UNITARY DUAL OF p-ADIC SPLIT SO3,4+1 AND Spy,:
THE GOOD PARITY CASE (AND SLIGHTLY BEYOND)

HIRAKU ATOBE AND ALBERTO MINGUEZ

ABSTRACT. Let F' be a p-adic field, and let G be either the split special orthogonal group
SO2pn+1(F) or the symplectic group Sp,,, (F'), with n > 1. We prove that a smooth irreducible
representation of good parity of G is unitary if and only if it is of Arthur type. Combined
with the algorithms of [6, 22] for detecting Arthur type representations, our result leads to an
explicit algorithm for checking the unitarity of any given irreducible representation of good
parity. Finally, we determine the set of unitary representations that may appear as local
components of the discrete automorphic spectrum.

1. INTRODUCTION

The classification of irreducible unitary representations of classical groups over local fields
stands as a central problem in the representation theory of reductive groups. This program
traces its origins to I. Gel'fand’s work in the 1940s and 1950s on harmonic analysis and
representations of locally compact groups. For general linear groups, the classification was
completed by D. Vogan [46] for real groups and by M. Tadié [40] for p-adic groups in the
1980s. For inner forms of general linear p-adic groups, the classification was achieved through
the combined work of many mathematicians, see in particular [41, 38, 11, 13, 12]. In the case
of classical groups over a p-adic field, only partial results are known: namely, for generic and
unramified representations [27, 34], and for groups of rank less than or equal to three [45].
For recent progress in the case of real groups, see [1]. The unitary dual carries a natural
topology, and one of the main challenges for classical groups is the large number of isolated
representations (see [44]).

Let F' be a non-archimedean local field. For GL,,(F') and its inner forms, Tadi¢ showed that
an irreducible representation is unitary if and only if it is parabolically induced from certain
representations called essentially Speh representations. Note that unitary Speh representations
arise as local components of discrete automorphic representations. A simplification of Tadié¢’s
proof was achieved in [25], where one of the key steps was to avoid the use of a theorem of
J. Bernstein [15] that played a central role in the original proof. Bernstein’s method relies on
special properties of the mirabolic subgroup of GL,,(F) that do not extend to other groups,
and thus the extension to inner forms of GL, (F') required significantly heavier machinery,
just to mention some [18, 14, 19, 35, 36, 37, 39]. In contrast, the approach in [25] relies
only on elementary combinatorics and a careful analysis of Jacquet modules, what are now
called p-derivatives (see Section 2.1), to control the irreducibility of the socle of parabolically
induced representations.
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One of the most remarkable achievements in recent number theory is J. Arthur’s clas-
sification [2] of square-integrable automorphic representations of quasi-split symplectic and
orthogonal groups. This breakthrough, accomplished through the collective effort of many
mathematicians, relies on the twisted trace formula and an intricate inductive procedure,
known as endoscopy. Arthur introduced what are now called A-parameters, which are modi-
fications of L-parameters designed to capture the non-tempered behavior of local components
of discrete automorphic representations, and in particular, to account for the failure of the
naive Ramanujan conjecture beyond GLy. In this paper, these local components are referred
to as representations of Arthur type. They are unitary representations ([2, Theorem 2.2.1])
and they generalize the unitary Speh representations discussed above to the setting of classical
groups.

Representations of Arthur type were classified by C. Maeglin [29, 30, 31, 32, 33] by purely
local methods (see also [47]). Let G be a symplectic or split special odd orthogonal group
over a non-archimedean local field F' of characteristic zero. Given an A-parameter ¢ for G,
one can decompose it as

Y= zzz)};ad D Q/)good 2] w];rad’

where 14004 is a sum of irreducible self-dual representations of the same type as 1), and
Vpod = (@Z)ﬁa 4)Y is a sum of irreducible representations of a different type (see Section 2.4 for
more details). The parameter ¢ is said to be of good parity if ¢ 4 = 0. Similarly, one can
define this notion for irreducible representations of G(F').

Moeglin [29] showed that the representations associated to 1 are irreducible parabolic in-
ductions of the representations attached to t)gu04, together with products of unitary Speh
representations corresponding to 1, ;. This reduces the classification of Arthur type repre-
sentations to the case of parameters of good parity. In [30, 31, 32, 33], she ultimately classified
these representations using a combination of techniques, including the analysis of reducibility
in parabolic induction, the use of Jacquet functors, and what she called the partial Aubert
involution.

Moeglin’s classification was later simplified by the first-named author of this paper [4],
who used p-derivatives to reduce the construction of representations of Arthur type of good
parity to those with non-negative discrete diagonal restriction (which are easy to determine).
This naturally led to the question of whether the idea in [25] could be adapted to classify
unitary representations of classical groups. In this paper, we carry out this program for unitary
representations of good parity of G(F'), where G is a symplectic or split special odd orthogonal
group over a non-archimedean local field F' of characteristic zero. Our main theorem is as
follows:

Theorem 1.1. Let m be an irreducible representation of G(F) of good parity. Then w is
unitary if and only if it is of Arthur type.

In fact, we prove a stronger result that will be useful for the eventual classification of
the full unitary dual. Namely, we show that the good-parity part of any irreducible unitary
representation is always of Arthur type. See Theorem 3.1 for the details.
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Our result proves a conjecture of Tadié, refined in [21, Conjecture 1.2], and establishes a
deep connection between unitary representations and local components of discrete automor-
phic representations. In these works, it was also conjectured (see [44, Conjecture 1.1]) that
all isolated unitary representations should have good parity. We therefore view our theorem
as a meaningful step toward the full classification of the unitary dual of classical groups.
Moreover, since algorithms were developed in [6, 22] to determine whether a given irreducible
representation of good parity is of Arthur type, our result shows that unitarity can be checked
effectively in this case.

We now outline the main steps behind the proof of Theorem 1.1. One direction of the
theorem follows from Arthur’s work: every representation of Arthur type of good parity is
known to be unitary ([2, Theorem 2.2.1]). For the converse, we begin by introducing some
notation. Let G, denote either the split special orthogonal group SOg,,41(F') or the symplectic
group Spy,, (F) of rank n. If 7 (resp. 7;) is a smooth representation of Gy, (resp. GLg4, (F)),
with d1 4+ - - - + d, + ng = n, it is customary to denote by

Tr X oo XTI XNT

the normalized parabolically induced representation from the standard parabolic subgroup
P of G,, with Levi subgroup isomorphic to GLg,(F) X -+ x GLg, (F') X Gp,, induced from
XN Ko,

Let now 7 be an irreducible unitary representation of good parity. A key input we use is
that for any irreducible unitary representation ¢ of a general linear group, the parabolically
induced representation

o XT

is also unitary and admissible, hence semisimple. By choosing ¢ appropriately and using the
explicit nature of the classification in [4, 6], we are able to deduce that m must be of Arthur

type.

Even though the underlying idea is conceptually simple, its implementation is technically
involved. For any irreducible representation = of G, (of good parity), we define its SZ-
decomposition (see Section 3.2): this consists of a natural sequence of irreducible representa-
tions 7; of GLg, (F') (for 1 < ¢ < r), each induced from k; copies of a segment-type represen-
tation, and a representation my of Gy, with di + --- + d, + ng = n, such that = is the socle
of the parabolically induced representation

Tr X -+ X T1 X TQ.

The representation g is characterized by a specific constraint on its p-derivatives. Roughly
speaking, it has almost no nonzero derivatives. In Theorem 3.13, we prove that any irreducible
representation my with this property is of Arthur type.

Let m; denote the (irreducible) socle of 7; X -+ x 71 X m9. We then prove the following:

Theorem 1.2 (Theorem 3.3). Let 7 be an irreducible representation of Gy, of good parity. If
m is unitary and m;—1 is of Arthur type, then m; is also of Arthur type. In particular, if ™ is
unitary and w is of Arthur type, then w is of Arthur type.

As a result, Theorem 1.2 implies Theorem 1.1.
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Finally, we give some details about the proof of Theorem 1.2. Given 7;, we construct S, a
product of k; copies of a unitary Speh representation, such that the socle of 7; X S is a product
of k; copies of essentially Speh representations. We show that the unitarity of m implies that

S T and SOC(TZ' X S) N T 1

share a common irreducible subrepresentation. This imposes a strong constraint, which we
exploit in the following step.

Let S’ be a product of k; copies of “long” essentially Speh representations such that the
socle of S" x 7; x S is itself a product of k; copies of essentially Speh representations. We
prove that the S-derivative (see Section 3.4) of

soc (SOC(S" X 1; x S) X 7ri,1)

contains the socle of S’ x 7; (Lemma 3.7). By choosing S’ appropriately, and using Moeglin’s
construction, we obtain some information about the Langlands data for soc(S” x 7;). Using
it together with the algorithm in [6], we deduce that m; is of Arthur type. See Section 3.6.

In the final two sections of this article, we explore what lies beyond the good parity case.
The examples of generic and unramified unitary representations suggest that the methods
developed here are insufficient to fully address the general case, and that additional analytic
tools will likely be necessary (see Section 5 for further discussion). However, for global ap-
plications, a particularly interesting set that extends slightly beyond the good parity case
is that of representations attached to parameters which might be localizations of global A-
parameters. It is well known that not all such representations are unitary (see [21, Example
5.1(1)]). In Theorem 4.1, we determine which of them are unitary, confirming [21, Conjecture
5.9].

Let us now say a few words about our restriction to symplectic and split odd orthogonal
groups. We focus on these cases because the classification in [4] is currently limited to them.
However, with the extension of the results in [3] to all quasi-split classical groups (see [8,
Appendix C]), we expect that our methods can be adapted to this broader setting. In partic-
ular, we conjecture that all unitary representations of good parity are of Arthur type for all
quasi-split classical groups. It would also be interesting to investigate whether an analogue
of our result holds for real groups.
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was partially supported by JSPS KAKENHI Grant Number 23K12946. A. Minguez was
partially funded by the Principal Investigator project PAT-4832423 of the Austrian Science
Fund (FWF).

2. PRELIMINARIES

Throughout this paper, F' denotes a non-archimedean local field of characteristic zero. In
this section, we recall some basic results from representation theory of p-adic groups.
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2.1. Derivatives and socles. Fix G € {GL,(F),SO2,+1(F'), Spy,(F)}, assumed to be split
over F. Let Rep(G) denote the category of smooth representations of G of finite length.
A representation II € Rep(G) is called unitary if it admits a positive-definite G-invariant
hermitian form. Note that every unitary representation is semisimple since it is of finite
length and hence admissible.

We write Irr(G) for the set of irreducible admissible representations of G, and denote
by Irrynit(G) and Irrgemp(G) the subsets consisting of unitary and tempered representations,
respectively. Thus, we have the chain of inclusions:

Irr(G) D Irrynit (G) D IrTeemp (G).

For II € Rep(G), its semisimplification is denoted by [II]. This is viewed as an element of
the Grothendieck group

welrr(G)
and we often identify 7 € Irr(G) with its image [r] in Z(G). For II1,1Is € Rep(G), we write

[IL] > [IIo]

if there exists I € Rep(G) such that [II] = [II;] — [II2] € Z(G).

The socle of II, denoted by soc(Il), is its maximal semisimple subrepresentation. We say
that II is socle irreducible (SI) if soc(II) is irreducible and appears in [II] with multiplicity
one.

For a standard parabolic subgroup P of GG, we denote the normalized Jacquet module of 11
along P by Jacp(II). When P is clear from context, we simply write Jac(II).

Given 7 € Rep(GL4(F')) and a character x of F*, we denote by 7x the twist 7 ® x o det.
Let €S denote the set of equivalence classes of supercuspidal representations of GLg4(F) for
some d > 0. For p € €CF, its exponent is the unique real number e(p) such that p| - | 7€) is
unitary.

Let d < mn be two positive integers. Let G € {GL,(F),SO2,4+1(F),Spsy,(F)}, and let
P = P; = MN be the standard maximal parabolic subgroup of G whose Levi component is
M = GL4(F) x Gp, where Gy is a classical group of the same type as G. For 7 € Rep(GL4(F))
and 7y € Rep(Gyp), the normalized parabolic induction Ind% (7 ® m) is denoted by

T X 7.

When G = GL,,(F), this is also written as 7 x .
Fix now p a supercuspidal representation of GL4(F'). Given II € Rep(G), suppose that we
have a decomposition

Jac(ID} = > [r] @[]
Telrr(GLg(F))
in the Grothendieck group Z(GL4(F)) ® Z(Gg). Then the p-derivative of 11 is defined by

Dy(I1) = [IL,].

If n < d, we simply set D,(II) = 0.
If x —y € Z, we define
Doffe,....pl
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to be the composition D,y o --- 0 D, =, where the exponents in the subscript are ordered
with a fixed sign € € {1}, depending on the sign of x — y.
Moreover, for k > 0, we define the k-th p-derivative by

1
— = Dyo -0 D,(II),

k times

which is well-defined as an element of an appropriate Grothendieck group.

2.2. Representations of the Weil-Deligne—Arthur group. For G = GL,,(F), SO2,+1(F),
or Spy, (F), the Langlands dual group G is defined by

GL.(C)  if G =GL,(F),
G ={8py,(C)  if G = SOumsi(F),
SO20,41(C) if G = Spy, (F).

Let Wr denote the Weil group of F. A representation of Wr x SLy(C) x SLy(C) is a
homomorphism

w: WF X SLQ(C) X SLQ(C) — GLn((C)
such that ¥)(Wp) consists of semisimple elements and the restriction zp]SLZ(C)XSLQ(C) is alge-
braic.

Denote by U+ (G) the set of equivalence classes of such homomorphisms with image in G.
We say that:

e ¢y € V(@) is an A-parameter for G if 1)(Wr) is bounded;
e ¢y € V(@) is an L-parameter for G if it is trivial on the second copy of SLa(C).

We write U(G) (resp. ®(G)) for the subset of ¥ (G) consisting of A-parameters (resp. L-
parameters). Through the embedding
Wg x SLy(C) — Wg x SLa(C) x SLg(C), (w,g)+— (w,g,1),

we identify each ¢ € ®(G) with a homomorphism ¢: Wg x SLy(C) — G.
We define the set of tempered L-parameters for G as

Qiemp(G) = O(G) NY(G).
In other words, ¢ € ®(G) is tempered if and only if ¢(Wr) is bounded.

By the local Langlands correspondence, established by Harris—Taylor [20] and Henniart
23], we can view each p € €Sl as an irreducible representation of Wg. It has bounded image
if and only if p is unitary, i.e., e(p) = 0.

Let S, denote the unique irreducible algebraic representation of SLy(C) of dimension a.
Then any representation ¢ of Wg x SLa(C) x SLy(C) can be decomposed as

V=@ RS, RS,

=1

for some p1,...,pr € €.
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2.3. Representations of GL,(F'). A segment is a set of the form

[:Uay]p = {p| ' |x710‘ : |x_17' . 7p| ' ‘y}v

where p € €% and z,y € R with  —y € Z>o. One can associate to it two irreducible
representations A,[z,y] and Z,[y, x| uniquely determined by

|xfl

Aplz,y] = p| - [* < p| - X xpl - [V = Zyly, x].

For —A < B < A, the unique irreducible subrepresentation of
A,[B,—Al x A)[B+1,-A+1] x--- x A A, —B]|

is denoted by
B ... A

Sp(pv a, b) = 5

-A ... —-B
p

where we set a = A+ B+1and b= A— B+ 1. We call it a Speh representation. It is unitary
if and only if p is unitary.
By the local Langlands correspondence, there is a canonical bijection

®(GL,(F)) 25 Irr(GL,(F)), ¢ — 7.
If p =P, pi ®S,, with e(p1) < --- < e(py), then 7, is the unique irreducible subrepresen-
tation of

Apl [1‘1, —561] XX Apr [‘TT’ —3?7«],

where x; = *- L In this case, we write

7o = L(Ap [x1, —21], ..., Ay [z, —2])
or 7, = L(m), where
m = [11, —T1]p, + o+ [T, =20y,

is the associated multisegment. Here, a multisegment is a multiset of segments, viewed as a
finite formal sum.

In particular, for ¢ = @;_; pi ¥ Sa; ¥ Sy, € V(GL,(F)), the representation 7, = 74,
associated to the L-parameter

w2 o
¢¢: Wr x SLQ((C) 2> (w7g) = <w,g, < 0 |w|—1/2>>

is the irreducible parabolic induction of unitary Speh representations:

7y = X Sp(pi, ai, b;).
=1
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2.4. Representations of classical groups. In this subsection, we let G be either SOg,, 11 (F)
or Spy,(F). We regard 1) € U1 (G) as a self-dual representation of Wg x SLa(C) x SLa(C) of
symplectic type or of orthogonal type. We decompose

¢ = wgood 2] wbad
such that for each irreducible summand pX.S, X Sy, of 1, it is a summand of 14404 if and only
if e(p) € (1/2)Z and p| - | =€) K Sat2le(p) B Sp is self-dual of the same type as 1. We call 1

of good parity (resp. of bad parity) if 1) = 1go0d (resp. ¥ = pad)-
For ¢ € U(G), if Ygo0d = Bi_qpi .S, K Sy, we set

,
A¢ = @ Z/QZe(pi, a;, bl)
i=1

Namely, it is a free Z/2Z-module with a canonical basis {e(p;, a;, b;)}i=1,. ». Its quotient by
the subgroup generated by

e c(pi,a;,b;) + e(pj,az,bj) such that p; ¥ Sy, KISy, = p; XS, X Sp,; and

o zyp =31 e(pi,aibi)
is denoted by A;. We often regard the Pontryagin dual ;l; of Ay as a subgroup of the
Pontryagin dual ;1; of Ay. For e € ;1;,, we set e(p; W Sy, K Sp,) = e(e(ps, i, b;)). I p = ¢ is
a tempered L-parameter, we write e(p;, a;) = e(p;,a;, 1) and e(p; K Sy,;) = (e(pi, ai))-

By Arthur’s endoscopic classification ([2, Theorem 2.2.1)), for ¢ € ¥(G), there is a multi-set

II, over Irryyit(G), called the A-packet associated to v, together with a map

H’l/} — ;l?lu = <'77T>1/)

characterized by certain endoscopic character identities. We call an irreducible representation
7 of G of Arthur type if there is ¢ € U(G) such that 7 € II;. In [29, 30, 31, 32, 33],
Moeglin explicitly constructed the A-packet II, and in particular, she showed in [33] that II,,
is multiplicity free, i.e., is a subset of Irryy,it(G). For her construction, see also [47] or Section
3.5 below. Moreover, as in [2, Theorem 2.2.1], if ¢ = ¢ is a tempered L-parameter, then Il

is a subset of Irriemp(G), the map 11, — Ay is bijective, and

Irttemp (G) = |_| I1,.
¢€(I>temp (G)

For ¢ € .,zl\(b, the corresponding element in Il is denoted by 7(¢,¢).
By the Langlands classification, one can extend this classification of Irremp(G) to Irr(G).
For ¢ € ®(G), if we write

¢ = (@piﬁsch) © o D <@p;/®5ai>
=1 =1

with e(p1) < -+ <e(p,) <0 and ¢y € Premp(Go), for € € ;1; = Z(b\o, we define m(¢, ) as the
unique irreducible subrepresentation of
Apl [mlv _xl] X X Apr [‘TT, _xr] X W(QZ)():{‘:)

with x; = “ZT_I We also write it as

7T(¢7 E) = L(m§ W((f)o, E)) = L(API [1’1, _‘7:1]7 ) Apr [CET, _wr]; 7T(¢07 6))7
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where m = [x1, —1]y, + - + [z, —2r]p,. Then Il is a subset of Irr(G), the map Iy — ;l;
given by (¢, e) — ¢ is bijective, and

Irr(G) = |_| ILg.
€2(G)
We call 11, the L-packet associated to ¢.
Let ¢ € ®(G). As we have seen above, we can decompose it as ¢ = Pgood D Pbad With Pgood
(resp. ¢pad) of good (resp. bad) parity. If m = 7(¢, €), we set Tgo0d = T(Pgood, €). We say that
7 is of good parity if m = Tgo0q, OF equivalently, ¢ = ¢go0d-

2.5. Geometric Lemma. We recall Geometric Lemma and Tadié¢’s formula in this subsec-
tion.

Let G be either SOg,11(F") or Spy,(F). Fix an F-rational Borel subgroup B = TU of
G. Let W be the Weyl group of G. For two standard parabolic subgroup P; = M;N; and
P2 = MQNQ, set

WMLMe — L4y e W | w(M; N B)w™ € B, w(MyN B)w C B}.
For any w € WMuMz we define a functor
Fy: Rep(My) — Rep(M>)

by

_ M
Fy=1Ind 7 1.y, © Ad(w) o Jac,—1 pyunir, -

Theorem 2.1 (Geometric Lemma ([16, 2.11])). The functor F' = Jacp, oIndIC;Y1 : Rep(M;) —
Rep(My) is glued from functors Fy, for w € WMuMz,

In [43], Tadi¢ studied WMz when P, and P, are maximal, and he got the following
formula after the semisimplification.

Corollary 2.2 (Tadi¢’s formula [43, Theorems 5.4, 6.5]). Suppose that P = M N is a mazimal
parabolic subgroup of G with M = GL,,(F) x Go. Then for any finite length representation
of G of the form T x 7, we have

[Jacp(r x 7)] = Z Z (11 x 74 x 73) ® (12 ¥ ),

ni,n2,n3,n4>0 T1QT2QT3
ni+ng+ns=m T4RT0

where

o T ®To®T3 runs over irreducible representations appears in [Jacg ()] with the standard
parabolic subgroup R corresponding to a partition (ny,ng,ng);

e 74 ® my Tuns over irreducible representations appears in [Jac’p(my)] with the standard
parabolic subgroup P' whose Levi is of the form GL,,(F) x G.

Here, when n; =0, we understand that 7, = 1gpy(r)-

2.6. Methods for proving (non-)unitarity. Recall that an irreducible representation
of a group G is hermitian if T = 7, where T denotes the complex conjugate of . In other
words, 7 is hermitian if and only if it admits a non-degenerate G-invariant hermitian form.
Note that if 7 is unitary, then it is also hermitian.

Now we list some basic methods for proving or disproving unitarity.
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Proposition 2.3. Fiz a standard parabolic subgroup P = M N of G with M = GLy,, (F)x- - -X
GLy,, (F)x Go. Let 7; € Irr(GLyy, (F')), mo € Irr(Go) and set mpr = XK, Kmg € Irr(M).

(1) (Unitary induction (UI)) If Ty is unitary, then Ind$%(mar) is a direct sum of irreducible
unitary representations of G.

(2) (Unitary reduction (UR)) If mpr is hermitian and if Ind%(myy) is irreducible and uni-
tary, then was is also unitary.

(3) (Complimentary series (CS)) Let x1(t), ...,z (t): [0,1] — R be continuous functions,
and set

Ht = 7-1’ . ‘Il(t) X oo X 7_7“ . ’xr(t) X Q.
If 1, is irreducible and hermitian for 0 < t < 1, and if Iy = Ind$(mas) is unitary,

then all irreducible subquotients of 11, are unitary for 0 <t < 1.
(4) (Beyond the first reducibility point (RP1)) Suppose that

o k=1;
o 7 = X!_,Sp(pi,ci,di) is a product of unitary Speh representations with p; = p)
for1<i<r;

e mg is of Arthur type of good parity.
Let ypr € W(M) be an A-parameter with my € Iy, , and let Rp(w, 7ar, ) be the
normalized intertwining operator defined by Arthur [2, Section 2.4] with w € W (M, G).
Assume further that Rp(w,myr,4a) is not a scalar (so in particular Tnd%(mys) is
reducible). Then 7| - |* X mg is not unitary for sufficiently small s > 0.

For (UI) and (UR) (resp. (CS)), see [42] or [34, Section 2| (resp. [27, Lemma 3.3]). On the
other hand, (RP1) was established in the latter part of [34, Section 2|, where another criterion
(RP2) is also presented.

3. MAIN THEOREM

Let n > 1, and fix G to be either the split group SOgp4+1(F') or Spy, (F). Accordingly,
define

II‘I‘G _ UmZO II'I'(SOQm+1(F)) lf G = SOQn+1 (f’ﬁ)7
UmZO Irr(Spy,,, (F)) if G = Spy,(F),
and set

IrrGt = U Irr (GL,, (F)).

m>0
3.1. Statement. Now we can state our main theorem.

Theorem 3.1. If w(¢,€) is an irreducible unitary representation of G, then m(dgood;€) is of
Arthur type.

Note that one can determine whether 7(¢go0d,€) is of Arthur type using the algorithm
described in [6]. Since every irreducible representation of Arthur type is known to be unitary,
we obtain the following corollary.

Corollary 3.2. Let m € Irr(G) be of good parity. Then 7 is unitary if and only if w is of
Arthur type.
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3.2. The SZ-Decomposition. By the Langlands classification, every 7(¢,¢) € Irr® can be
written as
]k

- k
S0¢ (Tbad X Ap [, y1]™ X X Ap, [, ye] ™ X 7Ttemp) )

where

® 7,4 is an irreducible representation of some general linear group whose L-parameter
Ppaq Satisfies that ¢paq = ¢p 4 & (Dp.4)"s

Ttemp € Irr€ is tempered;

pi € €S is unitary;

ity <0and 1 < -+ < xy;

If p; = pj;, then

1< j &= w; <z, orx; =uxj and y; < yj.

Here, Ap,[zi,yil¥ = Ay [xi,yi] x -+ x Ap[wi,y:] (ki times). In particular, m(¢good,e) =
LA, [z, )™, o Ap [, v ™ Temp).  Notice that 74 X A, [z, 5] is irreducible by [48,
Proposition 8.6].

Write {i | 2, < 0} = {1,...,s}, and set 7, = A, [z;, y;]¥i. If we set

7T/ = L(Aps+1 [xs-‘rlv ys+1]ks+17 DRI Apt [$t7 yt]kt ) Wtemp)u

then 7 is the socle of 7, _; x 7 X --- x 7, x 7. Note that for p € € Gl with p¥ = p and = € R,
if Dy (") # 0, then x > 0. Next, let 7' be the Aubert dual of 7’ (see [10]). We write

7' = L(Ap/l [xllv yll]k17 SR Ap;, [xi”’ y;’]ktl ) Wéemp)
as above. Writing {i | 2} < —1} = {1,...,7}, we can find 7y € Irr¥ such that
7= SOC(Apll [x/la yll]kll X X Ap;[l';,,y;,]k; X 7%0)

Note that for p € €CL with p¥ = p and z € R, if D,j.=(70) # 0, then —

7" = Zy[-ai, —y/]%, we conclude that 7 is the socle of

%ngO. If we set

Tiad X T1 X X Ty X7 X oo X 7 X mo.
Moreover, if we set
71 = soc(7," X ), ..., m = soc(t] X w_1),
Tr41 = S0C(Ty, X Tp), ..., Tpps = S0C(T] X Typps—1),
then we see that

e 7; is irreducible for all 0 < i <7+ s with 7(¢go0d,€) = Trs;
e 7 satisfies that

Dy (m0) #0 = x € {0, 3}

for any p € €6 with p¥ = p;
e for 1 <i¢<r,wehave m; = SOC(T7:"__Z»+1 X mi—1) and

Dsz(Trl) 75 0= 0<zx< —$;7i+1

for any p € € with p¥ = p;
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o for r +1<i<7+s, we have m; = soc(7, ,_;, 1 X m—1) and
Dp||a: (7‘(’1) 75 0 = 22 Trys—it1

for any p € €O with p¥ = p.
Here, we note that 1 <--- <zg<0and 2} <--- <z, < —1. We call

(Thaas 175 hi<i<s: {75 hi<i<rs {m o<j<rts)

the SZ-decomposition of .
The following is the inductive step of the proof of Theorem 3.1.

Theorem 3.3. Let 7(¢,e) € Trr®, and let (T,;ad,{ij}lgjgs,{Tf}lgjgh{wj}ogjgﬂ) be its
SZ-decomposition. For 0 < j <r+s, if n(p,€) is unitary and m; is of Arthur type, then mj1
is of Arthur type. In particular, if w(¢,€) is unitary and my is of Arthur type, then m(pgood;€)
18 of Arthur type.

Sections 3.3—-3.6 are devoted to proving Theorem 3.3.

3.3. A key observation. We begin with a first observation.

Lemma 3.4. Let 7(¢,e) € Irt, and let

(Thaa> 175 hi<i<s: {75 higicrs {mYo<j<rts)
be its SZ-decomposition. Assume that m(p, ) is unitary.

(1) Assume s >0 and fixr < j <r+s. Writet, ., =A)B—-1-A- 1% for some

B <1 and A>0 with A+ B >0, where p € €CT is unitary. Let S be the product of
k copies of the Speh representation

B ... A

~A ... —-B )
Then there exists an irreducible representation ', such that:
o 7T§-+1 — S X Tj+15
o g <> s0c(T, ;X S) X
(2) Assumer >0 and fix 0 < j <r. Write TTJF_]. = ZP[B—|—1,A—{—1]k for some A> B >0,

where p € €S is unitary. Let S be the product of k copies of the Speh representation
B ... A

-A ... —B
P

Then there exists an irreducible representation 7T;+1 such that:
/ .
® T — S X Tj4+1;
+

1 ,
o miy —>soc(r,; x S) xm;.
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Proof. We only prove (2) since the proof of (1) is similar. (In fact, the proof of (2) essentially
includes the one of (1).)
We fix 0 < j < r. Recall that we have inclusions

(P, €) = Tioq X Tris

= Tp X Thaq X Trts—1

ST X X Ty X T g KT

— — + —_
ST X X Ty X T X T X T

Ty X X Tg X Ty X XT X Tyoq X T0-

Consider the unitary induction S X< 7(¢,e). We take an irreducible subquotient =/, of
S x (¢, ¢€) such that

(%) Jac(m )] 27 @ @7, @7 @ @77 ® 5@ 7,4 @ mo.
Since m(¢,¢) is unitary, so is S x m(¢,¢), and hence it is semisimple. Therefore 7, —
S x7(p,e).
Recall that 7; x S is SI by [25, Corollary 4.10]. We have
(77 s] < 1S X Tpaq X Trs]
SIS X T X T g X Trgs—t]
=[r] X8 X T g X Trys_ti]

T, XS

= [soc(1; X S) X Ty q X Trys—1] + [ X Tiod X Trgs—1

soc(r; x S)

(=)

has no irreducible subquotient of the form 7,7 ® S’ for any S’ # 0. Recall that we denote
T, = Ay, [z;,4:]% and that z; < --- < z, are all negative. Since B > 0, by construction, we

see that
[Jac ( nx5 X T, X )]
—_— X T Tyds—
soc(t; x §) b et

has no irreducible subquotient of the form 7, ® -+ ® 7, @7 @@ 7,7 ® S® 0o for any o # 0.
Hence the composition map

Note that

" — — —
Tpps S X T g X Mpgs S X T X Ty g X Trgs1

factors through
" - - — -
Ty > 80C(T] X S) X Ty g X Tpys1 Ty XS X T 4 X Trgs_1.
In particular, there is an irreducible subquotient 7", | of S X 74 % ™11 such that

7 — 2
s <> Ty X Tpyg 1.
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By construction, the Langlands data of 7/, are obtained by adding 7, = A, [x1,11]" to
those of 7', ;. Thus, m ,_; is uniquely characterized by the condition

[Jac(ﬂ—:"/—i-s)] = 7—1_ X (’I?’L ' 7T1/ﬂ/+s—1) + Z TR HTa
7€lrr(GLn, (F))
THET]
for some representation II. and some multiplicity m > 0, where ny is such that 7 €
Irr(GLy, (F)). By applying Frobenius reciprocity to the inclusion map m/ , < 7 x S X
Thad X Tr+s—1, we have a nonzero equivariant map

s

T Mmoo =1 B(S X T,q X Trgs—1).

Since 7/, ,_, is irreducible, we obtain an inclusion 7, ,_; < S X 74 X Tpqs—1. On the other
hand, by (%), we see that

Jac(rl o )] >m @ @7, @77 @ @77 @S ®@ 7,4 ® .

" . such

Repeating this argument, for 0 < i < s, there is an irreducible representation .,

that
o Ml o i =S X T g X Trps—i; and
o Jac(m/,, ) >7Ti 1 ® Q7, @1 @ @7 @S ®7,4® 0.

—_——
s—1

In particular, considering i = s, we have an irreducible representation 7’ such that
o 1! — S X7, xm;and
o Jac(r)] > 7 ® - @rf@S®n,,® .

By the same argument, we have

1
r

(7] < [S X Tpaq X 7]

<[Sx 7 X7y KT

=[r xS x 7,4 %]

7'1+ x S
soc(t{ x S)

Recall that 7,7 = Z,, [/, —y}]* with —z} > --- > —x,_; =B +1> B. Hence

P
+
xS
Jac [ ——F———— xm_
<soc(7‘fr x S) " l)
has no irreducible representation of the form 7" ® -+ ® 7,7 ® S ® o for any o # 0. Hence the
composition map

= [soc(th x 8) x 74 ¥ Tro1] + [ X Tpaq X Tr—1

7T;,'<—>S><Tk;d>47r7«<—>5><7'frXT};adxm,l
factors through
s soc(7‘1+ X S) X Tyoq X Tr—1 = 7'1+ X S X T4 X T,
and we can find an irreducible subquotient 7/_; of S x 7, X m_1 such that

" + "
T <> T X T._q.



UNITARY DUAL OF SO2y,4+1 AND Sp,,,: THE GOOD PARITY CASE (AND SLIGHTLY BEYOND) 15

By applying Frobenius reciprocity to «/ < 7’1+ X S X 1.4 X Tr—1, we obtain an inclusion

1 — " . }
Tp_q1 < S X 74 X mr—1. Moreover, m,_; satisfies that

Jac(m_1)] > 7 ® - @77 © S @74 @70,
This argument can be repeated for 0 < ¢ < r — j — 1, and we obtain an irreducible

representation 7_, such that

o ;=8 xT 4 Xm_;; and

o Jac(m/_)] > 7, ® - @7, @5 @74 ® m.

~—_———
r—1

Moreover, by the argument for i = r — j — 1, we see that

" - . + ‘
i1 = 8 X Tiag X Tt (—>S><T7,_j X Tpaq X T

factors through 77/, ; — soc(Trtj X S) X T g X T
Finally, let 7/, € Irr® be such that Tl = 80¢(Tyq X 7, ). Applying Frobenius reci-
procity again to the embeddings

" - ) " - + ]
Tjp1 < Tpag X S X Mipr and @y = 74 X soc(T,”; X S) ¥ mj,
we obtain inclusions
! . / + )
T = S X mipr and  mi .y < soc(r,; X S) x 7).
This completes the proof of Lemma 3.4. U

The existence of the representation 7r§- 41 in Lemma 3.4 will be used to show that ;41 is of
Arthur type, assuming that 7; is of Arthur type. To simplify the notation in what follows,
we denote

T =0, Tjt1 =T, 7r§-+1 =7,
Theorem 3.3 is thus reduced to the following proposition.

Proposition 3.5. Let o, 7,7’ € Irt® be of good parity. Assume that o is of Arthur type.
(1) Fiz half-integers B < 1 and A > 0 such that A+ B > 0. Set 7= A,[B—1,—-A— 1}k
and let S be the product of k copies of the Speh representation

B ... A
~A -.- —-B
P

where p € €5V is unitary. Suppose that
o if Dy (o) #0, thenx > B—1, and D -a-10---0 D, 5-1(0) = 0;
e T =soc(T X o);
o 7' Sxm and ' < soc(r x S) X o, i.e.,
S xsoc(r o) and soc(t x S)xo

have a common irreducible subrepresentation.
Then w is also of Arthur type.
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(2) Fiz half-integers A > B > 0. Set 7 = Z,[B + 1, A+ 1]* and let S be the product of k
copies of the Speh representation
B ... A
A -~ -B
where p € €5V is unitary. Suppose that
o Zf Dsz(O') ?é 0, then x < B+ 1, and Dp|_|A+1 ©---0 DPHB-H(O') = 0,’

e m=soc(T Xo);
o 7' S X7 and 7 < soc(t x S) X o, i.e.,

S xsoc(t X o) and soc(t X S)xo

have a common irreducible subrepresentation.
Then 7 is also of Arthur type.

The proof of Proposition 3.5 will be completed in Section 3.6. The next subsection is the
critical step of the proof.

3.4. Inequalities of Jacquet modules. To attack Proposition 3.5, in this subsection, we
establish some inequalities of Jacquet modules.
Define a sequence {z;}i1<j<q wWitha=A+B+1andb=A—-B+1by

B A 1 ... Ta(b-1)+1
) ) T2 ... Ta(b-1)+2
Sp(p,a,b) = Lo = _
-A ... —-B
P Tg .- ZTab o

Hence —A < z; < Afor 1 < j <ab. To S = Sp(p,a, b)k, we attach an operator Dg defined
by

D= o oDl
Remark 3.6. One might (wrongly) expect that the operator Dg distinguishes irreducible
representations 7 containing S ® 7/ for some 7/ € Irr®, in the sense that Dg(1) # 0 if and
only if S ® 7" < [Jac(7)] for some 7" # 0. However, this is not the case, even when k = 1. We
are grateful to Max Gurevich for providing us with a counterexample to this assertion.

For simplicity, let p = 1, (). Let S = Sp(p,4,4) and consider the multisegment m =
[—1,-2],+[0,0],+[1,—1],+(2,1],. The representation L(m) € Irr(GLg(F')) was studied by B.
Leclerc [28], and is an example of what is called in [26] a non-square irreducible representation.

We claim that Dg(L(m|-|~! 4+ m|-|)) # 0. Indeed, a direct computation shows that

Ds(L(m|-|™") x L(m| -|)) = C*.

Since S appears with multiplicity one in L(m|-|~!) x L(m| - |), there must exist some other

irreducible subquotient 7 of this induced representation such that Dg(7) # 0. As the induced

representation has length 4, a direct computation shows that this subquotient has to be
-1

L(m[- [~ +m[-).
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Using the operator Dg, we state the following lemma. This is the most technical part of
the proof of Theorem 3.1. It appears naturally in Moeglin’s explicit construction of A-packets
(see Section 3.5).

Lemma 3.7. Let o, 7,7 € IrtC be of good parity. Assume that o is of Arthur type.

(1) Suppose that we are in the situation of Proposition 3.5 (1). Fix integers ty, ... tx > 1,
and set

s—x|
S\ At . —A—2

B-t, ... B-2

p
Then

Dy (soc(soc(S" x 7 x 8) x ) > soc(S' x ).
(2) Suppose that we are in the situation of Proposition 3.5 (2). Fix integersty,... tx > 1,
and set
k
S = X : . :
=A\B+2 ... A+2

B+t ... A+t

p
Then

Dy (soc(soc(S" x 7 x S) x ) > soc(S' x ).
Note that the assertions (1) and (2) in Lemma 3.7 (or Proposition 3.5) are equivalent to
each other by taking Aubert duality. In the rest of this subsection, we suppose that we are

in the situation of (1).
First, we show that there is 7; € It for 0 < j < ab such that

o o =7 and 7wy = T
e for 0 < j < ab, we have ; — L; x 7, where we set

_p® .o p®
Lj =D\ 00Dy,

(S) € IrrL;
o < D(k)z~(7T‘ 1) for 1 <j <ab
J = Tpl|I NI —J = .
Indeed, by induction assume the existence of m;_;. Then
Tj—1 Lj_l X T — (p| . ’:ch)k X Lj X .
By Frobenius reciprocity, we have a nonzero map

Jac(m—1) = (pl - [P B (L; x 7).

Hence there is an irreducible subrepresentation 7; of L; x 7 such that (p| - [%)* K 7; is a
(k)

subrepresentation of the image of this map. Therefore Dp’r_‘zj (mj—1) > mj. In the particular
case when j = ab, we find my — 7, so we get myp = .

Lemma 3.8. For 0 < j < ab, there is 0 € Irr® such that mj = soc(T X o). In particular,

Oap = 0. Moreover, o; < Diﬁzj (0j—1) holds for 1 < j < ab.
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Proof. Note that 7 x o; is SI for any o; € Irr% by [5, Proposition 3.4]. Moreover, if T =
soc(T X 0j), and if we let kp_1,...,k_a_1 > k be the maximal integers such that

DE)ﬁAAll)O ODT:]‘BBII( ) # 0,
then since B — 1 < 0, it is irreducible and o; is uniquely determined by

DY oo DYE () 2 DAY 00 DR (o)),
In particular, we must have o, = o.

Write m; = L(m;; m(¢;j,€;)) as in the Langlands classification. First, we show that m; does
not contain [x,y|, such that + < B — 1 and y < —A. Indeed, if there were to exist such
a segment in m;, then we could take C' < B — 1 such that D, -a-10---0 DpHc(Wj) # 0.
However, since

T > Lj X T
and since the cuspidal support of Sp(p,a,b), and hence the one of L;, does not contain
p| - [FAHD) | we see that there is —A — 1 < z < B — 1 such that D,.=(m) # 0. This contradicts
that m = soc(7 x o) and D -(0) = 0 for z < B — 1. Therefore, to show the existence of
oj € Irr® such that mj = soc(T X o), by the Langlands classification, it is enough to prove
that [Jac(7;)] > 7 ® o; for some o; # 0. Moreover, if we were to know the existence of o}
such that 7; = soc(7 x o), then [Jac(n;)] would be of the form

[Jac(mj)] > T ® 0+ Z 7 @ 1L
7/ elrrGL
T'%T
By applying a Jacquet functor to the inclusion 7; < L; X 7 X o, we see that o; < [L; x o].
In particular, since

(k)
pl[*

mj =soc(T xoj) <D (mj—1) < D(ﬁ o (T X 0j-1),

we would have
(k) (k) (k)
3 < (DS ams oo D} ana) 0 DYy (7 0 0).
By Tadié’s formula (Corollary 2.2) together with the first assumption in Proposition 3.5 (1),
it would imply that o; < Dl()k.)‘zj (0j-1)-
Now we prove the existence of 0. To do this, we prepare some notations. Fix 0 < j < ab.
Let

e d,m > 0 be such that S € Irr(GL4(F)) and L; € Irr(GLy, (F));

e Gg, G and G be the classical group such that S x 7 € Rep(Gg), Lj x ™ € Rep(Gp)
and L; x S x 1 € Rep(G);

e P = M Np be the standard parabolic subgroup of G with M = GL,,(F) x Gg;

e 1: GL,,(F) x Gg = M be a fixed isomorphism.

There is a canonical surjection Lj x S X1 — L; ® (S x ) which is given by
LixSxm=Ljx(Sxm)—L;®(Sxm).
Here, f € L;j x (S x 7) is regarded as a two variable function

[:GxGs—L; 5@
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such that

f(n-ula,h) - g, ') = |det(a)]"L;(a)f(g. h'h)
for n € Np,a € GL,,,(F),h,h/ € Gg and g € G, where § € R is independent of f. Then the
isomorphism L; x (S x ) = L; x S x is given by f(g,h) — f(g,1), whereas, the surjection
Ljx(Sxm) - Lj® (S xm) is given by f(g,h) — f(1,h). In particular, the surjection
LixSxm— L;j® (S xm)is described by f(g,1) — f(¢(1,h),1). This surjection factors
through the M-equivariant map

Jan(Lj X S X 7T) —» Lj X (S X 7T),
which we denote by Resg,. Similarly, we have an evaluation map ev: Jac(L; x ) = L; @ 7
at 1. This gives a surjection
(1GL0(F) ® S) A JaC<Lj a ﬂ—) - Lj ® (S X 7T)7

which is also denoted by ev. By applying the contragredient and the MVW functors to the
injection 7’ < S x m, we obtain, by [7, Lemma 2.2], a surjection S x 7w — 7’.

Note that S x L; is irreducible by [25, Proposition 6.6], and hence S x L;j xm = L; x S x 7.
We have an inclusion map S ® m; < S ® (L; x m) of representations of GL4(F') x G, which
is regarded as a Levi subgroup of G. It gives an inclusion

Jacp(S X m;) = Jacp(S x (L; x m)).

By the functoriality of the Geometric Lemma (Theorem 2.1), we have subspaces F'(S @ 7;) C
Sxmjand F(S® (Lj x7m)) C S x(L; xm) such that there is a commutative diagram

Jacp(F(S ®m;))¢ »Jacp(F(S @ (L x m)))

(1GL0(F) &® S) X Jac(wj)<—>(1GL0(F) X S) X Jac(Lj X 7'(').

Incorporating the maps obtained in the previous paragraph into the picture, we obtain the
following diagram:

JacP(S X 7Tj)( JacP(S X Lj X ﬂ):JaCP(Lj X S X 7T)
U U lResGs
Jacp(F(S ® mj)) ————Jacp(F(S ® (Ljyj ® (S xm)
(1GL0(F) &® S) X JaC(ﬂ'j)(—>(1GLO(F) X S) X Jac(Lj X 7T) Lj Q7.

We claim that this diagram is commutative. In fact, the isomorphism S x L; xm = LixSxm
is given by the meromorphic continuation of the Jacquet integral

Jf(9) = |_ flw  ug)du,
Np
where w € G is a representative of a certain Weyl element, and N p is a quotient of Np. In
particular, the composition with Resg is induced by f +— Jf(c(1,h)). On the other hand,
the subspace FI(S® (L; ® 7)) of S x L; x 7 is taken as a subspace of f such that Jf((a,h))
converges absolutely for (a, h) € GL,,(F') x Gg, and this is the image of f under the surjection
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F(S® (Ljxm)) = (g, (r) @ S) x Jac(Lj x 7). Hence the composition with ev is given by
f = Jf(e(1,h)). This shows the commutativity of the right square.
Note that the composition
(1GL0(F) &® S) X Jac(wj) — (]'GL()(F) X S) X Jac(Lj X 7T) e_v) L] X (S X 7T)

is surjective since it is induced from a surjection Jac(w;) - L; ® . Hence the above com-
mutative diagram shows that we have a surjection Jac(S x ;) — L;j ® 7', which implies, by
Frobenius reciprocity, a nonzero map
S X T — Lj x 7.
Since L; x soc(7 x S) is irreducible by [25, Proposition 6.6], we have
S X T — Lj x 7!

— Lj xsoc(t x S)xo

= soc(T X S) x Lj xo

—T7x8xL;jxo.
This implies [Jac(S x7;)] > T®S®L;®0 # 0. Since p|-|~4~! & supp(S), by Tadi¢’s formula

(Corollary 2.2), there is an irreducible representation 7" ®@ o} with [Jac(7;)] > 7" ® o7 such
that

{pl- 71 p - 747"} € supp(”) C supp(7)
k

as multi-sets, where supp(7) is the cuspidal support of 7. By the condition on m; we have
proven earlier, we must have 7”7 = 7, as desired. This completes the proof of Lemma 3.8. [

Now we can prove Lemma 3.7.

Proof of Lemma 3.7. As said before, it is enough to show only (1). So we suppose that we
are in the situation of (1).
For o; € Irr“ defined in Lemma 3.8, we claim that

<D(k) o...0pD®

ol |73 prl) (soc(soc(S" x T) % 0g)) > soc(soc(S’ x T) X 7;)

for 0 < 5 < ab. This claim for j = ab yields that
Dg(soc(soc(S" x 1) x 0g)) > soc(soc(S’ x 7) X g4p) = soc(S" x 7).
Since
soc(soc(S" x T) % 0g) = soc(S’ x soc(T x 79))
=soc(S" x ') < soc(soc(S' x 7 x S) X ),

this implies Lemma 3.7.
The claim for j = 0 is trivial. Fix 1 < j < ab, and suppose that the claim holds for j — 1.
Then,

<D(k) 0-..0D®

e szl> (soc(soc(S' x 7) x 0g)) > D(k)zj (soc(soc(S" X T) X 7j_1)).

ol
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Recall that —A < x; < A. First, we assume z; # B so that soc(S’ x 7) x (p| - [%9)¥ is

irreducible. Since
[Jac(soc(soc(S” x 7) x aj_1)] >soc(S' x 7) @ (p| - |)* ® o,

there is 7/ € Trr%Y such that [Jac(soc(soc(S" x 7) x 0j_1)] > 7' ® 0 and [Jac(7')] > soc(S’ x
e (o] )

We show that 7/ = soc(S’ x 7) x (p| - |*)¥. We write 7/ = L(m) and soc(S’ x 7) =
L(Ap[al,bl]kl, . ,Ap[aT,br]kT) with by < --- < b._1 <b.=—A—1 and k. = k. By looking
at the cuspidal support, we can find a,, > b, for 1 <u <7 and 1 <wv <k, such that

r  ky
> [auw, bul, < m.

u=1v=1
Suppose that ay., # a, for some (u,v). Take the minimum u with this condition. Hence
iy = a; for any i < u and 1 < v < k;. If ayp > ay, then [Jac(7')] # soc(S’ x 1) @ (p| - [%9)E.
(See cf., [24] for Jac(soc(S” x 7)).) This is a contradiction. It a,, < ay, then

ki ki
(Dpru Q-++0 Dp‘.|au,v> [¢] <1S?<UD£|271 O-+++0 Dl()|2%> (SOC(SOC(S/ X 7_) % O—]_l)) # 0

Since a, < 0 and Dpr,. 0---0 Dp‘4|ai(0j_1) = 0 for ¢ < wu, it implies that Dpru 0--+0
D). jau,o (0j—1) # 0. However, since oj_1 < [L;j—1 % o], we can find b, < ¢ < ay, such that
Djje(0) # 0. This contradicts that D,.=(0) = 0 for any 2 < B — 1 = max{ay,...,a,}.
Therefore, a,, = a, for any (u,v), and hence

Z ku[aua bu]p <m
u=1

Comparing the cuspidal supports, we see that the difference is k[x;,z;],. Hence
7' =s0c(S x 1) x (p| - [%)* = (p| - |%9)* x soc(S" % T).
In particular, we have
[Jac(soc(soc(S" x 1) x oj_1)] > (p| - 1% @ soc(S' x ) ® 0.

It implies that there is 7 € Irr® such that Dgi)\lj (soc(soc(S"xT)x0j-1)) > m) and [Jac()] >
soc(S" x 1) ® 0.

We show that 7 = soc(soc(S"x 1) x0;). We write 7, = L(m; (¢, €)) with 7(¢, €) tempered.
Since [Jac(7})] > soc(S" x 7) ® 0 and since a, < 0, we see that

r  ky
Z Z[au,va bu]p <m

u=1v=1

for some b, < ay, < ay. Suppose that a,, < a, for some (u,v), and we take the minimum

such u. Then
(k) (k:)
<Dp|-\bu 00 Dypjons ) o ( O u Do 07770 Dp~|‘”>

1<i<u

o D/()]mzj (soc(soc(S" x 7) x 7j_1)) # 0.
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This implies D, c(c) # 0 for some by, < ¢ < ay, < B—1,0r D, p, 0 0D 5-1(0) # 0. This
contradicts the first assumption in Proposition 3.5 (1). Therefore, a,, = a, for any (u,v),
and hence

> kulau, by, < m.
u=1

Moreover, by the same assumption in Proposition 3.5 (1), we see that D -a-10---0
D,.z(0j-1) = 0 for any —A—1 < 2 < B—2. This implies that L(m) = soc(soc(S’ x 1) x L(m’))
for some m’ < m. Hence we can write 7 = soc(soc(S’ x 7) x 07}) for some o} € Irr®. Since

T < Diﬁzj (soc(soc(S' x 7) x 0j_1)), we see that o7 is uniquely determined by the inequality

[Jac(r))] > Aplar, b @ -+ @ Aylar, b, @ 0.

Hence we have o’ = 05, and we conclude that 7; = soc(soc(S’ x 7) x 0;). Therefore

Df}’ﬁ)‘zj (soc(soc(S" x T) X 0_1)) > soc(soc(S" X T) X 7;),
as desired. We obtain the claim for j with xz; # B.
Next, we assume that z; = B. By the proof of [5, Proposition 3.4], we have

soc(soc(S" x 7) X 0j_1) = soc(S’ x soc(T x 0;_1)) = soc(S" x wj_1).
Hence by the same argument starting with

[Jac(soc(S" xmj—1))] = 5" ® (p] - i)k @ 7,

we have i

DE)L)‘IJ- (soc(S" x mj—1)) > soc(S" x ;).
Since soc(S” x mj) = soc(S’ X soc(T % g5)) = soc(soc(S” x T) X ¢;), we obtain the claim for j
with z; = B. This completes the proof of Lemma 3.7. O

3.5. Moeeglin’s construction. To show Proposition 3.5, we review Mceglin’s explicit con-
struction of A-packets. It was refined by the first author in [4], in which the following notion
was introduced.

Definition 3.9. (1) An extended segment is a triple ([A, B],,[,n), where
e [A, B], is a segment with A, B € (1/2)Z (so that A > B and A — B € Z);
e l€Zwith0<I<Zwithb=A—-B+1;
o e {1}
(2) Two extended segments ([A, B],,1,n) and ([A’, B'],,I',n") are said to be equivalent if
o [A’ B]p = [A,’ B/]p’;
o [ =1 and
en=rnifl=0<3.
Two multi-sets of extended segments {([A4;, Bilp,, li,n:) bier and {([A}, Bil,, Ui, m7) Yier
with the same index set I are said to be equivalent if ([A;, Bi)p,, li,n:i) and ([A], B{]pg, l,nk)
are equivalent for all ¢ € I.
(3) An extended multi-segment for G is an equivalence class of multi-sets of extended
segments
&= {([Alv Bi]mv L, ni)}i6(1,>)
such that
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pi € €91 with p; = pY';

A;+ B; > 0;

Ve = Dierpi W Sq;, B S, is an A-parameter for G of good parity, where a; =
A;+B;+1and b, = A; — B; + 1;

the sign condition

Y%141 b
H(il)[i}—i_llnfz — 1

i€l
holds;
> is a total order on I, which is admissible in the sense that

i = pj, Ai<Aj, Bi<Bj == 1<
and
pi = pj, Bi<B;j <0 = <.
Let & = {([As, Bilp;, lismi) }ie(1,>) be an extended multi-segment for G. When i < j, we
write ([As, Bilp;, li,ni) < ([Aj, Bjlp,,1j,m;). For simplicity, we write I = {1,...,m} with the
usual order. We say that & has a non-negative discrete diagonal restriction (DDR) if

0< B <A1 <By<Ay < < By <A

In this case, we define 7(&) € Irr(G) by

(&) =soc | X : . : x (¢, ¢€)
=4 L A=+ )
with
Ai—B;—2l;
¢ = @ pi X S2(Bi+li+j)+1
i=1 =

and e(p X Sy(p, 41,45)+1) = (—1)/n; for 1 <i <m and 0 < j < A; — B; — 21;.

In the general case, given an extended multisegment &', to define the representation (&)
we proceed as follows. Take a sequence of non-negative integers {t;};c(s,~) such that & =
{([A; +ti, Bi + ti]p;, lis i) }ie(1,>) has a non-negative DDR, and define

W(éa) = (Dpi\-|Bi+1,...,pi|-|Ai+1 0-+-+0 Dpi|-|Bi+ti,...,pi\-|Ai+ti> (7T(60>>)).

= ]
1<i<m

This definition does not depend on the choice of {#;};c(~). Then 7(&) is irreducible or zero.
If it is nonzero, we say that m(&%.) dominates m(&).

Theorem 3.10 ([4, Theorem 1.2]). For ¢ € ¥(G) of good parity, we have

Iy = {n(&) | Y = ¥} \ {0}.
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3.6. Proof of Proposition 3.5. In this subsection, we prove Proposition 3.5. Note that the
assertions (1) and (2) are equivalent to each other by taking Aubert duality. Hence we only
prove (2).

Recall that o is a representation of Arthur type such that D, ..(¢) =0 for z > B +1, and
that D.jat1 00Dy s1(0) = 0. By [6, Theorem 4.1], there is an extended multi-segment

& with o = m(&) such that if ([A’, B'],,*,%) € &, then B < B, or B =B+ 1 and A’ < A.

We take integers t1,...,tr > 0, which define S’ . We will give conditions for these integers
later. By [5, Theorem 1.1}, in the notation of Lemma 3.7 (2), any irreducible summand 7" in
soc(soc(S" x 7 x S) x o) is of Arthur type, and has an extended multi-segment of the form

£UU{ [A, Blp, L, mi), ([A + ti, B+ tilp L) }

where the order < on &” is given by
([A/7qu”l/’77/) < ([A’ B]pvl7 ) e ([A B]palv )
< ([A+t17B+t1]p7la D) < < ([A+ty, B+t L mg,)
!/~

for any ([A’,B'],,l',n') € &. Notice that this is an admissible order since if p’ = p and
B’ = B +1, then [A, B'],, C [A, B],.
We write
&U {([AvB]pvl777i) li=1,....k} = {([AQ’B;] & ]’77]) lj=1,. k/}’

which is independent of t1,...,tx. Now we choose integers t1,...,tr > 0 so that there are
integers t1,...,t;, > 0 such that

EL ={([A; + 5, By + 5], U5,m5) | 5 =1,.. K YU{([A+ts, B+ til,, Lnj) | i =1,... .k}
has a non-negative DDR, i.e.,
0< B+t <Al +th < <Bpy+ty <A+t
<B+t1 <A+t < - < B+t <A+t
In particular, B +t; > A. Then by construction, one can write
m(&") = L(my + mo; w(d1 © ¢, €)),

where

e m; is the multi-segment given by

ko1-1
my =Y Y [BAti+j—A—ti+ ]l

i=1 j=0

e ¢; is the representation of Wr x SLo(C) given by
k A—B-2l
=D D r¥Samrotirg

i=1  j=0

e ¢ satisfies that

e(pX 52(B+ti+l+j)+1) = (_1)j77£
forl1<i<kand0<j<A-—B-2Il
e mg is a multi-segment such that if [z, —y|, € mg, then z <y < B +ty;
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e ¢ is a tempered representation of Wr x SLa(C) such that if p X Seg11 C ¢p, then
d< B+ t1.
Now, by Lemma 3.7, we take 7(&") < soc(soc(S" x 7 x S) x o) so that
Dg(m(&")) > soc(S x 7).
Lemma 3.11. We have soc(S’ x 7) = L(my + m{;7(d1 & ¢y, €')) for some wyy, ¢f, e’ with
'|lgy = €lg,- In other words, my and (¢1,¢|g,) remain in the Langlands data of soc(S" x ).

Proof. We write soc(S’ x w) = L(m’;w(¢',¢")). For 1 <i <k and 0 < j <[ — 1, assuming
that m’ contains

k -1 Jj—1
SN Btto+i Aty +51,+ Y [B+ti+j, —A—ti+ ],
i'=i+1 j'=0 4'=0

we will show [B + t; + j,—A —t; + j], € m'.

Suppose first that for any [z,y], € w’, we have y # —A —t; + j. Then by looking at the
cuspidal support, we see that ¢’ D p & Sy(414,—jy41. Note that D= (soc(S’ x 7)) = 0 for
B +t; <z < A+t; since the same condition holds for 7(&”) and ¢; > 0. It implies that

¢' D pB (So(Brt4g)11 @ @ Saare,—jy+1) -
Then for any sequence z1, ..., %, with x,, = —A —t; + j, we have
Djjem © -0 Dy o (L(m'; (¢, €"))) = 0.
In particular, we have Jac(L(m';w(¢',€"))) 2 S’ ® 7, which is a contradiction. Hence there is
[z,y], € m" such that y = —A —t; + j.
Let [z, —A—t;+j], € m’. Note that x < A+t;—j. If 2 > B+t;+j, then since D .| (7(&")) =
0 and hence D,.j« (L(m’; (¢, €’))) = 0, we must have [x—1,y], € m’ such that y < —A—t;+3.
However, by looking at the cuspidal support, we cannot take such y. If x < B + t; + 7,
then Do -a-t(L(m'sm(¢',€'))) # 0, and hence Do a1 0 Dg(m(&")) # 0.
Since t; > 0, this is impossible. Therefore, we have * = B + t; + j, and we conclude that
[B+ti+j,—A—t;+j], em'
By induction, we see that soc(S’ x ) = soc(L(my) x mp) for some irreducible representation
my. Since
soc(S' x 7) < Dg(n(&™))
< Dg (L(my) 3 L(mg; w(¢1 & o, €)))
= L(my) % Dg (L(mo; m(d1 & ¢0,€))) ,
we see that o < Dg(L(mo; m(¢1B¢o,€))). Since t1,...,tx > 0, we see that mo = L(m{; 7(¢1 P
0, ")) for some m{, and (¢),¢’). Hence soc(S’ x7) = L(my+m{; w(d1 D, ), as desired. [

Recall that o is of Arthur type.

Proposition 3.12. Continue in the above setting. There is an extended multi-segment &y
such that
o (&) =o;
o &y contains {([A, B],,L,n)) |i=1,...,k};
o if ([A',B'],l!,1)) € & is not in {([A,B],,l,n;) | i =1,...,k}, then ([A",B'],l',n) <
([A; Blp, 1, ;)



26 HIRAKU ATOBE AND ALBERTO MINGUEZ

Admitting this proposition, by [6, Algorithm 3.3], we conclude that © = soc(7 x o) is of
Arthur type. In fact, 7 has an extended multi-segment &7 obtained from &, by replacing
([A, B, l,n;) with ([A+1,B +1],,1,n;) for ¢ = 1,...,k. This will complete the proof of
Proposition 3.5.

Proof of Proposition 3.12. First of all, by [6, Theorem 4.1], there is an extended multi-segment
& with o = 7(&) such that if ([A', B],,*,%) € &, then B < B, or B =B+ 1 and A’ < A.
We choose such an & so that the number

X = Z A

([A",B'],,l';n")e&
B'=B

is maximal. By changing the admissible order if necessary, we may assume that we can write

& = g’l U {([Au B]p’ l’ia ni)}i:l,...,m U {([Aéy B + 1]p7 l;’ né)}i:L...,m’,
where

o {([A},B+1],,1;,m))}i=1,...m is the multi-set contained & consisting of ([A’, B'],, , *)
such that B’ = B 4 1, hence A, < A;

o {([As, Bly,li,mi) Yi=1,....m is the multi-set contained & consisting of ([A’, B'],, , *) such
that B = B and A’ > A;

e & is the multi-set contained & consisting of other ([A’, B'], *, *);

e the admissible order is so that

([A/7B,]p’a*a*) < ([AzaB]palmTh) < ([Ang + l]pvl'/mn;)
for ([A’, B']y,*,%) € &, and the canonical orders on {1,...,m} and {1,...,m'}.

Note that [A4;, B], D [A}, B + 1], for any 1 <i <m and 1 < j <m’. Hence by changing the
admissible order and updating the notations, we can rewrite

& = éall U {([A7 Bg]pa lql,v né)}iZL...,m/ U {([Al7 B]pa lia ni)}iZL...,m
such that

o {([As, Bly,li, i) Yi=1,....m is the multi-set contained & consisting of ([4’, B'],, *, x) such
that B’ = B and A’ > A;

o {([A, B!, ll,n)}i=1,. m is the multi-set contained & consisting of ([A’, B'],, %, *) such
that B’ < B and A’ = A;

e & is the multi-set contained & consisting of other ([A’, B'], *, );

e the admissible order is so that

([Alv B/]p’7 *, *) < ([A7 Bz{]m l£7 77;) < ([Alv B]P? li? 77i)
for ([A’, B] y,*,%) € &/, and the canonical orders on {1,...,m} and {1,...,m'}.
Note that m and m’ can be equal to zero.

Let mg = #{i = 1,...,m | A; = A} and suppose that my < k. We may assume that
A< A <o < Ayp, and A; = Afor m —mp+1 < i < m. Since the number X is
maximum among &’ such that 7(&”) = o, to hold Lemma 3.11 for t¢1,...,t; > 0, namely for
my and (¢1,¢|g,) appearing in the Langlands data of soc(S’ x m) = soc(soc(S’ x 7) % o), we

need to have m > mgy and m’ > 0. Moreover, by the same argument as in [4, Theorem 5.2],
we see that ([4, By, I/, 1) and ([A1, B],, l1,m) satisfies one of conditions in [4, Theorem
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5.2]. Hence by this theorem, we can change & so that {([A, By, . 1..), ([A1, By li,m)}
is replaced with

{([Ath’]p?llvnl)?([A? B]pvl7 )}
for some (I,n) and (I',n). Hence we can replace mg with mgy + 1. Repeating this argument,
we can achieve &) as in the assertion. O

This completes the proof of Proposition 3.5. Now, Theorem 3.3 follows from Lemma 3.4
and Proposition 3.5.

3.7. The initial step. Let 7 € Irr® be of good parity. In this section, we will prove that if

DpHT(Tl') #0 = z € {0,;}

for any p¥ = p, then 7 is of Arthur type. Indeed, we will prove a slightly more general
statement. To state it, we need to introduce some notation.
Let m € Irr® be of good parity. Write

™= L(Apl ['Ila _yl]a cee 7Apr [mTa _yr]; 7r(¢a£))

as in the Langlands classification, where

S
¢ = @,0; X Soz,41

is a tempered L-parameter such that p1,...,pp, p}, ..., p} € € Gl are all self-dual. Fix p € €6
with p = p¥. We set

LpHI(ﬂ-) = Lﬂv(ﬂ-) = {Z € {L .- -7T} | pi = p, Ti = l'}a

Rp||z(7r) = Rﬂv(ﬂ-) = {Z € {L .- '7T} | pi =P, Yi = ZL‘},

Tpppe(m) =To(m) ={j €{1,....s} | pj = p, 25 =}
and

Ap||:): (71') = Ax(ﬂ') =L, UR,UT,.

We will prove the following.

Theorem 3.13. Notations are as above. For each self-dual p € €L, denote b, € {0, %} such
that pXSap, 11 s the same type as ¢. Assume that there are half-integers ay, a1, . .., ag, by, ..., by
(depending on p) such that

e they are all congruent to b, modulo Z;

e we have

by <ap <bp <ap <bgpq<ag1<---<b <ay;

° Zpo‘ |x(7T) =0, then x € {bp,bk, .. bl}

o if Ay(m) #0, thenb, <z <a, orb <z <a; for somel <i<k;

o ifb<z<a, for some 1 <i<k, then |Az(m)| =1, so that A, () is equal to exactly
one of Ly(7), Ty(m) or Ry(m);
foreachlgzgk

{2 | bi <z <ai, Ap(m) = Lo(m)} = {2 | bi < 7 < ai, Ag(m) = Re(m)}.
Then m is of Arthur type.
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When the implication D,.j(7) # 0 = « € {0, 5} holds for any p¥ = p, then 7 satisfies
the conditions of Theorem 3.13 with £ = 0.
We prove Theorem 3.13 by induction on

X(m=) > |4yl
p bp<w<a,

Suppose first that this number is zero. Then there are 7n,,7; € {£1} (which depend on p)
such that if we set

k
&= U {([bp’bp]paoanp)v ) ([bpvbp]paoanp)} U U{([aiabi]pvlivni)}
? Ay, () =
with
li=Hz|bi <o <ai, Ae(m) = La(m)}| = {2 | bi < @ < a5, Ae(m) = Re(m)},

then we have m(&) = m. See Section 3.5. Therefore, 7 is of Arthur type.
Now, we suppose that a, — b, > 0 for some p = p¥. We may assume that b, is big enough
so that there is an integer ¢ > 0 such that

ap+1<b,+t<a,+t<b,—1.

Here, when k = 0, we ignore the inequality a, +t < b, — 1. Consider

b+t ... a,+1

7’ = soc : : X

bp+1 ... a,+1

which is irreducible by [5, Proposition 3.4]. By Tadi¢’s formula (Corollary 2.2), we see that
DpHx(Tr/) #0 = zx € {bp, bp +t,bg,...,bq, —((Ip + 1)}
Lemma 3.14. In the setting above, we have
DP|-\*(“0+1)(7T/) = 0.

Proof. Suppose that D |~@p+ (7') # 0. Then the inclusion

bp+t ... a,+1
7 : : X Zylby + 1,a,] x p| - |
by+2 ... ap+2
factors through
b+t ... a,+t
e : : X Zylb, + 1,a,)] x soc(p| - | 7@ T s 7).
by+2 ... a,+2

Hence

/
= — O (¢] O---0 .
™= Dy p-tarn 0 Dyypss,gypon © (Dppposs, gy o Dyt gt ) ()
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On the other hand, by definition of 7/, we have

/
fI— O e} e .
Dp|_|ap+1 Dpl'lbp+1r“7p"|ap <Dp‘.|bp 2" |ap 2 O O Dp‘-lb/’ t,...,pHa’P t) (7T )

These equations imply that

X ‘ap+1

soc(p| - |7 s m) = soc(p| X ),

which is equivalent to saying that p| - [**! x 7 is irreducible. But since A,,(7) # 0 and
Aq,+1(m) = 0, this is impossible by [9, Corollary 7.2]. O

Now we consider A,(7’). Note that

|Ag(m)|—1  ifb, <z <a,,

, 1 ifb,+t<z<a,+t,
|Ag ()] = . ,
1 ifb; <zr<a;, 1<i<k,
0 otherwise.

In particular, for b, +t < x < a, + t, exactly one of
Ap(n') = Lp(n), Ax(n") =To(r"), or Au(n') = Ru(7)
holds. Moreover, since D,.j=(7") = 0 for b, +t < x < a, +1t, by [9, Theorem 7.1], we see that

o ifx>b,+t+1and Ay(n') = Ly(n'), then A1 (7)) = Lp—1(7');
o if vt <a,+t—1and A(n’) = Ry(n’), then Ayi1(n') = Rpq1 (7).

Write

Iy ={bp+t<z<a,+t]|A(n") = Lo(n")}],
o=, +t<a<ap+t|Au(n’) = Ro(n)}].

A key lemma is as follow.
Lemma 3.15. We have Iy =1_.

Proof. First of all, we show that I, < {_. Indeed, for z > b, +t, if A,(7") = Lp(n’), then
Aplz,—y] appears in the Langlands data of #’ for some y > x. Hence Ay(n') = R, (7’). The
map z — y induces an injection

{x 20, +1]| Au(n) = La(7)} = {y 2 by + 1 | Ay(n) = Ry (7"}

Since
{o [ b <2 <a;, Ag(m) = Lo(m)} = {y [ b Sy < ai, Ax(m) = Ro(m)}]

for 1 < i < k by assumption, we have I, < [_. In particular, if [_ = 0, then [ = 0 as well
and we get I4 =1_.

In the rest of the proof of this lemma, we assume that [_ > 0. In particular, Aq,¢(7') =
Rq,+t(n"). It implies by [9, Corollary 7.2] that L,,(7) = Tq,(7) = (). Since D,.j=(7) = 0 for
any b, < x < a,, we see that A,[b,, —a,] appears in the Langlands data of 7 with multiplicity
exactly k = |Rq, ()| = |Aq, (7). Namely, there is 7 € Irr such that m < A,[b,, —a,)* x 7
and such that A,, (1) =0
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Now, for the sake of a contradiction, we assume that 7' < A,[b,, —a,]* x 7/ for some

7 € Irr®. Then the inclusion

b+t ... a,+t
7w X Ap[bp,—ap]k X T
by+1 ... a,+1
must factor through
by+t ... a,+t
7 s soc | Aplby, —a,lF x : : X T
by+1 ... a,+1
bp+t ... a,+1
> Ab,, —a,l* x : : X T
by+1 ... a,+1 p
b+t ... a,+t
= Ap[bpa*ap]k X X Zplbp + 1,a,) x p| - |7 7.
by+2 ... ap+2 P

Since Aq,(7) = 0, by [9, Corollary 7.2], we see that p| - [**! x 7 is irreducible so that
pl 1%t s 7 = p| - |7(@*D) % 7. Then the above inclusion implies that Dp|.‘_(ap+1)(7r’) # 0.
This contradicts Lemma 3.14.

By the last paragraph, one can see that the Langlands data of 7’ contains A, [z, —(a, +t)]
for some b, < 2’ < a,+t. Then we see that Dpl'lz' (m') # 0. Hence we conclude that 2’ = b,+t,
i.e., the singleton Ay, ¢(7') is equal to Ly, ¢(7").

If Ay(n") = Ry(n’) for some b, +t < y < a, +t, then the Langlands data of 7’ contains
Az, —y] for some b, < x < y. We claim that = > b, + t. For the sake of a contradiction,
we assume that there is A,[z, —y] in the Langlands data of 7’ such that x < b, 4+t and
by +t <y < a,+t. We may assume that y is maximum among this condition. Then
Aplz’,—(y + 1)] is in the Langlands data of n’ for some ' > b, +t. Since the segment
[z, —y], is contained in [2/, —(y + 1)], by [9, Theorem 7.1], we have D, jy+1(7") # 0, which is
a contradiction. Therefore, for b, +¢ <y < a, +t with Ay(n") = Ry(n), if A,[z, —y] in the
Langlands data of 7/, then b, +t < x < a, + t. This gives the bijection

{by+t<y<a,+t|Ay(n") =Ry} = {b,+t <z <a,+t|A(r") = L(7')}
and we conclude that [, =1[_, as desired. g

Now we set byt1 = b, +t and apy1 = a, +t. Then 7’ satisfies all of the assumptions in

Theorem 3.13 for a,, a1, ...,ar41,b1,...,bgt1. Moreover, since
SN Age@I=Y" > 1Ay =a,— b, >0,
P bpy<z<a, P bp<z<a,

we can apply the inductive hypothesis to 7/. Hence we can write 7’ = 7(&”). Moreover, we
may assume that
& 3 (lap +t,b, +t],1,m)
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for some n € {£1}, where [ =14 = [_ is defined in Lemma 3.15. Then by construction, with

& = (&"\{(lap +t,0, +t],1,m)}) U{([ap. bp],1,m)},
we have m = 7(&"). Therefore, we conclude that 7 is of Arthur type. This completes the proof
of Theorem 3.13.
Now Theorem 3.1 follows from Theorems 3.3 and 3.13.

4. SLIGHTLY BEYOND CASE

In this section, we treat a case slightly beyond the good parity case, which may be important
for global applications.

4.1. Statement. We know that if 1) € ¥(G), then all members in I, are unitary. However,
due to the lack of a proof of the Ramanujan conjecture, if ¥ is a global A-parameter of a
classical group G over a number field F, and if v is a place of F such that F, = F and
G = G(F,), then the localization ¢ = ¥,, belongs to ¥*(G) but may not lie in ¥(G).

By the weak Ramanujan bound, which is know, it takes the form

b =0 ® P (pil - " @ p)|-[7") K S, K Sy,

i=1
where
b % = wgood;
o p; € €6  is unitary;
e 0 < < %;
o if x; =0, then p; XS, XSy, is not self-dual of the same type as 1.

Here, r may be zero, in which case 1) = 1g50q is of good parity. For such a parameter v, its
A-packet 11, is defined as the set of irreducible parabolic inductions

T
7= X Sp(pi,ci,di)| - |"* @ mo
i=1

for mg € Iy, .

In this section, we prove the following theorem, which was conjectured in [21, Conjecture
5.9].

Theorem 4.1. Let .
T = X Sp(pi, ci; di)| - |** % 7o
i=1
where mg is of Arthur type of good parity, p; is unitary, and 0 < x; < % for 1 <4 <r. Suppose

that 7 is irreducible. For each p € €S with p = pV, and for any pair of positive integers
(c,d), we set

I(p,c,d)={ie{l,....;r} | pi = p, (ci;,d;) = (¢c,d)}.
Then w is unitary if and only if for each p and any (c,d), the following conditions hold:

o If p%pY, then
{wi i € I(p,c,d), wi # 0} = {wi | € [(s" ¢, ), i # 0}
as multisets.
o Ifp=pY and|I(p,c,d)| is odd, then the unitary induction Sp(p, ¢, d) X is irreducible.
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For the proof, we use (UI), (UR), (CS) and (RP1) in Proposition 2.3 frequently.

4.2. Proof of unitarity. Here, we prove the “if” part of Theorem 4.1. Namely we show that
if 7 satisfies the conditions in Theorem 4.1, then 7 is unitary. The proof is by induction on r.

First, suppose that z; = 0 for some 7. Since 7 is irreducible, by [17, Theorem 1.2], we see
that Sp(p;, ¢;, d;) x mg is also irreducible. Then since 7’ = X ;£;Sp(pj, ¢;, d;)|-|* x 7o is unitary
by induction hypothesis, so is 7 = Sp(p;, ¢;,d;) ¥ 7 by (UI). In the rest of this subsection, we
assume that x; > 0 for any .

Fix p unitary and a pair (¢,d). Suppose that » > 2 and that there are ¢ and j with i # j
such that p; = p, p; = p" and (¢;, d;) = (¢j,d;j) = (¢, d). We may assume that (4, ) = (1,2),
x1 > oo and that z7 = x5 if p % p". By induction hypothesis,

i
7' = X Sp(pi,ci,di)| - [¥F % mo
i=3

is unitary. Since 0 < z < %, by [40], Sp(p, ¢,d)| - |*2 x Sp(p, ¢,d)| - |7*2 is unitary. Hence
Sp(p, e, d)] - |" x Sp(p,c,d)| - |7 x 7" = Sp(p, ¢, d)| - [** x Sp(p”, ¢, d)| - [** = '

is an irreducible unitary representation by (UI). In particular, if p % pV, then 7 is unitary. If
p = pY and if we set
I, = Sp(p, Cy d)‘ : ’t X Sp<p7 Cy d)‘ : ‘IQ X 71—/7
then for zo <t < 1, we see that Il; is irreducible hermitian representation since p
Since II,, is unitary, by (CS), we see that m = II,, is also unitary.
Hence we may assume that p; = pY for any 1 < i < r, and that I(p,c,d) is a singleton or
empty for each p = p"¥ and (¢, d). For (t1,...,t,) with 0 < ¢; < z;, we consider

>~

1

p’ =p.

r
H(tl,...,tr) - X Sp(piaciadi)| ' ‘ti X TQ.
i=1

By assumption together with [17, Theorem 1.2], we see that I ) is irreducible. In partic-
ular, I, 4y is an irreducible hermitian representation for any (t1,...,t,) with 0 < t; < z;.
Since Il (g, o) is unitary, by (CS), we see that 7 = I, .. is also unitary. This completes
the proof of the “if” part of Theorem 4.1.

4.3. Proof of non-unitarity. In this subsection, we will prove the “only if” part by in-
duction on r. Suppose that 7 is unitary. Our goal is to show the conditions in Theorem
4.1.

First, we assume that x; = 0 for some i. Put 7’ = x;4Sp(pj,¢j,d;)| - | x 7. Then
Sp(pi, ¢i,d;) @ 7 is an irreducible hermitian representation of a Levi subgroup of G such that
its induction Sp(p;, ¢;,d;) x 7’ is unitary. Hence by (UR), we see that Sp(p;, ¢;,d;) @ 7' is also
unitary. In particular, 7’ is unitary. Repeating this argument, we may assume that z; > 0
for1 <i<r.

Next, we assume that p % pV. Since 7 is hermitian, we see that

r r
72 X Sp(pi, i, di)| - " 0 7o = X Sp(py, e, di)| - [T %7y

i=1 =1

V V
- <>< Sp(pi, ciy di)| - | 7% x “’) ) (XSWPM,dm [ m)

i=1 =1
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)| and {z; |1 € I(p,c,d)} = {z; | i €

is isomorphic to V. Hence |I(p,c,d)| = |I(p",
=~ p, py = p¥, (c1,di) = (c2,d) = (c,d) and

I(pY,c,d)} as multi-sets. Moreover, if p;
r1 = T9, then since
™= Sp(p,d, c)| - [** x Sp(p,d,c)| - |72 x '
is an irreducible unitary representation with 7’ = xI_sSp(p;, ¢;, d;)| - |** x mp, by (UR), we see
that
(Sp(p. e, d)| - [*2 x Sp(p, ¢, d)| - [7*2) @ '

is also unitary. In particular, 7’ is unitary. Repeating this argument, we may assume that
pi = pf for 1 <i<r.

Suppose that p = p¥. If p; = py = p and (c1,d1) = (cg,d2) = (c,d), then by (CS), we see
that

Sp(p,c,d)| - "2 x Sp(p, ¢, d)| - |72 x 7’ = Sp(/)?c d)| "2 x Sp(p,¢,d)| - |7*2 x «’

is an irreducible unitary representation with 7’ = xI_sSp(pi, ¢, d;)| - |** % m. By (UR), wi
see that 7' is unitary. Repeating this argument, we may assume that I(p,c,d) is at most a
singleton for each p 2 p" and (¢, d).

If Sp(p1,c1,d1) X g is irreducible, then by [17, Theorem 1.2], we see that Sp(p1,c1,dy) @ 7’
is also irreducible with 7" = x]_ 2Sp(,ol, ¢iydi)| - ]* x . By (CS) and (UR), the unitarity of 7
implies that 7’ is also unitary. Repeating this argument, we may assume that Sp(p;, ¢;, d;) X7
is reducible for 1 <3 < r.

We have proven that we may now assume the following:

(1

(2
(3
(4

) ™= Xl i~ 15p(pi, ¢i, di)| - |** % o is an irreducible unitary representation;

) pi = p) and 0 < z; < 4 for 1 <i <

) for i # j, we have p; % pj or (¢, d;) # (¢j,d;j);

) Sp(pi, ci,d;) x mp is reducible for 1 <14 < r.

The goal is to show that » = 0 in this case. For the sake of a contradiction, we assume that
r > 0.

Proposition 4.2. Continue in the above setting. Let P = MN be the maximal parabolic
subgroup of G such that mp = (XI_1Sp(pi,ci,di)) K mg € Irr(M). Then there is an A-
parameter Yy € V(M) with my € 1y, such that Rp(w,7ar,ar) is not a scalar operator,
where w is the unique non-trivial Weyl element in W (M, G).

Proof. By [17, Corollary 3.33], there exist 1 < i < r and an irreducible summand 7’ of
X Sp(pj, ¢j, dj) @ mo

1<j<r
J#i
such that Sp(p;, ¢, d;) x 7' is reducible. For simplicity, set p = p; and (¢,d) = (¢;,d;). Since
7' is unitary and of good parity, we can write 7’ = 7(&”) for some extended multi-segment
&'. In [17, Definition 3.4], Bosnjak—Stadler introduced a modification of &’ given by

= U{ Al? B Li Ui)}iel,/ =S8 = U{([Ala Bi]p’v Mi)}ielp/
o
with
i—1
pi= | TIDY% ) mi(Ai = Bi+1—21).
j=1
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We may assume that S’ is standard in the sense of [17, Definition 3.15]. Then by [17, Corollary
3.30], there are two irreducible summands 7 and 7wy of Sp(p,c,d) X 7" associated to S =
SU{([C,D],,v),([C,D],,v)} and S5 = SU{([C,D],,v + 2),([C, D],,v + 2)}, respectively,
for some v € Z with v = d mod 2, where C' = % —1land D = ng. Note that 8] and
S} give the same A-parameter ¢ € ¥(G) as in [17, Definition 3.3(d)], which satisfies that
71, m2 € Il Moreover, we may assume that ¢ comes from an A-parameter ¢p; € W(M) so
that mps € Ily,,. That is,

' 692
Y= @Pj@sqﬁsdj © o
j=1

with my € II,. By the description of F in [17, Definition 3.4] together with [4, Theorem 3.6]
(corrected in [6, Appendix A]), we see that

ﬁ (e(pir o dy) by _ (et <(

a1 sen(v) ¢
(e(pjs ¢j, dj), m2)y b )>

i sgn(v + 2

with the convention sgn(0) = 1. A case-by-case computation shows that the right-hand side
is always equal to —1.

Now by the local intertwining relation proven by Arthur [2, Theorem 2.4.1], the normalized
local intertwining operator Rp(w,mr,¥pr) acts on 7 by the scalar H;:1<e(pj,cj,dj),7rk>¢
for k = 1,2. Therefore, the eigenvalue of Rp(w,wps,¥ns) on 71 differs from the one on my. [

In particular, (RP1) in Proposition 2.3 implies that for sufficiently small s > 0, the ir-
reducible representation x!_,Sp(pi,ci,d;)| - |* % mo is not unitary. However, (CS) together
with the unitarity of m would imply that this representation should be unitary. This is a
contradiction. This completes the proof of the “only if” part of Theorem 4.1.

5. REMARKS ON THE FURTHER BEYOND

We have described the unitary dual of split SOg,41(F) and Sp,,(F') in the good parity
case and a slightly beyond. In the further beyond case, several new phenomena arise, which
we now explain in this section.

5.1. One-parameter complementary series. The first step beyond the good parity case
is to consider the set of representations of the form

II; = Sp(p’ a, b)| : ‘S N TA,
where

e 74 is of Arthur type and of good parity;
o p € €S with pY = p;
o s> 0.
To study this, it is important to consider the first reducibility point
FRP(Sp(p,a,b),m) =inf{s > 0| Sp(p,a,b)| - |* x 7 is reducible} .
It is a half-integer and can be computed algorithmically ([5, Theorem 5.3, Corollary 5.4]). If

s = FRP(Sp(p, a,b), m) mod Z, then all irreducible subquotients of II; are of good parity. We
need to consider the other case.
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Question 5.1. Let # € Irt® be of good parity and of Arthur type. For s > 0 with s #
FRP(Sp(p, a,b), ) mod Z, if the irreducible representation Sp(p,a,b)|-|* x 7 is unitary, then
must it be that s < FRP(Sp(p,a,b),m)?

The converse follows from (CS). Note that if s is larger than FRP(Sp(p, a,b), 7) but close
to it, the non-unitarity would follow if one could establish an analytic property of intertwining
operators (see [34, (RP)(ii), Section 2]).

To deal with cases where s is much larger than FRP(Sp(p,a,b), ), we need more ex-
plicit control over FRP(Sp(p, a,b), w) than is currently available in [5]. The difficulty is that
FRP(Sp(p,a,b), ) really depends on the pair (a,b), unlike in the earlier settings treated in
[27] and [34].

5.2. Some example. Finally, we give some explicit example of unitary representations, be-
yond the good parity case. In this subsection, we set p = 1gr,,(r), and we drop p from the
notations.

Let o be the unique irreducible supercuspidal representation in the A-packet II,, associated
to 1) = S5 ® S5 € U(Spyy(F)). Then FRP(Sp(2,2),0) = 4. Fix 0 < € < 5. Since the induced
representation

Sp(2,2)]-[* %o

is irreducible for 0 < s < 2 + ¢, we see that Sp(2,2)| - |**€ x ¢ is unitary. We consider
I, = Sp(2,2)] - |79 x Sp(2,2)[ - |7* o

It is irreducible for 0 < s < e. Therefore, all irreducible subquotients of II. are unitary. Note
that Sp(2,2)|-|~3%9 x Sp(2,2)|- |~ contains L|-|~(1*9) as an irreducible subquotient, where
L is Leclerc’s representation (see Remark 3.6) given by

L= L(A[_la _2]7 ‘ : |07 A[L _1]7A[27 1])
Hence
L‘ ’ ’H_E N = L(A[_2 -6 -3 — 6]7 ’ ' ‘_1_E7A[_€7 —-2- 6]7A[€7€ - 1];0—)

is unitary. However, it is difficult to see from the Langlands data alone why the right-hand
side is unitary. This suggests that further notions may be necessary to fully describe the
unitary dual of classical groups.

Additional difficulties arise when considering the limit ¢ — % Since all irreducible subquo-
tients of the complementary series are unitary, we conclude that

e L (A5 -3 R A3 -5 A (5 -4 50)

is also unitary.

We see from the above argument that 7 is not isolated in the unitary dual. However,
we do not know how to prove this fact directly from the Langlands data, since the induced
representation

_3
=2 (8[43, 11 A [ 1), AL 1) %o

is reducible. (To see that, one can check that II is preserved under Aubert duality, whereas
7 is not.)
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