]

6.0.7. Proposition. The algorithm is well-defined. That is, all the centered segments
with the same end have the same sign.
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Proof. We prove the result by induction. We can assume that m; is centered and

that there is another m; in AD(m#,c#). If we write AD(m#, %) = (m},&}) +

AD(m'# ¢'#), then Proposition tells us that mj = m;. We are left to prove

that £(my) = &} (m}). Let ng = card{A € m,¢(A) = 0} and nf = card{A €
m# ¢(A) = 0}.

e If p is of the same type as G. Then e;(m;) := (—1)"0T'¢([0,0],,) and

gi(my) = (—1)"0#+15#([0,0]pu). After applying the algorithm, only one

[0,0],, is suppressed and any centered segments created appear in pairs.

Hence, (—1)m0*! = (71)”#. By Lemma A;_1 cannot be centered.

Moreover, ¢(A;—1) # 1/2 because, by Lemma this would imply

that A = [0,0]2°, but this contradicts Lemma that says that Aj =

[0,02° < A | < Aj_1 =10,1],,. Thus ¢(A;—1) # 1/2 and £%([0,0],,) =

Pu
(=1)£([0,0],, ). Finally, we get that (—1)"1£([0,0],,) = (—1)”0#“5#([0, 0],.)
and that £1(my) = &} (m}).

e If p is not of the same type as G. By definition, €;(m;) := (—1)"™ and
el(m)) := (—1)"#. The proof of Lemma tells us that A; = [1/2,1/2],,,.
Now Lemma gives us that A; = [emax — J + 1, €max — j + 1],,. Thus

nd =ng and &1 (m;) = &} (m}).

d

7. IMPORTANT PROPERTIES

In this section, we will study some properties of the recursive maps:
AD, : SymmZ (G) — Symm_ (G)
(m,e) = (my, 1) + AD,(m# %),

7.1. Maximality of the length of m;. We fix p € €. In this first paragraph
we prove that m; has the longest length among the segments ending in ey ax-

7.1.1. Remark. When p is of good parity, this is proved in Proposition In
this case, the crucial lemma is Lemma This lemma is false in the bad parity
case (with respect to the order <). Indeed, we have seen in Example that, if
m = [-1,0], +[-1,0], +[0,1], + [0, 1],, then A; =[0,1], and A} = [1,1],. Thus,
AL £ A

Let p € €5 be of bad parity. Let m € Symm/,(G), and denote by Ay, --- A,
the initial sequence in the algorithm. We also denote by Af,---,AJ, the initial
sequence in the algorithm for m#.

Let i9g = min{i € {1,---,1} : 3j € {1,---,I},A} = A;}, and jo = max{j €
{17 7l} =S {1’ 7l}aA;/ :Al}

7.1.2. Lemma. (1) A = A,

(2) Let i,j € {1,---,1}. Then, AY = A; if and only if ivc < i < jo and

i+ j =10+ jo-

(3) For alli € {io, s 7j()}, Z(Al) = l(AiO)-
Proof. If AY = Aj, then ¢(A;) = —c¢(A;). Moreover, for every k, Agiq1 < Ay and
e(Apt1) = e(Ag) —1 implies that ¢(Agy1) < ¢(Ag). This proves (1). To get (2) and
(3), note that for all &, [(Ary1) > 1(Ag) and 1(Aj,) = I(A})) = I(Aj,). Thus, for all
i€ {io, - ,Jo}, 1(A;) =1(A;,). This also proves (3) as e(A;) = e(A;) —i+ip. O

7.1.3. Lemma. Suppose that (A1) = e(A}), I! > ip and +A§0 =A;,. Thenl > jo,
and for all ig <1 < jo, TAL = A,.
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Proof. This follows easily from a direct computation, since by Lemma for
i € {io, -+ ,jo} we have A; = [b(Ai,) — i+ o, e(Aiy) — i+ io,,- .

7.1.4. Proposition. Suppose that e(A1) = e(A}). Then the following holds:
(1) ' <.
(2) For all i <1, we have TA; < A,.
(3) If there exists i <1’ such that A, = A;, then ig < i < jo, ' > jo, and for
all ig < j < jo, we have +A;- =A;.

Proof. We prove by induction on k < I’ the following properties:

(1) k<,

(2) *A, < Ay,

(3) If TA} = Ay, then ig < k < jo, I’ > jo, and for all ig < i < jo, we have
TAL = A,

We start with the base case Kk = 1. Clearly, 1 < [. Suppose that ig = 1. If
A1 = [emax; €max], then A} < Ay holds trivially. Otherwise, since A} = A, the
largest segment in m# ending in epax is ~A;. Hence, A} = ~A;, which proves
property (2). Property (3) then follows from Lemma

Now assume iy # 1. By definition of the algorithm, A} = A or ~A for some
A € m. Since A is the largest segment ending in e;,ax, we have A < Ay. If A} ¢ m,
then A # Ay, as ig # 1, so A < Ay. Therefore, A} < Ay, as required.

Now let k < I’, and assume the result holds for all ¥’ < k. We want to prove it
for £+ 1.

e Suppose TA} = Ay and k < jo. Then k+1 < jo, and [ > jo > k + 1.
Moreover, by the induction hypothesis (3), TA}; = Agy1, so (3) also holds
for k 4+ 1. This completes the step.

e Suppose A} < Ay, or TA} = Ay with k = jo.

We first show that A}, < Ag. If A) < Ag, then A) | < A < Ay
immediately. Suppose instead TA) = Ay and k = jo. By the induction
hypothesis, +A’io =A,,. If ig =1, then A, is the largest segment ending in
€max, 50 ~ A, ¢ m. If ig > 1, then A} | <Ay 1,50 A = A <Ay 1.
Hence, ~A;, ¢ m, since otherwise it would contradict the definition of A, .
In all cases, ~A;, ¢ m. Therefore, A’ = A} = (TA;)" ¢ m. This implies
Mu# (A ) = 1. But (A;)Y = Ay, = Aj, so by definition of the algorithm,
Ay # A, . Hence, A}, < Ay, as required.

By construction of m#, A;c—i-l = A, “A, or A~ for some A € m. If
A, TALL ¢ mand A) L, = A7, then A = Ay, contradicting A} ;| < Ay.
Thus, A}, = A or A, and in both cases A < A} | <Ay

Suppose AY ¢ {A; | i <k} ormu(A) > 2. Thenl > k+1and A < Agyg.
Consequently, TA} | <A < Apyy. If TA] | = Ay, and if there exists
i such that Ay, ; = A;, then by Lemma k+1 € {io,...,j0}. Also,
since ~Ag41 < Ay, we have [(Ag41) # 1(Ag), so k ¢ {io,...,jo}, and hence
k + 1 =1o. Property (3) then follows from Lemma [7.1.3]

It remains to show that such i exists. If “Ap;; ¢ m, then by the
construction of m#, there exists 7 such that AY +1 =4, and we are done.
If instead ~Agy1 € m, then since “Agq = A;C_H < Ay, there exists i < k
such that (—Ak+1)\/ = Ai, and mm(_Ak+1) =1

By the induction hypothesis, TA, < A;. If TA, = A;, then i €
{i0,...,Jjo}, and there exists j such that AY = A;, so A; = ~“Apyy,
contradicting the uniqueness of Ay as the segment ending at e(Agy1).
Therefore, A} < A;. From A}, < A} < A = (A;H_l)v, it follows that
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A} = Ay, and hence (A} ;)Y = Aj. Thus, my#(A},,) > 2, contradicting
Mm(Af 1) = 1.

Finally, suppose AY = A; for some i < k and my(A) = 1. Then
A <AL <Ay <A =AY, s0l(A) = 1(A},,), hence A = A} .
By the induction hypothesis, TA;, < A;. If Al < A;, then from A <
Al <A} <A =AY, we obtain A} = Ay, so (A),,)Y = A}, and
My# (A, ,) > 2, again contradicting mn(A) = 1. If TA} = A, then
i € {io,.--,Jo}, and by Lemma A = Ajyyjo—i- Since A = Aj 4,
we have k + 1 = ig + jo — i € {d0,...,Jo}, 50 Apy1 = A}, contradicting

Lemma [T.1.3
O

We conclude that the same result holds for any p € €S,

7.1.5. Proposition. Let p € €% and (m,e) € Symmy,. Let (my,e1) be the mul-
tisegment produced by AD,(m,¢), and let 71 € my be the segment ending in emax.

Then m, is the longest among the segments A of AD,(m,e) such that e(A) = emax.

Proof. When p is ugly, by Remark [5.1.3} AD,, is the Moeglin-Waldspurger algorithm,
and this is proved in [MWS6, 11.2.2.]. When p is good, this is covered by Proposition
[6.0.6] The case where p is bad follows from Proposition [7.1.4] a

7.2. Centered segments in the good parity case. In this section, we show that
in the good parity case, ¢ characterizes whether m; contains a centered segment.

We assume that p is good.
7.2.1. Lemma. If ey =1, then e(A1) + e(4A;) # 0.

Proof. Suppose that g = 1. Necessarily, e(A;) > 0. Let epax = e(A
the maximum of the coefficients of m. Suppose that e(A1) + e(4;) = 0.
—€max < bpu (Al) < e(Al) = —€max, SO Al = [*emaxa *emax]pug

If —emax +1 <0, the only segment A such that e(A) = —epmax + 1 and Ay < A'is
[—emax + 1, —€max + 1]pu. Let ¢ > 0 be the largest integer such that —epax + 7 < 0.
By induction, for 0 < j < i, we have A;_j = [—€max +J, —€max +J]p,. For 0 < j <1,
the segment A ; = [emax —J, €max —J]p, 13 in m, and by maximality in the algorithm,
A1 = [Emax; Bmax]pys - - A = [Emax — &, €max — 1 p, -

If p is not of the same type as G, then —ep.x € %Z \Z and —epax +1 = f%.

This is a contradiction since the algorithm stops at [3, 1],. .

1) be
Then

If p is of the same type as G, then —ep.x € Z and —epax + ¢ = —1. Hence
Ay = [-1,-1],, and A;;—1 = [0,0]5° (had it been [0,0]5° or [0,0]2°, the
algorithm would have stopped there). However, we have shown that A;_;_» = [1,1],,.
This contradicts the maximality of A;—; 1, since [0,0]2% < [1,1],,. O

Also, when A; = [0,0]° or [1/2,1/2],,, the sequence is very specific, as shown

in the lemma below.

7.2.2. Lemma. Suppose that A; = [0,012° or [1/2,1/2],,. Then, for all j €
{1,...,1}, we have Aj = [emax —J + 1, €max — 7 + 1], -

Proof. Let > 0, and let A = [z, x]?ﬂo. Then the only segment A’ € Geg such that
e(Ay=z+1and A <A"is A’ =[x+ 1,24 1]2°. The result follows easily from
this observation. O
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7.3. Sign preserving property in the good parity case. We assume that p is
good. In this section, we show that AD, preserves the product of the signs.

Let (m,e) € Symm;(G). By convention, if A € m and ¢(A) # 0, we define
g(A) = 1. We define the product of the signs in (m,¢) by

S(m,e) == [] ().

Aem

Our goal is to prove that
S(AD,(m,e)) = S(m,¢).
7.3.1. Lemma. We have
S(my,e1) - S(m#, ) = S(m,e).

Proof. Let p, be the unitarization of p.

e Assume that eg = 1 and in Ay, ---,A; there is no centered segment with
label > 0 or = 0. By Lemma [7.2.1] m;y is not a centered segment, so
S(my,e1) = 1. So we need to show that S(m,e)S(m#,e#) = 1. Since
g0 = 1, in m# the segments that changed signs are the Afj which are
centered. The only possible segment creating a centered segment would
be a A;; such that c(A;;) = 1/2. If there is no such A;; then there is
no change in the signs and thus S(m,e) = S(m#,c#). If such a segment
exists, then 5#(Afj) = 1if Af: ¢ m and in this case no sign change; or
5#(Aff) = fs(AZf) if Aff € m. But if Afj € m, necessarily mm(AZE) is even
(if not [fe(Aﬁ), e(Aﬁ)];? would follow A;; in the algorithm). Two segments
Aﬁ are created in m# so the multiplicity stays even and the product of the
signs remains 1. Hence, S(m,e) = S(m#, %),

e Assume that ¢g = 1 and that in Ay,--- ,A; there are centered segments
with label > 0 or = 0. By definition of the order, all these segments are
consecutive in Aq,--- ,A;. There exist two integers a,b with 1 <a <b <
such that these segments are A,, -+, Ap. The only possible segment with
label > 0 is A,. As before, m; is not a centered segment, so S(mj,e1) =1
and g9 = 1. The new centered segment in m# is created by A;,, -+, A,
and possibly A;, | if ¢(A;, ,) = 1/2. This gives the following change to
S(m,e)S(m#,e#). If a =1 or ¢(A;,_,) # 1, then the multiplicity of A;, is
decreased by one, hence multiplying S(m,e)S(m#,c#) by e(A;,). If a > 1
and c(A;,_,) = 1/2, then two segments A;, are created (from A;, + A})
and, then, one is suppressed, which also flips the sign of S(m,¢)S(m#, &)
by e(A;,). With the hypotheses on A;,_,, necessarily A, has label < 0,
thus mum(p(Ag)) is odd. Hence, there is in m#* an even number of p(A,)
and the change of their signs does not affect S(m,e)S(m# #). In both
cases, S(m,e)S(m#,e#) is multiplied by e(A;,). For a +1 < m < b, the
multiplicity of A;,, is unchanged, but e#(A;,,) = eo*e(As,,_,) = —e(A;,), so
S(m,e)S(m#, e#) is multiplied by (—1)™m@P(Am) Finally, the multiplicity
of Af: is increased by one, and the signs are changed to £(Ay), that is

S(m,e)S(m#,e?) is multiplied by g(Afﬁ)mm(Afi) % E(Ab)m‘“(Aﬁ)H. At the
end we get

ia—l

b
S(m.e)S(m# ) = e(Au)« [] (1) m @@ ae(af) ) s e(ay)mm )+

m=a+1
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Since, for a +1 < m < b, A,, has label = 0, we have that mu(p(An))
is odd and (—1)"=@An) = 1. Also by definition of the algorithm,
e(Ap_1) = —e(Ay,). Hence, e(Ap) = (—1)""%(A,). We get

S(m,e)S(m#,c#) = E(Az)mmmf;) N E<Ab)mm(AfZ).

If mm(Af:) is even then S(m,e)S(m# ¢#) = 1 and we are done. And if
mm(Af:) is odd, as AfbE is not in the sequence Aq,---,4A; it means that
e(A?) =e(A;,), and S(m,e)S(m#, e#) = 1.

e Assume that g = —1 and A; = [1/2,1/2],,. By Lemma for all
je{l,--- 1}, Aj = [emax — J + 1, €max — j + 1], and the algorithm just

suppresses these segments and their symmetric counterparts. Since g9 = —1,
all the centered segments change signs, so S(m,e)S(m#, %) = (—1)" =
e1(my).

e Assume that e = —1 and A; # [1/2,1/2],,. Then either p is of the same
type as G and A; = [0,0]° or [0,0]59; or p is not of the same type as G
and A; = [-1/2, 1/2}%O or [-1/2,1/2]70 with ([-1/2,1/2],,) = —1. Now,
my is a centered segment, and 9 = —1. Following the notation of the
previous case, let a be the smallest integer such that A, is centered (and
we would have b =1[). Let n; be the number of centered segments A in m
with e,(A) > e,(A,). Fora < j <1-1,e#(Af) =e(A¥). If a > 1 and
c(N;,_,) = 1/2, two segments p(A,) are created with the same sign. In all
cases, one A, is suppressed, which flips the sign of S(m,)S(m#,c#) by
e(Agy). Now all the other segments change sign. If a =1 or ¢(A;, ,) # 1,
there is n1 —1 such segments (as one A, has been suppressed), thus the sign of
S(m,e)S(m# e#) is changed by (—1)™~1. If a > 1 and ¢(A;,_,) = 1/2, the
number of segments that change signs are ny — mun (p(Aq)). But mm(p(A,))
is odd. Thus S(m,e)S(m#, e#) changes by (—1)"*~1. In all cases, we get

S(m,e)S(m#,e#) = (=1)mHe(A,).

The centered segments of m with e(A) < e(A,) are the A?f witha < j <I1-1.
Thus ng = ny + Zé;a mm(Ai). But mm(Aff) is odd, thus (—1)"1+! =
(_1)n0+1 * (_1)l—a. AISO7 E(Aa> = _E(Aa+1) == (_1)l_a€(Al). Hence

S(m,e)S(m#*, &) = (1) e(p(Ar)) = e1(m).

U
7.3.2. Proposition. Let (m,e) € Symm;(G). Then S(AD,(m,¢)) = S(m,e).
Proof. We prove the result by induction. We have that
S(AD,(m,e)) = S(my,e1)S(AD,(m#, %))
= S(my,e,)S(m#, &%) (using the induction hypothesis).
The result follows from Lemma [T.3.1] O

8. THE THEORY OF DERIVATIVES AND THE ATOBE-MINGUEZ ALGORITHM

We now recall the theory of derivatives as presented in [AM23]. It will be the
main tool to prove Theorem Let d > 0 be an integer. Throughout this section,
we fix p € €(GLq4(F)).
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8.1. We first treat the case of general linear groups. For 7 € Rep(GL,(F)), we

define the semisimple representations Lg,k)(r) and ng)(T) of GL,,_4x(F) by the
equations:

[Jac(arn—daw) (1)] = p* BLEF) (1) + Zn X o;,
[Jac(y—ar,ar) (7)] = RV (7) B p* + Zgi X7,

where 7; and 7/ are irreducible representations of GLgx(F') that are not isomorphic
to p*. We refer to LE,k) (1) (respectively, Rﬁk) (1)) as the k-th left p-derivative
(respectively, the k-th right p-derivative) of 7.

If Lgk)(T) # 0 but LEJkH) (1) = 0, we say that Lg,k)(T) is the highest left p-derivative.
The highest right p-derivative is defined in the same way using R,()k)(T).

When L,(jl)(T) = 0 (respectively, Rél)(T) = 0), we say that 7 is left p-reduced
(respectively, right p-reduced).

8.2.  'We now proceed to the case of GG,,. Let k > 0, and let Py, denote the standard
parabolic subgroup of G,, with Levi subgroup isomorphic to GLg(F') X G—ax. For

IT € Rep(G,,), we define a semisimple representation D(k) (I1) of Gy —ax by:

[Jacgy ()] = p* & DY 1) + Z% 5 11;,

where 7; is an irreducible representation of GLg(F) which is not isomorphic to p¥.
We call D,()k)(H) the k-th p-derivative of 1.

If D,()k)(l'[) # 0 but ngﬂ)(l'[) = 0, we say that Dék) (IT) is the highest p-derivative.
When Dgl)(l'[) =0, we say that II is p-reduced.

8.3. Now assume that p is not self-dual. Then, for all 7 € IrrG, the highest

p-derivative D;(;k) (7) is irreducible, and soc(p” x 7) is irreducible for all r > 0. We
define

S{7 () = soc(p” x ).

One has that D,(,T) o Sér) (m) = 7 and Sgr) o D,(f)( )=, if D ) () # 0. For more
details, see [AM23], §3].

8.4. In this paragraph, we assume that p € € (GLg(F)) is self-dual. In this case, p-
derivatives are not yet well understood. One of the ideas in [AM23] is to circumvent
this issue by using alternative derivatives.

Let II € Rep(G,). We define the L([—1,0],)-derivative DL([ 1O]ﬂ)(l_[) and
the Z([0,1],)-derivative D! ()[0 1, )(H) as the semisimple representations of G,,_oqx
satisfying

[Jacg;dk(ﬂ)} = I([-1,0],)*® D)

k
L([-1,0], )(H)+Z([O’1] ) gD(Z()[o 1, ) )+Zﬂ'®m‘,

where 7; € Irr(GLagg (F)) such that 7; % L([—1,0],)%, Z([0,1],)".

As before, we define the notions of highest L([—1,0],)-derivatives (resp. highest
Z([0,1],)-derivatives) and the property of being L([—1,0],)-reduced (resp. Z([0,1],)-
reduced).

If II € Irr(G,,) is p|-| ~*-reduced (resp. p|-|*-reduced), then the highest L([—1,0],)-

derivative D(Lk&)[fl o}p)(H) (resp. the highest Z([0,1],)-derivative D! ()[0 1, )(H)) is
irreducible. Similar definitions apply for GL,,(F).
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For an irreducible representation 7 of G,, which is p| - |~*-reduced (resp. p| - |!-
reduced), we also define:

SV1 0, () = soe(L([=1,0],)" x 7)
(resp. S04y, (m) = s0c(Z([0,1],)" x 7))
They are irreducible representations and we have: D" ) © st ]p)(w =

L([=1,0]) © P L([~1,0 T
and S(LT()[fl,o]p) ODg’()[iLO]p)(’]T) =, if D(LT()[A,O]p)(W) # 0, and similarly for Z([0,1],).

8.5. The derivatives are compatible with the Aubert—Zelevinsky dual in the follow-
ing sense.

8.5.1. Proposition (JAM23, Prop. 3.9]). Let = € Irr® and p € €6,
(1) If Df(;k) 1s the highest p-derivative, then

—

k k)
D,(7 )(71') = Df)v) (7).

(2) If p is self-dual, 7 is p| - |~t-reduced and Dék()[_l 0]0)(77) is the highest
L([-1,0],)-derivative, then

K\ k) R
Dr-1.0,) (™ = Dz o, (®):

8.6. We now recall the Atobe-Minguez algorithm for computing the Aubert—
Zelevinsky dual of an irreducible representation 7.

Assume that the dual 7y can be computed for all irreducible representations of
Gy, , where ng < n. Let 7 be an irreducible representation of G),.

(1) If there exists a p € €S* such that p is not self-dual, and Df,k) (m) is the
highest p-derivative with k > 1, then

=5 (D,S“(w)) .

(2) Otherwise, if 7 is not tempered, there exists a self-dual p € “* such that
D(Lk()[_1 0],3)(77) is the highest L([—1,0],)-derivative with £ > 1. In this case,
we have

. ok ®
= 5z001,) (Du[l,mp)(”)) :

(3) If neither of the above cases applies, then 7 is explicitly computed (see
[AM23], Proposition 5.4]).

9. EXPLICIT FORMULAS FOR THE DERIVATIVES

In Section [8] we recalled the definition of derivatives. In this section, we provide
explicit formulas for computing these derivatives. Such formulas are given in [AM23]
in terms of Langlands data. Here, we instead work with our symmetric Langlands
data (the space Symm?(G)), which simplifies the formulas and unifies the treatment
of the negative and positive cases, handled respectively in Sections 6 and 7 of
[AM23].

Accordingly, we define an operator D, on Symm/(G) such that, for 7 = L(m,¢),
the highest derivative satisfies D,(gk) () = L(D,(m,¢e)). This operator will play a
crucial role in the proof of our main theorem. However, readers interested only
in the overall strategy of the proof may skip this section and proceed directly to

Sections [[0.1] and 0.2
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9.1. Best matching functions. Following [LM16] §5.3], we introduce best match-
ing functions.

Let X and Y be finite sets, and let ~» be a relation between elements of Y and
X. We are interested in injective functions f : X — Y such that f(z) ~ x for
all z € X. Any such function will be called a ~»-matching function (or simply a
matching function when the relation ~ is understood from context).

According to Hall’s criterion, such a function f exists if and only if, for every
subset A C X, the following inequality holds:

(9) #{yeY :y~ z for some x € A} > #A.

In some cases, it is possible to construct such a function f explicitly. Assume
X and Y are totally ordered by relations <x and <y, respectively. One natural
approach is to define f recursively, starting from the largest element of X and
proceeding to the smallest, using the following rule:

(10) f() =min{y €Y'\ f(X52) 1y ~ x},
where X5, := {2/ € X : 2/ > z}. For this definition to be valid, we must ensure
that, for each z € X, there exists some y ¢ f(Xs,) such that y ~ z. Clearly, this
requires additional assumptions about the relation ~-.

To this end, we introduce the following property. We say that the relation ~
is traversable if for all 1,22 € X and y1,y2 € Y with x1 >x x5 and y; >y yo, the
following implication holds:

(11) Y1~ T1, Y2 ~> T1, and Yy ~» Tp = Y1 ~> Ta.

More generally, even when Hall’s criterion is not satisfied, we can still speak of
~s-matchings (or simply matchings, if ~» is clear from context) between X and Y.
By this, we mean injective functions f from a subset of X to Y such that f(z) ~> x
for all « in the domain of f. We view such a function as a relation between X and
Y.

Mimicking the earlier construction, if ~ is traversable, we define the best ~--
matching between X and Y: for this, we recursively define the domain X° C X and
the function f on X° by

re X’ «— FyeY\ f(X°NXs,) such that y ~ x,
in which case we set f(z) =min{y € Y\ f(X°N Xs,):y~ x}.

We set Y0 := f(XY), X¢:= X\ X% and Y¢:=Y \ Y°. Finally, for z € X°, we
will say that = protects f(z) € Y°.

9.2. The good parity case. Here, we give the formulas for computing the highest
p-derivatives, for p of good parity, in terms of symmetrical Langlands data.

Let p € €S be of good parity. We write p = p,| - |* with p, unitary and
r € (1/2)Z. Let (m, ) € Symm(G). We assume that x # 0.

By convention, when z = 1/2, we set [—z+1,z—1],, =0, mun([—2z+1,2—1],,) =1
and e([—z+1,2—1],,) = 1. Let t = card{[—z,2—1],, € m} = card{[-z+1,2],, €
m}.

9.2.1. Definition. We say that (x) is satisfied if the four following conditions are
satisfied:

(1) > 0;

(2) mw([=2,2],,) # 0;

(3) mm([—z+1,2—1],,) #0;

4) e[z alp)e([~2 + Lz —1],,) = (1)1,
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We write m = Ay +--- + A,.. If (%) is satisfied, fix iy and jo such that A;,
[—x,2],, and Ajy = [-x+1,2—1],,; otherwise let 49 = jo = —1. Let A, |.» = {z €
{1, rhe(Ai) = a} \{io} and Ay jer = {i € {1,--- 7}, e(Ai) =z — 1} \ {jo}-

We define the traversable relation ~~ between Apul"m and A, |.|o-1 by

i€ A,, [z~ J € A, HESS! S A <A

. be given by the best matchmg function (see Section CIf Aim =
{1, zk} then we fix ji,---,Jk € {1,--- ,r} such that A; = An’ and j, # 7
if a # b. We denote by Acv‘ - the set A e = = {41, - ,Jjx}. The “naive” highest

p-derivative of (m,¢e) would be (m’,&’) deﬁned as follows (the actual derivative will
result from a slight adjustment of this pair). Let m’ = >"'_; A} where

A7 ifie A7 bof e and A; # [—z,z],,
TA; ifie AD e and Ag # [, a],,
“A; ifie A and A; = [z, 2],,

A otherw1se

wl|®

We also need to define the signs of the centered segments of m’. Let A € m/
such that ¢(A) = 0. If A € m, we define £'(A) = £(A) and if not, then necessarily
A =[-z+ 1,2 —1],, and we define ¢'([—z + 1,z — 1],,) = (—1)’e([~=, z],,)-

Finally we can define the operator D, |- on Symm,(G). Let ¢ = card{i €
A;qu,AZ = [7‘T? ‘T]Pu}'

9.2.2. Definition. Let (m,e) € Symm/(G). We define D, |.-(m,¢) € Symm}(G)
by D, |.=(m, ) = (my,e,) where
(1) If (%) is not satisfied, ¢ is odd and ¢ > 1. Then

My = m' — [—:E + 17x]ﬁu - [_‘Tvx - ”Pu + [_xvx]f?u + [_x +1,2— 1]Pu

and e;([—z,z],,) = &([—z,z],,), and for a centered segment A € m,
different from [—z,z],,, €-(A) = &'(A).
(2) If (x) is satisfied and ¢ is odd. Then

m, =m' — [—z,2],, — [~z + 1,21, +[-z+12z],, +[-z,2—1],,

and for a centered segment A € m,, £,(A) =¢'(A).
(3) Otherwise, m, =m’ and ¢, = ¢’.

79

9.2.3. Remark. The cases (1) and (2) can be seen as a correction of some “mistake
made when transforming the segments. In (1) a segment [—z, z],, has been changed
into [-x + 1,z — 1],, but it should have been that [-z + 1,z],, + [—z,z —1],, is
changed into [—z + 1,z —1],, + [~z + 1,z — 1],,. In (2) one segment [z, z],, has
been changed into [—z + 1,z — 1], and another [z, z],, was unchanged but the
two [—x,x],, should have been changed into [—z + 1,z],, + [z, z — 1],,.

Using Symm® (G) = @ cger /v Symm},(G), we can extend D), |.j» : Symm7 (G) —
Symm(G) to an operator D, |- : Symm®(G) — Symm®(G) by making it act as
the identity on each Symm?, (G) with p’ =’ p.

9.2.4. Proposition. Let p = p,|-|* € €% be of good parity with p, unitary and
x#0. Let 7 = L(m,¢) € Irr” with symmetrical Langlands data (m, <) € Symm® (G).
Then Df(;k) (m) = L(D,(m,e)), where Df)k) is the highest p-derivative.

Proof. When 2 < 0 the formula is given by [AM23, Prop. 6.1.] and when > 0 by
[AM23, Thm. 7.1]. O
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9.3. The bad parity case. Similarly to the previous section, we give formulas for
the highest p-derivative when p is of bad parity.

Let p = pu| - |* € €C" be of bad parity with p, unitary and z # 0. Let
(m,e) € Symm}(G). Let t = card{[~=z,x — 1],, € m} = card{[-x + 1,z],, € m}.
We write m = Ay + -+ + A, Let A, o = {7 € {1,---,7r},e(A;) = x} and
Apu|.‘u:71 ={ie{l, - ,r}e(A) =x—1}.

The relation ~~ between A, |.|» and A, ||.-1 is similar to the one for the good
parity with the exception that “a segment cannot protect its own symmetric”. This
can only happen for the segments [—z,2—1],, and [-z+1, z],, and we have an issue
if ¢t is odd. So if ¢ is odd we fix two indices ig and jo such that A;; = [z + 1,2],,
and Aj, = [-z,x — 1],,; otherwise set ig = jo = —1. We define the traversable
relation ~~ between A, = and A, |.|=—1 by

Pul] Pul]
i € Aple > J € Ayl & Aj <A and (4,4) # (0, Jo)-
pul-l be given by the best matching function (see Section . If Azqu
{i1, -+ i} then we fix ji,---, jr € {1,--- ,r} such that A;, = A} and j, # jp if
a # b. We denote by A;ﬁ.\z the set A;L\/Hx ={j1, - ,jk}. Let m’ =37 Al where

A7 ifieAS . and A, # [—z,7],

TA; ifie A;’uHm and A; # [—z,z],,
A7 ifie A7 | and A = [~ 7],
AV otherwise

Let A°

|= on Symm;(G). Let ¢ = card{i €

p

Finally we can define the operator D, .
AC

Pul"I’Ai = [_xa x]pu}'

3.1. Definition. Let m € Symm;(G’). We define D, |.|-(m) € Symm;(G) by
o> (M) = m, where
(1) If ¢ is odd. Then

my = m/ - [7x + 1’1' - ”pu, - [71'727}011, + [7$7x - 1]Pu + [7*% + 17$]Pu,'

9.
D

(2) Otherwise, m, = m’.

9.3.2. Remark. Case (1) can be seen as a correction of some “mistake” made
when transforming the segments. The segments [—x,z],, + [-z,z],, have been
changed into [—z + 1,2 — 1],, + [—x, z],, but they should have been changed into
[—z+1,z2],, + [z, —1],,.

We extend D, |.|» : Symm_(G) — Symm/,(G) to an operator D, |- : Symm®(G) —
Symm®(G) by making it act as the identity on each SymmZ, (G) with p’ = p.

9.3.3. Proposition. Let p = p,|- |* € €T be of bad parity with p, unitary and
x#0. Let m = L(m, ¢) € Irr® with symmetrical Langlands data (m, ) € Symm®(G).
Then D,(,k) (m) = L(D,(m,¢e)), where D,()k) is the highest p-derivative.

Proof. When z < 0 the formula is given by [AM23| Prop. 6.1.] and when = > 0 by
[AM23, Thm. 7.4.]. O

9.4. The derivative of a sum. The proof of the main theorem will rely on
computing D,(AD(m,¢)). The definition of AD being recursive, AD(m,¢e) =
(my,e1) + AD(m#, %), we need to relate the derivative of a multisegment of the
form (my,e1) + (w',€’) to Dy(my,e1) and D,(m’,€"). In general, the derivative of a
sum does not behave nicely. However, in our setting, (my,e1), the first multisegment
produced by AD, satisfies certain favorable properties that make this comparison
possible.
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Let p € €. We have recalled in Sections and explicit formulas for the
highest derivative D) on Symm®(G). Using [AM23, Prop. 6.1.], [AM23, Thm.
7.1.] and [AM23 Thm. 7.4.] we also get an explicit formula for S,(gl) on Symm®(G).

Let (m,¢) € Symm®(G). We define D**~!(m,e) by Dp**~!(m,e) = (m,¢) if

(m,e) is p-reduced; and DJ**~!(m,¢) = Sgl) o D,(m,¢e) otherwise.

9.4.1. Lemma. Let p = p,|-|[* € € with p, self-dual unitary and x # 0. Let
(m,e) € Symm®(G). Let (a,b) € (xZ)? such that a <b. If p is good and a +b =0,
let my = [a,b],, and &1 € {—1,1}. Otherwise, let my = [a,b],, + [-b,—al,,. We
assume that (my,e1) + (m, &) € Symm®(G).

(1) If b # x,2 — 1 and a # —x,—x + 1, then D, .- ((m1,e1) + (m,e)) =
(my,e1) + D, 4= (m,€).

(2) If b=z, a # —x,—x + 1 and there is no segment A € m supported in Z,
such that e(A) = x — 1 and A < [a,b],,, then D, |j=((my,e1) + (m,€)) =
DpuHm(thl) +Dpu|.‘m(m,e).

(3) Ifb=x—1, a # —x,—x + 1 and for all A € m supported in Z, such that
e(A) = x then [a,b],, < A, then D, | =((my,e1) + (m,e)) = (my,e1) +

Dt (m,e).

Proof. Tt follows directly from the formula of D|.|=. O

We will also need an analogous formula with Dz([o 1, )- An explicit formula for
the Z([0,1],, )-derivative can be found in [Ato22c, Algorithm A.4.]. As before, for

(m,e) € Symm*®(G) we define D?ﬁ’é;ﬁu)(m,s) by D?&’S;ﬁu)(m, g) = (m,e) if (m,¢)

is Z([0,1],, )-reduced; and D**~1(m,e) = S(Zl()[o 1, ° Dz(0,1,,)(m, &) otherwise.

Pu
9.4.2. Lemma. Let p = p,|-|* € € with p, self-dual unitary and x € %Z be
given. Let (m,e) € Symm®(G). Let (a,b) € (2Z)? witha <banda+b<0. Ifp
is good and a +b =0, let my = [a,b],, and choose e; € {—1,1}. Otherwise, let
my = [a,b],, + [—b,—al],,. We assume that (my,e1) + (m,e) € Symm®(G) and that
(my,e1) + (my€) is py| - |-reduced. We also assume that a < min{b(A), A € m} and
that for all A € m with b(A) = a, I([a,b]) > I(A).
(1) If a,b ¢ {0,1,—1}, then
DZ([(),l]pu)((mlvgl) + (m,g)) = (my,e1) + DZ([o,upu)(m, €).
(2) If b=0, a # —1,0 and (m,¢) is 1-reduced, then
Dz(0,,)((m1,61) + (m,€)) = (m1,e1) + Dz(0,1,,)(m, ).
(3) If b=0, a # —1,0 and (m,e) is not 1-reduced, then
Dy(j01,,)((m1,€1) + (m,€)) = [a, —1],, + [1, —alp, + Dz(0.1,,)(Dp.|| (M, €)).
(4) If b= —1, then
DZ([OJ]W)((ml,sl) + (m, 5)) = (m1,51) + D?(a[)éi]lpu)(m, 6).

Proof. Part (1) follows immediately from [Ato22c, Algorithm A.4]. Let us focus on
the other three parts. Although one could also use [Ato22c, Algorithm A.4], we
instead provide a simple proof using basic facts from representation theory. We will
repeatedly use the following simple lemmas:

9.4.3. Lemma. Let 7 € IrtY, o € It such that:

(1) The induced representation T X o is SI.
(2) T is left-py| - |-reduced and o is py| - |*-reduced.
(3) T is left-Z(]0,1],, )-reduced and o is Z([0,1],,)-reduced.
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Then,
Z([0,1],,) xTx0o
is SI.
Proof. The conditions imply that Z([0,1],,) ® soc( X o) appears with multiplicity
1in
JacS(Z([0,1],,) x T % o)

for some parabolic subgroup P of a certain G. This implies the claim. O

Denote by 7 (resp. 7') the representation associated to (m,¢e) (resp. (my,e1) +

(m,€)). Then, by our hypotheses, 7’ is the socle of L([a,b],,) % .
Assume first that b = 0 and 7 is py| - |-reduced. If we denote by k the integer

such that Dz(jo ), )(7) = D(Z]?)[o,1]pu)(ﬂ)’ we have

L(la,bl,,) x Z([0,1],,)* x Dz (o,1),,(7)
is SI. Indeed, as b = 0, by [BLM13, Thm. 0.1], it is isomorphic to

Z([0,1]5,)" x L([a,bl,,) ¥ Dz(o,11,,)(7);

and the claim follows from Lemma As 7’ is clearly in the socle, we deduce

Dy(j0,1],,)(7") = soc(L([a,b],,) ¥ Dzo,1,.)(T)).
This proves (2).
Now assume that b = 0 but = is not p,|-|-reduced. Then, by [BLM13, Thm. 0.1],
we have
(12) L([ably, + [1,1],,) x Z([0,1,,)" % Dz(o,11,,) Dp, 11 (7) =~
Z([O’ l]pu)k X ([a’b]pu + [ 71]/%) A DZ([071]pu)Dpu\-\(7T)'
This representation embeds into
Z([0,1p,)*" x L(la,b = 1]5,) % Dz(o,1,,) Dy, 1 (7)-
Lemma implies that this induced is SI and so is (I2). But again this socle is

isomorphic to 7’. As proving it requires some more work, let’s give some details. First
see that, as 7’ embeds in L([a,b],,) X pu|-| ¥ D, |.|(7), it embeds in o¢g x D, |.(7)
for some subquotient oy of L([a,b],,) X pu|-|. But 7’ is p,| - |-reduced, so we deduce
that o9 ~ L([a, b],, + [1,1],,). Therefore,
SOC(L([CL, b]pu + [17 ]‘]pu> X Z([O? l]pu)k A DZ([O,l]pu)DPu‘l(ﬂ')) =
soc(L([a, bly, +[1,1]5,) x s0¢(Z([0,1]5,)" % Dz(jo1,,) Dy, 1-1(7))) =
soc(L([a,bl,, + [1,1]p,) X Dy, (7)),
which contains 7" and is thus isomorphic to it. This proves (3).
Finally, assume b = —1. Then 7’ is a subrepresentation of

L([a,b],,) x Z([0,1],,)* % Dz(o,1,,) ().

Here, L([a,b],,) x Z([0,1],,)" is not irreducible but has length 2, with composition
factors soc(Z([0,1],, ) x L([a, b],,))x Z([0,1],,)*~1 and soc(L([a, ], ) x Z([0,1],,,)) x

Z([0,1],,,)*~. By our assumption on my, we must have that 7’ is a subrepresentation
of

soc(L([a, b, ) Z([0,1],,)) x Z([0,1p,)" ™" % Dz(o,,(7) =
Z([0,1], ) L soc(L([a,bl,,) x Z([0,1],,)) @ Dz, 1]pu)(7r).
By Lemma([9.4.3] this induced representation is SI, and as before, this proves (4). [
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10. PROOF IN THE GOOD PARITY CASE

The goal of this section is to prove Theorem in the case of an irreducible
representation of good parity. To do so, we will work with symmetric Langlands data
throughout this section. More precisely, we will establish the following equivalent
formulation of the theorem.

10.0.1. Theorem. Let 7 € Irr® be of good parity with symmetrical Langlands data
m~ L(m,e). Then we have
7~ L(AD(m,¢)).

The strategy to prove Theorem is as follows. We have already seen in
Proposition that the derivatives and the Aubert—Zelevinsky involution are
compatible. This allows us to prove the theorem by induction on the length of m,
using the fact that derivatives are injective and reduce the length.

The base case is when 7 is p-reduced for all p, and also L([—1,0],)-reduced; this
case is treated in Section Now suppose that 7 is not p-reduced for some p (the
case where it is not L([—1,0],)-reduced is similar). Let (m,e) € Symm® ™ (G) such
that = = L(m, ¢). Then, if we can prove that

D,y(AD(m, ¢)) = AD(D,v (m, €)),
the result follows by induction, as shown in the following computation:
D,(L(AD(m,¢))) = L(D,(AD(m,¢))) by Lemma [0.2.4]
= L(AD(D,v (m,¢)))

= L(D,v(m,¢)) by the induction hypothesis

= D,v(L(m,¢)) by Lemma
= D,(#) by Proposition

and we conclude by the injectivity of D,,.

The key point in this argument is the compatibility between the derivative functor
and AD: namely,

D,(AD(m,¢)) = AD(D,v(m,¢)).
Establishing this identity is the main goal of this section.

However, a technical difficulty arises. We would like to prove this identity by
induction using the recursive definition AD(m, &) = (my, 1) +AD(m#,7), but this
recursion is only valid when (m,¢) € Symm® ™ (G), and unfortunately, (m#, #) may
not belong to Symm® ™ (G). As a result, we are led to prove a slightly modified
version of the statement above, which we will explain in detail below.

If € = {p1, -+ ,pr} C €T is a finite set composed of good supercuspidals, we
denote by Symmé (G) = @ ¢ Symmy, (G).

We fix € = {p1, -+ ,pr} C €L /~' a set composed of good supercuspidals and
po € 9%\ € be a good self-dual supercuspidal. For a multisegment m € Mult, we
denote by I(m) the length of m. We will prove the following theorem.

10.0.2. Theorem. Let N € N. Let 7 € Irr® be of good parity with symmetrical Lang-
lands data (m',¢') € Symm® " (G). We assume that there exist (m,e) € SymmS(G)
and (mg,0) € Symm;, (G) such that

(1) (w',&) = (m, &) + (mo, £0);

(2) l(m) < N;

(3) l(mo) < 1.
Then # ~ L(AD(m’,")).
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If we prove [10.0.2| for all finite subsets ¥ € €“" and all N € N, then Theorem
implies Theorem

10.1. The case of a reduced multisegment. Let (m,s) € Symm®. Let p € €S
be self-dual. For « # 0, we say that (m,¢) is p|-|*-reduced if D;‘l_)lm (m,e) #0. If (m,e)
is p| - |~-reduced, we say that (m,e) is L([—1,0],)-reduced if D(Ll()[q,o]p)(mv e) #0.
Finally, we say that (m,e) is reduced if for every self-dual p and x # 0, it is

p| - |*-reduced and L([—1,0],)-reduced.
In this section we prove Theorem [10.0.1] for reduced multisegments.

Let p € €C" be self-dual and of the same type as G. Let ng,yo € N, with
ng > 1. We define (m,e) € Symm,(G) by m = ng[0,0], + 3>°7%,[~y,y], and for all
1 <y <wyo, e([~y,y)p)e([~y + 1,y — 1],) = —1 (we do not fix any condition on
£((0,0],))-

10.1.1. Lemma. We have that AD,(m,e) = (w’, &) where

(1) If yo =0, then m’ = m and £'([0,0],) = (—=1)"1e([0,0],).

(2) If ng is odd and yo # 0, then (', &) = (m, ).

(3) If ng is even and yo # 0, then m’ = m—[0,0], —[—yo. Yol p+[—¥0, 0], +[0, %ol ,»
and for y < yo, &' ([=y,9],) = (=9, 3,).

Proof. (1) Suppose yo = 0. Then m; = [0,0],, €1([0,0],) = (—1)"*1e([0,0],),
m# = (ng — 1)[0,0], and #([0,0],) = —&([0,0],). We get the result by
induction.

(2) Suppose ng is odd and yo # 0. Then my = [—yo,vo0lp, €1([—v0,y0l,) =
e([=y0, yolp), m# = no[0,0],+ 30 [~y, ], and for y < yo, e*([~y,y),) =
e([~y,yl,). By induction, we see that AD(mg,eq) = (mo,eo)

(3) Suppose ng is even and yo # 0. Then m; = [—yo,0], + [0, yo],, m#

(no — 1)[0,0], + 320 [~y 9], and for y < yo, e ([~y.y),) = —e([~y.y,)-
We get the result using the previous case.

O

Now, let p € €L be self-dual of the opposite type as G. Let yo € (1/2)N\ N.
We define (m,e) € Symmy, by m = 3770 | »[~y,ylp, e([~1/2,1/2],) = —1 and for all

1/2 <y <wyo, e([-y,ylp)e([-y + L,y — 1],) = —1L.
10.1.2. Lemma. We have that AD,.j1/2(m,g) = (m, ).

Proof. Applying the algorithm, we get that m; = [~yo, yo], and m# = er’;l}g[—y, Ylp-

The result follows directly by induction. O

We can now prove Theorem [10.0.1] for reduced (m,¢).

10.1.3. Lemma. Let 7w = L(m,¢) € Irr be of good parity with (m,e) € Symm®*(G).
If (m,¢) is reduced then & ~ L(AD(m,¢)).

Proof. We can write (m,e) = >_  (m,,€,,) such that the p; € €Sl are good, Z,, #
Ly, ifi # j,and (my,,&,,) € Symmy, . By definition, AD(m,e) =3 AD,,(m,,,&p,).
The hypothesis made on 7 imply that each (m,,,¢,,) satisfies the hypotheses of

Lemma|10.1.1) or Lemma [10.1.2} These lemmas explicitly compute AD(m,¢). The
representation 7 is explicitly computed in [AM23] Prop. 5.4]. The two results are
identical, proving the result. O

Because we want to prove Theorem [10.0.2] we will also need the following lemma.
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10.1.4. Lemma. Letm = L(w', ') € Irr® be of good parity with (w',&’) € Symm®* ™ (G).
We assume that there exist (m,e) € Symmg (G) and (mg,e0) € Symm;, (G) such
that

(1) (w' &) = (m,e) + (mg,ep);
(2) (m,e) is reduced;
(3) U(mg) < 1.

Then # ~ L(AD(w’,¢")).

Proof. The only elements (mg, o) € Symm/, of good parity with I(mg,e0) < 1, are

mg = 0 and my = [0,0],, with po of the same type as G. They are both reduced, so
the result follows from Lemma [[0.1.3l O

10.2. The strategy of the proof. We explain here the strategy to prove Theorem
110.0.2

We prove Theorem [10.0.2| by induction on N. The case N = 0 is handled by
Lemma [I0.1.4] Let N € N*,

10.2.1. Hypothesis. We assume that Theorem is true for all N’ < N.

Until the end of the section, we will assume that Hypothesis [10.2.1] is true. We
want to prove now that Theorem [10.0.2|is true for N. To do that, we will prove
that the algorithm AD commutes with derivatives.

10.2.2. Lemma. We assume that for all non-reduced (m,e) € Symmé (G) with
[(m) = N, there exist p; € €, p € €S self-dual and x # 0 such that p| - |* € Z,,
and we have either
(1) (m,e) is not p| - |*-reduced and AD,, (D,.|=(m,€)) = D,.|-=(AD,, (m,¢€))
(2) or, if it is defined, (m, ) is not L([~1,0],)-reduced and AD,, (Dr((-1,0),)(m,€)) =
Dz(0,1],) (AD,, (m,€)).
Then Theoremm is true for N.

Proof. Let m, (m’,&’), (m,e) and (mg, o) as in Theorem [10.0.2] If (m, ) is reduced,
Theorem follows from Lemma Hence, we can assume that (m, ) is not
reduced. By hypothesis, there exist p; € €, p € €O self-dual and = # 0 such that
(m, ) is not p|-[*-reduced and AD,, (D,|.|=(m,€)) = D,.|-=(AD,, (m,¢)); or (m, ) is
not L([—1,0],)-reduced and AD, (DL([ 1,0,)(M,€)) = Dz(o,11, (AD (m,e)). We
assume that (m, €) is not p|- |"”—reduced and AD,, (D,.)=(m,€)) = D, |- E(AD (m,e)),
the other cases being treated similarly. Note that AD = @, AD, and 51m11ar1y for
the derivative. Thus we have AD(D,.j«(m’, ")) = D).~ z(AD(m ¢’)). Then we get

D, -+ (L(AD(m', ")) = L(D,|.|-= (AD(m’,&"))) by Lemma [9.2.4]
= L(AD(DP|‘|m(m’,€')))
= L(D,|.j«(m’, ")) by Hypothesis [[0.2.1]

= D,.j«(L(w’, ")) by Lemma
= D,y |-« () by [AM23, Prop. 3.9.]

By the injectivity of D,.|-=, we get that # = L(AD(m’,&)). O

Let (m,e) € Symmé& (G) non-reduced with {(m) = N. We will show that the
hypotheses of Lemma [10.2.2] are satisfied. First note that we have the following
result.
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10.2.3. Lemma. For all (m,e) € Symm(G) such that l[(m) < N, for all p; € €,
p € € self-dual and x # 0,
AD,, (D2 (m.)) = Dyyj-+(AD,, (m,c))
and, if it is well-defined,
AD,, (Dr(-1,0),)(m,€)) = Dz(j0,1),) (AD,, (m, €)).
Proof. We can assume that p| - |* € Z,,. If S(m,e) = 1, by Hypothesis [10.2.1}

L(m,£) = L(AD(m, e)). Thus the result follows from Proposition [8.5.1} If S(m, £) =
—1, we consider mg = [0,0],,, €0([0,0],,) = —1 and (m’,&’) = (m,e) + (mg, o).
The element (m',e’) satisfies the conditions of Theorem [10.0.2 thus L(m’,¢’) =
L(AD(m’,e’)). We also get the result from Proposition and projecting on the
line Z,, . ]

10.2.4. Lemma. For all (m,e) € Symme(G) such that l(m) < N —2, for all p; € €,
p € € self-dual and x # 0,

AD,, (8. (m,e)) = 8.
and, if it is well-defined,
AD,, (SL([ 17()]p)(t1‘t g)) = s

(ADy, (m, £))

0.1, (ADp, (m, ).

Proof. The proof is similar to the proof of Lemma [10.2.3| using [Ber92, Thm. 31
(4)] O

The multisegment (m,e) can be written as (m,e) = >_._, (m;,&;), with (m;,&;) €
Symm/, (G). If there exists i # j such that m; # 0 and m; # 0, then, for all
1<i<r, I(m;) < N, and Lemma [10.2.3] shows that the conditions of Lemma [10.2.2]
are satisfied. Hence we can assume that ¢ is composed of a single supercuspidal
(that is r = 1). We fix p € €L of good parity and assume that € = {p}. Let p,
be the unitarization of p. Let (m,¢) € Symm/(G).

To simplify the notations, until the end of Section[I0] we will write all the segments
with respect to p, and we will omit p and p, in the notations. That is AD :=
ADp, [z, y] = [2,ylp.; Do := Dp,=, Dz(o)) = Dz(o,,,) and Dr-1,0) =
Dr(-1,0],,)- We will also say that (m,¢) is z-reduced if it is p,| - [*-reduced, and
similarly for L([—1,0])-reduced and Z([—1, 0])-reduced.

The goal is to find a suitable value of yo such that D, (m,¢) is easy to compute,
and the initial sequence of D, (m,¢) remains relatively close to that of (m,¢), in
order to control the effect of AD. The simplest way to ensure that Dy, (m,e¢) is
easy to compute is to choose yo as the smallest half-integer y € (1/2)Z* such
that (m,e) is not y-reduced. However, this choice can significantly alter the initial
sequence of (m, ), especially when [—yo, —yo] € m. In that case, this segment, which
necessarily appears first in the initial sequence of (m, ), is removed by the derivative
operator D,,. To avoid this issue, we instead choose yo as the smallest half-integer
y € (1/2)Z* such that y # —emax and (m,e) is not y-reduced. This provides a good
compromise between the simplicity of the derivative’s expression and control over
the initial sequence.

The proof is divided into several subsections, as explained below:

(1) By a direct computation, we deal with the case emax < 1 in Section [10.3]

(2) In Section we treat the case where e, > 1 and there exists y < 0,
Yy # —emax such that (m,e) is not y-reduced.

(3) In Section we prove the result when ey, > 1, for all —epa <y <0,
(m, ) is y-reduced, and (m,¢) is not L([—1,0])-reduced.
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(4) The Section deals with the case epax > 1, p of the same type as G,
for all —emax <y <0, (m,¢e) is y-reduced, (m,¢) is L([—1, 0])-reduced, and
there exists y > 0 with y # epax such that (m,e) is not y-reduced.

(5) The Section deals with the case epax > 1, p not of the same type as G,
for all —emax <y <0, (m,¢) is y-reduced, (m,¢) is L([—1, 0])-reduced, and
there exists y > 0 with y # emax such that (m,¢) is not y-reduced.

(6) In Section we assume that emax > 1, for all y # 0, émax; —€max, (M, €)
is y-reduced, (m,¢) is L([—1,0])-reduced, and (m,¢) is not emax-reduced.

(7) Finally in Section [10.9] we assume that emax > 1, for all y # 0, —emax, (M, €)
is y-reduced and (m,¢) is L([—1, 0])-reduced.

10.3. The case ep.x < 1. In this section we assume that ey« < 1. The goal is to
compute AD(m, ¢) explicitly.

We start with the easiest case which is when p is not of the same type as G.
Then m is of the form

m = c[-1/2,1/2] + n([-1/2,-1/2] + [1/2,1/2])
with ¢,n € N. To simplify notation, set e = e([—1/2,1/2]).
Let (m’,¢’) = AD(m,e). The maximum of the coefficients of (m’,e’) is also
smaller than 1, so (m’,&’) is of the form as above. We denote by ¢/,n’ € N and

¢’ € {£1} the constants relative to (m’,’).
Let () be the condition ¢ # 0 and & = (—1)"*1.

10.3.1. Proposition. The dual AD(m,e) = (w', &) is given by the following formu-
las.

(1) If (%) is satisfied, then ¢ =n+1,n' =c—1 and e’ = (—1)°.

(2) If (%) is not satisfied, then ¢ =n, n’ =c and &’ = (—1)°.

Proof. We write m; and m# in the different cases and the result follows by an
immediate induction.

e Supposen # 0. Then Ay =[1/2,1/2]. Thusmy = [-1/2,1/2],e1([-1/2,1/2]) =
(—1)¢, m# = c[-1/2,1/2]+(n—1)([~1/2, -1/2]+[1/2,1/2]) and ¥ ([~1/2,1/2]) =
_E([_1/27 1/2])

e Suppose n =0 and e = —1. Then A; =[-1/2,1/2]. Thus my = [-1/2,1/2],
e1([-1/2,1/2]) = (-1)¢, m# = (¢ = 1)[~1/2,1/2] and £¥([-1/2,1/2]) =
—e([-1/2,1/2)).

e Supposen =0ande = 1. Then Ay = [-1/2,1/2]. Thusm; = [-1/2,-1/2]+
[1/2,1/2], m# = (¢ — 1)[~1/2,1/2] and e#([~1/2,1/2]) = e([~1/2,1/2)).

O

Now, we check that AD commutes with the derivative.

10.3.2. Proposition. (1) If n # 0, then AD(D_;/2(m,e)) = D;/2(AD(m,¢)).
(2) Ifn = 0, then AD(Dl/g(m, E)) = D_l/Q(AD(m, 8))

Proof. This follows directly from the explicit formulas for the derivatives recalled in
Section [9] and Proposition [10.3.1] O

Now, let us assume that p is of the same type as G. Then m is of the form

m = ¢o[0,0] + e1[—1, 1] + ¢([-1,0] + [0, 1]) + n([-1, —1] + [1,1])

with ¢, ¢1,t,n € N. To simplify notation, set €(0) = £([0,0]) and (1) = ([-1, 1]).
Let (m’,¢’) = AD(m,e). The maximum of the coefficients of (m’,e’) is also
smaller than 1, so (m’,¢’) is of the form as above. We denote by ¢, c},t',n’ € N
and £'(0),&'(1) € {1} the constants relative to (m’,&’).
Let (*) be the condition ¢ # 0, ¢; # 0 and £(0)e(1) = (—1)*F1.
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3.3. Proposition. The dual AD(m,e) = (w',&’) is given by the following formu-

las.

(1) If n > co, then ¢y = ¢1, ¢4 = co, ' =t, 0 = n—co+c1, €0) =
g(1) x (—=1)Fatl gnd &/ (1) = g(0) * (—1)cteartl,

(2) If n = co, then ¢y = c1, ¢} =co, t' =t, n' = c1, €'(0) = g(1) * (—1)teatl
and €'(1) = (0) * (—1)c+ertl

(8) If n < cg, (%) is not satisfied and co —n is even or t =0 . Then t' =t,
n =c, ¢y =cot+ec—mn, dy =mn, g0) = ¢e0)* (—1)tatt+l gng
g'(1) = &(0) x (—1)cotertl,

(4) If n < co, (%) is not satisfied, co — n is odd and t # 0. Thent' =t —1,
n =ci,ch=co+ci—n+1,c=n+1,e(0)=¢e(0)* (—1)0tatitl gng
g’'(1) = e(0)(—1)cotertt,

(5) If n < co, (x) is satisfied and co —n is even. Thent' =t+ 1, n' =¢; — 1,
ch=co+tece—n—2,¢ =mn, £0) =¢e(0)x*(=1)F0t gnd &'(1) =
5(0)(_1)00+C1+1'

(6) If n < co, (%) is satisfied and co —n is odd. Then t' =t, n' = ¢ — 1,
ch=co+eci—n—1,c, =n+1, e(0) =¢e(0)* (=1)tToter gnd &'(1) =
£(0)(—1)c0+er+1,

Proof. We write m; and m# in the different cases and the result follows from an
immediate induction.

e Suppose n,cg # 0. Then A; = [1,1] and Ay = [0,0]7° or [0,0]=°. Thus
my = (=1, 1], £1(0) = £(0) * (—1)0 a1+, m# = (e — 1)[0,0] + e1[~1,1] +
t([=1,0]+[0, 1))+ (n—1)([-1, =1]+[1,1]), e#(0) = —£(0) and ¥ (1) = —&(1).

e Suppose n,t # 0 and ¢y = 0. Then Ay = [1,1] and Ay = [—1,0]. Thus m; =
[_170] + [Oa 1]7 m# = €1 [_17 1] + (t - 1)([_1’ 0] + [O’ 1]) + n([_lv _1] + [17 1])
and e#(1) = g(1).

e Suppose n # 0 and ¢o,t = 0. Then Ay = [1,1]. Thus my = [1,
m# = (¢; — 1)[-1,1] +n([-1,—1] + [1,1]) and ¥ (1) = ( ).

e Suppose n,cg = 0 and ¢ # 0. Then A; = [0,1] and Ay = [-1,0]. Thus
my = [—1,0]+[0, 1], m# = ¢;[—1, 1]+ (¢—1)([-1,0]+]0, ])ande#( ) =¢(1).

e Suppose n = 0, t,co # 0 and cg is even. Then A; = [0,1] and Ay = [0,0]=0.
Thus my = [—1,0] + [0, 1], m# = ¢0[0,0] + ¢1[—1,1] + (t — 1)([—1,0] + [0, 1]),
e#(0) = —¢(0) and 7 (1) = &(1).

e Suppose n = 0, t # 0 and ¢( is odd. Then A; = [0,1] and Ay = [0,0]7°
Thus m; = [~1,1], &1(1) = (=1)%¢(0), m#* = (co + 1)[0, 0] + c1 [ 1,1]—1—(75—
1)([-1,0] + [0, 1}), s#(O) =£(0) and 7 (1) = —¢(1).

e Suppose n,t,c; = 0. Then A; = [0,0]2° or [0,0]7°. Thus m; = [0,0],
£1(0) = £(0) * (~1) 1, m# = (e — 1)[0,0) nd e#<o>

e Suppose n,t,cg = 0. Then A; = [-1,1]2° [ 171]:0. Thus m; =
(L, 1]+ [-1, 1], m# = [0,0]+ (c1 — 1)[~-1,1], e*

e Suppose n,t =0 cp,c; # 0 and £(0) = (1). Then Al = [O 020 or [0,0]: .
Thus my = [1,1]+[~1, —1], m#* = (co+1)[0,0]+ (c1 —1)[-1,1], e#(0) = (1)
and 7 (1) = g(1).

e Suppose n,t =0, cg,c; # 0, £(0)e(1) = —1 and ¢q is odd. Then A; = [0, 0]=°
or [0,0]7Y and Ay = [0,0]7Y. Thus my = [—1,1], e1(1) = (1) » (=1)1+1L,
m# = ¢o[0,0] + (¢ — 1)[~1,1], €#(0) = £(0) and 7 (1) = £(0).

e Suppose n,t = 0, ¢g,c; # 0, €(0)e(l) = —1 and ¢p is even. Then A; =
[0,0]2°% or [0,0]7° and Ay = [0,0]=°. Thus m; = [0,1] + [-1,0], m# =
(co — 1)[0,0] + (c1 — 1)[~1,1], e#(0) = —&(0) and ¥ (1) = —&(0).

] [_1’_1]7

We also check the commutativity with the derivative.
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10.3.4. Proposition. (1) If n # 0, then AD(D_1(m,e)) = D;(AD(m,¢)).
(2) If n =0 and t # 0, then AD(Dp—1,0)y(m,€)) = Dz(0,1)(AD(m, ¢)).
(3) If n,t =0, then AD(D;(m,e)) = D_1(AD(m,¢)).

Proof. The cases (1) and (3) follow directly from the formulas in Section [9] and
Proposition Let us do (2). We assume that n = 0 and t # 0. First
DL([_L()])(m,E) = (00[0,0] + 01[71, 1],5). Thus AD(DL([_LO])(W, 8)) is given by
Proposition [10.3.3]

Now for Dz ([0,1))(AD(m,¢)), we can compute AD(m,¢) with Proposition
and then Dy(p,1}) thanks to the formula in [Ato22c, Prop. A.2]. There are four
cases in Proposition We give all the details for the first one. The other cases
are treated similarly and the complete details are left to the reader.

e Suppose ¢ is even and () is not satisfied. By Proposition[10.3.3] AD(m, ¢) =
t([—1,0] + [0,1]) + e1([—1, —1] + [1,1]) 4 (co + ¢1)[0,0], with €'(0) = (1) *
(—1)c0Feitl With the notation of [Ato22c, §A.3], s =ci,t =t, m =cy+c1
and § = 0. We have that m = s (mod 2) thus Dz((o,1))(AD(m,¢)) is given
by [Ato22c, Prop. A.2 (4)].

—Ift =1 (mod2) and m > s = 0. Then by [Ato22d, Prop. A.2],
Dzjo,11)(AD(m,€)) = (co + ¢1)[0,0]. Since s = ¢; = 0, we are in the
case (3) in Proposition and the formulas coincide.

—Ift =1 (mod2) and m > s > 0. Then by [Ato22c, Prop. A.2],
Dz o1y (AD(m,e)) = ([-1,0] + [0,1]) + (e1 — 1)([~1, 1] + [1,1]) +
(co+c1 —2)[0,0]. Here ¢; #0 (as s #0) and ¢g # 0 (as m > s). Since
(%) is not satisfied, (0) * (—1) = ¢(1) and ¢ is odd (as t =1 (mod 2)),
thus €(0)e(1) = —1. We are in the case (4) in Proposition and
the formulas coincide.

— Otherwise, by [Ato22d, Prop. A.2|, Dyo,1)(AD(m,¢)) = 1 ([-1, 1]+
[1,1]) + (co +¢1)[0,0]. If ¢ # 0 and ¢o # 0 then m > s > 0, thus t =0
(mod 2). This means that t is even and £(0) = £(1). Therefore, we are
in the case (3) in Proposition and the formulas coincide.

e The case ¢y even and (x) satisfied of Proposition corresponds to the
case (3) of [Ato22c, Prop. A2| (s=c —1,t=t+1, m=cop+c1 —2 and
0 =0).

e The case ¢y odd and (*) not satisfied of Proposition corresponds to
the case (2) of [Ato22d, Prop. A.2] (s=mny,t=t—1, m=cy+c1 +1 and
d=1).

e The case ¢y odd and (x) satisfied of Proposition corresponds to the
case (1) of [Ato22d, Prop. A2| (s=c1—1,t=t, m=cy+c¢; — 1 and
d=1).

O

10.4. The negative derivative. In this section, we assume that e, > 1 and
there exists y < 0, ¥ # —emax such that (m, ) is not y-reduced.

We define yo € (1/2)Z to be the smallest y € (1/2)Z such that y # —empax and
(m,e) is not y-reduced. With our hypotheses on (m,e) necessarily yo < 0. Let us
give a more explicit description of yo using the formula of the derivative recalled in
Section [

If [emax, €max] & M, let y1 = emax + 1. Otherwise, let y; € (1/2)N* be the smallest
positive half-integer such that for all y; <y < epax With y — 31 € N, [y, 9] € m and
if y # emax, Mm([Y,y]) < mm([y+ 1,y + 1]). Then yo is the minimum of the e(A)
for A € m such that A # [—y, —y| with y; <y. Then D, removes all the ends of
the segments ending in yg and all the beginnings of the segments starting in —yo,
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apart possibly, when y; < —yo + 1, for mun([yo — 1,90 — 1]) segments [—yo, —yo] and
[Y0, Yol

Let Aq,---,A; be the initial sequence in the algorithm for (m,e).
10.4.1. Lemma. We have that e(A;) > yo.
Proof. Let us assume by contradiction that e(A;) < yo. By definition of yq, we

must have that A; = [—y, —y] with y; < y. Now, with the definition of y;, if
Y # emax then there exists [—y — 1, —y — 1] € m contradicting the fact that A; is
the last segment in the algorithm. Thus A; = [—€max, —€max] contradicting Lemma
21l O

We fix an ordering y = Ay + --- + Ag, with Ay > --- = Ag. As in the formula
for the derivative recalled in Section [9} let A,,, Ay,—1, and Af be the sets defining

D,, for m; and similarly, let Aﬁ, A 1, and Ajz’c be those defining D, for m#.

Note that the sets Ay, and A,,_1 (and likewise for m#) are uniquely determined,
whereas the set Ay is not. Indeed, the multiset of segments A; for i € Af is
uniquely determined (these are the segments modified by the derivative), but due
to multiplicities, several different indices may correspond to the same segment.

Given a subset A C {1,...,k}, we write Aﬁ;c = A if the multiset of segments
AZ"E for i € A matches the multiset of segments modified by D,, in m#.
We start by calculating D,, (m#, e#).

10.4.2. Lemma. The set Aj can be chosen such that if there is a j € {i,--- 1}
such that Aj = [—yo, —yo] then i} & Ay . We fix Ay satisfying this condition.

Yo

(1) If e(A)) > yo + 2, then A%< = A .

(2) If e(Ar) = yo, then Afc = AS \ {ir}.

(3) If (A1) = yo + 1 and g9 = 1, then Af:¢ = AS U {i;}.

(4) If e(A)) = yo+ 1 and g = —1 (necessarily yo = —1 or —1/2), then
AZ/%;C = AZLC/(J

Proof. By definition A% = {i,e(A¥) = yo and A¥ # 0}. If i ¢ {i1,--- i}, then
e(AZ#) = yo if and only if e(A;) = yo. If i € {i1, -+ ,4;}, then e(Az#) = g if and
only if e(A;) = yo + 1. Thus A% = {i € Ay, A} #0}U{i € {ir, - i} e(A;) =
Yo+ 1 and A7 # 0} \ {i € {ir, -~ ,i1},e(Ai) = yo}. We have a similar result for
Affofl. Let @ ¢ {i1, -+ ,4;} such that e(A;) = yo and Af = 0. Then A; = [yo, Yo
and i = z; for j such that A; = [—yo, —yo]. Similarly, if ¢ ¢ {i1,--- ,4;} such that
e(A;) = yo — 1 and A¥ =0, i = i/, for a n such that A, = [—yo + 1, —yo + 1].
Note that if there is a j such that A; = [~yo, —yo], then necessarily n = j — 1, and
ij ¢ Ay, . In (m, ) the only possible segments ending in yo — 1 are the [yo — 1, yo — 1]
and they protect possibly some segments [yo,%0]. Now, let us remark that if
i€ Al _jandi¢ {i, - i} then A; = [yo — 1,50 — 1] thus A} = [yo — 1,50 — 1].
Also, if there is an i ¢ {i1,--- ,4;} such that Af& = [y0, yo] and A; # [yo,yo], then
A; = [yo — 1,y0]. Thus [—yo, —yo + 1] is in the sequence of the algorithm, which
implies that [—yo+1, —yo + 1] ¢ m. To deal with the i € {i1,--- ,4;}, we will analyse
the different cases.
o If e(A;) > yo + 1. By the paragraph above, if there is a j such that
Aj; = [—yo, —Yo], then AZZ = Ay, \ {#}}; otherwise Ajf) = A,,. Similarly,
if there is a n such that A, = [—yo + 1, —yo + 1], Ajzfl = Ay \ {i, };
otherwise A.ﬁ)fl = Ay,—1. We have seen that if such a j exists then i; ¢ A7 .
We have also studied the case of the segments [yo,yo] and [yo — 1,y0 — 1].
Hence, we see that Aji;c = Ago.
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o Ife(A;) = yo. We start with the case where Aff # 0 and Afﬁl # 0. This time,
if there is a j such that A; = [—yo, —yo], then A% = Ay, U {ij_1}\ {ir, i} };
otherwise A% = Ay0 U {1} \ {#}. And if there is a n such that A,, =
[—yo+1, —yo—l—l] Ayo 1= Ay —1U{i P\ {i,, }; otherwise A# 1 =A,1U{i}
Now let us show that A# < Aff_l. We have A;, < Auqa
would be if A¥ = ~A; Pt = A, and b(A;) +1 = b(A;_,). But if

(/RN T

so the only issue

A” ~A;, it means that there exists an i such that A;/l = A;. But as
b(A;,) —|—1 =b(A;,_,) and e(Ay) + 1 = e(A;,_,) we would have A; 1 = A}

contradicting A# = A;,. Moreover, A# is the smallest segment such that

AP < AF because another segment ending in yg — 1 smaller than AF
1 -1 ii—1

but bigger than Aff would contradict the definition of A; in the algorithm.
Thus iy ¢ A, As before, we get A#-¢ = AS \ {i}.

If AZT = 0. We show that AZE?I = 0. We have two possibilities A;, =
[Y0,Yo] or Ai; = [yo — 1, y0]- If Ai; = [yo,y0] then Ay, = [yo + 1,30 + 1]
and Af—l =0. If A;, = [yo — 1,yo], then either A;,_, = [yo + 1,50 + 1] (and
Af; . =0)or Aj,_, = [yo,yo + 1], but in this case A}/  and A} are both in
the sequence of the algorithm, thus Af’;l = 0. Since AZ& =0 and AZ: =0,
the result is similar to case (1).

If Aff # 0 and Afﬁl = 0. Then by the definition of the sequence of the
algorithm, we can see that A;, is the biggest segment ending in yg. Therefore,
for all i € A%, A# £ A¥ and Affe = AS N\ {i}.

o If e(A;) = yo+ 1 and g = 1. First, we show that A# # 0. Indeed, A,
cannot be [yo + 1, yo + 1] because it would be followed in the initial sequence
of the algorithm by any segments ending in yo (and it is not [0,0]=°, [0, 0]=°
or [1/2,1/2]). If it is [yo,yo + 1] then [—yo — 1, —yo] is in the initial sequence
of the algorithm. Hence [yo,yo] ¢ m and A; would be followed in the
initial sequence by any segments ending in yo. The last case to consider
s [-1/2,1/2]2% or [-1/2,1/2]7° (if A;, = [=1/2,1/2]=0 then Aff £ 0).
But, if eg = 1, these segments would be followed in the initial sequence
by any segments ending in —1/2. We get that, if there is a j such that
Aj = [—yo, —yo], then A% = A, U {i;} \ {i}}; otherwise A% = A, U {i}.
And if there is a n such that A, = [—yo+ 1, —yo + 1], Ay0 1=A1\ {0}
otherwise A _; = Ay,—1. As before, if such a j exists, then also such a n
exists, and zj ¢ A

Let us show that i; € Ay #.1If A# # [0, yo] then we have i; € AZ;)# since
for all i € A vo—1 AF [yo—l yo—l] If A# [0, o] and A;, = [yo, yo +1],
then the only segments of m ending in yo are [yo,yo] and 4; € Ag’o#. If
A# [Yo,v0] and A;, = [yo — 1,y0 + 1], then [—yo — 1, —yo + 1] is in the
sequence of the algorithm, so [yo — 1,50 — 1] ¢ m and i; € Azc/b#' Finally, we
get A¥e = A U {ir}.

o If e(A;) =yo+1and g = —1. Then Aff = 0. Similarly as before, if there is
a j such that A; = [—yo, —yo], then A% = A, \ {i}}; otherwise A% = A, .
If there is a n such that A, = [—yo + 1, —yo + 1], Aji—l =A,-1\{i,};
otherwise Airl = Ay,_1. Hence, we see that A% = A¢ .

Yo
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Now, we want to compute the effect of AD on D, (m,e). We denote by (m, &) :=
Dy, (m,e) and by Ay,---, A; the initial sequence in the algorithm for (m,€).

10.4.3. Lemma. (1) If e(Ar) = yo, then I=1—1andif notl=1. )
(2) For 1 < i < L, if b(A;) = —yo and A; # [—yo, —yo] then A; = ~A,,
otherwise A\; = A;.

Proof. First, notice that in the algorithm, when A; is defined then A; 1 just depends
on the segments smaller than A; which terminates by e(A;) — 1 (together with a
sign condition). In particular, if A; appears in the initial sequence of the algorithm
for m and m and e(4;) # yo + 1, then D, does not change the previous set of
segments, and A, is the next segment in the algorithm for both m and m.

Note that by definition e(A1) = epax is the maximum of the coefficients of the
segments. Since by definition of yg, A1 # [—yo, —yo], after taking the derivative A
does not vanish. Hence e, is still the maximum of the coefficients in m.

Let ig = emax — y1 + 2. Then, for all 0 < i < ig, A; = [emax — ¢ + 1, €max — ¢ + 1].
All of these segments belong to m, so [>iyp—1and for all 0 < 7 <, A=A, =
[emax — @ + 1, €max — @ + 1].

If there is an integer ¢ such that b(A;) = —yo then i < ig. If i < ip, we have
treated the case before. Suppose that b(A;,) = —yo. If A;y = [~yo, —yo]. Then
Ajy—1 =[—yo + 1, —yo + 1], thus one A;, is not modified by D,,. Hence [ > ig and

Ay, = Ny T Ay # [~y0, —yo), then Dy, transforms A;, into ~A;, and we get that

Aio = _Aio-

In the case that Aio ="A,, and | > ip + 1, we have Aio_l,_l = Aj,+1- Indeed,
A;, +1 is unchanged in m, we still have A; 41 < ~A,,, and the only segment smaller
than ~A,, but not than A, ending in e(A;,4+1) is [—yo,e(Ajy+1)]. Then only
possibility to have such a segment in m is to have e(A;,4+1) = —yo and that there is
a segment of the form [—yg + 1, —yo + 1] in m. But then A;, = [—yo, —yo + 1] and
this contradicts the maximality of A;; as [—yo + 1, —yo + 1] < A —1.

By Lemma e(A;;) > yo, thus [ >1—1 and for all Jo <1<, A; = A,;.
If e(A;) # yo, then [ =1and A, = A, If e(A;) = yo, then A; # [yo, yo] or if
A; = [yo, Yo there is no [yo — 1,yo — 1]. Thus A, is changed by the derivative and
l=1-1. O

10

10.4.4. Lemma. (1) If e(A)) > yo+2, then (M, &) = (my,e1) and (Mm#, %) =
Dyo(m#7€#)'
(2) If e(A)) = yo, then (M1,&1) = D_,(my,e1) and (m#, &%) = D, (m# c#).
(3) If e(A)) = yo + 1 and g9 = 1, then (m1,81) = (my,e1) and (¥, £7) =
Dpax—1(m# e#),
(4) If e(A)) = yo + 1 and g9 = —1, then (my,&1) = (my,e1) and (m# &%) =
Dy (m#,#).

Proof. Let us start with m;. We know that by definition m; = [—e(Aq),e(Aq)] or
my = [e(A), e(Ar)]+[—e(A1), —e(A))] = [e(A1) =141, e(A1)]+[—e(A1), —e(A1) +
I—1]; and @y = [—e(Ay),e(Ay)] or g = [e(Ay) —1+1,e(A1)] +[—e(Ay), —e(Ay) +
[ — 1]. Lemmaimphes that e(A) = 6(51) and [ = [ unless e(A;) = —yp and
in this case [ = [ — 1. Thus (,&;) = (my,e;) unless e(A;) = —yo and in this case
my = [yo +1,e(A1)] + [—e(A1), —yo — 1] = Dy, (m1).

Now, let us calculate m#. Let Ay, be the set of indices of segments in m ending
in yo and modified by D, ; and Ajf;c be the set of indices of segments in m# ending
in yo and modified by D,,. Let E# be the set of indices of the segments in m such
that the end is modified by AD; and E# be the same for m. In all these cases,
all the symmetrics of these segments are also modified. From Lemma we
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see that the A; are the same as the A; apart when b(A;) = —yo or e(A;) = yo.
Hence, if e(A)) # yo, E# = E#, and if e(A)) = yo, E# = E#\ {ii}. If e(A)) # vo,
we define E/ = Ay, s otherwise E = AS O\ {ir}. We get m# is obtained from m#
by suppressing the end of the segments indexed by E’ and the beginning of their

symmetrics. To compare m# and D, (m#,e#), we need to compare E' and Ajf;c.

o If e(A}) > yo+ 1. By Lemma A#o’c = Aj . Thus AZE’C = E’, and
(m# &%) = Dy, (m#, e¥).

o If e(A}) = yo. By Lemma Ai{c = A, \ {i;}. Thus A?;Z’C = FE’, and
(ﬁi#a 5#) = Dy, (m#’ 5#)'

o If e(A;) =yo+1and gg = 1. By Lemma Affe = AS U {ij}. Let
us show that in m#, JNXZ& is modified by D,,. The possible segments of m#
ending in yo — 1 are possibly [yo — 1,yo — 1] or coming from a segment of
m ending in yo and modified by D,,. If they were a segment A € m such
that e(A) = yo and A~ < A; or “TA™ < A this would imply that A < A;,
contradicting the fact that 4A; is the last segment in the sequence of the
algorithm. The segments [yo — 1, yo — 1] only protect the segments [yo, yo]. If
Azé = [yo, ¥o] and A;; = [yo, Yo+ 1], then the only segments of m ending in yo
are [yo, yo]. If Af = [yo, o] and A;; = [yo— 1,90+ 1], then [—yo — 1, —yo + 1]
is in the sequence of the algorithm, so [yo — 1,50 — 1] ¢ m.

Thus we get that D,,(m#,e#) = D, (m# &%), or that (m#, &%) =
D=t (m# e#).

o If e(A}) =yo+ 1 and eg = —1. Again by Lemma Aﬁ’c = Ay . Thus
(61#7 é#) = Dy, (m#v E#)'

O

We can gather all the previous lemmas to obtain the desired equality.
10.4.5. Proposition. We have AD(D,,(m,¢)) = D_,,(AD(m,¢)).

Proof. Recall that (m, &) denotes D, (m, ¢). By definition of AD we have AD(m, &) =
(my,&1) + AD(m#,£#). Now we have different cases by Lemma
o If B(Al) > yo + 1. Then (ﬁh,él) = (ml,el) and (ﬁl#,g#) = Dyo(m#,a#).
Thus AD(m, &) = (my, £1)+AD(D,, (m#,e#)). By Lemma[10.2.3, AD(D,, (m#,e#)) =
D_,,(AD(m# e#)). Since —e(4;) is different from —yo and —yo — 1
and —e(A;1) < yo, by Lemma (m1,e1) + D_y, (AD(m#,e#)) =
D—yo ((m17 51) + AD(m#7 5#)) = D—yo (AD(m7 6))
e If e(A;) = yo. Then (my,&1) = D_,(my,e1) and (m#, %) = D, (m# #).
This time AD(m, &) = D_,,(my,e1) + AD(D,, (m#,e#)) = D_, (my,e1) +
D_,,(AD(m# %)) (the last equality follows from Lemma 10.2.3). Since
—e(Ay) is the smallest coefficient and —e(A1) < yo, S0 Lemma%tells us
that Dy, (my,21) + Dy, (AD(m#,£#)) = D_y ((my, 1) + AD(mF, =#)) =
D_,, (AD(m,)).
e Ife(A;) = yo+1. Then (My,&1) = (my,e1) and (m#, 6#) = DRax—1(m# o#).
Thus AD(m, &) = (my,e1) + AD(D** ~H(m#, e#)). By Lemmas and
AD(#, &) = (my,e1) + D™ "1 (AD(m#,#)). Now —e(A;) is the
smallest coefficient and —e(A;) < yo. To show that the hypotheses of
Lemma [9.4.1] are satisfied, we are left to prove that there are no segments of
the form [—e(A;), —ﬁl AD(m#, &%), but this follows from Proposition

Thus Lemma tells us that (my,e1) + AD(Dpax—!(m# ¢#)) =
D_y,((my,e1) + AD(m# e#)) = D_,, (AD(m,e)).

O
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10.5. The L([—1,0])-derivative. In this section, we assume that eyax > 1 and
that for all —epax < y < 0, (m,e) is y-reduced. We also assume that p is of
the same type as G and that (m,¢) is not L([—1,0])-reduced. We want to prove
AD(Dr(—1,0p(m,€)) = Dz(0,17)(AD(m, €)).

The hypotheses made on (m, ) imply that if y < 0, then the only possible segment
A € m such that e(A) =y is [y, y]. Moreover, mu([y,y]) < mm([y — 1,y — 1]).
The derivative Dr,_1,0)) performs the following transformations (see [AM23]
Prop. 3.8.]):
e If e(A) =0, and A #[0,0],[—1,0], A is transformed into A~ .
o If b(A) =0, and A # [0,0],[0,1], A is transformed into ~~A.
o max{mmn([—1,0] — mm([—2, —2]) + mm([-1, —1]),0} segments [—1,0] are
suppressed.
o max{mun([-1,0]) — mun([-2,—2]) + mn([-1,—1]),0} segments [0, 1] are
suppressed.

10.5.1. Lemma. We have that e(A;) > 0.

Proof. Let us assume by contradiction that e(4;) < 0. Thus A; = [—y, —y] with
y < 0. Since A; is the last segment in the initial sequence of the algorithm,
A; = [—€max, —€max] contradicting Lemma [7.2.1 O

Let A[_1,g] be the set of indices i of segments A; in m ending in 0 modified by

Dr(-1,0- The multisegment (m#, &%) may not be —I-reduced. Let Aﬂ be the set

#

of indices of segments ending in —1 modified by D_; in (m#,#). And let A[71 0

be the set of segments ending in 0 modified by D1 o)) in D_(m# &%).

10.5.2. Lemma. (1) If e(A;) > 2, then A%, = and AT | | = A1 ).
(2) Ife(Al) = 07 p(Al) 7é [an] and Al 7é [_130] Z'fmm([_27 _2]) > mm([_la _ID;
then we can assume that iy € Aj_1 ), and we get that Ai#l = {i;} and
A?& 0] — A[—LO} \ {ir}-

-1

(3) If e(A;) = 0 and p(A;) = [0,0] or A} = [-1,0] with mn([—2,-2]) >
mm([~1, —1]), then A*, =0 and Ail,O] =Ar19-

(4) If e(Ar) =1, then A%, =0 and A | (= A{y U {i}.

Proof. e Suppose e(A;) > 2. Then all the segments of m# ending in 0
(resp. —1, resp. —2) come from a segment of m ending in 0 (resp. —1,
resp. —2). First, let us check that (m#, e#) is —1-reduced. We have seen
that there are no “new segments” in m# ending in —1 or —2. The only
segments of m ending in —1 (resp. —2) are [—1,—1] (resp. [-2,-2]). If a
[—2, —2] is suppressed, it means that A; = [2, 2] and therefore my, ([1,1]) = 0.
Hence (m#, %) is —1-reduced, that is Aﬁ = (). Now, let us compute Aﬁl,OJ'
As we have seen, if a segment [—2, —2] is suppressed then there is no [—1, —1]
in m and no [—1,0]. Also, a segment [2,2] or [1,1] cannot be created (as
e(A;) > 2 they cannot come from ~A or “A~; and by hypothesis there are
no segments [2,3] or [1,2] in m). If a segment [0, 1] is created in m#, then
Ay = [0,2]. Hence mn([2,2]) = 0 and this segment is modified by D _1,q))-
Thus Aﬁl,O] = A[—I,O]'

e Suppose e(A;) = 0, p(A;) # [0,0] and A; # [-1,0] if mu([—2,-2]) >
mm([~1,—1]). In (m# &#) there is a new segment ending in —1 which is
A¥. First, note that A¥ # 0. Indeed, A;, # [0,0] and if A;, = [~1,0] with
Az";E = ~A,, it means that A;_; = [0,1]. Thus A;_s = [2,2] and therefore

17
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mm([—2,-2]) # 0 and my([—1,—1]) = 0 contradicting the hypothesis.
If A¥ = [~1,-1], it means that A; = [~1,0]. Thus mu([~2,-2]) =
mm([—1,—1]) and AZE is modified by D_;. In all cases, it is easy to see that
D_; modifies A%, hence A%, = {i;}.

i

In D_;(m# %) there is a new segment ending in 0. It is Afﬁl. But,
from the definition of the initial sequence in the algorithm, Af_ protects
Afil and is the smallest to protect it, so Dp,([_1,0)) does not modify it. The
situation is similar to the previous case for the suppression and creation of
[—2,—-2], [-1,—1] and [—1,0]. At the end we get that Ail,o] = A0\ i}

e Suppose e(A;) =0 and p(A;) = [0,0] or A; = [—1,0] with mu([-2,—-2]) >
mm([—1, —1]). If p(A;) = [0, 0] there is no new segment ending in —1 in m#.
And if A; = [~1,0] with mu([~2, —2]) > mm([~1, —1]), either A =0 or
AZT =[-1,-1]. IfAff = [~1, —1], then we have in m# that mu» ([—2, —2]) >
me# ([—1,—1]). In all cases, since the only possible segments ending in
—1in m# are [—1, —1] with myg%([—2, —2]) > mu# (=1, —1]), (m# e#) is
—1l-reduced and A% = 0.

There could be one new segment ending in 0, Af_l. Moreover, p(4;) =
[0,0] or A; = [—1,0], so A;_; cannot be a negative segment and A;_; =
[-1,1] or [0,1] or [1,1]. In all the cases, either A?z: =0 or Afz: = 1[0,0],
and it is not modified by Dy _1,0). We get that Ail,o] =Ar10-

e Suppose e(A;) = 1. In m* there is a no new segment ending in —1 and
A# = 0. First, let us show that A; # [—1,1]=°, [~1,1]2° and [0, 1]. The
case where A; = [0,1] implies that [-1,0] € m and contradicts the fact
that A; is the last segment in the algorithm. If A; = [-1,1]7° or [-1,1]2°,
then any segment A such that e(A) = 0 and ¢(A) < 0 satisfies A < Ay,
contradicts the fact that A; is the last segment in the algorithm ((m,e) is
not L([—1,0])-reduced). Therefore, A?j # [0,0]. The segment Aff could be
[—1,0] if Ay = [~1,1]=0 or Ay = [~2,1]. If A; = [~1,1]=0 or A; = [~2,1]
with Aff = [-1,0], then A;_; # [2,2], and mn([—2,—2]) = 0. Hence, the
new segment [—1,0] is modified by Dp(_1,0)). In all cases, A?f is modified
by DL([—I,O]) and AE#_LO] = A[—I,O] U {i;}.

O

We denote by (m, &) := Dy (—1,0)(m,c) and by Ay, --- ,A[ the initial sequence
in the algorithm for (m, &).

10.5.3. Lemma. (1) Ife(A;) =0, p(A;) #[0,0] and A; # [—1,0] if mm ([—2, —2]) >
mam([—1,—=1]) then | =1 —1; otherwise [ = 1.
(2) For 1 < i <1, if (A;) = 0 and A; # [0,1] and p(A;) # [0,0] then
A, =~ A;; otherwise A; = A,;.

Proof. Note that by definition e(A1) = emax is the maximum of the coefficients of the
segments. Since by assumption emax > 1, after taking the L([—1,0])-derivative A4
does not vanish. Hence ey, .y is still the maximum of the coefficients in m. Moreover,
if (A1) # 0, A; stays the biggest segment ending in enay and if b(A;1) = 0, the
biggest segment is now ~~Aj.

As in Lemma if [emax; Emax] ¢ M, let y1 = emax + 1; otherwise, let
y1 € (1/2)N* be the smallest positive half-integer such that [y1,y1] € m. Let
10 = €emax — Y1 + 2. Then, for all 0 < i < ig, Aj = [émax — ¢ + 1, €max — 7 + 1]. We
get that [ > ig, and for all 0 < i < ig, A; = Aj = [emax — i + 1, €max — 7 + 1].
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The only possible integer ¢ such that b(A;) = 0 and p(4;) # [0,0] is ig. If
A;, = [0,1], then A;,_; = [2,2] and [1,1] ¢ m, thus A;, is not modified by
Dr(-1,0))- Hence [ > iy and Aio = Ay, If Ay #[0,1], then Dy, _1,0)) transforms
Ay, into ~~A;, and we get that A;, = ~7A,,.

In the case that Aio = __Aio, if [ > io +1 then Ai0+1 = Ai0+1~ Indeed, Ai0+1
is unchanged in m, we still have A, 11 < “~A,;,, and the only segments smaller
than ~—A,;, but not than A;, ending in e(A;,4+1) are [0,e(A;,+1)] and [1, e(Ajy11)]-
Then only possibility to have such segments in m is to have e(A;,+1) = 0 or 1. First,
e(A;y+1) = 0 is impossible since e(A;,) > 1. If e(A;,+1) = 1, then e(A;,) = 2, and
by definition of iy we see that there is no [2,2] in m and thus no [1,1] or [0,1] in m.

ByLemmae(A)>O thus [ > 1 —1 and for all ig < i <1, A; = A,.

Now, notice that if z < 0 then [x,0] < [0,0]=° < [0,0]7° < [0,0]2°. Thus, if
e(A;) =0, p(A;) #10,0] and A; # [-1,0] if mun([—2,-2]) > mn([-1,—1]), then
I=1—1andifnotl=1[and A, = A,. O
10.5.4. Lemma. (1) If e(A}) > 2 then (my,&1) = (my,e1), (m#,e#) is —1-

reduced and (W#,£%) = Dy (_q o) (m#,%).

(2) If e(A) = 0 and p(A) £ [0,0] and A £ [-1,0] if mu((=2,-2]) >
mm([—1, —1]), then ®1 = [1, emax] +[—€max, —1], (M, e#) is not —1-reduced
and (W#,6%) = Dp(_q o) (D-1(m#,e#)).

(3) If e(A;)) = 0 and p(A;) = [0,0] or A, = [=1,0] with mm([-2,-2]) >
mm([—1, —1]), then (M, &) = (my, 1), (m#, e#) is —1-reduced and (m# %)
Dy ((-1,0)) (m#,e#).

(4) Ife(A;) = 1 then (m1,&1) = (my,e1), (m#, &) is —1-reduced and (m#, &%) =
Dyy B] (m# ).

Proof. Let us start with (mq,£1). The multisegment m; is determined uniquely by
A1 and A;. Slmllarly for my Wlth A, and A We get the result for my; and m; by
Lemma If A; #[0,0]=° or [0,0]=°, then neither my nor m; are centered and
we are done. If A; = [0,0]7° or [0,0]2%, we also need to check that ¢y = &;. By
definition €1 (my) := (—1)"1¢([0,0],) and &; (/) := (—1)"**£([0,0],) where ng is
the number of centered segments in m and 7o in m. The derivative Dy _1,)) does
not create or suppress any centered segments in m, so ng = fg. Also, it does not
change the sign of [0, 0], that is £([0,0],) = £([0,0],). Hence €1 = &; and we get the
result.

Now let us study the case of (m#,#). We do a similar proof as in Lemma
Let A[,LO] be the set of indices i of segments of m ending in 0 modified
by Dr-1,0s A_1 be the set of indices of segments of m# ending in —1 modified
by D_q, and A 10 be the set of segments ending in 0 modified by Dr,_1 ) in
D_y(m# e¥). Lot E be the set of indices of segments of m such that the end is
modified by AD and E be the set of indices of segments of f such that the end
is modified by AD. We denote by (x) the condition e(A;) = 0, p(4;) # [0,0] and
A # [-1,0] if mn([—2,—-2]) > mn([—1,—1]). From Lemma we get that if
(%) is satisfied then E = E\ {i1}; otherwise E = E. Moreover, E N A0 = 0.
More precisely, if (x) is satisfied then E N Aj_q g = {i;}; otherwise E N Aj_; g = 0.

Let E¥ = ArZ1,0) \ {it} if () is satisfied; and EY = A[_1,0] otherwise. Let
EF = {i} if (x) is satisfied; and E7 = ) otherwise. Note that Ef N E¥ = (. Then
we see that m# is obtained from m# by transforming the segment Af& into Afki
for i € Ef (and A7Y into ~(A7")); and then transforming the segments A¥ into
A*"" for i € E¥ (and A?Y into —— (A¥Y)).
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e Suppose e(4;) # 1. From Lemma Ef& = A#l and Ef = Ail,o]
giving us the result.

e Suppose e¢(4;) = 1. From Lemma 10.5.2L E?F = A% and E¥ U{i)} = Ail,o]'
Similarly as in Lemma 10.4.4|7 we see that Dp_1 o)) modifies Aj’;E in (m#, £%).
Hence DL([_LO])(ﬁl#,é#) = Di([—l,O])(ﬁl#’é#) = DL([_LO])(m#,s#) and
we get the desired result.

O

To make sense of the formula AD(Dp—1,0)(m,€)) = Dz(o,1))(AD(m,¢)), we
need to check that AD(m, ¢) is 1-reduced.

10.5.5. Lemma. The multisegment AD(m, €) is 1-reduced.

Proof. By Lemma[10.5.1] e(4;) > 0.

e Suppose e(A;) > 0 or p(A;) =[0,0] or A; = [-1,0] with mpn([—2,-2]) >
mm([—1,—1]). From Lemma (m# e#) is —1-reduced. And by
Lemma D1 (AD(m# e#)) = AD(D_;(m# %)), hence AD(m#, %)

is 1-reduced. By Lemma D1(AD(m,¢)) = (my,e1) + D1 (AD(m#, %)),
and we get the desired result.

e Suppose e(A;) = 0, p(A;) # [0,0] and A; # [-1,0] if mu([-2,-2]) >
mm([—1, —1]). This time from Lemma (m#,e#) is not —1-reduced.
Moreover, we have D_;(m# e#) = DL (m#, e#). Since A; # [0,0]7% or
[0,0]2°, from the definition m; = [0, €max] + [~€max, 0]. Then Lemma
and Proposition|6.0.6/tell us that D;(AD(m, ¢)) = (my,1)+D** ~HAD(m#, e#)).
By Lemmas and D™ ~L(AD(m#, e#)) = AD(D™ ~H(m#, e#)).
But, as D_y(m#, %) = DL, (m#, %), we have D™~} (m# c#) = (m# ¢#)
and we get the desired result.

U

We can now prove the desired proposition.
10.5.6. Proposition. We have AD(Dp—1,0))(m,€)) = Dzo,1))(AD(m,¢)).

Proof. The proof is similar to Proposition [10.4.5] and follows from Lemmas
and [0.4.2 O

10.6. The positive derivative with p of same type. In this section, we assume
that epmax > 1, that for all —epax < y < 0, (m,¢) is y-reduced, that (m,e) is
L([—1,0])-reduced, and that there exists y > 0 with y # emax such that (m,e) is
not y-reduced. We also assume that p is of the same type as G.

We define yg € Z to be the smallest y € Z* such that y # —emax, ¥ # €max and
(m, ) is not y-reduced. With our hypotheses on (m, ) necessarily yo > 0. Let us
describe more precisely the conditions satisfied by (m,e) and yo using the explicit
formula of the derivative recalled in Section

We have assumed that for all —ep.x < y < 0, (m,e) is y-reduced. Hence, if
A € m is a segment such that e(A) < 0, then A = [y,y] (where y = e(A)) and
Mmm([y,9]) < mm([y — 1,y — 1]). Let y1 € N* be the smallest positive half-integer
such that [y1,11] € m.

Let tg = mn([—1,0]). We have also assumed that (m,e) is L([—1,0])-reduced.
Hence, if A € m is a segment such that e(A) = 0, then A = [0,0] or A = [-1,0]
with tg < mn([—2, —2]) — ma([-1, —1]).

Now, we recall the formula for D,,. First let us do D;.
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We have seen that the segments A € m with e(A) = 0 are of the form: [0, 0] or
[—1,0]. And the segments A € m with e(A) = 1 are of the form: [a,1], with a < —1,
[—1,1], [1,1] or [0,1]. Let (x) be the condition: my([—1,1]) # 0, mn([0,0]) # 0 and
([0, 0De([—1, 1]) = (—1)fo+ 1.

Then D; does the following transformations. All the negative segments of the
form [a, 1], with a < —1, are transformed into [a,0] (and their symmetric [—1, —a]
are transformed into [0, —a]).

o If (k) is not satisfied, my([—1,1]) is odd and tg > 1; then all the segments
[—1,1] except one are transformed into [0,0] and one [—1,0] + [0,1] is
transformed into [0, 0] 4 [0, 0].

o If (%) is not satisfied and, mn ([—1,1]) is even or ¢y = 0; then all the segments
[—1,1] are transformed into [O7 0].

o If (%) is satisfied and muy ([—1, 1]) is odd; then all the segments [—1, 1] except
one are transformed into [0, 0].

o If (x) is satisfied and my([—1,1]) is even; then two segments [—1,1] are
transformed into [—1,0] 4 [0, 1]. The other segments [—1, 1] are transformed
into [0, 0].

And finally, it suppresses n segments [1, 1] and [—1, —1], where n = max{m([1,1])—
mm([0,0]),0} if (%) is not satisfied; and n = max{mn([1,1]) — mu([0,0]) + 1,0}
otherwise.

In particular, we see that if Dj(m,e) = 0, then

e There is no segment [a, 1] with a < —1;

o mu([-1,1]) =0or1;
. 1f M ([— 1 1) =1, then mm([0,0]) # 0 and £([0,0])e([—1,1]) = (—1)t*1;
. T?m([l([l]i Sl]) ([0 00) if min([~1,1]) = 0: and ny ([1,1]) < mn([0.0]) ~ 1

Let y > 1 be such that for all 1 <z <y, D,(m,e) = 0. We prove by induction on
y that if A € m is a segment with 0 < e(A) < y, then ¢(A) > 0. We make explicit
the formula for D,,.

Using the induction hypothesis, if 1 < z < y and A € m with e(A) = z, then
b(A) > —z. We also know that if b(A) # x, then b(A) < 0. But AY € m, so if
b(A) # x then b(A) = —x. Hence, the only segments ending in x are [z,z] and
[z, z]. In particular, note that there are no segments [—y + 1,y] in m. Also the
segments A € m with e(A) = y—1 are of the form: [y—1,y—1], [1—y,y—1] or [0,1]
if y = 2. And the segments A € m with e(A) = y are of the form: [a, y], with a < —y,
[—v,y], [y,y]. Let (%) be the condition: mm([—y,y]) # 0, mm ([l —y,y —1]) # 0 and
el yDe(ll — v,y — 1)) = (1),

Then, D, does the following transformations. All the negative segments of the
form [a,y], with @ < —y, are transformed into [a,y — 1] (and their symmetric
[~y, —a] are transformed into [—y + 1, —a]). For the centered segments [—y, y]:

o If (x) is not satisfied; then all the segments [—y,y| are transformed into
[y + 1,y —1].

o If (x) is satisfied and muy ([—y, y]) is odd; then all the segments [—y, y] except
one are transformed into [—y + 1,y — 1].

o If (x) is satisfied and my([—y,y]) is even; then, two segments [—y, y] are
transformed into [—y,y — 1] + [-y + 1, y]. The other segments [—y, y] are
transformed into [—y + 1,y — 1].

It also suppresses n segments [y,y] and [—y, —y|, where n = max{mn([y,y]) —
mm(ly — L,y —1]) — mn([l —y,y — 1]),0} if y > 2 and (%) is not satisfied; n =
max{mu([y,y]) = mm(ly — 1,y — 1]) = mu([1 —y,y —1]) + 1,0} if y > 2 and ()
is satisfied; n = max{mn([y,y]) — mm(ly — 1,y — 1]) = mu([1 — y,y — 1]) — to,0}



AN ALGORITHM FOR AUBERT-ZELEVINSKY DUALITY 57

if y = 2 and (%) is not satisfied; and n = max{mwn([y,y]) — mn(ly — 1L,y — 1]) —
mm([1 —y,y —1]) —to+ 1,0} if y = 2 and (x) is satisfied. Note that we will show
that mu([1 —y,y —1]) =0 or 1.
In particular, we see that if D,(m,e) =0, then
e There is no segment [a, y] with a < —y;
i mm([_yvy}) =0or1;
o ifmn([-y,y]) =1, then mm([1—-y,y—1]) # 0 and e([~y, y))e([1-y,y—1]) =
1
o Mu([y,y]) < mam(ly — Ly —1]) + ma((l -y, y — 1]) if mu([~y,y]) = 0; and
Mmm([y,9]) < mm(ly — 1,y = 1]) if ma([-y,y]) = 1.
This proves our induction hypothesis.

The formulas above gave us an explicit formula for D, (depending on whether
yo = 1 or not). Moreover, we see that if A € m is such that e(A) < yo then
either A = [y,y] for some y, A = [-1,0], A =[0,1], or A = [—y,y] and in this
case, mm([—y,y]) =1 (if y # 0), moreover, if y > 1, mu([-y + 1,y —1]) = 1 and
Sy el == 2) = L iy = 1, 0,00 70 (-1, 100 -
—1)toTt,

For the rest of the section, let (x) denote the condition:
(1) If yo = 1: mu([—1,1]) # 0, mn([0,0]) # 0 and £(]0,0])e([—1,1]) = (1)t T
(2) Tyo > 1: mm([=yo, yo]) # 0, mm([=yo+1,50—1]) # 0 and e([—yo, yo])e([1 -
Yo, Yo — 1]) =-1

10.6.1. Lemma. If e(A;) < yo then e(4;) =0.

Proof. We assume that e(4A;) < yo. From Lemma we have that e(A;) > 0.
Thus A; is one of the following segments : [—1,0], [0,1], [y, y], or [y,y]. Since
[-1,0] < [0,1], A; # [0,1]. If A; = [—y,y] or [y,y] with y # 0, the fact that (m,e)
is y-reduced implies that there exists a segment A ending in y — 1 suitable for the
algorithm such that A < A; which is a contradiction. O

We denote by (#,£) := Dy, (m,¢) and by Ay, - ,A[ the initial sequence in the
algorithm for (m, &).

10.6.2. Lemma. Ify; < yo, then
(1) e(Ar) =0;
(2) l=1; }
(8) forall1 <i<lIl, A;=A;.

Proof. We are in the case where Ay = [emax, €max]- AS Yo # €max, Dy, does not
suppress A; and Ay = Ay, Let i9p = €max — y1 + 2. Then, for all 0 < ¢ < 1o,
A; = [emax — ¢ + 1, emax — 7 + 1]. Among all these segments, the only one that can
be modified by D,, is [yo, yo]. But as y1 < yo, [yo — 1, yo — 1] € m, thus at least one
segment of the form [yo, yo] is not suppressed by D,,. We see that [>iy—1and
for all 0 < i < ig, Ay = Ay = [emax — i + 1, emax — i + 1].

We know that (m,¢) is yi-reduced. If y; = 1, it means that my([0,0]) # 0. In
particular, A;; = [0,0]=2° or [0,0]=° and [ = io. The derivative D,,, does not create
or suppress any new segment [0, 0], so Aio = A;, and [ = 1. Now, we assume that
y1 > 1. By definition of y;, we know that [y — 1,41 — 1] ¢ m, and since (m,¢) is
y1-reduced, we get that my([1 — y1,y1 — 1]) = 1. In this case, we also know that
forall yp =1 >y > 1, mm([-y+ 1,y —1]) =L and e([—y,y))e([l —y,y — 1)) = -1
and mu([0,0]) # 0 and e([—1,1])e([0,0]) = (—1)%*. Thus for all ig < i < I,
A; = [~€max + 1 — 1, emax — i + 1]7% and A; = [0,0]7° or [0,0]=0 if ¢4 is even, and
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A; = [-1,0] if ¢y is odd. None of these segments is changed by D,, thus I=1and
for all ig <1 <1, A; = A, O

10.6.3. Lemma. Suppose y1 < yo. Then (my,&) = (my,e1) and (m¥# &%) =
Dyo (m#’ 8#)'

Proof. By Lemma [10.6.2] we get that (mi,&1) = (my,e1). Moreover, we know that
for 1 < i < y1, Ay = [emax — i + 1, €max — 7 + 1]. Hence, the segments of m#
ending in yo or yo — 1 are the same as in m except that one segment [y, yo] and one
[yo — 1,90 — 1] have been suppressed. These segments were not modified by D,,.
We deduce that (m#,&#) = D, (m#,e#). O

10.6.4. Proposition. If y1 < yo, then AD(D,,(m,e)) = D_, (AD(m,¢)).

Proof. Remember that (m,€) denotes Dy, (m,e). By definition of AD we have
AD(#m, &) = (ﬁll,gl) + AD(m#,&#). By Lemma [10.6.3] (1,&1) = (my,e1) and
(m# &%) = Dyo( ,e?). Thus AD(m,&) = (ml,sl) + AD(D,, (m# e#)). By
Lemma 3| AD(D,, (m#,e#)) = D_,,(AD(m#, e#)). Note that y; < yo implies
that yo # 1. Since e(4;) = 0, we get by Lemmam (my,e1)+D_y, (AD(m#, e#)) =
D*yo((mlvsl)JrAD(m#vg#)) = D*yo(AD(maE))' O

10.6.5. Lemma. Suppose that y1 = yo. Let j = emax —yo+1, such that A; = [yo, yo).
(1) Then, e(A;) =yo or 0.
(2) If e(A)) = yo, then I =1 —1; otherwise [ = 1.
(8) For all1 <i<lI, ifi#j,j+1, then A; = A;.
(4) Assume e(A;) = 0.
(a) If yo = 1, mun([0,0]) = 0, mw([—1,1]) is odd and to > 2, then Aj1q =
[~1,0], A; = and A1 = [0,0]=°.
(b) If yo =1, mn([0,0]) =0, mn([—1,1]) is odd and to = 1, then A1 =
(1,0, A; = [~1,1]7° and Aj 41 = [0,0]=°.
(c) If yo =1, mm([q, 0]) = 0 and mn([—1,1]) = 0, then A1 = [-1,0],
Aj =1[0,1] and A1 = [-1,0].
(d) Ifyo =1, mu([0,0]) = 0, mm([-1,1]) # 0 and mn([-1,1]) is even,
then Ajy 1 = [~1,0], Aj = [0,1] and Ajiq =10,0]=0.
(¢) If yo =1, mu([0,0]) # 0 and () is not satisfied, then Aji1 = [0,0]=°
or [0,012°, A; = [1,1] and Aj 41 = [0,0]=° or [0, 0]2°.
(f) If yo = 1, mn([0,0]) > 1 and (x) is satisﬁed, then Ajq = [0,0]7°
0,0]2°,A; = [1,1] and A1 = [0,0]7° or [0,0]2°.
0,0])) =1, to # 0 and (x) is satisﬁed, then Ajiq =

(9) If yo = 1, mmu(

0,01 or 0,010, & = [0.1] and 8,11 = 0,01

(h) If yo = 1, mm([ 0)) =1, to =0, mw([-1,1]) is odd and (%) is satisﬁed,
then A1 = [0, ]: or [0 0]2°, A, = [— 1] and Aj 1, = [0,0]7°

(i) Ifyo =1, mn([0,0)) =1, to = 0 mm([ 1, ]) is even and (x) is satzsﬁed,
then Aj1 = [0,0]=° or [0,0]=° =10,1] and Aj; = [0,0]=°.

() If yo =2, to # 0, then Aj 4 = [ ] Aj = [yo,yo] and Ajq = [0,1].

(k) If yo > 1, to = 0 if Yo = 2 and (%) is not satisfied, then Aj 1 =
[—yo + 1,90 — 1]7° A = [y0, yo] and AJH = [1 - yo,90 — 1]2° or
[1—yo,50 —1]7°

() Ifyo > 1, t0 = 0 if yo = 2, (%) is satisfied and mm([—yo,y0]) s
odd, then Aji1 = [—yo + Liyo — 1170, Aj = [~y0,%0]~° and Aj1; =
[1—yo,50 — 1]7°.

(m) If yo > 1, to = 0 if yo = 2, (x) is satisfied and mun([—yo,yo0]) is
even, then Aj11 = [—yo + 1,y0 — 1]7°, Aj = [1 — yo, yo] and Ajﬂ =

[1— 0,90 — 1]7° or [1 = yo, 5o — 1]2°
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Proof. As in Lemma let 59 = emax — y1 + 2. Then, for all 0 < i < ig,
A = [emax — ¢ + 1, emax — @ + 1]. This time, A;,—1 = [yo, o] could be modified by

Wegetthatl>zo—2 and for all i < iy — 2, A; = A,.

e Suppose yo = 1 and e(A;) = 1. In particular [0,0] ¢ m, tg = 0 and () is
not satisfied. The derivative D; suppresses all the segments [1, 1] and all
the [~1,1]. In @ there are no other segments ending in 1, so [ = — 1.

e Suppose yo = 1 and e(4A;) < 1. If my([0,0]) # 0 then A; = [0,0]7° or
[0,0]2°. And if mn([0,0]) = 0 then A; = [—1,0].

— Suppose my([0,0]) = 0, that is A; = [-1,0]. Then () is not satisfied.
And D, suppresses all the [1,1]. If mu([—1,1]) is odd and ¢y > 2;
then [ =1, Al 1=[0,1] and A; =0, 0]<O If mn([—1,1]) is odd and
to=1; then I =1, A;_y = [-1,1]70 and A; = [0,0]=0. If mn([-1,1])
is even then [ =1, Aj_; = [0,1], A; = [~1,0] if myu([~1,1]) = 0 and
Ay =[0,0]=0 if mm([ ,1]) £ 0.

— Suppose my([0,0]) # 0, that is Ay = [0,0]7 or [0, 0]>0 Suppose that
(*) is not satisfied. Then [ =1, A;_; = [1,1] and A; = [0,0]=° or
[0,0]2°. Now suppose that (%) is satisfied. If 7. ([0,0]) > 1, then I =,
Ai_1 =[1,1] and A; = [0,0]7° or [0, 0]2°. If my([0,0]) = 1 and ty # 0,
then I =1, A;_y = [0,1] and A; = [0,0]=°. If mu([0,0]) = 1, t = 0
and m ([—1,1]) is odd, then [ =1, A;_; = [~1,1] and A; = [0,0]7°. If
M ([0,0]) = 1, to = 0 and my([—1,1]) is even, then I =1, A;_; = [0,1]
and A; = [0,0]=°.

e Suppose yo > 1 and e(4A;) = yo. Then there are no segments ending in yo
in m. The derivative D,, suppresses all the segments [yo, yo] and all the
[—¥0, Yo]- In m there are no other segments ending in ¥y, so I=1-1.

e Suppose yo > 1, e(A;) < yg and tg = 0 if yo = 2. Then e(4;) = 0 by Lemma
Then A, = [—yo + 1,90 — 1]7°. If () is not satisfied, then [ = I,
Ao 1 = [y0, yo] and Ay, = [1+y0, yo—1]2° or [14+yo, yo—1]=°. Suppose that
() is satisfied. Then mm([l Yo, Yo — 1)) = 1. If mm([—yo,y0]) is odd, I =1,
Azo 1= [~0, 0]~ and A, = [1 Yo, 90 — 179 If mm([~y0,v0]) is even,
=1, AZO 1 =11 —yo,v0] and Ay =1 —yo,y0 — 1]7% or [1 —yg,y0 — 1]2°

e Suppose yo = 2, to # 0 and e(4;) < yo. Then e(A;) = 0 by Lemma
Then Ay, = [0,1]. Then I =1, A;, 1 = [2,2] and A,, = [0, 1].

10.6.6. Lemma. Suppose that y1 = yo.

(1) If e(Ar) = yo, then (my,&1) = D_y (my,e1) and (m#, %) = D, (m# %),
(2) If e(A;) = 0, then (My,&1) = (my,e1) and (m#, &%) = D, (m#,e#).

Proof. The result for (m, &) follows directly from Lemma[10.6.5 If e(A;) = yo,
then, for all 1 <7 <1, A; = [emax — @ + 1, emax — © + 1], and these segments are just
suppressed by AD. It is easy to see that (m#,&#) = D, (m# e#).

If e(A;) = 0, in each case of Lemma we get that (m#, &%) = D, (m#, e#)
by examining the formula of the derivative. Let us treat the first case; the others
are handled similarly. Suppose that yo = 1, mw([0,0]) = 0, mu([-1,1]) is odd
and ty > 2 then A; = [1,1], Aj; = [-1,0], A; = [0,1] and A, = [0,0]=°.
Let us look at the eﬁect of AD and D; on the segments ending in 1 and 0. The
algorithm in (m,e) suppresses one [—1, —1] + [1, 1] and transforms [—1,0] + [0, 1]
into [—1,—1] + [1,1]. Thus it is similar to just suppressing [—1,0] 4 [0,1]. The
algorithm AD in Dj(m,¢), transforms [—1, 0]+ [0, 1] into [0, 0] 4 [0, 0] and suppresses
[0,0] + [0,0]. Therefore, it is also similar to just suppressing [—1,0] + [0,1]. We
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can conclude by examining the formula of D;. In both (m,¢) and (m#, %), the
derivative suppresses all the [1, 1] +[—1, 1], transforms all the [a, 1] with ¢ < —1 into
[a, 0], transforms all the [—1, 1] except one into [0, 0] and transforms [—1,0] + [0, 1]
into [0, 0] + [0,0]. We get that (m#,é#) = D, (m#, e¥). O

10.6.7. Proposition. If y1 = yo, then AD(D,,(m,¢)) = D_, (AD(m,¢)).
Proof. It follows from Lemmas [10.6.6] [10.2.9] and [9.4.1} O

10.6.8. Lemma. Suppose that y1 > yo.
(1) If e(A)) = yo then | =1 —1; otherwise | = I.
(2) For1<i<I:
(a) If e(Ai) # yo ~
(i) If yo = 1, A; = [-1,0] and mu([—1,1]) # 0, then A; = [0, 0]=°.
(ii) If (i) is not satisfied, b(A;) = —yo and A; # [~1,0], then A; =
A,
(iii) Otherwise, A; = A;.
(b) If e(Aq) = yo
(i) If A; =10,1], (%) is not satisfied, my([—1,1]) is odd and tg =1,
then A; = [—1,1]7°.
(i) If A; = [—yo,y0], (x) is satisfied, mun([—yo,Yyo]) is even and
Ai—1 = [yo+ 1,50 + 1], then A; = [~yo + 1, 0]
(111) If A; = [—y0,yo], (%) is satisfied and mu([—yo,yo]) s odd, then
A = [—yo,0]7°.

(iv) Otherwise, A; = A,;.

Proof. Note that by definition (A1) = epax is the maximum of the coefficients
of the segments. Since by definition of yo, A1 # [0, —yo] and [—yo, o], after
taking the derivative, A; does not vanish. Hence ey, is still the maximum of the
coefficients in m.

Let 49 = emax — y1 + 2. Then, for all 0 < i < ig, A; = [emax — ¢ + 1, €max — ¢ + 1].
All of these segments belong to m, so [>ig—1landforall0<i< 10, A=A, =
[emax — @+ 1, €max — @ + 1].

Since yo < y1, there are no segments [—yo, —yo] or [yo,yo] in m. The segments
starting at —yo are of the form: [—yo,a] with a > yo, [~¥0, yo] and [—1,0] if yo = 1.

Suppose that e(A;,) > yo. By definition of y1, I(A;,) > 1. If b(A;,) # —yo then
Aio = A,,, and if b(A;,) = —yo then Aio = ~A;,. Let us study the case where
A;, = ~A,, and | > i + 1. By hypotheses, A;, is a segment such that ¢(A;,) > 0.
Let e = e(A;,). The only segment smaller than ~A,, but not than A;; ending in
e —1is [~yo,e — 1] (if e — 1 = yp, then it is [—yo, y0]Z°).

e Suppose e > yog + 1. Then A, 11 is unchanged in m, we still have A; 11 <
~A,,. It remains maximal since there is no segment of the form [—yp, e — 1]
in m. So l~2 iop + 1 and Ai0+1 = Ai0+1.

e Suppose e = yo + 1. Then e(A;,+1) = yo and b(A; 4+1) < —yo. Thus A 11
is a centered segment or a negative segment.

— Suppose A, 41 is a negative segment. Then [ = iy + 1 as there is no
negative segment ending in yo — 1. Also [—yo, 0] ¢ m and thus [ = ig
(the only possible segment on m ending in yg is [0, 1] if yo = 1).

— Suppose yo > 1, ¢(A;,+1) = 0 and (x) is not satisfied. Then [ =iy + 1
and [ = io (there is no segment ending in yo in @).

— Suppose yo = 1, c¢(Aj,4+1) = 0, (%) is not satisfied, mmn([—1,1]) is odd
and ty > 1. Then A;, 11 = [~1,1]7°. Also one and only one [—1,1] is
not changed by the derivative, thus Ai0+1 =Aj41-



AN ALGORITHM FOR AUBERT-ZELEVINSKY DUALITY 61

— Suppose yo = 1, ¢(Aj,+1) = 0, (%) is not satisfied, my ([—1,1]) is even
or tg = 0. Thenl:io—i—land[:io.

— Suppose ¢(A;,+1) = 0, () is satisfied and m, ([—yo, yo]) is odd. Then
Aio+1 = [~v0,%0])7°. In m the only segment ending in yo different from
[yo,yo] or [O, 1] is [7y0,y0]20. Thus Ai0+1 = Ai0+1.

— Suppose ¢(A;,+1) =0, (*) is satisfied and mwm ([—yo, Yo]) is even. Then
A1 = [~v0,%0]=% Thus I =i+ 1. In m the only segment ending
in yo different from [yo,yo] is [—yo + 1,90]. But, [—yo + 1, yo] is not

smaller than [—yo + 1,90 + 1] = A;,. Thus [ = iy.

Let i1 > 79 — 1 be the biggest integer smaller than [ such that for all i < iy,
e(A;) # yo. For all ig + 1 <4 <y, we have that b(A;) # —yo and e(A;) # yo, thus
[>i; and A; = A, Moreover, if i1 = [ then [=1.

Therefore, let us assume that I > i1. Thus e(A;,) = yo + 1 and e(A;; +1) = %o-
In particular p(A;,+1) = [~¥0, Yo), Ai;41 =1[0,1] (if yo = 1) or e(As;4+1) < 0.

e Suppose ¢(A;, +1) < 0, then necessarily | = i; + 1. In m, there is no other
negative segments ending in yo (and the signs of the centered segments are
not changed), thus [ =4, =1 — 1.

e Suppose p(A;,+1) = [~yo,%0] and (*) is not satisfied. Note that in the
case Yo = 1, then tg = 0. Indeed, we have that g < mn([—2,-2]) —
mm([—1,-1]) = mn([—2,—2]). Thus if ty # 0, then mn([—2,-2]) # 0
and y; = 2. Therefore, A;; = [2,2]. But [0,1] < [2,2], so we would have
Ay, +1 = [0,1], which is not. Therefore, I =i; +1and [ =1—1.

e Suppose p(A;, 11) = [—Yo, Yo, (*) is satisfied and mm ([—yo, yo]) is odd. Then
l=yo+i1+1,ifi;+2 <i <lthen A; = [—emax +7— 1, émax —i+1]7°, and

A; =[0,0] or [—1,0]. In m there is still a [~yo, o], 50 Ai; 11 = [~¥0, y0]~°,
I=1and for all i > iy, A; = A,.

e Suppose A;, 11 = [—yo,Yo], (*) is satisfied, mm ([—yo, yo]) is even and A;, =
[yo + 1,50 + 1]. Then A; 41 = [—yo,%0]2°. Then | = yo + iy + 1, if

i1 +2<i<lthen A; = [—emax +7 — 1, émax — i + 1]7°, and A; = [0,0] or
[71,0] In ﬁi, Ai1+1 = [7y0 + l,yo], [: [ and for all ¢ > il + 1, Al = Ai

e Suppose A, +1 = [—Yo, Yo, (*) is satisfied, mun([—yo, yo]) is even and A;, #
[yo+ 1,90+ 1]. Then b(A;,) < —yo, thus A, 11 = [—yo,Yo]<o and | = i3 + 1.
In m, the only segment ending in yo different from [yo, yo] is [—yo + 1, ¥o),
thus [ =1 — 1.

e Suppose yp =1 and A;, 11 = [0,1]. Necessarily [—1,0] € m thus [ =41 + 2.
If (%) is not satisfied, mpy([—1,1]) is odd and to = 1. Then I =1, A;, 11 =
[~1,1]7°, p(A;) = [0,0]. If mu([0,0]) # 0, we get that A; = A; (the parity
of the multiplicity of [0,0] does not change in ). Otherwise, A;, ;1 = [0, 1]
and [ = I. And if my([—1,1]) = 0 or my([0,0]) # 0, then A; = Ay; otherwise
Ay =0,0]=°.

O

10.6.9. Lemma. Suppose that y1 > yo.

(1) If e(A)) > yo + 2, then A7 C = AS .

(2) If e(A) = yo + 1, then A7C = AS U {ir}.

(8) If e(Ar) = yo. We can assume that iy € A5 . If Ay = [—v0,%0]=0 and () is
not satisfied in (m, ), then we can also assume that iy € A5~ and we get
that Afc = AS U {ii_1}\ {ir, i}}; otherwise Af-c = AS \ {i}.

(4) If e(A;) = 0. Let j such that e(Aj) = yo. We can assume that i; ¢ Ay .
Then A;f)’c = A,
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Proof. Let us recall that the segments ending in yo are of the form [a, yo], with
a < =Y, [—Yo,yo] and [0,1], if yo = 1 (there are no [yo, yo] since yo < y1). And
the segments ending in yo — 1 are of the form [1 — yo,yo — 1] (with multiplicity 1 if
yo # 1), [0,1] if yo = 2, and [—1,0] if yo = 1. We have:

Ay, if yo # 1 and () is not satisfied
pe Ay \ {j} if yo # 1 and (x) is satisfied, with A; = [—yo, yo]
Yo A\ {3, A =10,1]} if yo =1 and (x) is not satisfied
A\ ({7, A =[0,1]}U{j}) ifyo =1 and (x) is satisfied, with A; = [—1,1]

Now, A¥ = {i e Ay, A* £ 0y U{i € {ir,-- i1}, e(A;) = yo + 1 and A¥ #
03\ {i € {i1, -+ ,i1},e(A;) = yo} and we have a similar description for Ayo 1
there are no [yo,yo] in Ay, if i & {i1,---,i;} and e(A;) = yo then A¥ # 0. Let
i ¢ {i1,---,i;} such that e(A;) = yo — 1 and A¥ = 0. Then necessarily yo = 1
and there exists a j such that A; = [0,0]<°. In this case, A; = A; (in particular
e(A;) =0) and ¢ = 1.

e Suppose e(4A;) > yo+1. From the previous description we see that AZE = Ay,

Since,

and A@ifl = Ay,—1. Moreover, there are no creation or suppression of
[—v0, 0] or [1 —yo,y0 — 1], so (x) is satisfied for m# if and only if it is
satisfied for m. Thus A?jz’c = Ay,

e Suppose e(4A;) = yo + 1. Then Afj # 0, indeed, A; # [yo + 1,y0 + 1]
because this segment would be followed in the initial sequence by any
segment ending in yo. Hence A% = A, U {i;} and Ay0 1 = Ayy—1. Let
us show that i; € A;;)#. From the description of A,,_1, we see that for
all i € Ayy_1, A?E = A;. We have seen that A;, # [yo + 1,y0 + 1]. And
A;, # [—yo,yo + 1] because it would be followed in the initial sequence by
[0 — L,yo]. Thus ¢(A;,) =0 or ¢(A;,) < 0. If ¢(Ay)) < 0, then 4 € AG#.
If ¢(Ay,) = 0, that is Ay, = [—yo — L,yo + 1]. If Ay, = [—yo — 1,90 + 1]=°
then Ajf = [-yo — 1,90] and 4; € A;b#. If Ay, = [~yo — 1,90 + 1]7°
[—yo—1, yo+1]2° then AZ& = [~¥0, yo]. Thus we need to investigate condition
(%). Since A;, = [—yo — 1,50+ 1]7% or [~y — 1,50 + 1]2° is the last segment
in the initial sequence in the algorithm, there are no negative segment ending
in yo. Since A # 0, mm([~yo0,y0]) # 0. And since A; is the last segment
in the initial sequence in the algorithm, e([—1 — yo, yo + 1])e([—vo, yo]) = 1.
Thus (x) is satisfied for (m, ) if and only if (x) is still satisfied in (m#,#);
and i; € A;b#.

e Suppose e(4A;) = yo. First let us examine the case A?f_l = 0, that is
Aiy_, = [yo+1,y0+1]. Asyo < yi1, we get that y1 = yo+1, [yo,%0] ¢ m, and
A, is the biggest segment ending in yo. Then A% = A, \ {i;} and Ay0 1=
Ay,—1 U{i}. Since A;, is the biggest segment endlng in 4o, we have that for
alli € Aff, A7 < A¥. Thus Afe = A\ {ir}. If Ay, # [yo + 1,90 + 1.
This time, A# = Ayo U {i— 1} \ {i} and Ayo 1 = Ay—1 U {q}. Since
A #[0,1] (1t is the last segment in the initial sequence in the algorithm),
we get that ¢(A;) < 0 or ¢(A;) =0.

— Suppose ¢(4;) < 0. The situation is similar as in Lemma
The segment Af is the smallest segment ending in yp — 1 such that
AF < AF . Thus Afe = A2\ {ir).

— Suppose ¢(A;) = 0. Then, A;,_, = [~yo—1,90+1]2°% [~yo—1,y0+1]7°

or [—yo, Yo + 1]; and AP = = [—¥0, Yo]- Note that if yg = 1, since 4A; is

11—1
the last segment in the initial sequence in the algorithm, then ¢y = 0.
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* Suppose A;, = [~v0,v0]=° or [~yo,v0]2°. Since A;, is the last
segment in the initial sequence in the algorithm, condition ()
cannot be satisfied. We can assume that i; € Aj . Also, Af =
[~vo + 1,50 — 1]. Then necessarily () is satisfied in (m#, e#),
and A7 = AS \ {ir}.

* Suppose A;, = [~yo,%0]=C. There is no segment [—yg, yo] =" in m
and muy ([0, yo]) is even. In particular, we can always assume
that i, € Aj, . Moreover, Af; = [—y0, Yo — 1], so we see that if (x)
is satisfied in (m, ) if and only if (%) is satisfied in (m#,#). So
if (+) is not satisfied in (m, ¢), then we can assume that i; € Aj ,

and A%¢ = A¢ U {i;_1} \ {ir,i]}. And if (%) is not satisfied in
(m,e) then A7 = AS \ {ir}.

— Suppose e(A;) = 0. Let us split the proof into two cases depending on
whether yp = 1 or yo > 1.

% Suppose yo > 1. Let j such that e(A;) = yo. The segment Aj44
cannot be [0, 1] because this segment cannot be in the initial
sequence of the algorithm after a segment of the form [—yo, yo]
or [a,yo], with @ < —yo. Thus Aji1 = [1 — yo,yo — 1]7°. Thus
Aj = [=yo,y0]Z° or [—yo,y0]™°. In particular, we see that (x) is
satisfied in (m,¢), and we can assume that i; ¢ A;O. Moreover

AZ& = [1 — yo,y0 — 1]. The segment A;_; is one of the following :

[yo+1,y0+1], [=yo— 1, yo+1]7% [~yo—1,y0+1]=° or [~yo, yo+1].
Hence, Affil is either 0 or [—yo,¥o]. Also, by definition of A;
and A;_; in the initial sequence of the algorithm, necessarily
(%) is satisfied in (m#,e#), and we see that i;_; ¢ A7 . We get
that A7 = AS .

* Suppose yo = 1. Then e(A;_1) = yo. The segment A;_; cannot
be of the form [a, 1] with a < —1, since it is followed in the initial
sequence by A; which is [0,0] or [-1,0]. Thus A;_y is [-1,1] or
[0, 1].

Suppose to # 0. Since tg < ma([-2, —2]) — mun([-1,—1]), and
mm([—1,—1]) = 0, we get that my([—2,—2]) # 0, y1 = 2 and
Aj_o = [2,2]. Hence, A;_; = [0,1]. Examining the two cases
A; =[0,0] or A; = [—1,0], we see that () is satisfied in (m,¢) if
and only if (x) is satisfied in (m#,e#). Therefore, A7 = A? .

Suppose to = 0. Then necessarily A; = [0,0] and A;_; =

[-1,1]7% or A;_y = [-1,1]2% Also mu([-2,-2]) = 0. The

situation is similar as the case yo # 1. The condition (x) is

satisfied in (m,¢) and in (m#,e#); and A;jf;c = Ay,

O

10.6.10. Lemma. Suppose that y1 > yo.
(1) If e(A)) > yo + 2, then (my,&1) = (my,e1) and (m#, %) = D, (m# c#).

(2) If e(Ar) = yo+1, then (W, &1) = (my,e1) and (m#, &%) = Dpax—H(m# &#).
(3) If e(Ar) = yo, then (my,é1) = D_y (my,e1) and (ﬁl#,é#) = Dyo(m#,s#).
(4) If B(Al) = 0, then (ﬁll,él) = (m1,€1) and (ﬁl#,é#) = Dyo(m#,s#).

Proof. The proof is similar to Lemma Lemma tells us that [ =1 — 1,
if e(A;) = yo, and [ = I otherwise. It also tells us that g = &,. This gave us the
result for (my,e1) in all the cases, apart when g = —1, where we are left to prove
that €1 = &;. Let ng = card{A € m,c(A) = 0} and 79 = card{A € m,¢(A) = 0}.



64

THOMAS LANARD AND ALBERTO MINGUEZ

From the formula of D, the parity of the number of [—yo,yo] is not changed (in
the case yg # 1, necessarily there is an ¢ such that A; = [—yo, yo], and thus (x) is
satisfied). Hence ng = np (mod 2) and 1 = &;.

Now, let us examine m#. This is mostly similar to Lemma [10.4.4

e Suppose e(4;) > yo + 1. By Lemma [10.6.9 A?j:c = A . Combined with
Lemma [10.6.8) we get that (m#,&#) = D, (m#, e#).
Suppose e(A;) = yo+1. This time we have Ajf;c = Ay U{i}. Similarly as in
Lemma [10.4.4, we can show that in m#, AZE is modified by D,,,. Thus we get
that D, (m%,e#) = D, (m#, &%), or that (m# &%) = Dﬁax*l(m#,s#).
Suppose e(A;) = yo.

— If Ay = [~y0,70]=" and (%) is not satisfied in (m,¢), then by Lemma

10.6.9) A%< = AS U {ij_1} \ {i1,i;}. Thus, we almost have the same
modifications, apart from ¢;_1, 4; and ¢;. Since () is not satisfied in
(m,¢), the derivative D,,(m,¢) transforms A;, = [~yo,yo] and A;; =
[—v0,Yo] into 2[—yo + 1,y — 1]. And 1~\i171 = A;_1, thus Af_l =
[—v0,¥0]. In m#, we add A¥

-1

= [—yo0,Yo] and we transform A;, into

AZ& = [~y0,y0 — 1] and A;; into Aff = [—yo + 1,40]. Applying the
1
modifications of the segments indexed by A%-¢ = A¢ U {i;_1}\ {i1, 4]}

transforms the [—yo, 0] into [—yo + 1,50 — 1]. But in (m# &%), we
get that (%) is not satisfied, t# > 1 and c¢# is odd. So, according
to Definition [9.2.2] these modifications are not sufficient to compute
the derivative. We need to transform [—yo,y0 — 1] + [~vo + 1, 0]
into [—yo,%0] + [—v0 + 1,50 — 1]. Thus we get the same thing, and
(ﬁl#v E~#) =D, (m#7 5#)-

— Otherwise, A%< = A¢ \ {i;}, and as in Lemma [10.4.4] (m#, &#) =

Dy, (m# 7).

Suppose e(A;) = 0. Then A% = A¢ . Then in all the cases of Lemma
we see that (m#,é#) = D, (m#,e#). Let us do one for illustration.
Suppose that yo = 1, A;—1 = [0,1], (%) is not satisfied, mn([—1,1]) is odd,
mm([0,0]) # 0 and tg = 1. Since A;_y = [0, 1], applying the algorithm
transforms [0, 1] + [—1,0] into 2[0,0]. Then, we modify the segments in
A?ji’c = A, to get Dy, (m#,e#). To compute (m, &), we modify the segments
indexed by Ay . But since (x) is not satisfied, c is odd and ¢y > 1, we also
need to transform [0,1] + [~1,0] into [~1,1] + [0,0]. But then A, ; =
[-1,1]7° by Lemma so one [—1, 1] is transformed into [0, 0] and we
get that (m#,&#) = D, (m#,e#). The other cases are treated similarly.

O

10.6.11. Proposition. If y; > yo, then AD(Dy,(m,e)) = D_,,(AD(m,¢)).
Proof. Tt follows from Lemmas [10.6.10}, [10.2.3] and [9.4.1] O

10.7. The positive derivative with p not of same type. In this section, we
assume that p is not of the same type as G. We also assume that enax > 1, that for
all —emax < y <0, (m,e) is y-reduced, and that there exists y > 0 with y # emax
such that (m,¢) is not y-reduced.

We define yo € (1/2)Z\Z to be the smallest y € (1/2)Z* \ Z such that y # —emax,

Y 7 emax, and (m,€) is not y-reduced. With our hypotheses on (m,¢), necessarily
yo > 0. Let us describe more precisely the conditions satisfied by (m,¢) and yo using
the explicit formula of the derivative recalled in Section [0
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We have assumed that for all —ep.x < y < 0, (m,¢) is y-reduced. Hence, if
A € m is a segment such that e(A) < 0, then A = [y,y] (where y = e(A)) and
mm([y,9]) < ma(ly — 1,y —1]). Let y; € (1/2)N*\ N be the smallest positive
half-integer such that [y1,y1] € m.

Now, we recall the formula for D,,. First let us do Dy 5.

By convention, when y = 1/2, weset [-y+ 1,y —1] =0, mun([-y+1,y—1]) =1
and e([~y + 1,y — 1]) = 1. Let ¢,/ be the number of [1/2,1/2] in m.

The segments A € m with e(A) = —1/2 are of the form: [-1/2,—1/2]. And
the segments A € m with e(A) = 1/2 are of the form: [a,1/2], with a < —1/2,
[-1/2,1/2] or [1/2,1/2]. Let (*) be the condition: my([-1/2,1/2]) # 0 and
S([-1/2,1/2)) = (—1)h/2+1,

Then D; /, does the following transformations. All the negative segments of the
form [a,1/2], with a < —1/2, are transformed into [a, —1/2] (and their symmetric
[-1/2, —a] are transformed into [1/2, —a]).

o If (%) is not satisfied, my([—1/2,1/2]) is odd and ¢,/ > 1; then all the
segments [—1/2,1/2] except one are suppressed and one [—1/2,—1/2] +
[1/2,1/2] is also suppressed.

e If (x) is not satisfied and, my([—1/2,1/2]) is even or t; /5 = 0; then all the
segments [—1/2,1/2] are suppressed.

o If (%) is satisfied and my ([—1/2,1/2]) is odd; then all the segments [—1/2,1/2]
except one are suppressed.

o If (%) is satisfied and muy ([—1/2,1/2]) is even; then all the [—1/2,1/2] are
suppressed and two [—1/2,—1/2] + [1/2,1/2] are added.

In particular, we see that if Dy /p(m,e) = 0, then

o There is no segment [a,1/2] with a < —1/2;

e mn([—1/2,1/2]) =0 or 1;

o if myu([—1/2,1/2]) =1 then ([-1/2,1/2]) = (—1)h/2FL,

Let y > 1/2 such that for all 1/2 <z <y, D,(m,e) = 0. We prove by induction
on y, that if A € m is a segment with 0 < e(A) < y then ¢(A) > 0. We make
explicit the formula for D,,.

Using the induction hypothesis, if 1/2 < z <y, and A € m with e(A) = = then
b(A) > —z. We also know that if b(A) # y then b(A) < 0. But AY € m, so if
b(A) # y then b(A) = —x. Hence, the only segments ending in y are [z,z] and
[z, z]. In particular, note that there are no segments [—y + 1,y] in m. Also the
segments A € m with e(A) =y — 1 are of the form: [y — 1,y — 1] or [1 —y,y — 1].
And the segments A € m with e(A) = y are of the form: [a,y], with a < —y,
[—v,y], [y,y]. Let (%) be the condition: mm([—y,y]) # 0, mm ([l —y,y —1]) # 0 and

Then D, does the following transformations. All the negative segments of the
form [a,y], with a < —y, are transformed into [a,y — 1] (and their symmetric
[~y, —a] are transformed into [—y + 1, —a]). For the centered segments [—y, y]:

e If (%) is not satisfied; then all the segments [—y,y] are transformed into
[~y+1,y—1].

o If (%) is satisfied and muy ([—y, y]) is odd; then all the segments [—y, y] except
one are transformed into [—y + 1,y — 1].

o If (%) is satisfied and mu([—y,y]) is even; then two segments [—y,y| are
transformed into [—y,y — 1] + [~y + 1,y]. The other segments [—y, y] are
transformed into [—y + 1,y — 1].

It also suppresses n segments [y,y] and [—y, —y|, where n = max{mn([y,y]) —
mm([y—1, y—1])—mm ([1—y, y—1]), 0} if (*) is not satisfied; and n = max{mm [y, y])—



66 THOMAS LANARD AND ALBERTO MINGUEZ

ma(ly — 1,y —1]) — mu([1 —y,y — 1]) + 1,0} if (x) is satisfied. Note that we will
show that mn([1 —y,y —1]) =0 or 1.
In particular, we see that if D,(m,e) = 0, then

e There is no segment [a,y] with a < —y;
* mu([-y,y]) =0or L
L4 lfmm([_yvy}) =1 then mm([l_yvy_l]) 7é 0 and E([—y,y])&([l—y,y—l]) =
~1;
* mm([y,9]) < mm(ly — 1,y — 1)) + mu([l —y,y — 1]) if mm([-y,y]) = 0; and
M ([y,y]) < mm(ly — 1,y —1]) if ma([-y,y]) = 1.
This proves our induction hypothesis.

The formulas above give us an explicit formula for D,,, depending on whether
yo = 1/2 or not. Moreover, we see that if A € m is such that e(A) < yg, then
either A = [y,y] for some y, or A = [—y,y|, and in this case mn([-y,y]) = 1.
Furthermore, if y > 1/2, then e([—y,y])e([1 —y,y — 1]) = —1; and if y = 1/2, then
S([-1/2,1/2]) = (—1)ret,

For the rest of the section, let (x) denote the condition:
(1) If yo = 1/2: mu([—1/2,1/2]) # 0 and ([-1/2,1/2]) = (=1)t/2+L,
(2) fyo > 1/2: mm([—Yy0,¥0]) # 0, mm([—yo+1,yo—1]) # 0 and e([—yo, yo])e([1—
Yo, Yo — 1]) =-1

10.7.1. Lemma. If e(A;) < yo then e(A;) = 1/2.

Proof. We assume that e(A;) < yo. From Lemma[10.5.1} we have that e(A;) > 0.
Thus A; is one of the following segments : [—y,y] or [y,y]. If A; = [—y,y] or [y, y]
with y # 1/2, the fact that D, (m,¢) implies that there exists a segment A ending
in y — 1 suitable for the algorithm such that A < A; which is a contradiction. [

We denote by (m,€) := Dy, (m,¢) and by Ay, ,AZ the initial sequence in the
algorithm for (m, &).

10.7.2. Lemma. Ify; < yq, then
(1) e(Ay) =1/2;

2) 1=1; i
(8) forall1 <i<lIl, A;=A;.

Proof. We are in the case where A; = [emax, €max]- AS Yo # €max, Dy, does not
suppress A; and A, = A;. Let ig = emax — y1 + 2. Then, for all 0 < ¢ < i,
A; = [émax — ¢ + 1,emax — 7 + 1]. In all these segments, the only that can be
modified by Dy, is [yo,¥0]. But as y1 < yo, [yo — 1,40 — 1] € m, thus at least one
[¥0, Yo is not suppressed by D,,. We see that [ >ip—1and for all 0 < i < i,
Ai = Ai = [emax — i+ 1, emax — i + 1].

If y; = 1/2, then A; = [1/2,1/2]. Now, we assume that y; > 1/2. By definition of
y1, we know that [y; —1, y1 —1] ¢ m, and since D,, (m,e) = 0, we get mm ([1—y1,y1 —
1]) = 1. In this case, we also know that for all y; —1 > y > 1/2, mn ([-y+1,y—1]) =1
and ([, o)=L — .y — 1]) = —1; and mey(|~1/2,1/2)) = 1 and =(|~1/2,1/2]) =
(=1)h/2tl But ¢ty = 0 (as y; > 1/2), thus e([-1/2,1/2]) = —1. Thus for all

io <@ <1, A = [~emax + 1 — 1, €max — i +1]7% and ¢([~1/2,1/2]) = —1 (hence
g0 = —1). None of these segments are changed by D,, thus [ = [ and for all

10.7.3. Lemma. Suppose y1 < yo. Then (my,&) = (my,e1) and (m# &%) =
Dyo(m#7€#)'



AN ALGORITHM FOR AUBERT-ZELEVINSKY DUALITY 67

Proof. By Lemma we get that (my,€1) = (my,e1). Moreover, we know that
for 1 < i < y1, Ay = [emax — i + 1, €max — i + 1]. Hence, the segments of m#
ending in yo or yo — 1 are the same as in m except that one segment [yo, o] and one
[yo — 1,30 — 1] have been suppressed. These segments were not modified by D,,.
We deduce that (m#, é#) = D, (m#, e#). O

10.7.4. Proposition. If y1 < yo, then AD(D,,(m,e)) = D_, (AD(m,¢)).

Proof. Tt follows from Lemmas [10.7.9} [10.2.3] and [9.4.1] O

10.7.5. Lemma. Suppose that y1 = yo. Let j = emax—yo+1, such that A; = [yo, Yo)-
(1) Then e(A;) = yo or 1/2.
(2) If e(A)) = yo and yo # 1/2, then [ =1 — 1; otherwise | = 1.
(8) For all1 <i<I, ifi#j,j+1 then A; = A;.
(4) If yo = 1/2. If mm([—1/2,1/2]) is odd, e([-1/2,1/2]) = =1 and ty)2 = 1,
then Ay = [~1/2,1/2]7 and &([-1/2,1/2]) = —1; otherwise A, = /.
(5) If yo > 1/2 and e(A;) = 1/2. Then A; = [Y0,yo] and Aji1 = [1 —yo,y0 —
1]:0. And Aj = Aj, A]‘+1 = Aj+1, unless
(a) If (%) is not satisfied and mw([—yo,y0]) # 0, then Aji1 = [1 — yo,yo —
1]=20.
(b) If () is satisfied and mu([—yo,yo]) is odd, then A; = [—yo,yo]=.
(¢) If () is satisfied and mu([—yo,vo]) is even, then Aj = [1 — yo, yo)-

Proof. Let ig = emax —y1+2, then, for all 0 < i < ig, A; = [emax — 1+ 1, €max —i+1].
The segment A; _1 = [yo, Yo] could be modified by D,,,. We get that [>ip—2, and
for all 4 < io — 2, Ai = Ai~
e Suppose yo = 1/2. Then A; = A;, =[1/2,1/2] and g9 = 1. If () is satisfied
or My ([—1/2,1/2]) is even or t1/5 # 1, then in m there is still a [1/2,1/2].
Thus [ = [ and A; = A;. If () is not satisfied, mm([—~1/2,1/2]) is odd
and t;o = 1. The only segment ending in 1/2 in m is [-1/2,1/2]7° with
&([-1/2,1/2]) = —1. Thus [ = and A; = [-1/2,1/2]7°.
e Suppose yo > 1/2 and e(4A;) = yo. Then my([1 — yo,y0 — 1]) = 0 and in
particular (x) is not satisfied. Therefore, D,, transforms all the segments
[—yo, yo] into [1 — yo,yo — 1] and suppresses all the [yo, yo]. Thus I=1-1.
e Suppose yo > 1/2 and e(A;) = 1/2. As y1 = yo > 1/2, then t; 5 = 0. Also,
as e(A;) = 1/2, we get that my([1 — yo,y0 — 1]) = 1.
— Suppose (*) is not satisfied. Then D,, does not suppress all the

[yo, yo] thus Aj—1 = [yo,y0] = Aip—1. If mum([—yo,¥0]) # O then
Ai, = [1 —yo,y0 — 1]2% otherwise A;, = [1 — yo,%0 — 1]7° = A;,. In
both cases, [ = [ and for all j > i, Aj =A;.

— Suppose () is satisfied. This time all the [yo, yo] are suppressed by
Dy,. If mm([—Y0,v0]) is odd, then Aiy—1 = [—v0,10]=°, Ay = [1 —
Yo, Yo — 1]:0 = Aiov Z: l and fOI‘ allj > 7;07 Aj = Aj. If mm([—yo,yo])
is even, then Aio_l = [1 — o, %ol, Aio =[1—yo,y0 — 1]70 = A,,, =1
and for all j > i, Aj =Aj.

U

10.7.6. Lemma. Suppose that y; = yo.
(1) If e(A)) = yo and yo # 1/2, then (Wy,&1) = D_y,(my1,e1) and (m# %) =
Dy, (m# e#).
(2) Otherwise, (my1,&1) = (my,e1) and (m#, &%) = D, (m# 7).
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Proof. The result for (my,&7) follows directly form Lemma (note that in
the case e(A;) = yo and yo = 1/2 then ¢g = —1 and by Lemma we also
have &y = —1). If e(A;) = yo and yo # 1/2, then for all 1 < ¢ < I, A; =
[emax — @+ 1, emax — i+ 1], and these segments are just suppressed by AD. It is easy
to see that (m#, &%) = D, (m# c#).

In the other cases, it is easy to prove that (m#,é#) = D, (m#,e#), checking all
the cases of Lemma [I0.7.5 and looking at the formula of D, .

Let us do one to show an example. Suppose that yo = 1/2, my([—1/2,1/2]) is odd,
e([~1/2,1/2]) = =1 and t;/» = 1. Then A; = [~1/2,1/2]= and &([-1/2,1/2]) =
—1. Note that m* is just m where we have suppressed [€max, €max] +- - - +[1/2,1/2] +
[—1/2,—1/2]4+ -+ [—€max, —€max)- Let us focus on the segments ending in 1/2. So
AD suppresses one [1/2,1/2]. Then in m#, tf/Z = 0 and (x) is not satisfied. So D/,
suppresses all the segments [—1/2,1/2]. At the end, the are no segments ending
in 1/2 in Dy, (m#,#). Now in m, D, suppresses all the [—1/2,1/2] except one
and one [1/2,1/2]. As A; = [~1/2,1/2]7°, AD(tn, &) suppresses A;. So we see that
(m#, &%) = D, (m#, #). The other cases are treated similarly. O

10.7.7. Proposition. If y1 = yo, then AD(D,,(m,¢)) = D_, (AD(m,¢)).
Proof. Tt follows from Lemmas [10.7.6}, [10.2.3] and [9.4.1] O

10.7.8. Lemma. Suppose that y1 > yo.
(1) If e(Ar) = yo and g9 = 1 then [ =1-1; otherwise [ = .
(2) For1<i<lI:
(a) If e(Ai) # yo )
(i) If b(A;) = —yo, then A; =~ A,
(ii) Otherwise, A; = A;.
(b) If e(A;) = yo
(i) If Ai = [=yo,90], (%) is satisfied, mw([~yo,y0]) is even and
Aio1 = [yo + 1,90 + 1], then A; = [—yo + 1, yo].
(it) If Ay = [—yo, o], () is satisfied and mm([—yo,yo]) is odd, then
A; = [~y0,40]=".
(iii) Otherwise, A; = A,.

Proof. Note that since yo < y1, then 1,5 = 0. Then the proof is the same as Lemma
10.6.8 O

10.7.9. Lemma. Suppose that y1 > yo.
(1) If e(Ar) > yo + 2, then A © = AS .
(2) If e(Ar) = yo + 1, then A7C = AS U {ir}.
(3) If e(Ar) = yo.
(a) If Ay = [~y0,%0]=° and (%) is not satisfied in (m,e), then we can also
assume that i, i) € A and we get that A#¢ = AS U {ij_1}\ {ir, i}}.
(b) If Ay = [-1/2,1/2]2° or [-1/2,1/2]7°, and (%) is satisfied. We can
assume that iy ¢ A5 , and A7 = A5 .
(c) If Ay = [-1/2, 1/2]%0 and () is satisfied. We can assume that iy ¢ A5 ,
and Afc = A\ {if}.
(d) Otherwise, we can assume that iy € AS  and A% = Ag \ {ir}.
(4) If e(A;) = 1/2 and yo # 1/2. Let j such that e(A;) = yo. We can assume
that iy ¢ AS . Then A7:° = AS .

Proof. The proof is similar to the proof of Lemma [10.6.9] The only main difference
is when e(A;) =1/2, yo = 1/2 and ¢(4A;) = 0. We give details only in this case.
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e Suppose A; = [-1/2,1/2]2% or [~1/2,1/2]7°, and (x) is satisfied. Then
go = —1. In m#, we get that e#([—1/2,1/2]) = 1, so (%) is not satisfied.
We can assume that i ¢ AS , and A7© = A .

e Suppose A; = [-1/2,1/2]<0 and (x) is satisfied. Now gy = 1. Af-
ter the algorithm, AZT = [~1/2,—1/2]. Thus, in m#, t:ft/z = 1, and

e#([—1/2,1/2]) = —1, so (x) is not satisfied. We assume that i; ¢ A , and
Affe = AS N\ {i}.

e Suppose A; = [-1/2,1/2]2% or [-1/2,1/2]7°, and (x) is not satisfied. Then
g =1. If Af’il = —1/2,1/2], then e#([—1/2,1/2]) = —1 and () is satisfied
in (m#,e#), so iy_1 ¢ A¥c. Otherwise, (%) is not satisfied in (m#,e#).
And we get that A%© = A? \ {i;}.

e Suppose A; = [-1/2,1/2]=% and (%) is not satisfied. Then A; ;
[-1/2,3/2] and () is not satisfied in (m#,e#). We get that A%~
A;o U {Z‘lfl} \ {ll,’éz}

10.7.10. Lemma. Suppose that y1 > yo.

(1) If e(Ar) > yo + 2, then (my,&1) = (my,e1) and (m#, %) = D, (m# %),

(2) If e(Ay) = yo+1, then (W, &1) = (my,e1) and (M#, &%) = Dpax—Hm# ¢#).

(3) If e(A;) = yo and yo # 1/2 or eg = 1, then (M1,&1) = D_, (m1,e1) and
(ﬁl#’é#) = Dyo(m#rg#)'

(4) If e(A;) = yo, Yo = 1/2 and g9 = —1, then (my,&1) = (my,e1) and
(ﬁl#ué#) = Dyo(m#’g#)'

(5) If e(A;) = 1/2 and yo # 1/2, then (my,&1) = (my,e1) and (m#, &%) =

Dy, (m# 7).
Proof. The proof is similar to the proof of Lemma [10.6.10] and follows from Lemma
079 and Lemma [0.7.8 O
10.7.11. Proposition. If y1 > yo, then AD(Dy,(m,e)) = D_, (AD(m,¢)).
Proof. Tt follows from Lemmas [10.7.10] [10.2.3] and [9.4.1}] O

10.8. The derivatives D, . . In this section, we assume that emax > 1, that for all
—emax < Y < €max With y # 0, (m, ) is y-reduced, that (m,e) is L([—1, 0])-reduced,
and that (m,€) is not emax-reduced. Let yo = emax. We have recalled the formula
to compute Dy, in Section [I0.6}

We start by assuming that p is of the same type as G. Then m is of the following
form

€max

m= Z ”y([ya y]"’[_ya _y])+n0 [07 O]+t0([_17 0}4_[0’ 1])+Z[_yv y]+m[_emaxa emax}'
y=1 y=1

10.8.1. Proposition. We have that AD(D,,(m,¢)) = D_,, (AD(m,¢)).

Proof. First, let us consider the case where n.__ 1 # 0. In this case, we also get that
Ne, .. 7 0. Thus, we have I > 2, A1 = [yo, y0], and Ay = [yo — 1, y0 — 1]. Moreover,
since ne_, —1 # 0, after applying the derivative D,_, , none of the [emax, €max)
are suppressed. Hence, A; = [yo,yo] = A1 and A, = [yo — L,y0 — 1] = Ay. We
deduce from this that [ = [ and for all 1 <j<l Aj = A;. This gives us that
(ﬁ‘ll,gl) = (ml,sl) and (ﬁ'l#,é#) = Dyo(m#,s#). Also my 75 [yo,yo] + [*yo,*yo].
Finally we get that AD(Dy,(m,¢)) = D_,,(AD(m,¢)).

Now, let us assume that ne_, 1 = 0. In particular, for all 1 < i < epax — 1,
n; = 0. Note that if ¢ty # 0, then yg = 2 and ng # 0. Thus m is of the form
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m=no [0’ 0]"‘2[_?/7 y]+myo [_y(); y0]+nyo ([y0> y(]]+[_y(], _yO])+t0([_17 0]"‘[0’ 1])7
y=1

First, let us notice that for any (m’,&’) € Symm_ (G), if yo is the maximum of
the coefficients of m’ then D_, (m’,¢’) just removes all the segments [yo, yo] and
[—y0, —Yo]. In particular D_, (AD(m,e)) = D_,, (my,e1) + D_, (AD(m#, e#)) =
D_y, (my,e1) + AD(D,, (m#,#)). We will compute AD(m, ¢) (that is (my,e;) and
(m# e#)), Dy, (m,e) and AD(D,,(m,¢)) (that is (my,&1) and (m#,£%#)) to see that
AD(DZJO (m,e)) = D_y, (AD(m, ¢)).

Let us start by computing AD(m, ). We get that

e Suppose tg # 0 and ng is odd. Thenm; = [—2,2], £1([—2,2]) = (—1)"2"2¢([0,0]),
and m# = (ng + 1)[0,0] + 327 _; [, 4] + 1y [=0, o] + (14, — 1)([y0, y0] +
[0, —y0]) + (to — 1)([~1,0] + [0, 1]) and £#([~yo,0]) = —&([~y0,%0]) and
for y < yo, e ([~y.9]) = e([~y. 9)).

e Suppose ty # 0, ng # 0 and ng is even. Then m; = [—yo,0] + [0, yol,
m# = 1[0, 0]+ 3521 [, ¥+ 12y, [~ %0, Yol + (nyo — 1) ([0, o] + [~ %0, —yo]) +
(to — 1)([=1,0] +[0,1]), £#([0,0]) = —&([0,0]) and ¥ ([~y, y]) = e([~y.y])
for y # 0.

e Suppose tg # 0 and ng = 0. Then m; = [—yo, 0140, yo], m# = my, [—yo, yo]+
(nyo = 1)([y0, yo] + [0, =y0]) + (to — 1)([=1,0] + [0, 1]) and &#([~yo, yo]) =
e([~¥o, yo))-

e Suppose ty =0, ny, # 0 and z < yo—1. Then my = [—yo, —Yyo| + [yo, yo] and
m# =100, 0]+ 327 _; [~y Y] +myo [0, Yo] + (45 — 1) ([y0, y0] + [0, —o))-

e Suppose tg = 0, ny, #0, 2 =1yo — 1 and ng is even. Then m; = [—yo, 0] +
[Ov yo]v m# = (nO - 1)[05 O} +ZZZ/;1 [_yv y] + My, [_y07 yO] + (”yo - 1)([y0a yO] +
(=40, —w0]), € ([=w0, y0]) = e([—yo,%0]) and e#([—y,y]) = —e([-y,y]) for
0<y<z.

e Suppose tg = 0, ny, # 0, 2 = yo — 1 and np is odd. Then m; =
(=40, %] e1(yo) = (=1)™0*2e([0,0]), m# = no[0,0] + X571 [~y 9] +
My [=10, Y0] + (g — 1)([y0, yo] + [=¥0, —¥0)), e# ([=y0, %o]) = —e([~yo, o))
and % ([~y,y]) = —e([~y,y]) for 0 <y < z.

e Suppose (*) is not satisfied and n,, = 0, then m; = [—yo, —yo| + [0, o] and
m# = no[0,0] + 307 [=y, 9] + [=v0 + 1,50 — 1] + (my, — 1)[~v0,%0]- And
e#([1 = yo. 9o — 1)) = e([~y0, %)), if n0 > 2, e ([~yo. %0]) = €([~¥0, ¥0)),
and for y < 2, e% ([~y,y]) = e([~v,y]).

e Suppose (x) is satisfied, n,, = 0 and ng is odd. Then m; = [—yo,yo],
e1([=v0,90]) = —e([=v0,%0]), and m# = ne[0,0] + 3= [~y,y] + (my, —
1)[=yo, 0] and e# ([—yo, %0]) = —&([=yo, yo]) and for y < yo, e# ([~y,y]) =
e([~y, D).

e Suppose (*) is satisfied, n,, = 0 and ng is even. Then my = [—yo, 0] + [0, yo],
m# = (no — 1)[0,0] + 327, [~4,y] + (my, — 1)[~y0,50], e*([~y0,%0]) =
e([~yo,y0]) and ¥ ([~y,y]) = —e([~y,y]) for 0 <y < 2.

Now, we will compute D, (m,¢).

e Suppose yo = 2, (*) is not satisfied, ny,, # 0 and z = yo — 1. Then
Dyo (m,s) = no[0,0} + ZZ:l[fyay] + My, [7y0 + 1ay0 - 1} + min{t() +

1;”2}([?/07.%} + [_y07 _yO])
e Suppose Yo = 2, (x) is not satisfied and n,, = 0 or z < yo — 1. Then

Dy, (m,€) = nol0, 01437 _; [y, yJ+1my, [~yo+1, yo—1]+min{to, n2}([yo, yol+
(=0, —Yo])-
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e Suppose yo = 2, (*) is satisfied and my, is odd. Then D, (m, ) = ny[0,0] +
>y [y, Yl 4 (myy — D)[=yo + 1,90 — 1] + [~y0, yo] + min{to, 72 }([yo, yo] +
(=0, —Yo])-

e Suppose yo = 2, () is satisfied and my, is even. Then Dy, (m,e) = [—yo, yo—
1]+ [=yo + Lyo] +m0[0,0] + =7 [=y, 4] + (my, — 2)[~yo + Lyo — 1] +
min{th nZ}([y()v yO} + [_y07 _yO])

e Suppose yo # 2, () is not satisfied, n,, # 0 and z = yo — 1. Then
Dyo(m7€) = ’I’Lo[0,0] + 25:1[_2/73/] + myo[_yo + 17y0 - 1] + ([y07y0] +
(=0, —Y0])-

e Suppose yo # 2,(x) is not satisfied and ny, = 0 or z < yo — 1. Then
Dy, (m, ) = no[0,0] + 327 [y, y] + my, [~yo + 1,50 — 1].

e Suppose yo # 2,(*) is satisfied and m,, is odd. Then D, (m,¢e) = no[0,0] +
Z;:l[_y7y] + (myo - 1)[_y0 + 1) Yo — 1] + [_yOa yO]

e Suppose yo # 2, () is satisfied and my, is even. Then D, (m,e) = [—yo, yo—
1]+ [~yo + 1, y0] + no[0,0] + Z;:l[—y, yl + (my, —2)[~yo + 1,50 — 1].

Examining all the cases we find that, when my = [yo, o] + [~%0, —%0] then
Dy, (m,e) = D,,(m# c#) and in all the other cases m; = my and (m# &%) =
Dy, (m#, e#). Hence we get that AD(D,,(m,¢)) = D_,,(AD(m,¢)). O

Now, we suppose that p is not of the same type as G. Then m is of the following
form

m = Z ’I’Ly([y, y] + [_yv _y]) + Z [—Zh y} + m[_emaxa emax]~
y=1/2 y=1/2

10.8.2. Proposition. We have that AD(Dy,(m,e)) = D_,,(AD(m,¢)).

Proof. The proof is similar to the proof of Proposition [10.8.1] When n._, 1 # 0,
it is exactly the same. Now suppose that n._, 1 = 0. Thus m is of the form

m= Z [_y7 y] + myo [_yOa yO] + nyo([:uo» yO} + [_y07 _yO])7
y=1/2
Let us start by computing AD(m,e). We get that

e Suppose ny, # 0 and z < yo — 1. Then m1 = [—yo, —Yo] + [yo, 0] and
m# = 25:1/2[—% Yl + myo[=yo, yo] + (ny, — 1)([yo; yo] + [—¥0, —yo))-
e Suppose ny, # 0 and z = yo — 1. Then m; = [—yo,¥0], €1(y0) =

(D= tt m# = S50 [=y.y) + My, (=20, %] + (nyy — 1)([yo, yo] +
[~y0. —ol), *([~0, y0)) = —([~v0, y0)) and e#([~y.y]) = —([~y.y]) for
1/2<y <z

e Suppose (*) is not satisfied and n,, = 0. Then m; = [—yo, —yo] + [¥o, Yol
m# =377 o=yl + [=yo + 1,yo — 1] + (my, — 1)[~yo, yo], and e#([1 —
v0,%0 — 1]) = ([0, %0)), if no > 2, e*([~yo, %0]) = e([~¥0,%0]), and for
Y < 2, 8#([_y7y}) = 6([_yay])

e Suppose () is satisfied and n,, = 0. Then m; = [—yo, Yo, €1([—v0, y0]) =
(=1 Mot m# = 22:1/2[*%% + (my, — 1[=y0,90), *([~yo,v0]) =
75([7y05 yO]) and for Y < Yo, 5#([7y7y]) = 6([7y7yD

Now, we compute D, (m,¢).

e Suppose () is not satisfied, ny, # 0 and z = yo — 1. Then D, (m,e) =
> y=1/2[=y ¥l + myo[=yo + L,yo — 1] + ([vo, Yo + [~¥0, —y0])-

e Suppose (*) is not satisfied and ny, =0 or z < yo — 1. Then Dy, (m,e) =
2221/2[_?/7?/] + myo[_yo + 1,y — 1}-
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e Suppose (x) is satisfied and my, is odd. Then Dy, (m,e) = 2221/2[—1], y| +
(myo = D[=yo + 1,50 — 1] + [=0, %0]-
e Suppose (*) is satisfied and m,, is even. D,,(m,¢) = [—yo,y0 — 1] + [~yo +
Lyol + 3051 /2l=9, ¥l + (my, — 2)[=yo + 1,30 — 1].
We finish as in the proof of Proposition [I0.8.1] O

10.9. The derivatives D_._,_ . In this section, we assume that enax > 1, that
for all —emax < ¥ < emax with y # 0, (m,¢) is y-reduced, that (m,¢) is L([—1,0])-
reduced, and that (m,e) is not —epax-reduced. Let yo = —emax. The derivative
D, (m,¢) just suppresses all the segments [yo, yo] + [—yo, —yo] from m and doesn’t
change ¢.

10.9.1. Proposition. If mm([—€max; €max]) = 0, then D_, (AD(m, ¢)) = AD(D,,(m

Proof. Let (m,&) = D,,(m,e). With the hypotheses made, Ay = [—yo, —yol, { > 2
(because D_,,(m) = 0) and A, is the biggest segment ending in —yo—1. Hence, A; =
Ay, l=1— 1 and for all 1 < j <, A = Ajy1. Thus (my, &) = D_yo(ml,sl) and

(m#,&#) = D, (m#,e#). From Lemma and Lemma|10.2.3, D_, (AD(m,¢)) =
D_,, (my,e1) +D_y0 (AD(m#, %)) = (ﬁll,él) + AD(m#, %) = AD(Dy, (m,e)). O

Now we assume that my ([—emax, €max]) # 0. First, we assume that p is of the
same type as G. From the hypotheses made on the derivative (recalled at the
beginning of Section [10.8)), we get that for all 2 < y < emax, mu([—y,y]) = 1,

e(l=y,9) = —e([L = y,y — 1)) and £([0,0])e([-1,1]) = (=1)*F". Let n,,, =
Min ([€max; €max]), N2 = mm([2,2]), n1 = mm([ ) ]) no = mw([0,0]) and ty =
mm([0,1]). Then, ne_,. = Mm([€max; €max]) = - = Mm([2,2]), to = Ne,,,, — N1 and
ng > ny + 1.

10.9.2. Lemma. Suppose that M, ([—emax, €max]) 7 0. Then AD(m,e) = (m’,&’)
with :
(1) If ng — ny is odd,
€max—1
m' = (nl+1)[76nlax7 emax]+(ne,nax *nl)([*emaxa O]+[07 emax})+(n07nl)[07 0]+
y=1
&' ([~emax; emax]) = (=1)"0Fem=Fle([0,0]), €'([0,0]) = (—1)"emexe([0,0])

and 6/([7y7y]) = (71)n1€([7y,y]) fOT Y 7& 0, €max -
(2) If ng — ny is even,

€max

—1
)

m/ =ni [_emaxa emax]+(nel,,ax_nl +1)([_emaxa 0]+[07 emax])+(n0_n1_1)[07 0]+ Z [_y Yy
y=1

&' ([~€max, emax]) = (=1)"0FemaxFle([0,0]), £'([0,0]) = (—1)"emmxt1£([0,0])
and €'([~y,y]) = (=1)" " e([~y,y]) for y # 0, emax-

Proof. First, we apply the algorithm nq times to (m,¢). Each time we get | = emaXJrl
A1 = [emaxaemax}; AQ = [emax_laemax_]-L ~"7Al71 = [17 1}7 Al = [Oa ]7 or [O O]
Thus we get that m; = [—emax, €max), With 1(my) = (—1)"0Femaxt1g([0,0]), and m#
is m where we have removed the segments [y, y] and [—y, —y] for 1 < y < epax and
[0,0], and e ([~y,y]) = —([~y,y]). Hence after applying n; times the algorithm
we get that

AD(m, &) = n1[—€max, €max] + AD(m’, &)
with &1 ([—emax, emdx}) (—1)rotemetic([0,0]), m' = nzetnax([ yl + [y, —y)) +
(no—n1)[0, 0]+n([~1,0]+[0, 1))+ 3277 [~y, y], with n = ne,,,, —n1, and €'([~y, y]) =
(=" e[~y y)-
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Now apply again the algorithm to (m’,&’). We get I = emax+1, A1 = [€maxs Emax]s
AQ = [emax — 1aemax — 1], ...,Al_Q = [2,2], Al—l = [O, 1] and Al = [0,0] If no — N1
is odd then m; = [—emax, €max] and m# is m’ where we have removed the segments
[y, y] and [—y, —y] for 2 <y < emax, we have removed [—1,0] + [0, 1] and we have
added a [0,0] and £%([0,0]) = €'([0,0]) and for y # 0, e#([~y,y]) = —&'([~v, y])-
If ng — ny is even then m; = [—emax, 0] + [0, emax] and m¥ is m’ where we have
removed the segments [y, y] and [—y, —y] for 2 < y < emax and [—1,0] + [0, 1]; if
y #0, e ([~y,y]) = &'([~y, y]) and £#([0,0]) = —([0,0]). Hence after applying n
times the algorithm to (m’,&’) we get that:

o If ng — nq is even:

AD(mv 5) = nl[_ema)u 6rnax} + (nyg - nl)([_emaxa 0] + [07 emax]) + AD(m/I7 5”)
with m” = n'[0,0] 4+ X209 [~y,y], where n’ = ng — ny, €”([0,0]) =
(—1)”6max€([0 0]) and for y # 0, £'([—y,y]) = (=1)™e([-y, y]).

o If ng — ny is odd:

AD(m, e) = (n14+1)[—€emax: €max] + (Myo =11 — 1) ([—€max, 0] +[0, €max]) +AD(m", &)
with m” = n'[0,0] + 320" [~y,y], where n' = ng —ny + 1, £”([0,0]) =
(—1)””“‘“‘+1 ([0,0]) and for y # 0, &"([~y,y]) = (=1)" " 'e([~y, y]).

Now, &”([0,0])e” ([1,1]) = (= 1)"emaxTMe([0,0])e([=1, 1]) = (—1)emaxFrattoth =
—1. We have computed AD(m”,¢”) in Lemma [10.1.1} as n’ is even we have
AD(m"”, ") = (n' = 1)[0, O]—I—Eema"_l[ Yy Y] + [—€max; 0] + [0, emax] and all the signs
of the segments [—y,y] for y # emax change, which gives the result. O

We can prove the wanted result.
10.9.3. Proposition. If my([—emax; €max]) # 0, then D_, (AD(m,¢)) = AD(D,,,(m,¢)).

Proof. Lemma computes explicitly AD(m,e). Using the formulas for the
derivative recalled in Section @, we get D_, (AD(m,¢)). Thus let us compute
AD(D,,(m,¢)) and check that we get the same formula.

Now, D,,(m,¢) is just (m,e) where we have removed all the segments [yo, o).
We apply the algorithm to D, (m,¢).

o Iftgis even (hence £(0)e(1) = —1), then A1 = [—€max, max) s -y Doy =

[-1,1]7% and A, 1 = [0,0]7° or [0,0]=° depending on the parity of ng.

— If ng is odd, then A._. 1 = [0,0]7° and [ = epax + 1. Thus m; =

[—emas €max] and m# =, S s T [y, y] + [—y, —y]) + na([1,1] +
[—1,=1]) +n0[0, 0] + to([=1,0] + [0, 1]) + 3525 =y, 9]

— If ng is even and n; = 0, then | = eyay + 1 and A; = [0,0]<°. Thus

My = [~emax, 0] [0, emax] and m# =n,, Zemjx_l([ya yl+[- % -y +
na([1, 1]+ =1, =1]) + (o = 1) [0, 0] +to([—1, 0] + [0, 1]) + 525 [~ 9.
— If ng is even and ny # 0, then ! = 2epmax, Ae, otz = [—1, —1],.. Al
[—emax+1, —€max +1]. Thus m; = [—emax, €max — 1]+ [—€max + 1, €max]
and m# = (ne,.. — 1) X025 [yl + [~y —y) + (m — D([1,1] +
[=1,=1]) + (no — 1)[0,0] + to([~1,0] + [0, 1]) + X5 [~y 9.

e Iftgisodd (hence g(0)e(1) = 1), then ! = emax+1, A1 = [—€max; €max] =, -
A;_1 =[-1,1]7% and A; = [~1,0]. We get that m1 = [~emax, 0] + [0, emax]

and m# = nc, ST [y, ] + [~y —y)) + (nl + D([1,1] + [-1,-1]) +
(no +1)[0,0] + (fo — D)([=1,0] + [0,1]) + 3525 [y, 9.

In all those cases, AD(m# %) has been computed in Lemma[10.9.2l We get (with

the signs as in Lemma [10.9.2)):

e Suppose that tq is even and ng is odd.
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— If ng—ny is odd, then AD(Dy,(m,€)) = [—emax, Emax|+ (111 +1)[—€max+
1, emax — 1] + (nemax _nl)([_emax+ 1a O] + [0’ €max — 1]) + (nO _nl)[o’ O] +
Yo =y yl-

— If ng — ny is even, then AD(Dy,(m,€)) = [—€max, €max] + 71 [—€max +
1, emax — 1] + (ne,... — n1 + 1)([—emax + 1,0] + [0, emax — 1]) + (no —
1 —1)[0,0] + 5%~y ).

e Suppose that tg is even, ng is even and ny = 0. Then ng — n; is even. Thus
AD(Dyo (m7 E)) = [_emdxa 0]+[O emax]""[ emax+17 emax_1]+ne,nax ([_emax+
1,0] + [0, emax — 1]) + (no — 1[0, 0] + 3525y, 9.

e Suppose that tg is even, ng is even and ny # 0.

— If ng —ny is odd, then AD(Dy,(m,€)) = [—€max; €max — 1] + [—€max +
]-7 emax]+n1[ emax+1 €max — ]-] +(nemax _nl)([_emax"_]-a 0]+ [07 €max —
1)) + (no — m1)[0,0] + X525 %[y, yl.

— If ng — nq is even, then AD( o (M, €)) = [—€max, €max — 1] + [—€max +
1, emax] + (nl - 1)[7emax + 1 y Emax — 1] =+ (nemax ny + )([ €max +
1,0] + [0, emax — 1]) + (ng — n1 — 1)[0,0] + 3025 [y, 1.

e Suppose that tg is odd.

— If ng — ny is odd, then AD(Dy,(m,€)) = [—€max, 0] + [0, €max] + (n1 +
2)[_emax + 1 ; €max — 1] + (nemdx —niy — 1)([_€max + 1; 0] + [07 €max —
1]) + (no — 11)[0,0] + 55 [y, .

— If ng — ny is even, then AD( vo (M, €)) = [—€max, 0] + [0, emax]| + (n1 +

D[—emax + 1, émax — 1] + (e, — 71)([—€max + 1,0] + [0, emax — 1]) +

(no —ny — 1)[0,0] + o= 2 [—y, y].
Looking at the formulas of the derivative recalled in Section [9] we see that
—yo(AD(m,¢)) = AD(Dy, (m,¢)). O

We now treat the case where p is not of the same type as G. We still assume
that My ([—emax, €max]) 7 0. Let ne,.. = Mm([emax; €max))- We get that for all
1/2 <y < emax, ma([y,y]) = ne,,., and my([—y,y]) = 1. Also, e([-1/2,1/2]) =
(—1)"emax 1 and for y > 1/2, e([~y,y])e([1 —y,y — 1]) = —1.

10.9.4. Lemma. Suppose that M, ([—emax, €max]) 7 0. Then AD(m,e) = (m’,&’)
with :

emax—1/2
m/ = (nernax + 1)[_emaX7 emax] + [—y + 1/271/ - 1/2]

y=1
€' ([~ emax; €max]) = (_1)€tnax+1/2 and '([~y,y]) = (=1)"emaxe([~y,y]), fory <

emax .

Proof. First, we apply the algorithm n._, times to (m,e). Each time we get
I = emax + 1/2, A1 = [emax; €max), D2 = [Emax — 1, €max — 1], ..., & = [1/2,1/2].
Thus we get that m; = [—emax, €max], With g1(my) = (=1)emaxt1/2 and m# is m
where we have removed the segments [y, y] and [—y, —y| for 1/2 < y < emax and
e#([~y,y]) = —([~y, y]). Hence after applying n.___ times the algorithm we get
that

AD(m, €) = ne,.,. [—€max; €max) + AD(m’, ")

with &1 ([—emax, emax]) = (=1)*m=F1/2 m' = szalx/z[ y,y] and €'([-y,y]) =

(=1)"emexe([=y, y]).
By Lemma [10.1.2) AD(w/,&") = (m’,&’) and we get the result. O

10.9.5. Proposition. If my([—emax; €max]) # 0, then D_, (AD(m,€)) = AD(D,,(m,¢)).

Proof. The derivative Dy, (m, ¢) is just (m, €) where we have removed all the segments
[Y0, yo]. We apply the algorithm to Dy, (m,e). We get A = [—emax, €max] "

g eeey
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e = |—1,1]7% and A; = [0,0]7Y. The sign of A;, which depends on the parity
of ne,, ., determines if gy is 1 or —1.

e Ifn, . iseven,theneyg = —1, m; = [—emax, €max] and m#* =n,_ Z;‘L_”g‘*?’m([y—f—

/2,9 +1/2) + [~y — 1/2, —y — 1/2]) + 2P~y + 1/2,y — 1/2).
o If n. . isodd, then eg = 1, m; = [—€max, €max — 1] + [~ €max + 1, €max] and

m# = (e — ) Epme 2y +1/2,y +1/2 + [~y — 1/2,—y — 1/2]) +

Sy 172,y -1/,
We can then compute AD(m#,¢#) with Lemma We get (with the signs
as in Lemma ,
e If n., . is even, then AD(Dy,(m,€)) = [—€max; Emax] + (Mepa, +1)[—€max +
L emax — 1]+ 2oy ™2y +1/2,y - 1/2).
e Ifn, . isodd, then AD(Dy,(m,€)) = [—€max; €max — 1]+ [—€max+ 1, €max] +
Moy [~ €max + 1, €max — 1] + ZZZ_‘?_S/?[—Q +1/2,y —1/2].
Looking at the formulas of the derivative recalled in Section [0 we see that
D_,,(AD(m,¢)) = AD(D,,(m,¢)). O

11. PROOF IN THE BAD PARITY CASE

Let p € €S be of bad parity, and denote by p,, its unitarization. The goal of
this section is to prove Theorem [5.4.1] in the case of an irreducible representation of
p-bad parity. To do so, we will work with symmetrical Langlands data throughout
this section. More precisely, we will establish the following equivalent formulation
of the theorem.

11.0.1. Theorem. Let 7 € Irr® be p-bad with symmetrical Langlands data (m,e).
Then we have

# ~ L(AD(m,¢)).

11.1. The strategy of the proof. An element of Symm (&) has all its signs
trivial since p is bad, hence we will just write m € Symm?,(G). Unlike in Section
here we do not have any issues with the signs. Therefore, we can directly prove by
induction on N € N the following theorem.

11.1.1. Theorem. Let N € N. Let m € Symm}(G) and m = L(m) € . If
I(m) < N; then # ~ L(AD(m)).

We prove Theorem [11.1.1] by induction of N. The case N = 0 is trivial. Let
N € N*.

11.1.2. Hypothesis. We assume that Theorem [11.1.1] is true for all N' < N

Until the end of the section, we will assume that Hypothesis|[11.1.2]is true. We
want to prove now that Theorem is true for N. To do that, we will prove
that the algorithm AD commutes with the derivatives.

11.1.3. Lemma. We assume that for all non-reduced m € Symm/,(G) with l(m) = N,
we have either
(1) there exists x # 0, such that m is not p,| - |*-reduced and AD(D,,|.j=(m)) =
Dpu‘.km(AD(m))
(2) or, if it is defined, m is not L([—1,0],,)-reduced and AD(Dr(-1,0],,)(m)) =
Dz(0,1],,)(AD(m)).
Then Theorem is true for N.
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Proof. Let m and m be as in Theorem [11.1.1] If m is reduced, then m = n[0,0],,
for some even integer n. Then AD(m) = m and # = 7, which proves the theorem.
Hence, we can assume that m is not reduced. Let us suppose that there exists
x # 0 such that m is not p,| - |*-reduced (the case L([—1,0],,)-reduced is treated
similarly). By hypothesis, AD(D,, |.|=(m)) = D, |.|-=(AD(m)). Then we get
D, |-+ (L(AD(m))) = L(D,|.|-= (AD(m))) by Lemma [9.3.3]

= L(AD(D,.|»(m)))

= L(Dp|,|m(m))Aby Hypothesis [11.1.2

= D,|.j=(L(m)) by Lemma [9.3.3]

= D,|.|-=(7) by [AM23, Prop. 3.9.|

By the injectivity of D, |.|-=, we get that 7 = L(AD(m)). O

Pu

As in Section the rest of this section is devoted to prove that the conditions
(1) or (2) of the above Lemma are satisfied. We will need the following lemmas.

11.1.4. Lemma. For all m € Symm,(G) such that [(m) < N and for all x # 0,
AD(D,,|.j=(m)) = D, |.|-=(AD(m))
and, if it is well-defined,
AD(Dp(-1,0,,)(m)) = Dz(o,11,,)(AD(m)).

Proof. Tt follows from Proposition [8.5.1 O
11.1.5. Lemma. For all m € SymmZ(G) such that l(m) < N —2 and for all z # 0,
AD(SS) . (m)) = ST, (AD(m))

and, if it is well-defined,
AD(S} 1 g1, () = 5517, (AD(m)).
Proof. The proof follows from [Ber92, Thm. 31 (4)]. O

The remainder of this section follows the structure of the proof in Section The
algorithm is simpler in the bad parity case, as already observed in this subsection.
Since all the proofs are very similar, we will only provide a sketch. To simplify the
notations, until the end of Section [TI] we will write all the segments with respect to
pv and we will omit p and p,, in the notations. That is AD := AD,, [z,y] := [z,9],.,,
Dz = DPuHm’ DZ([O,l]) = DZ([O,l]pu) and DL([*LO]) = DL([fl,O]pu% We will also

say that m is z-reduced if it is p,| - |*-reduced, and similarly for L([—1, 0])-reduced
and Z([—1, 0])-reduced.

11.2. The case ep.x < 1. In this section we assume that ey, < 1. The goal is to
compute explicitly AD(m).

We start with the easiest case which is when p is of the same type as G. Then m
is of the form

m = ¢[=1/2,1/2] + n([-1/2,-1/2] + [1/2,1/2])
with ¢,n € N and ¢ even.
Let m’ = AD(m). The maximum of the coefficients of m’ is also smaller than 1,

so m’ is of the form as above. We denote by ¢/,n’ € N the constants relative to m'.
A direct computation shows that:

11.2.1. Proposition. The dual AD(m) =w' is given by the following formula.
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(1) If n is even, then ¢ =n and n’' = c.
(2) If n is odd, then ¢ =n—1 and n’' = c+ 1.

Looking at the formulas for the derivatives we see that

11.2.2. Proposition. (1) If n # 0, then AD(D_;/5(m)) = Dy /2(AD(m)).
(2) If n =0, then AD(D;/2(m)) = D_y/2(AD(m)).

Now, let us assume that p is of the opposite type as G. Then m has the following
form
m = co[0,0] + ¢1[—1,1] + ¢([-1,0] + [0, 1]) + n([-1, —1] 4+ [1,1])
with cg,cq,t,n € N, and ¢g, ¢ even.
Let m’ = AD(m). The maximum of the coefficients of m’ is also smaller than 1,
so w’ is of the form as above. We denote by ¢, ¢}, t’,n’ € N the constants relative
to m’. A direct computation shows that:

11.2.3. Proposition. The dual AD(m) =m’ is given by the following formula.
(1) If n > co; then ¢y =c1, ¢y =co, t' =t andn’ =n—co+c1.
(2) If n < co, n is even and t is even; then ¢y =co —n+ ¢y, ¢y =n, t' =t and
n =cj.
(3) If n < co, n is even and t is odd; then ¢y = co—n+c1+2, ¢y =n, t' =t—1
andn' =c; +1.
(4) If n < co, n is odd and t is even; then ¢f =co—n—1+c1, ¢4 =n—1,
t'=t+1andn =c.
(5) If n < ¢o, nis odd and t is odd; then ¢y =co—n+c1+1, 4 =n—1,1 =
andn' =c; + 1.
We also check the commutativity with the derivative by an explicit computation.
11.2.4. Proposition. (1) If n # 0, then AD(D_1(m)) = D;(AD(m)).
(2) If’ﬂ =0andt 7é 0, then AD(DL([,LO])(m)) = DZ([O)l])(AD(m))
(3) If n,t =0, then AD(D;y(m)) = D_1(AD(m)).
11.3. The negative derivative. In this section, we assume that e, > 1 and
there exists y < 0, y # —emax such that m is not y-reduced.

We define yo € (1/2)Z to be the smallest y € (1/2)Z such that y # —emax and m
is not y-reduced. With our hypotheses on m necessarily yg < 0.
11.3.1. Proposition. We have AD(D,,(m)) = D_, (AD(m)).

Proof. The proof is similar to what is done in Section with some slight mod-
ifications. First, the formula for the negative derivative in the bad parity case is
identical to the formula in the good parity case. So we have a similar description of

Yo-

Let Aq,---,A; be the initial sequence in the algorithm for m. This time we
get that if e(A;) < yo, then e(A;) = —emax. We denote by m := D, (m) and by
Ay, .-+, Aj the initial sequence in the algorithm for m.

(1) If e(A}) = yo, then I =1 — 1 and if not [ = I.
(2) For1 <i< l,if b(A;) = —yo and A; # [—yo, —yo] then A; = ~A,, otherwise
A=A
This gives us that
(1) If e(A;) > yo + 2, then my = my and m# = D, (m#).
(2) If e(A;) = yo + 1, then My = my and m# = DPox~1(m#),
(3) If e(A;) = yo, then my = D_, (my) and m# = D, (m#).
(4) If e(A;) < yo, then m; = m; and m# = D, (m*).
We conclude with Lemmas [T.1.4] and @411 O
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11.4. The L([-1,0])-derivative. In this section, we assume that eyax > 1 and
that for all —epax <y < 0, m is y-reduced. We also assume that m is not L([—1, 0])-
reduced. We want to prove AD(DL([_LO])(I‘II)) = DZ([O,l])(AD(m, ))

Similarly to Lemma the multisegment AD(m) is 1-reduced.

11.4.1. PI‘OpOSitiOn. We have AD(DL([,LO])(ITL)) = DZ([O’l])(AD(m))

Proof. This proof is similar to the proof of Section We get that if e(A;) <0
then e(A;) = —emax. We denote by (m, &) := Dy _1,0))(m,e) and by Ay,--- A7
the initial sequence in the algorithm for (m,é£).
(1) Ife(A) =0, A; #[0,0] and Ay # [—1,0] if mm([-2, =2]) > mm([-1,-1]) >
0 or mm([-2,-2]) > 1 with mm([~1,—1]) = 0 then | =
=1
(2) For 1 < i <[, if b(A;) = 0 and A; # [0,1] and p(A;) # [0,0] then
A; = 7 A;; otherwise A; = A,;.
We also get
(1) If e(A;) > 2 then m; = my, m# is —I-reduced and m# = DL([,LO])(m#).
(2) Ife(A;) =0and A; # [0,0] and A; # [—1,0] if mp([—2,—2]) > mu([-1,-1]) >
0 or mun([—2,—2]) > 1 with mun([—1,—1]) = 0, then m; = [1, emax] +
[—€max, —1], m# is not —1-reduced and m# = Dp,_1 o) (D—1(m#)).
(3) Else,if e(A;) =0, then @y = my, m# is —1-reduced and m# = Dy, (_1 o) (m¥).
(4) If e(A;) = 1 then my = my, m# is —I-reduced and m# = D?&’i;%n(m#).
(5) If e(A;) < 0 then m; = my, m# is —I-reduced and m# = DL([,l,O])(m#).
Similarly to Lemma this implies that the multisegment AD(m) is 1-reduced.
And we conclude with Lemma [9.4.2) d

[ — 1; otherwise

11.5. The positive derivative. In this section, we assume that ey, > 1, that
for all —epax <y < 0, m is y-reduced, that m is L([—1, 0])-reduced, and that there
exists y > 0 with y # epax such that m is not y-reduced.
We define yy € (1/2)Z to be the smallest y € (1/2)Z* such that y # —emax,
Y # emax and m is not y-reduced. With our hypotheses on m necessarily yo > 0.
Let y; € (1/2)N* be the smallest positive half-integer such that [y1,y1] € m.
We denote by @ := Dy, (m) and by Aj,--- ,A[ the initial sequence in the
algorithm for m.

11.5.1. Proposition. We have AD(D,,(m)) = D_, (AD(m)).

Proof. This proof is similar to the proof of Sections [10.6] and [10.7}

Indeed, let y1 € (1/2)N* be the smallest positive half-integer such that [y, y1] € m.
We get that if e(A;) < 0 then e(A;) =0 or e(A;) = —emax (and necessarily y; =1
or 1/2). We denote by m := D, (m) and by A;,---,A; the initial sequence in
the algorithm for m. The proof is divided into three parts, depending on whether
Y1 < Yo, Y1 = Yo Or Y1 > Yo-

e Suppose that y; < yo. Then [ = l;and for all 1 <i <1, A; = A;. From
there, we get that m; = m; and m# = D, (m#). This easily gives us the
result.

e Suppose that y; = yo. Let tg = mn([0,1]) and j = emax — Yo + 1, such that
Aj = [yo, yo] ‘We get that

(1) If e(A;) = yo, then [ = [ — 1; otherwise [ = I.
(2) Let 1 <i<I.
(a) If yo = 1, mu([0,0]) = 0, tg # 0, to is even and ¢ = j; then
A; =1[0,1].
(b) If yo = 1, mm([0,0]) = 0, to is odd and i = j +1; then A; = [0,0].
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(c) Otherwise, A; = A,.
This gives us that
(1) If e(A;) = yo, then my = D_,, (my) and m# = D, (m#).
(2) Otherwise, m; = m; and m# = D, (m#).
We conclude with Lemmas [T.1.4] and
e Suppose that yg < y;. Then
(1) If e(A;) = yo then [ = — 1; otherwise [ = [.
(2) For 1 <i<lI:
(a) If e(A) # o, b(A;) = —yo and A; # [1,0], then A; = ~A,.
(b) Otherwise, A; = A,.
This leads to
(1) If e(A;) > yo + 2, then my = my and m# = D, (m#).
(2) If e(A;) = yo + 1, then m; = m; and m# = D;’(‘)ax_l(m#).
(3) If e(A;) = yo, then my = D_, (m;) and m# = D, (m#).
(4) If e(A;) = 0, then m; = my and m# = D, (m#).
We conclude with Lemmas IT.1.4] and
(]

11.6. The derivatives D._, . In this section, we assume that emax > 1, that for
all —emax < Y < emax With y # 0, m is y-reduced, that m is L([—1, 0])-reduced, and
that m is not epax-reduced. Let yo = emax-

11.6.1. Proposition. We have that AD(D,,(m,¢)) = D_,, (AD(m,¢)).

Proof. We follow the same proof as in Section We denote by m := D, (m) and
by Aq,--- ,A[ the initial sequence in the algorithm for (m,é¢).

First, let us assume that muy ([emax—1, €max—1]) # 0. Then also My ([emax; €max)) #
0 and I > 2, Ay = [yo,%] and Ay = [yo — 1,50 — 1]. We also have that
M ([emaxs €max]) # 0, S0 A1 = [yo,%0] = A1 and As = [yg — L,y — 1] = As.
We deduce from this that [ = [ and for all 1 < j <, Aj = Aj. This gives us that
m; =my and m* = D, (m#). Finally, we get AD(Dy,(m,¢)) = D_,,(AD(m,¢)).

Now we assume that muy ([emax — 1, émax — 1]) = 0. Notice that since g is the
maximum of the coefficients of m’ then D_,, (m’) just removes all the segments
190. o] and [0, —go]. In particular D_, (AD(m)) = D_,(m1)+D_, (AD(m#)) —
D_y,(my) + AD(D,, (m#)). We will compute AD(m), D, (m) and AD(D,,(m)) to
see that AD(D,,(m)) = D_,,(AD(m)).

If p is not of the same type as GG, then m has the following form

m = ng[0, 0] 4 my, [=¥0, Yo] + 7y, ([W0, Yo] + [=¥0, —¥0]) + to([—1,0] + [0, 1]),

with ¢y even. Necessarily, if ¢ty # 0 then yo = 2. We start by computing AD(m). We
get that
e Suppose that n,, = 0. Then m; = [—yo, —yo] + [¥0, Yo] and m# = ng[0,0] +
(myo - 2)[_y07y0] + to([—l, 0} + [07 1]) + ([_ZJOa Yo — 1] + [_yo +1, _yo])'
e Suppose that n,, # 0 and to = 0. Then my = [—yo, —Yyo] + [0, Yo] and m# =
1[0, 0] + my, [~Yo, Yol + (ny, — 1)([y0, Yo] + [=¥0, —¥o]) + to([—1,0] + [0, 1]).
e Suppose that n,, # 0 and to # 0. Then m; = [—yo,0] + [0,y0] and
m# = 1[0, 0]-+1my, [0, Yol +(ny, —1) ([¥0, ol +[~¥0, —¥o])+(to—2)([~1, 0]+
Now, we get that Dy, (m) = no[0,0] + my,[—yo + 1, y0 — 1] + (ny, — to)([yo, yo] +
[=y0, —y0]) + to([=1,0] + [0,1]). This leads to AD(Dy,(m)) = D_y,(AD(m)).
If p is of the same type as GG, then m has the following form

m = my,[—Yo, Yo + 1y, ([Y0, Yol + [~Yo, —yo)-
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We get that AD(m) is given by the following formula.
e Suppose that n,, = 0. Then my = [—yo, —yo] + [v0, yo] and m# = (my, —
2)[~yo,yo] + ([=¥0,%0 — 1] + [=y0 + 1, —%o)).
e Suppose that n,, # 0. Then m; = [—yo, o] + [y0,%0] and m# =
My, [=Yo, Yo] + (1y, — 1) ([yo yo] + [—¥0, —yo])-
As for the derivative, D, (m) = my,[—yo + 1,30 — 1] + 1y, ([Y0, yo] + [—Y0, —¥Yo])-
This leads to AD(D,,(m)) = D_,,(AD(m)). O

11.7. The derivatives D_.__ . In this section, we assume that emax > 1, that for
all —emax < Y < emax with y # 0, m is y-reduced, that m is L([—1, 0])-reduced, and
that m is not —epya-reduced. Let yop = —emax-

11.7.1. Proposition. We have that D_,,(AD(m)) = AD(D,,(m)).

Proof. Let Ay, -+, A; be the initial sequence for m. Let m = D, (m) and Ay, ,A[
the initial sequence in the algorithm for m. The derivative D, (m) just suppresses
all the segments [yo,yo] + [~¥0, —yo] from m.

With the hypotheses made, we have Ay = [—yo, —¥o], | > 2 (because m is —yo-
reduced) and As is the biggest segment ending in —yo — 1. Hence, Ay = Ay We
get that if my([1/2,1/2]) > 1 or mu([1,1]) > 1 (depending on the type of p) then
[ =1—2. Otherwise, [ = [ — 1. In both cases, for all 1 < j < [, AJ— = Ajy;. Thus
my = D_,,(m;) and m# = D, (m#). We get the result from Lemma and
Lemma [10.2.3] O

12. PROOF IN THE UGLY CASE

Let 0 € €€ be a cuspidal representation with Langlands data (¢,,7,). Let
p € €S be ugly, and let 7 € Irr, be a p — ugly representation. Then there exists
m € Mult, such that 7 ~ L(m) x o (see [AM23] Prop. 2.6]).

We deduce that

7=L(m) %o~ Lm) xo~Lm) %o,

where m? is the Mceglin-Waldspurger dual of the multisegment m (see Paragraph .
Let y and 3’ denote the Langlands data of = and 7, respectively. Since p is ugly,
all the signs in trans,(y) and trans,(y’) are trivial. Therefore, we identify trans,(y)
and trans,(y’) with their underlying multisegments, which we denote by s and &',
respectively.
By Theorem [4.5.5(3), the Langlands data y of 7 can be written as

(np + 1,05 &y + Dpv + Goy o).
From [AM23| Remark 2.7], we deduce that
m=n,+nL +mg,.
On the other hand, by the definition of trans,, it follows that
s=mn,+ny +mg, +(n,+n +my, ) =m+m’.
Similarly, we have s/ = m* + m!V.

Now, Remark implies that AD(s) = s’

APPENDIX A. ON MACHINE LEARNING

When we began working on this article, we initially used machine learning to
develop some intuition about the formulas presented here. We began this process
without making any mathematical assumptions or conjectures, in order to explore
what structures the machine learning model might reveal on its own. For interested
readers, we summarize this exploratory process in this appendix.
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Machine learning excels at detecting patterns in large datasets. As mathemati-
cians, we often focus on small, concrete examples, which can sometimes make us
overlook broader structures. In this work, we used machine learning, specifically
supervised learning, to develop intuitions and formulate conjectures related to the
Aubert—Zelevinsky duality. Our approach follows the strategy outlined in [DVB™21|.

The idea is as follows: we begin by formulating a hypothesis about a potential
relationship between two mathematical objects, X (z) and Y (z). We then generate
a dataset of pairs (X (z),Y(z)), which serves as input for a supervised learning
model. By analyzing the resulting model, we refine either our dataset or our initial
hypothesis, and repeat the process until meaningful conjectures emerge.

This process is summarized in the following diagram (see [DVBT21, Fig. 1]
for further details). Grey boxes indicate mathematical steps, while blue boxes
correspond to computational procedures.

Formulate Hypothesis

1 Y

N Generate data Train supervised model Interrogate the model

~ N Y

______ Conjectures

Y

Prove theorem

Let us go back to the Aubert-Zelevinsky involution. We fix p € €S of good
parity of the same type as GG, and we want to understand AD,. We begin by
generating representations using three parameters IV, kn,ks, € N. We consider

Langlands data Data,(G) of the form (m;¢,n) with m = Zf;’l [a;, bi], a;,b; < N,
o= @?ilp X S., and ¢; < 2N + 1. Using [AM23], one can compute the dual of all
these representations.

The numerical results below are based on a dataset of 100,000 representations
with parameters N = 5, k, = 5 and kg = 3.

The first natural question is:

A.0.1. Question. Is there a “simple” formula to calculate AD(m, @) directly from
(m, ¢)?

To attempt to answer this, we trained a model to predict the dual of the elements
of our dataset. This approach did not perform well. Even a simpler question, such
as predicting the number of segments in the dual, yielded an accuracy of 37%.
We concluded that predicting directly the dual from (m, ¢) was too much to ask
for. Inspired by the Meeglin—Waldspurger algorithm, we then assumed a recursive
structure of the form AD(m, ¢) was given by AD(m, ¢) = (my, ¢;) + AD(m#, ¢7).
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A.0.2. Question. Is it possible to predict a specific segment in the dual? If so, which
one?

A.0.3. Remark. If we identify (my,¢1) in the dual that can be produced from (m, ¢)
then (m#, ¢7) is uniquely determined by (m#,¢#) = AD(AD(m, ¢) — (my, ¢1)).

We used a simple dense neural network to produce one segment of the dual. The
specific architecture or optimization of the model was not our focus—better results
could likely be obtained with more training or more refined models. Our goal was
not optimal prediction, but rather mathematical intuition.

We tried to predict the biggest or smallest segment according to the lexicographical
order. The following results were obtained:

Segment predicted Accuracy Accuracy b(m;) Accuracy e(m;)
Biggest 64.7% 93.2% 67.4%
Smallest 92.5% 100% 92.5%

We observe that predicting the smallest segment yields significantly better results,
and that the beginning of the segment is predicted almost perfectly.

Next, we aimed to interrogate the model to extract the elements of a formula for
predicting b(m;) and e(m;). To understand how each input coefficient influences
the output, we computed the average gradient of the model. We began with the
model predicting b(my). The following diagram represents the absolute values of
the average gradient:

| |

2 =
10 |- s
87 |
E
g
: o |
&}
47 |
27 |
0 DH:‘D:‘:‘DDDDDDDD

[ [
by €1 by €2 b3 €3 by €4 phg €5 C1 €1 C2 €2 C3 €3

Coefficients

In this setup, by is the smallest beginning of any segment in m, and c3 is the largest
¢; from ¢. Computational experiments suggest that:

b(m;) = min{min{b(A), A € m}, —max{c; € ¢}}.

Now, we examine the model that predicts e(my).
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14] B o
12 |- i
U - l
5. ]
4l l
(2) H | DHDDDDD H H 7

I I I I I I I I I I I I I I I I
by €1 by €2 b3 €3 by €4 phg €5 C1 €1 C2 €2 C3 €3

Coefficients

Its interpretation is more subtle. To help with this, we applied the same gradient
technique to GL,,, where the Moeglin-Waldspurger algorithm (as described in [3.6)
is well understood, and compared the results.

The gradients for predicting the end in GL,, are as follows:

2| e
15 s
k=
<5}
i
£ 1) |
@)
5 | |
0 T T T T T T
by €1 by €2 by €3 by €4 g ©5
Coefficients

And for the beginning, we get:
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20 |- :

15

Gradient

IFLrrinn

[ [ [ [ [ [ [ [ [ [
by €1 by €2 b3 €3 by €4 by ©5

Coefficients

Comparing with the diagram for G, it appears that the part concerning m is
the mirror image of the one in GL,,. Combined with the fact that the quantity
min {min{b(A) | A € m}, —max{c; € ¢}} is preserved under duality, this obser-
vation led us to define symmetrical Langlands data and to conjecture that the
Aubert—Zelevinsky dual can be obtained via an analogue of the Moeglin—Waldspurger
algorithm applied to such data.

The conjecture holds almost entirely in the case of bad parity, provided we
impose the additional constraint that “a segment and its own dual cannot be used
simultaneously”. Further experimentation and analysis of examples then guided us
toward the correct formula in the good parity case.

This behavior is far from obvious when examining examples, as it is often obscured
by various interfering phenomena, such as the presence of a tempered part, sign
alternations, and parity conditions. In practice, it was only through Al-assisted
exploration that this underlying symmetry became apparent, as it was difficult for
us to discern from examples alone.
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