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Abstract. Let F be a p-adic field, and let G be either the split special orthogonal group
SO2n+1(F ) or the symplectic group Sp2n(F ), with n ≥ 1. We prove that a smooth irreducible
representation of good parity of G is unitary if and only if it is of Arthur type. Combined
with the algorithms of [6, 22] for detecting Arthur type representations, our result leads to an
explicit algorithm for checking the unitarity of any given irreducible representation of good
parity. Finally, we determine the set of unitary representations that may appear as local
components of the discrete automorphic spectrum.

1. Introduction

The classification of irreducible unitary representations of classical groups over local fields
stands as a central problem in the representation theory of reductive groups. This program
traces its origins to I. Gel’fand’s work in the 1940s and 1950s on harmonic analysis and
representations of locally compact groups. For general linear groups, the classification was
completed by D. Vogan [46] for real groups and by M. Tadić [40] for p-adic groups in the
1980s. For inner forms of general linear p-adic groups, the classification was achieved through
the combined work of many mathematicians, see in particular [41, 38, 11, 13, 12]. In the case
of classical groups over a p-adic field, only partial results are known: namely, for generic and
unramified representations [27, 34], and for groups of rank less than or equal to three [45].
For recent progress in the case of real groups, see [1]. The unitary dual carries a natural
topology, and one of the main challenges for classical groups is the large number of isolated
representations (see [44]).

Let F be a non-archimedean local field. For GLn(F ) and its inner forms, Tadić showed that
an irreducible representation is unitary if and only if it is parabolically induced from certain
representations called essentially Speh representations. Note that unitary Speh representations
arise as local components of discrete automorphic representations. A simplification of Tadić’s
proof was achieved in [25], where one of the key steps was to avoid the use of a theorem of
J. Bernstein [15] that played a central role in the original proof. Bernstein’s method relies on
special properties of the mirabolic subgroup of GLn(F ) that do not extend to other groups,
and thus the extension to inner forms of GLn(F ) required significantly heavier machinery,
just to mention some [18, 14, 19, 35, 36, 37, 39]. In contrast, the approach in [25] relies
only on elementary combinatorics and a careful analysis of Jacquet modules, what are now
called ρ-derivatives (see Section 2.1), to control the irreducibility of the socle of parabolically
induced representations.
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One of the most remarkable achievements in recent number theory is J. Arthur’s clas-
sification [2] of square-integrable automorphic representations of quasi-split symplectic and
orthogonal groups. This breakthrough, accomplished through the collective effort of many
mathematicians, relies on the twisted trace formula and an intricate inductive procedure,
known as endoscopy. Arthur introduced what are now called A-parameters, which are modi-
fications of L-parameters designed to capture the non-tempered behavior of local components
of discrete automorphic representations, and in particular, to account for the failure of the
naive Ramanujan conjecture beyond GLN . In this paper, these local components are referred
to as representations of Arthur type. They are unitary representations ([2, Theorem 2.2.1])
and they generalize the unitary Speh representations discussed above to the setting of classical
groups.

Representations of Arthur type were classified by C. Mœglin [29, 30, 31, 32, 33] by purely
local methods (see also [47]). Let G be a symplectic or split special odd orthogonal group
over a non-archimedean local field F of characteristic zero. Given an A-parameter ψ for G,
one can decompose it as

ψ = ψ−
bad ⊕ ψgood ⊕ ψ+

bad,

where ψgood is a sum of irreducible self-dual representations of the same type as ψ, and

ψ−
bad = (ψ+

bad)
∨ is a sum of irreducible representations of a different type (see Section 2.4 for

more details). The parameter ψ is said to be of good parity if ψ−
bad = 0. Similarly, one can

define this notion for irreducible representations of G(F ).
Mœglin [29] showed that the representations associated to ψ are irreducible parabolic in-

ductions of the representations attached to ψgood, together with products of unitary Speh

representations corresponding to ψ−
bad. This reduces the classification of Arthur type repre-

sentations to the case of parameters of good parity. In [30, 31, 32, 33], she ultimately classified
these representations using a combination of techniques, including the analysis of reducibility
in parabolic induction, the use of Jacquet functors, and what she called the partial Aubert
involution.

Mœglin’s classification was later simplified by the first-named author of this paper [4],
who used ρ-derivatives to reduce the construction of representations of Arthur type of good
parity to those with non-negative discrete diagonal restriction (which are easy to determine).
This naturally led to the question of whether the idea in [25] could be adapted to classify
unitary representations of classical groups. In this paper, we carry out this program for unitary
representations of good parity of G(F ), where G is a symplectic or split special odd orthogonal
group over a non-archimedean local field F of characteristic zero. Our main theorem is as
follows:

Theorem 1.1. Let π be an irreducible representation of G(F ) of good parity. Then π is
unitary if and only if it is of Arthur type.

In fact, we prove a stronger result that will be useful for the eventual classification of
the full unitary dual. Namely, we show that the good-parity part of any irreducible unitary
representation is always of Arthur type. See Theorem 3.1 for the details.
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Our result proves a conjecture of Tadić, refined in [21, Conjecture 1.2], and establishes a
deep connection between unitary representations and local components of discrete automor-
phic representations. In these works, it was also conjectured (see [44, Conjecture 1.1]) that
all isolated unitary representations should have good parity. We therefore view our theorem
as a meaningful step toward the full classification of the unitary dual of classical groups.
Moreover, since algorithms were developed in [6, 22] to determine whether a given irreducible
representation of good parity is of Arthur type, our result shows that unitarity can be checked
effectively in this case.

We now outline the main steps behind the proof of Theorem 1.1. One direction of the
theorem follows from Arthur’s work: every representation of Arthur type of good parity is
known to be unitary ([2, Theorem 2.2.1]). For the converse, we begin by introducing some
notation. Let Gn denote either the split special orthogonal group SO2n+1(F ) or the symplectic
group Sp2n(F ) of rank n. If π (resp. τi) is a smooth representation of Gn0 (resp. GLdi(F )),
with d1 + · · ·+ dr + n0 = n, it is customary to denote by

τr × · · · × τ1 ⋊ π

the normalized parabolically induced representation from the standard parabolic subgroup
P of Gn with Levi subgroup isomorphic to GLdr(F ) × · · · × GLd1(F ) × Gn0 , induced from
τr ⊠ · · ·⊠ τ1 ⊠ π.

Let now π be an irreducible unitary representation of good parity. A key input we use is
that for any irreducible unitary representation σ of a general linear group, the parabolically
induced representation

σ ⋊ π

is also unitary and admissible, hence semisimple. By choosing σ appropriately and using the
explicit nature of the classification in [4, 6], we are able to deduce that π must be of Arthur
type.

Even though the underlying idea is conceptually simple, its implementation is technically
involved. For any irreducible representation π of Gn (of good parity), we define its SZ-
decomposition (see Section 3.2): this consists of a natural sequence of irreducible representa-
tions τi of GLdi(F ) (for 1 ≤ i ≤ r), each induced from ki copies of a segment-type represen-
tation, and a representation π0 of Gn0 , with d1 + · · · + dr + n0 = n, such that π is the socle
of the parabolically induced representation

τr × · · · × τ1 ⋊ π0.

The representation π0 is characterized by a specific constraint on its ρ-derivatives. Roughly
speaking, it has almost no nonzero derivatives. In Theorem 3.13, we prove that any irreducible
representation π0 with this property is of Arthur type.

Let πi denote the (irreducible) socle of τi × · · · × τ1 ⋊ π0. We then prove the following:

Theorem 1.2 (Theorem 3.3). Let π be an irreducible representation of Gn of good parity. If
π is unitary and πi−1 is of Arthur type, then πi is also of Arthur type. In particular, if π is
unitary and π0 is of Arthur type, then π is of Arthur type.

As a result, Theorem 1.2 implies Theorem 1.1.
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Finally, we give some details about the proof of Theorem 1.2. Given τi, we construct S, a
product of ki copies of a unitary Speh representation, such that the socle of τi×S is a product
of ki copies of essentially Speh representations. We show that the unitarity of π implies that

S ⋊ πi and soc(τi × S)⋊ πi−1

share a common irreducible subrepresentation. This imposes a strong constraint, which we
exploit in the following step.

Let S′ be a product of ki copies of “long” essentially Speh representations such that the
socle of S′ × τi × S is itself a product of ki copies of essentially Speh representations. We
prove that the S-derivative (see Section 3.4) of

soc
(
soc(S′ × τi × S)⋊ πi−1

)
contains the socle of S′ ⋊ πi (Lemma 3.7). By choosing S′ appropriately, and using Mœglin’s
construction, we obtain some information about the Langlands data for soc(S′ ⋊ πi). Using
it together with the algorithm in [6], we deduce that πi is of Arthur type. See Section 3.6.

In the final two sections of this article, we explore what lies beyond the good parity case.
The examples of generic and unramified unitary representations suggest that the methods
developed here are insufficient to fully address the general case, and that additional analytic
tools will likely be necessary (see Section 5 for further discussion). However, for global ap-
plications, a particularly interesting set that extends slightly beyond the good parity case
is that of representations attached to parameters which might be localizations of global A-
parameters. It is well known that not all such representations are unitary (see [21, Example
5.1(1)]). In Theorem 4.1, we determine which of them are unitary, confirming [21, Conjecture
5.9].

Let us now say a few words about our restriction to symplectic and split odd orthogonal
groups. We focus on these cases because the classification in [4] is currently limited to them.
However, with the extension of the results in [3] to all quasi-split classical groups (see [8,
Appendix C]), we expect that our methods can be adapted to this broader setting. In partic-
ular, we conjecture that all unitary representations of good parity are of Arthur type for all
quasi-split classical groups. It would also be interesting to investigate whether an analogue
of our result holds for real groups.
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A. Mı́nguez’s visit in April 2025, where the last part of this work was developed. We would
like to thank Erez Lapid and Marko Tadić for useful discussions. We also thank Max Gurevich
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was partially supported by JSPS KAKENHI Grant Number 23K12946. A. Mı́nguez was
partially funded by the Principal Investigator project PAT-4832423 of the Austrian Science
Fund (FWF).

2. Preliminaries

Throughout this paper, F denotes a non-archimedean local field of characteristic zero. In
this section, we recall some basic results from representation theory of p-adic groups.
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2.1. Derivatives and socles. Fix G ∈ {GLn(F ), SO2n+1(F ),Sp2n(F )}, assumed to be split
over F . Let Rep(G) denote the category of smooth representations of G of finite length.
A representation Π ∈ Rep(G) is called unitary if it admits a positive-definite G-invariant
hermitian form. Note that every unitary representation is semisimple since it is of finite
length and hence admissible.

We write Irr(G) for the set of irreducible admissible representations of G, and denote
by Irrunit(G) and Irrtemp(G) the subsets consisting of unitary and tempered representations,
respectively. Thus, we have the chain of inclusions:

Irr(G) ⊃ Irrunit(G) ⊃ Irrtemp(G).

For Π ∈ Rep(G), its semisimplification is denoted by [Π]. This is viewed as an element of
the Grothendieck group

R(G) =
⊕

π∈Irr(G)

Z[π],

and we often identify π ∈ Irr(G) with its image [π] in R(G). For Π1,Π2 ∈ Rep(G), we write

[Π1] ≥ [Π2]

if there exists Π ∈ Rep(G) such that [Π] = [Π1]− [Π2] ∈ R(G).
The socle of Π, denoted by soc(Π), is its maximal semisimple subrepresentation. We say

that Π is socle irreducible (SI) if soc(Π) is irreducible and appears in [Π] with multiplicity
one.

For a standard parabolic subgroup P of G, we denote the normalized Jacquet module of Π
along P by JacP (Π). When P is clear from context, we simply write Jac(Π).

Given τ ∈ Rep(GLd(F )) and a character χ of F×, we denote by τχ the twist τ ⊗ χ ◦ det.
Let CGL denote the set of equivalence classes of supercuspidal representations of GLd(F ) for

some d ≥ 0. For ρ ∈ CGL, its exponent is the unique real number e(ρ) such that ρ| · |−e(ρ) is
unitary.

Let d ≤ n be two positive integers. Let G ∈ {GLn(F ), SO2n+1(F ),Sp2n(F )}, and let
P = Pd = MN be the standard maximal parabolic subgroup of G whose Levi component is
M ∼= GLd(F )×G0, where G0 is a classical group of the same type as G. For τ ∈ Rep(GLd(F ))
and π0 ∈ Rep(G0), the normalized parabolic induction IndGP (τ ⊗ π0) is denoted by

τ ⋊ π0.

When G = GLn(F ), this is also written as τ × π0.
Fix now ρ a supercuspidal representation of GLd(F ). Given Π ∈ Rep(G), suppose that we

have a decomposition

[Jac(Π)] =
∑

τ∈Irr(GLd(F ))

[τ ]⊗ [Πτ ]

in the Grothendieck group R(GLd(F ))⊗ R(G0). Then the ρ-derivative of Π is defined by

Dρ(Π) = [Πρ].

If n < d, we simply set Dρ(Π) = 0.
If x− y ∈ Z, we define

Dρ|·|x,...,ρ|·|y
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to be the composition Dρ|·|y ◦ · · · ◦ Dρ|·|x , where the exponents in the subscript are ordered
with a fixed sign ϵ ∈ {±1}, depending on the sign of x− y.

Moreover, for k ≥ 0, we define the k-th ρ-derivative by

D(k)
ρ (Π) =

1

k!
Dρ ◦ · · · ◦Dρ︸ ︷︷ ︸

k times

(Π),

which is well-defined as an element of an appropriate Grothendieck group.

2.2. Representations of the Weil–Deligne–Arthur group. ForG = GLn(F ), SO2n+1(F ),

or Sp2n(F ), the Langlands dual group Ĝ is defined by

Ĝ =


GLn(C) if G = GLn(F ),

Sp2n(C) if G = SO2n+1(F ),

SO2n+1(C) if G = Sp2n(F ).

Let WF denote the Weil group of F . A representation of WF × SL2(C) × SL2(C) is a
homomorphism

ψ : WF × SL2(C)× SL2(C) → GLn(C)

such that ψ(WF ) consists of semisimple elements and the restriction ψ|SL2(C)×SL2(C) is alge-
braic.

Denote by Ψ+(G) the set of equivalence classes of such homomorphisms with image in Ĝ.
We say that:

• ψ ∈ Ψ+(G) is an A-parameter for G if ψ(WF ) is bounded;
• ψ ∈ Ψ+(G) is an L-parameter for G if it is trivial on the second copy of SL2(C).

We write Ψ(G) (resp. Φ(G)) for the subset of Ψ+(G) consisting of A-parameters (resp. L-
parameters). Through the embedding

WF × SL2(C) ↪→WF × SL2(C)× SL2(C), (w, g) 7→ (w, g,1),

we identify each ϕ ∈ Φ(G) with a homomorphism ϕ : WF × SL2(C) → Ĝ.
We define the set of tempered L-parameters for G as

Φtemp(G) = Φ(G) ∩Ψ(G).

In other words, ϕ ∈ Φ(G) is tempered if and only if ϕ(WF ) is bounded.

By the local Langlands correspondence, established by Harris–Taylor [20] and Henniart
[23], we can view each ρ ∈ CGL as an irreducible representation of WF . It has bounded image
if and only if ρ is unitary, i.e., e(ρ) = 0.

Let Sa denote the unique irreducible algebraic representation of SL2(C) of dimension a.
Then any representation ψ of WF × SL2(C)× SL2(C) can be decomposed as

ψ =

r⊕
i=1

ρi ⊠ Sai ⊠ Sbi

for some ρ1, . . . , ρr ∈ CGL.
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2.3. Representations of GLn(F ). A segment is a set of the form

[x, y]ρ = {ρ| · |x, ρ| · |x−1, . . . , ρ| · |y},

where ρ ∈ CGL and x, y ∈ R with x − y ∈ Z≥0. One can associate to it two irreducible
representations ∆ρ[x, y] and Zρ[y, x] uniquely determined by

∆ρ[x, y] ↪→ ρ| · |x × ρ| · |x−1 × · · · × ρ| · |y ↠ Zρ[y, x].

For −A ≤ B ≤ A, the unique irreducible subrepresentation of

∆ρ[B,−A]×∆ρ[B + 1,−A+ 1]× · · · ×∆ρ[A,−B]

is denoted by

Sp(ρ, a, b) =

 B . . . A
...

. . .
...

−A . . . −B


ρ

,

where we set a = A+B+1 and b = A−B+1. We call it a Speh representation. It is unitary
if and only if ρ is unitary.

By the local Langlands correspondence, there is a canonical bijection

Φ(GLn(F ))
1:1−−→ Irr(GLn(F )), ϕ 7→ τϕ.

If ϕ =
⊕r

i=1 ρi ⊠ Sai with e(ρ1) ≤ · · · ≤ e(ρr), then τϕ is the unique irreducible subrepresen-
tation of

∆ρ1 [x1,−x1]× · · · ×∆ρr [xr,−xr],

where xi =
ai−1
2 . In this case, we write

τϕ = L(∆ρ1 [x1,−x1], . . . ,∆ρr [xr,−xr])

or τϕ = L(m), where

m = [x1,−x1]ρ1 + · · ·+ [xr,−xr]ρr
is the associated multisegment. Here, a multisegment is a multiset of segments, viewed as a
finite formal sum.

In particular, for ψ =
⊕r

i=1 ρi ⊠ Sai ⊠ Sbi ∈ Ψ(GLn(F )), the representation τψ = τϕψ
associated to the L-parameter

ϕψ : WF × SL2(C) ∋ (w, g) 7→ ψ

(
w, g,

(
|w|1/2 0

0 |w|−1/2

))
is the irreducible parabolic induction of unitary Speh representations:

τψ =
r

×
i=1

Sp(ρi, ai, bi).
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2.4. Representations of classical groups. In this subsection, we letG be either SO2n+1(F )
or Sp2n(F ). We regard ψ ∈ Ψ+(G) as a self-dual representation of WF × SL2(C)× SL2(C) of
symplectic type or of orthogonal type. We decompose

ψ = ψgood ⊕ ψbad

such that for each irreducible summand ρ⊠Sa⊠Sb of ψ, it is a summand of ψgood if and only

if e(ρ) ∈ (1/2)Z and ρ| · |−e(ρ) ⊠ Sa+2|e(ρ)| ⊠ Sb is self-dual of the same type as ψ. We call ψ
of good parity (resp. of bad parity) if ψ = ψgood (resp. ψ = ψbad).

For ψ ∈ Ψ(G), if ψgood = ⊕r
i=1ρi ⊠ Sai ⊠ Sbi , we set

Aψ =

r⊕
i=1

Z/2Ze(ρi, ai, bi).

Namely, it is a free Z/2Z-module with a canonical basis {e(ρi, ai, bi)}i=1,...,r. Its quotient by
the subgroup generated by

• e(ρi, ai, bi) + e(ρj , aj , bj) such that ρi ⊠ Sai ⊠ Sbi
∼= ρj ⊠ Saj ⊠ Sbj ; and

• zψ =
∑r

i=1 e(ρi, ai, bi)

is denoted by Aψ. We often regard the Pontryagin dual Âψ of Aψ as a subgroup of the

Pontryagin dual Âψ of Aψ. For ε ∈ Âψ, we set ε(ρi ⊠ Sai ⊠ Sbi) = ε(e(ρi, ai, bi)). If ψ = ϕ is
a tempered L-parameter, we write e(ρi, ai) = e(ρi, ai, 1) and ε(ρi ⊠ Sai) = ε(e(ρi, ai)).

By Arthur’s endoscopic classification ([2, Theorem 2.2.1]), for ψ ∈ Ψ(G), there is a multi-set
Πψ over Irrunit(G), called the A-packet associated to ψ, together with a map

Πψ → Âψ, π 7→ ⟨·, π⟩ψ
characterized by certain endoscopic character identities. We call an irreducible representation
π of G of Arthur type if there is ψ ∈ Ψ(G) such that π ∈ Πψ. In [29, 30, 31, 32, 33],
Mœglin explicitly constructed the A-packet Πψ, and in particular, she showed in [33] that Πψ
is multiplicity free, i.e., is a subset of Irrunit(G). For her construction, see also [47] or Section
3.5 below. Moreover, as in [2, Theorem 2.2.1], if ψ = ϕ is a tempered L-parameter, then Πϕ
is a subset of Irrtemp(G), the map Πϕ → Âϕ is bijective, and

Irrtemp(G) =
⊔

ϕ∈Φtemp(G)

Πϕ.

For ε ∈ Âϕ, the corresponding element in Πϕ is denoted by π(ϕ, ε).
By the Langlands classification, one can extend this classification of Irrtemp(G) to Irr(G).

For ϕ ∈ Φ(G), if we write

ϕ =

(
r⊕
i=1

ρi ⊠ Sai

)
⊕ ϕ0 ⊕

(
r⊕
i=1

ρ∨i ⊠ Sai

)
with e(ρ1) ≤ · · · ≤ e(ρr) < 0 and ϕ0 ∈ Φtemp(G0), for ε ∈ Âϕ = Âϕ0 , we define π(ϕ, ε) as the
unique irreducible subrepresentation of

∆ρ1 [x1,−x1]× · · · ×∆ρr [xr,−xr]⋊ π(ϕ0, ε)

with xi =
ai−1
2 . We also write it as

π(ϕ, ε) = L(m;π(ϕ0, ε)) = L(∆ρ1 [x1,−x1], . . . ,∆ρr [xr,−xr];π(ϕ0, ε)),
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where m = [x1,−x1]ρ1 + · · ·+ [xr,−xr]ρr . Then Πϕ is a subset of Irr(G), the map Πϕ → Âϕ

given by π(ϕ, ε) 7→ ε is bijective, and

Irr(G) =
⊔

ϕ∈Φ(G)

Πϕ.

We call Πϕ the L-packet associated to ϕ.
Let ϕ ∈ Φ(G). As we have seen above, we can decompose it as ϕ = ϕgood⊕ϕbad with ϕgood

(resp. ϕbad) of good (resp. bad) parity. If π = π(ϕ, ε), we set πgood = π(ϕgood, ε). We say that
π is of good parity if π = πgood, or equivalently, ϕ = ϕgood.

2.5. Geometric Lemma. We recall Geometric Lemma and Tadić’s formula in this subsec-
tion.

Let G be either SO2n+1(F ) or Sp2n(F ). Fix an F -rational Borel subgroup B = TU of
G. Let W be the Weyl group of G. For two standard parabolic subgroup P1 = M1N1 and
P2 =M2N2, set

WM1,M2 = {w ∈W | w(M1 ∩B)w−1 ⊂ B, w−1(M2 ∩B)w ⊂ B}.

For any w ∈WM1,M2 , we define a functor

Fw : Rep(M1) → Rep(M2)

by

Fw = IndM2

wP1w−1∩M2
◦Ad(w) ◦ Jacw−1P2w∩M1

.

Theorem 2.1 (Geometric Lemma ([16, 2.11])). The functor F = JacP2 ◦ IndGP1
: Rep(M1) →

Rep(M2) is glued from functors Fw for w ∈WM1,M2.

In [43], Tadić studied WM1,M2 when P1 and P2 are maximal, and he got the following
formula after the semisimplification.

Corollary 2.2 (Tadić’s formula [43, Theorems 5.4, 6.5]). Suppose that P =MN is a maximal
parabolic subgroup of G with M ∼= GLm(F ) × G0. Then for any finite length representation
of G of the form τ ⋊ π, we have

[JacP (τ ⋊ π)] =
∑

n1,n2,n3,n4≥0
n1+n3+n4=m

∑
τ1⊗τ2⊗τ3
τ4⊗π0

(
τ1 × τ4 × τ∨3

)
⊗ (τ2 ⋊ π0) ,

where

• τ1⊗τ2⊗τ3 runs over irreducible representations appears in [JacR(τ)] with the standard
parabolic subgroup R corresponding to a partition (n1, n2, n3);

• τ4 ⊗ π0 runs over irreducible representations appears in [Jac′P (π0)] with the standard
parabolic subgroup P ′ whose Levi is of the form GLn4(F )×G′

0.

Here, when ni = 0, we understand that τi = 1GL0(F ).

2.6. Methods for proving (non-)unitarity. Recall that an irreducible representation π
of a group G is hermitian if π ∼= π∨, where π denotes the complex conjugate of π. In other
words, π is hermitian if and only if it admits a non-degenerate G-invariant hermitian form.
Note that if π is unitary, then it is also hermitian.

Now we list some basic methods for proving or disproving unitarity.
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Proposition 2.3. Fix a standard parabolic subgroup P =MN of G withM ∼= GLm1(F )×· · ·×
GLmk(F )×G0. Let τi ∈ Irr(GLmi(F )), π0 ∈ Irr(G0) and set πM = τ1⊠ · · ·⊠τk⊠π0 ∈ Irr(M).

(1) (Unitary induction (UI)) If πM is unitary, then IndGP (πM ) is a direct sum of irreducible
unitary representations of G.

(2) (Unitary reduction (UR)) If πM is hermitian and if IndGP (πM ) is irreducible and uni-
tary, then πM is also unitary.

(3) (Complimentary series (CS)) Let x1(t), . . . , xr(t) : [0, 1] → R be continuous functions,
and set

Πt = τ1| · |x1(t) × · · · × τr| · |xr(t) ⋊ π0.

If Πt is irreducible and hermitian for 0 ≤ t < 1, and if Π0 = IndGP (πM ) is unitary,
then all irreducible subquotients of Πt are unitary for 0 ≤ t ≤ 1.

(4) (Beyond the first reducibility point (RP1)) Suppose that
• k = 1;
• τ1 = ×r

i=1Sp(ρi, ci, di) is a product of unitary Speh representations with ρi ∼= ρ∨i
for 1 ≤ i ≤ r;

• π0 is of Arthur type of good parity.
Let ψM ∈ Ψ(M) be an A-parameter with πM ∈ ΠψM , and let RP (w, πM , ψM ) be the
normalized intertwining operator defined by Arthur [2, Section 2.4] with w ∈W (M,G).
Assume further that RP (w, πM , ψM ) is not a scalar (so in particular IndGP (πM ) is
reducible). Then τ | · |s ⋊ π0 is not unitary for sufficiently small s > 0.

For (UI) and (UR) (resp. (CS)), see [42] or [34, Section 2] (resp. [27, Lemma 3.3]). On the
other hand, (RP1) was established in the latter part of [34, Section 2], where another criterion
(RP2) is also presented.

3. Main Theorem

Let n ≥ 1, and fix G to be either the split group SO2n+1(F ) or Sp2n(F ). Accordingly,
define

IrrG =

{∪
m≥0 Irr(SO2m+1(F )) if G = SO2n+1(F ),∪
m≥0 Irr(Sp2m(F )) if G = Sp2n(F ),

and set

IrrGL =
∪
m≥0

Irr(GLm(F )).

3.1. Statement. Now we can state our main theorem.

Theorem 3.1. If π(ϕ, ε) is an irreducible unitary representation of G, then π(ϕgood, ε) is of
Arthur type.

Note that one can determine whether π(ϕgood, ε) is of Arthur type using the algorithm
described in [6]. Since every irreducible representation of Arthur type is known to be unitary,
we obtain the following corollary.

Corollary 3.2. Let π ∈ Irr(G) be of good parity. Then π is unitary if and only if π is of
Arthur type.
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3.2. The SZ-Decomposition. By the Langlands classification, every π(ϕ, ε) ∈ IrrG can be
written as

soc
(
τ−bad ×∆ρ1 [x1, y1]

k1 × · · · ×∆ρt [xt, yt]
kt ⋊ πtemp

)
,

where

• τ−bad is an irreducible representation of some general linear group whose L-parameter

ϕ−bad satisfies that ϕbad = ϕ−bad ⊕ (ϕ−bad)
∨;

• πtemp ∈ IrrG is tempered;
• ρi ∈ CGL is unitary;
• xi + yi < 0 and x1 ≤ · · · ≤ xt;
• If ρi ∼= ρj , then

i < j ⇐⇒ xi < xj , or xi = xj and yi < yj .

Here, ∆ρi [xi, yi]
ki = ∆ρi [xi, yi] × · · · × ∆ρi [xi, yi] (ki times). In particular, π(ϕgood, ε) =

L(∆ρ1 [x1, y1]
k1 , . . . ,∆ρt [xt, yt]

kt ;πtemp). Notice that τ−bad × ∆ρi [xi, yi] is irreducible by [48,
Proposition 8.6].

Write {i | xi < 0} = {1, . . . , s}, and set τ−i = ∆ρi [xi, yi]
ki . If we set

π′ = L(∆ρs+1 [xs+1, ys+1]
ks+1 , . . . ,∆ρt [xt, yt]

kt ;πtemp),

then π is the socle of τ−bad× τ
−
1 ×· · ·× τ−s ⋊π′. Note that for ρ ∈ CGL with ρ∨ ∼= ρ and x ∈ R,

if Dρ|·|x(π
′) ̸= 0, then x ≥ 0. Next, let π̂′ be the Aubert dual of π′ (see [10]). We write

π̂′ = L(∆ρ′1
[x′1, y

′
1]
k′1 , . . . ,∆ρ′

t′
[x′t′ , y

′
t′ ]
k′
t′ ;π′temp)

as above. Writing {i | x′i ≤ −1} = {1, . . . , r}, we can find π0 ∈ IrrG such that

π̂′ = soc(∆ρ′1
[x′1, y

′
1]
k′1 × · · · ×∆ρ′r [x

′
r, y

′
r]
k′r ⋊ π̂0).

Note that for ρ ∈ CGL with ρ∨ ∼= ρ and x ∈ R, if Dρ|·|x(π̂0) ̸= 0, then −1
2 ≤ x ≤ 0. If we set

τ+i = Zρ′i [−x
′
i,−y′i]k

′
i , we conclude that π is the socle of

τ−bad × τ−1 × · · · × τ−s × τ+1 × · · · × τ+r ⋊ π0.

Moreover, if we set

π1 = soc(τ+r ⋊ π0), . . . , πr = soc(τ+1 ⋊ πr−1),

πr+1 = soc(τ−s ⋊ πr), . . . , πr+s = soc(τ−1 ⋊ πr+s−1),

then we see that

• πi is irreducible for all 0 ≤ i ≤ r + s with π(ϕgood, ε) = πr+s;
• π0 satisfies that

Dρ|·|x(π0) ̸= 0 =⇒ x ∈ {0, 12}

for any ρ ∈ CGL with ρ∨ ∼= ρ;
• for 1 ≤ i ≤ r, we have πi = soc(τ+r−i+1 ⋊ πi−1) and

Dρ|·|x(πi) ̸= 0 =⇒ 0 ≤ x ≤ −x′r−i+1

for any ρ ∈ CGL with ρ∨ ∼= ρ;
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• for r + 1 ≤ i ≤ r + s, we have πi = soc(τ−r+s−i+1 ⋊ πi−1) and

Dρ|·|x(πi) ̸= 0 =⇒ x ≥ xr+s−i+1

for any ρ ∈ CGL with ρ∨ ∼= ρ.

Here, we note that x1 ≤ · · · ≤ xs < 0 and x′1 ≤ · · · ≤ x′r ≤ −1. We call

(τ−bad, {τ
−
j }1≤j≤s, {τ+j }1≤j≤r, {πj}0≤j≤r+s)

the SZ-decomposition of π.
The following is the inductive step of the proof of Theorem 3.1.

Theorem 3.3. Let π(ϕ, ε) ∈ IrrG, and let (τ−bad, {τ
−
j }1≤j≤s, {τ+j }1≤j≤r, {πj}0≤j≤r+s) be its

SZ-decomposition. For 0 ≤ j < r+ s, if π(ϕ, ε) is unitary and πj is of Arthur type, then πj+1

is of Arthur type. In particular, if π(ϕ, ε) is unitary and π0 is of Arthur type, then π(ϕgood, ε)
is of Arthur type.

Sections 3.3–3.6 are devoted to proving Theorem 3.3.

3.3. A key observation. We begin with a first observation.

Lemma 3.4. Let π(ϕ, ε) ∈ IrrG, and let

(τ−bad, {τ
−
j }1≤j≤s, {τ+j }1≤j≤r, {πj}0≤j≤r+s)

be its SZ-decomposition. Assume that π(ϕ, ε) is unitary.

(1) Assume s > 0 and fix r ≤ j < r + s. Write τ−r+s−j = ∆ρ[B − 1,−A − 1]k for some

B < 1 and A > 0 with A+B ≥ 0, where ρ ∈ CGL is unitary. Let S be the product of
k copies of the Speh representation B · · · A

...
. . .

...
−A · · · −B


ρ

.

Then there exists an irreducible representation π′j+1 such that:

• π′j+1 ↪→ S ⋊ πj+1;

• π′j+1 ↪→ soc(τ−r+s−j × S)⋊ πj.

(2) Assume r > 0 and fix 0 ≤ j < r. Write τ+r−j = Zρ[B+1, A+1]k for some A ≥ B ≥ 0,

where ρ ∈ CGL is unitary. Let S be the product of k copies of the Speh representation B · · · A
...

. . .
...

−A · · · −B


ρ

.

Then there exists an irreducible representation π′j+1 such that:

• π′j+1 ↪→ S ⋊ πj+1;

• π′j+1 ↪→ soc(τ+r−j × S)⋊ πj.
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Proof. We only prove (2) since the proof of (1) is similar. (In fact, the proof of (2) essentially
includes the one of (1).)

We fix 0 ≤ j < r. Recall that we have inclusions

π(ϕ, ε) ↪→ τ−bad ⋊ πr+s

↪→ τ−1 × τ−bad ⋊ πr+s−1

...

↪→ τ−1 × · · · × τ−s × τ−bad ⋊ πr

↪→ τ−1 × · · · × τ−s × τ+1 × τ−bad ⋊ πr−1

...

↪→ τ−1 × · · · × τ−s × τ+1 × · · · × τ+r × τ−bad ⋊ π0.

Consider the unitary induction S ⋊ π(ϕ, ε). We take an irreducible subquotient π′′r+s of
S ⋊ π(ϕ, ε) such that

(∗) [Jac(π′′r+s)] ≥ τ−1 ⊗ · · · ⊗ τ−s ⊗ τ+1 ⊗ · · · ⊗ τ+r ⊗ S ⊗ τ−bad ⊗ π0.

Since π(ϕ, ε) is unitary, so is S ⋊ π(ϕ, ε), and hence it is semisimple. Therefore π′′r+s ↪→
S ⋊ π(ϕ, ε).

Recall that τ−1 × S is SI by [25, Corollary 4.10]. We have

[π′′r+s] ≤ [S × τ−bad ⋊ πr+s]

≤ [S × τ−1 × τ−bad ⋊ πr+s−1]

= [τ−1 × S × τ−bad ⋊ πr+s−1]

= [soc(τ−1 × S)× τ−bad ⋊ πr+s−1] +

[
τ−1 × S

soc(τ−1 × S)
× τ−bad ⋊ πr+s−1

]
.

Note that [
Jac

(
τ−1 × S

soc(τ−1 × S)

)]
has no irreducible subquotient of the form τ−1 ⊗ S′ for any S′ ̸= 0. Recall that we denote
τ−i = ∆ρi [xi, yi]

ki and that x1 ≤ · · · ≤ xs are all negative. Since B ≥ 0, by construction, we
see that [

Jac

(
τ−1 × S

soc(τ−1 × S)
× τ−bad ⋊ πr+s−1

)]
has no irreducible subquotient of the form τ−1 ⊗· · ·⊗τ−s ⊗τ+1 ⊗· · ·⊗τ+r ⊗S⊗σ for any σ ̸= 0.
Hence the composition map

π′′r+s ↪→ S × τ−bad ⋊ πr+s ↪→ S × τ−1 × τ−bad ⋊ πr+s−1

factors through

π′′r+s ↪→ soc(τ−1 × S)× τ−bad ⋊ πr+s−1 ↪→ τ−1 × S × τ−bad ⋊ πr+s−1.

In particular, there is an irreducible subquotient π′′r+s−1 of S × τ−bad ⋊ πr+s−1 such that

π′′r+s ↪→ τ−1 ⋊ π′′r+s−1.
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By construction, the Langlands data of π′′r+s are obtained by adding τ−1 = ∆ρ1 [x1, y1]
k1 to

those of π′′r+s−1. Thus, π
′′
r+s−1 is uniquely characterized by the condition

[Jac(π′′r+s)] = τ−1 ⊗ (m · π′′r+s−1) +
∑

τ∈Irr(GLn1 (F ))

τ ̸∼=τ−1

τ ⊗Πτ ,

for some representation Πτ and some multiplicity m > 0, where n1 is such that τ−1 ∈
Irr(GLn1(F )). By applying Frobenius reciprocity to the inclusion map π′′r+s ↪→ τ−1 × S ×
τ−bad ⋊ πr+s−1, we have a nonzero equivariant map

τ−1 ⊠ π′′r+s−1 → τ−1 ⊠ (S × τ−bad ⋊ πr+s−1).

Since π′′r+s−1 is irreducible, we obtain an inclusion π′′r+s−1 ↪→ S× τ−bad⋊πr+s−1. On the other
hand, by (∗), we see that

[Jac(π′′r+s−1)] ≥ τ−2 ⊗ · · · ⊗ τ−s ⊗ τ+1 ⊗ · · · ⊗ τ+r ⊗ S ⊗ τ−bad ⊗ π0.

Repeating this argument, for 0 ≤ i ≤ s, there is an irreducible representation π′′r+s−i such
that

• π′′r+s−i ↪→ S × τ−bad ⋊ πr+s−i; and

• [Jac(π′′r+s−i)] ≥ τ−i+1 ⊗ · · · ⊗ τ−s︸ ︷︷ ︸
s−i

⊗τ+1 ⊗ · · · ⊗ τ+r ⊗ S ⊗ τ−bad ⊗ π0.

In particular, considering i = s, we have an irreducible representation π′′r such that

• π′′r ↪→ S × τ−bad ⋊ πr; and

• [Jac(π′′r )] ≥ τ+1 ⊗ · · · ⊗ τ+r ⊗ S ⊗ τ−bad ⊗ π0.

By the same argument, we have

[π′′r ] ≤ [S × τ−bad ⋊ πr]

≤ [S × τ+1 × τ−bad ⋊ πr−1]

= [τ+1 × S × τ−bad ⋊ πr−1]

= [soc(τ+1 × S)× τ−bad ⋊ πr−1] +

[
τ+1 × S

soc(τ+1 × S)
× τ−bad ⋊ πr−1

]
.

Recall that τ+i = Zρ′i [−x
′
i,−y′i]k

′
i with −x′1 ≥ · · · ≥ −x′r−j = B + 1 > B. Hence

Jac

(
τ+1 × S

soc(τ+1 × S)
⋊ πr−1

)
has no irreducible representation of the form τ+1 ⊗ · · · ⊗ τ+r ⊗ S ⊗ σ for any σ ̸= 0. Hence the
composition map

π′′r ↪→ S × τ−bad ⋊ πr ↪→ S × τ+1 × τ−bad ⋊ πr−1

factors through

π′′r ↪→ soc(τ+1 × S)× τ−bad ⋊ πr−1 ↪→ τ+1 × S × τ−bad ⋊ πr−1,

and we can find an irreducible subquotient π′′r−1 of S × τ−bad ⋊ πr−1 such that

π′′r ↪→ τ+1 ⋊ π′′r−1.
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By applying Frobenius reciprocity to π′′r ↪→ τ+1 × S × τ−bad ⋊ πr−1, we obtain an inclusion

π′′r−1 ↪→ S × τ−bad ⋊ πr−1. Moreover, π′′r−1 satisfies that

[Jac(π′′r−1)] ≥ τ+2 ⊗ · · · ⊗ τ+r ⊗ S ⊗ τ−bad ⊗ π0,

This argument can be repeated for 0 ≤ i ≤ r − j − 1, and we obtain an irreducible
representation π′′r−i such that

• π′′r−i ↪→ S × τ−bad ⋊ πr−i; and

• [Jac(π′′r−i)] ≥ τ+i+1 ⊗ · · · ⊗ τ+r︸ ︷︷ ︸
r−i

⊗S ⊗ τ−bad ⊗ π0.

Moreover, by the argument for i = r − j − 1, we see that

π′′j+1 ↪→ S × τ−bad ⋊ πj+1 ↪→ S × τ+r−j × τ−bad ⋊ πj

factors through π′′j+1 ↪→ soc(τ+r−j × S)× τ−bad ⋊ πj .

Finally, let π′j+1 ∈ IrrG be such that π′′j+1 = soc(τ−bad ⋊ π′j+1). Applying Frobenius reci-
procity again to the embeddings

π′′j+1 ↪→ τ−bad × S ⋊ πj+1 and π′′j+1 ↪→ τ−bad × soc(τ+r−j × S)⋊ πj ,

we obtain inclusions

π′j+1 ↪→ S ⋊ πj+1 and π′j+1 ↪→ soc(τ+r−j × S)⋊ πj .

This completes the proof of Lemma 3.4. □

The existence of the representation π′j+1 in Lemma 3.4 will be used to show that πj+1 is of
Arthur type, assuming that πj is of Arthur type. To simplify the notation in what follows,
we denote

πj = σ, πj+1 = π, π′j+1 = π′.

Theorem 3.3 is thus reduced to the following proposition.

Proposition 3.5. Let σ, π, π′ ∈ IrrG be of good parity. Assume that σ is of Arthur type.

(1) Fix half-integers B < 1 and A > 0 such that A+B ≥ 0. Set τ = ∆ρ[B − 1,−A− 1]k

and let S be the product of k copies of the Speh representation B · · · A
...

. . .
...

−A · · · −B


ρ

,

where ρ ∈ CGL is unitary. Suppose that
• if Dρ|·|x(σ) ̸= 0, then x ≥ B − 1, and Dρ|·|−A−1 ◦ · · · ◦Dρ|·|B−1(σ) = 0;

• π = soc(τ ⋊ σ);
• π′ ↪→ S ⋊ π and π′ ↪→ soc(τ × S)⋊ σ, i.e.,

S ⋊ soc(τ ⋊ σ) and soc(τ × S)⋊ σ

have a common irreducible subrepresentation.
Then π is also of Arthur type.
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(2) Fix half-integers A ≥ B ≥ 0. Set τ = Zρ[B + 1, A+ 1]k and let S be the product of k
copies of the Speh representation B · · · A

...
. . .

...
−A · · · −B


ρ

,

where ρ ∈ CGL is unitary. Suppose that
• if Dρ|·|x(σ) ̸= 0, then x ≤ B + 1, and Dρ|·|A+1 ◦ · · · ◦Dρ|·|B+1(σ) = 0;

• π = soc(τ ⋊ σ);
• π′ ↪→ S ⋊ π and π′ ↪→ soc(τ × S)⋊ σ, i.e.,

S ⋊ soc(τ ⋊ σ) and soc(τ × S)⋊ σ

have a common irreducible subrepresentation.
Then π is also of Arthur type.

The proof of Proposition 3.5 will be completed in Section 3.6. The next subsection is the
critical step of the proof.

3.4. Inequalities of Jacquet modules. To attack Proposition 3.5, in this subsection, we
establish some inequalities of Jacquet modules.

Define a sequence {xj}1≤j≤ab with a = A+B + 1 and b = A−B + 1 by

Sp(ρ, a, b) =

 B . . . A
...

. . .
...

−A . . . −B


ρ

=


x1 . . . xa(b−1)+1

x2 . . . xa(b−1)+2
...

. . .
...

xa . . . xab


ρ

.

Hence −A ≤ xj ≤ A for 1 ≤ j ≤ ab. To S = Sp(ρ, a, b)k, we attach an operator DS defined
by

DS = D
(k)
ρ|·|xab ◦ · · · ◦D

(k)
ρ|·|x1 .

Remark 3.6. One might (wrongly) expect that the operator DS distinguishes irreducible
representations τ containing S ⊗ τ ′ for some τ ′ ∈ IrrG, in the sense that DS(τ) ̸= 0 if and
only if S ⊗ τ ′ ≤ [Jac(τ)] for some τ ′ ̸= 0. However, this is not the case, even when k = 1. We
are grateful to Max Gurevich for providing us with a counterexample to this assertion.

For simplicity, let ρ = 1GL1(F ). Let S = Sp(ρ, 4, 4) and consider the multisegment m =
[−1,−2]ρ+[0, 0]ρ+[1,−1]ρ+[2, 1]ρ. The representation L(m) ∈ Irr(GL8(F )) was studied by B.
Leclerc [28], and is an example of what is called in [26] a non-square irreducible representation.

We claim that DS(L(m| · |−1 +m| · |)) ̸= 0. Indeed, a direct computation shows that

DS(L(m| · |−1)× L(m| · |)) = C2.

Since S appears with multiplicity one in L(m| · |−1) × L(m| · |), there must exist some other
irreducible subquotient τ of this induced representation such that DS(τ) ̸= 0. As the induced
representation has length 4, a direct computation shows that this subquotient has to be
L(m| · |−1 +m| · |).
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Using the operator DS , we state the following lemma. This is the most technical part of
the proof of Theorem 3.1. It appears naturally in Mœglin’s explicit construction of A-packets
(see Section 3.5).

Lemma 3.7. Let σ, π, π′ ∈ IrrG be of good parity. Assume that σ is of Arthur type.

(1) Suppose that we are in the situation of Proposition 3.5 (1). Fix integers t1, . . . , tk > 1,
and set

S′ =
k

×
i=1

 B − ti . . . B − 2
...

. . .
...

−A− ti . . . −A− 2


ρ

.

Then

DS

(
soc(soc(S′ × τ × S)⋊ σ)

)
≥ soc(S′ ⋊ π).

(2) Suppose that we are in the situation of Proposition 3.5 (2). Fix integers t1, . . . , tk > 1,
and set

S′ =
k

×
i=1

B + ti . . . A+ ti
...

. . .
...

B + 2 . . . A+ 2


ρ

.

Then

DS

(
soc(soc(S′ × τ × S)⋊ σ)

)
≥ soc(S′ ⋊ π).

Note that the assertions (1) and (2) in Lemma 3.7 (or Proposition 3.5) are equivalent to
each other by taking Aubert duality. In the rest of this subsection, we suppose that we are
in the situation of (1).

First, we show that there is πj ∈ IrrG for 0 ≤ j ≤ ab such that

• π0 = π′ and πab = π;
• for 0 ≤ j ≤ ab, we have πj ↪→ Lj ⋊ π, where we set

Lj = D
(k)

ρ|·|xj ◦ · · · ◦D
(k)
ρ|·|x1 (S) ∈ IrrGL;

• πj ≤ D
(k)

ρ|·|xj (πj−1) for 1 ≤ j ≤ ab.

Indeed, by induction assume the existence of πj−1. Then

πj−1 ↪→ Lj−1 ⋊ π ↪→ (ρ| · |xj )k × Lj ⋊ π.

By Frobenius reciprocity, we have a nonzero map

Jac(πj−1) → (ρ| · |xj )k ⊠ (Lj ⋊ π).

Hence there is an irreducible subrepresentation πj of Lj ⋊ π such that (ρ| · |xj )k ⊠ πj is a

subrepresentation of the image of this map. Therefore D
(k)

ρ|·|xj (πj−1) ≥ πj . In the particular

case when j = ab, we find πab ↪→ π, so we get πab = π.

Lemma 3.8. For 0 ≤ j ≤ ab, there is σj ∈ IrrG such that πj = soc(τ ⋊ σj). In particular,

σab = σ. Moreover, σj ≤ D
(k)

ρ|·|xj (σj−1) holds for 1 ≤ j ≤ ab.
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Proof. Note that τ ⋊ σj is SI for any σj ∈ IrrG by [5, Proposition 3.4]. Moreover, if πj =
soc(τ ⋊ σj), and if we let kB−1, . . . , k−A−1 ≥ k be the maximal integers such that

D
(k−A−1)

ρ|·|−A−1 ◦ · · · ◦D
(kB−1)

ρ|·|B−1(π) ̸= 0,

then since B − 1 < 0, it is irreducible and σj is uniquely determined by

D
(k−A−1)

ρ|·|−A−1 ◦ · · · ◦D
(kB−1)

ρ|·|B−1(π) ∼= D
(k−A−1−k)
ρ|·|−A−1 ◦ · · · ◦D(kB−1−k)

ρ|·|B−1 (σj).

In particular, we must have σab = σ.
Write πj = L(mj ;π(ϕj , εj)) as in the Langlands classification. First, we show that mj does

not contain [x, y]ρ such that x < B − 1 and y < −A. Indeed, if there were to exist such
a segment in mj , then we could take C < B − 1 such that Dρ|·|−A−1 ◦ · · · ◦ Dρ|·|C (πj) ̸= 0.
However, since

πj ↪→ Lj ⋊ π

and since the cuspidal support of Sp(ρ, a, b), and hence the one of Lj , does not contain

ρ| · |±(A+1), we see that there is −A− 1 ≤ z < B− 1 such that Dρ|·|z(π) ̸= 0. This contradicts
that π = soc(τ ⋊ σ) and Dρ|·|z(σ) = 0 for z < B − 1. Therefore, to show the existence of

σj ∈ IrrG such that πj = soc(τ ⋊ σj), by the Langlands classification, it is enough to prove
that [Jac(πj)] ≥ τ ⊗ σj for some σj ̸= 0. Moreover, if we were to know the existence of σj
such that πj = soc(τ ⋊ σj), then [Jac(πj)] would be of the form

[Jac(πj)] ≥ τ ⊗ σj +
∑

τ ′∈IrrGL

τ ′ ̸∼=τ

τ ′ ⊗Πτ ′ .

By applying a Jacquet functor to the inclusion πj ↪→ Lj × τ ⋊ σ, we see that σj ≤ [Lj ⋊ σ].
In particular, since

πj = soc(τ ⋊ σj) ≤ D
(k)

ρ|·|xj (πj−1) ≤ D
(k)

ρ|·|xj (τ ⋊ σj−1),

we would have

σj ≤
(
D

(k)

ρ|·|−A−1 ◦ · · · ◦D
(k)

ρ|·|−B−1

)
◦D(k)

ρ|·|xj (τ ⋊ σj−1).

By Tadić’s formula (Corollary 2.2) together with the first assumption in Proposition 3.5 (1),

it would imply that σj ≤ D
(k)

ρ|·|xj (σj−1).

Now we prove the existence of σj . To do this, we prepare some notations. Fix 0 ≤ j ≤ ab.
Let

• d,m ≥ 0 be such that S ∈ Irr(GLd(F )) and Lj ∈ Irr(GLm(F ));
• GS , GL and G be the classical group such that S ⋊ π ∈ Rep(GS), Lj ⋊ π ∈ Rep(GL)
and Lj × S ⋊ π ∈ Rep(G);

• P =MNP be the standard parabolic subgroup of G with M ∼= GLm(F )×GS ;

• ι : GLm(F )×GS
∼−→M be a fixed isomorphism.

There is a canonical surjection Lj × S ⋊ π ↠ Lj ⊗ (S ⋊ π) which is given by

Lj × S ⋊ π ∼= Lj ⋊ (S ⋊ π) ↠ Lj ⊗ (S ⋊ π).

Here, f ∈ Lj ⋊ (S ⋊ π) is regarded as a two variable function

f : G×GS → Lj ⊗ S ⊗ π
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such that

f(n · ι(a, h) · g, h′) = | det(a)|δLj(a)f(g, h′h)
for n ∈ NP , a ∈ GLm(F ), h, h

′ ∈ GS and g ∈ G, where δ ∈ R is independent of f . Then the

isomorphism Lj ⋊ (S⋊π) ∼−→ Lj ×S⋊π is given by f(g, h) 7→ f(g,1), whereas, the surjection
Lj ⋊ (S ⋊ π) ↠ Lj ⊗ (S ⋊ π) is given by f(g, h) 7→ f(1, h). In particular, the surjection
Lj × S ⋊ π ↠ Lj ⊗ (S ⋊ π) is described by f(g,1) 7→ f(ι(1, h),1). This surjection factors
through the M -equivariant map

JacP (Lj × S ⋊ π) ↠ Lj ⊗ (S ⋊ π),

which we denote by ResGS . Similarly, we have an evaluation map ev : Jac(Lj ⋊ π) ↠ Lj ⊗ π
at 1. This gives a surjection

(1GL0(F ) ⊗ S)⋊ Jac(Lj ⋊ π) ↠ Lj ⊗ (S ⋊ π),

which is also denoted by ev. By applying the contragredient and the MVW functors to the
injection π′ ↪→ S ⋊ π, we obtain, by [7, Lemma 2.2], a surjection S ⋊ π ↠ π′.

Note that S×Lj is irreducible by [25, Proposition 6.6], and hence S×Lj⋊π ∼= Lj×S⋊π.
We have an inclusion map S ⊗ πj ↪→ S ⊗ (Lj ⋊ π) of representations of GLd(F )×GL, which
is regarded as a Levi subgroup of G. It gives an inclusion

JacP (S ⋊ πj) ↪→ JacP (S ⋊ (Lj ⋊ π)).

By the functoriality of the Geometric Lemma (Theorem 2.1), we have subspaces F (S⊗πj) ⊂
S ⋊ πj and F (S ⊗ (Lj ⋊ π)) ⊂ S ⋊ (Lj ⋊ π) such that there is a commutative diagram

JacP (F (S ⊗ πj))

����

� � //JacP (F (S ⊗ (Lj ⋊ π)))

����
(1GL0(F ) ⊗ S)⋊ Jac(πj)

� � //(1GL0(F ) ⊗ S)⋊ Jac(Lj ⋊ π).

Incorporating the maps obtained in the previous paragraph into the picture, we obtain the
following diagram:

JacP (S ⋊ πj)
� � //JacP (S × Lj ⋊ π) JacP (Lj × S ⋊ π)

ResGS
����

JacP (F (S ⊗ πj))

∪

����

� � //JacP (F (S ⊗ (Lj ⋊ π)))

∪

����

Lj ⊗ (S ⋊ π)

����
(1GL0(F ) ⊗ S)⋊ Jac(πj)

� � //(1GL0(F ) ⊗ S)⋊ Jac(Lj ⋊ π)

ev

33 33

Lj ⊗ π′.

We claim that this diagram is commutative. In fact, the isomorphism S×Lj⋊π
∼−→ Lj×S⋊π

is given by the meromorphic continuation of the Jacquet integral

Jf(g) =

∫
ÑP

f(w−1ug)du,

where w ∈ G is a representative of a certain Weyl element, and ÑP is a quotient of NP . In
particular, the composition with ResGS is induced by f 7→ Jf(ι(1, h)). On the other hand,
the subspace F (S ⊗ (Lj ⊗ π)) of S ×Lj ⋊ π is taken as a subspace of f such that Jf(ι(a, h))
converges absolutely for (a, h) ∈ GLm(F )×GS , and this is the image of f under the surjection
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F (S ⊗ (Lj ⋊ π)) ↠ (1GL0(F ) ⊗ S)⋊ Jac(Lj ⋊ π). Hence the composition with ev is given by
f 7→ Jf(ι(1, h)). This shows the commutativity of the right square.

Note that the composition

(1GL0(F ) ⊗ S)⋊ Jac(πj) ↪→ (1GL0(F ) ⊗ S)⋊ Jac(Lj ⋊ π)
ev−→ Lj ⊗ (S ⋊ π)

is surjective since it is induced from a surjection Jac(πj) ↠ Lj ⊗ π. Hence the above com-
mutative diagram shows that we have a surjection Jac(S ⋊ πj) ↠ Lj ⊗ π′, which implies, by
Frobenius reciprocity, a nonzero map

S ⋊ πj → Lj ⋊ π′.

Since Lj × soc(τ × S) is irreducible by [25, Proposition 6.6], we have

S ⋊ πj → Lj ⋊ π′

↪→ Lj × soc(τ × S)⋊ σ

∼= soc(τ × S)× Lj ⋊ σ

↪→ τ × S × Lj ⋊ σ.

This implies [Jac(S⋊πj)] ≥ τ⊗S⊗Lj⊗σ ̸= 0. Since ρ| · |−A−1 ̸∈ supp(S), by Tadić’s formula
(Corollary 2.2), there is an irreducible representation τ ′′ ⊗ σ′j with [Jac(πj)] ≥ τ ′′ ⊗ σ′j such
that

{ρ| · |−A−1, . . . , ρ| · |−A−1︸ ︷︷ ︸
k

} ⊂ supp(τ ′′) ⊂ supp(τ)

as multi-sets, where supp(τ) is the cuspidal support of τ . By the condition on mj we have
proven earlier, we must have τ ′′ = τ , as desired. This completes the proof of Lemma 3.8. □

Now we can prove Lemma 3.7.

Proof of Lemma 3.7. As said before, it is enough to show only (1). So we suppose that we
are in the situation of (1).

For σj ∈ IrrG defined in Lemma 3.8, we claim that(
D

(k)

ρ|·|xj ◦ · · · ◦D
(k)
ρ|·|x1

)
(soc(soc(S′ ⋊ τ)⋊ σ0)) ≥ soc(soc(S′ × τ)⋊ σj)

for 0 ≤ j ≤ ab. This claim for j = ab yields that

DS(soc(soc(S
′ ⋊ τ)⋊ σ0)) ≥ soc(soc(S′ × τ)⋊ σab) = soc(S′ ⋊ π).

Since

soc(soc(S′ × τ)⋊ σ0) = soc(S′ ⋊ soc(τ ⋊ σ0))

= soc(S′ ⋊ π′) ≤ soc(soc(S′ × τ × S)⋊ σ),

this implies Lemma 3.7.
The claim for j = 0 is trivial. Fix 1 ≤ j ≤ ab, and suppose that the claim holds for j − 1.

Then,(
D

(k)

ρ|·|xj ◦ · · · ◦D
(k)
ρ|·|x1

)
(soc(soc(S′ ⋊ τ)⋊ σ0)) ≥ D

(k)

ρ|·|xj (soc(soc(S
′ × τ)⋊ σj−1)).
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Recall that −A ≤ xj ≤ A. First, we assume xj ̸= B so that soc(S′ ⋊ τ) × (ρ| · |xj )k is
irreducible. Since[

Jac(soc(soc(S′ × τ)⋊ σj−1)
]
≥ soc(S′ × τ)⊗ (ρ| · |xj )k ⊗ σj ,

there is τ ′ ∈ IrrGL such that [Jac(soc(soc(S′ × τ)⋊ σj−1)] ≥ τ ′ ⊗ σj and [Jac(τ ′)] ≥ soc(S′ ×
τ)⊗ (ρ| · |xj )k.

We show that τ ′ = soc(S′ × τ) × (ρ| · |xj )k. We write τ ′ = L(m) and soc(S′ × τ) =
L(∆ρ[a1, b1]

k1 , . . . ,∆ρ[ar, br]
kr) with b1 < · · · < br−1 < br = −A − 1 and kr = k. By looking

at the cuspidal support, we can find au,v ≥ bu for 1 ≤ u ≤ r and 1 ≤ v ≤ ku such that

r∑
u=1

ku∑
v=1

[au,v, bu]ρ ≤ m.

Suppose that au,v ̸= au for some (u, v). Take the minimum u with this condition. Hence

ai,v = ai for any i < u and 1 ≤ v ≤ ki. If au,v > au, then [Jac(τ ′)] ̸≥ soc(S′ × τ)⊗ (ρ| · |xj )k.
(See cf., [24] for Jac(soc(S′ × τ)).) This is a contradiction. It au,v < au, then(

Dρ|·|bu ◦ · · · ◦Dρ|·|au,v
)
◦
(

◦
1≤i<u

D
(ki)

ρ|·|bi ◦ · · · ◦D
(ki)
ρ|·|ai

)
(soc(soc(S′ × τ)⋊ σj−1)) ≠ 0.

Since au < 0 and Dρ|·|bi ◦ · · · ◦ Dρ|·|ai (σj−1) = 0 for i < u, it implies that Dρ|·|bu ◦ · · · ◦
Dρ|·|au,v (σj−1) ̸= 0. However, since σj−1 ≤ [Lj−1 ⋊ σ], we can find bu ≤ c ≤ au,v such that
Dρ|·|c(σ) ̸= 0. This contradicts that Dρ|·|x(σ) = 0 for any x < B − 1 = max{a1, . . . , ar}.
Therefore, au,v = au for any (u, v), and hence

r∑
u=1

ku[au, bu]ρ ≤ m.

Comparing the cuspidal supports, we see that the difference is k[xj , xj ]ρ. Hence

τ ′ = soc(S′ × τ)× (ρ| · |xj )k ∼= (ρ| · |xj )k × soc(S′ ⋊ τ).

In particular, we have[
Jac(soc(soc(S′ × τ)⋊ σj−1)

]
≥ (ρ| · |xj )k ⊗ soc(S′ × τ)⊗ σj .

It implies that there is π′j ∈ IrrG such that D
(k)

ρ|·|xj (soc(soc(S
′×τ)⋊σj−1)) ≥ π′j and [Jac(π′j)] ≥

soc(S′ × τ)⊗ σj .
We show that π′j = soc(soc(S′×τ)⋊σj). We write π′j = L(m;π(ϕ, ε)) with π(ϕ, ε) tempered.

Since [Jac(π′j)] ≥ soc(S′ × τ)⊗ σj and since au < 0, we see that

r∑
u=1

ku∑
v=1

[au,v, bu]ρ ≤ m

for some bu ≤ au,v ≤ au. Suppose that au,v < au for some (u, v), and we take the minimum
such u. Then (

Dρ|·|bu ◦ · · · ◦Dρ|·|au,v
)
◦
(

◦
1≤i<u

D
(ki)

ρ|·|bi ◦ · · · ◦D
(ki)
ρ|·|ai

)
◦D(k)

ρ|·|xj (soc(soc(S
′ × τ)⋊ σj−1)) ̸= 0.
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This implies Dρ|·|c(σ) ̸= 0 for some bu ≤ c < au ≤ B−1, or Dρ|·|bu ◦ · · · ◦Dρ|·|B−1(σ) ̸= 0. This

contradicts the first assumption in Proposition 3.5 (1). Therefore, au,v = au for any (u, v),
and hence

r∑
u=1

ku[au, bu]ρ ≤ m.

Moreover, by the same assumption in Proposition 3.5 (1), we see that Dρ|·|−A−1 ◦ · · · ◦
Dρ|·|x(σj−1) = 0 for any −A−1 ≤ x ≤ B−2. This implies that L(m) = soc(soc(S′×τ)×L(m′))

for some m′ ≤ m. Hence we can write π′j = soc(soc(S′ × τ) ⋊ σ′j) for some σ′j ∈ IrrG. Since

π′j ≤ D
(k)

ρ|·|xj (soc(soc(S
′ × τ)⋊ σj−1)), we see that σ′j is uniquely determined by the inequality

[Jac(π′j)] ≥ ∆ρ[a1, b1]
k1 ⊗ · · · ⊗∆ρ[ar, br]

kr ⊗ σ′j .

Hence we have σ′j = σj , and we conclude that π′j = soc(soc(S′ × τ)⋊ σj). Therefore

D
(k)

ρ|·|xj (soc(soc(S
′ × τ)⋊ σj−1)) ≥ soc(soc(S′ × τ)⋊ σj),

as desired. We obtain the claim for j with xj ̸= B.
Next, we assume that xj = B. By the proof of [5, Proposition 3.4], we have

soc(soc(S′ × τ)⋊ σj−1) = soc(S′ ⋊ soc(τ ⋊ σj−1)) = soc(S′ ⋊ πj−1).

Hence by the same argument starting with[
Jac(soc(S′ ⋊ πj−1))

]
≥ S′ ⊗ (ρ| · |xj )k ⊗ πj ,

we have
D

(k)

ρ|·|xj (soc(S
′ ⋊ πj−1)) ≥ soc(S′ ⋊ πj).

Since soc(S′ ⋊ πj) = soc(S′ ⋊ soc(τ ⋊ σj)) = soc(soc(S′ × τ)⋊ σj), we obtain the claim for j
with xj = B. This completes the proof of Lemma 3.7. □

3.5. Mœglin’s construction. To show Proposition 3.5, we review Mœglin’s explicit con-
struction of A-packets. It was refined by the first author in [4], in which the following notion
was introduced.

Definition 3.9. (1) An extended segment is a triple ([A,B]ρ, l, η), where
• [A,B]ρ is a segment with A,B ∈ (1/2)Z (so that A ≥ B and A−B ∈ Z);
• l ∈ Z with 0 ≤ l ≤ b

2 with b = A−B + 1;
• η ∈ {±1}.

(2) Two extended segments ([A,B]ρ, l, η) and ([A′, B′]ρ′ , l
′, η′) are said to be equivalent if

• [A,B]ρ = [A′, B′]ρ′ ;
• l = l′; and
• η = η′ if l = l′ < b

2 .
Two multi-sets of extended segments {([Ai, Bi]ρi , li, ηi)}i∈I and {([A′

i, B
′
i]ρ′i , l

′
i, η

′
i)}i∈I

with the same index set I are said to be equivalent if ([Ai, Bi]ρi , li, ηi) and ([A′
i, B

′
i]ρ′i , l

′
i, η

′
i)

are equivalent for all i ∈ I.
(3) An extended multi-segment for G is an equivalence class of multi-sets of extended

segments
E = {([Ai, Bi]ρi , li, ηi)}i∈(I,>)

such that
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• ρi ∈ CGL with ρi ∼= ρ∨i ;
• Ai +Bi ≥ 0;
• ψE = ⊕i∈Iρi ⊠ Sai ⊠ Sbi is an A-parameter for G of good parity, where ai =
Ai +Bi + 1 and bi = Ai −Bi + 1;

• the sign condition ∏
i∈I

(−1)[
bi
2
]+liηbii = 1

holds;
• > is a total order on I, which is admissible in the sense that

ρi ∼= ρj , Ai < Aj , Bi < Bj =⇒ i < j

and

ρi ∼= ρj , Bi < Bj < 0 =⇒ i < j.

Let E = {([Ai, Bi]ρi , li, ηi)}i∈(I,>) be an extended multi-segment for G. When i < j, we
write ([Ai, Bi]ρi , li, ηi) < ([Aj , Bj ]ρj , lj , ηj). For simplicity, we write I = {1, . . . ,m} with the
usual order. We say that E has a non-negative discrete diagonal restriction (DDR) if

0 ≤ B1 ≤ A1 < B2 ≤ A2 < · · · < Bm ≤ Am.

In this case, we define π(E ) ∈ Irr(G) by

π(E ) = soc

 m

×
i=1

 Bi . . . Bi + li − 1
...

. . .
...

−Ai . . . −(Ai − li + 1)


ρi

⋊ π(ϕ, ε)


with

ϕ =

m⊕
i=1

Ai−Bi−2li⊕
j=0

ρi ⊠ S2(Bi+li+j)+1

and ε(ρ⊠ S2(Bi+li+j)+1) = (−1)jηi for 1 ≤ i ≤ m and 0 ≤ j ≤ Ai −Bi − 2li.
In the general case, given an extended multisegment E , to define the representation π(E )

we proceed as follows. Take a sequence of non-negative integers {ti}i∈(I,>) such that E≫ =
{([Ai + ti, Bi + ti]ρi , li, ηi)}i∈(I,>) has a non-negative DDR, and define

π(E ) = ◦
1≤i≤m

(
Dρi|·|Bi+1,...,ρi|·|Ai+1 ◦ · · · ◦Dρi|·|Bi+ti ,...,ρi|·|Ai+ti

)
(π(E≫)).

This definition does not depend on the choice of {ti}i∈(I,>). Then π(E ) is irreducible or zero.
If it is nonzero, we say that π(E≫) dominates π(E ).

Theorem 3.10 ([4, Theorem 1.2]). For ψ ∈ Ψ(G) of good parity, we have

Πψ = {π(E ) | ψE
∼= ψ} \ {0}.
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3.6. Proof of Proposition 3.5. In this subsection, we prove Proposition 3.5. Note that the
assertions (1) and (2) are equivalent to each other by taking Aubert duality. Hence we only
prove (2).

Recall that σ is a representation of Arthur type such that Dρ|·|x(σ) = 0 for x > B +1, and
that Dρ|·|A+1 ◦ · · · ◦Dρ|·|B+1(σ) = 0. By [6, Theorem 4.1], there is an extended multi-segment

E with σ = π(E ) such that if ([A′, B′]ρ, ∗, ∗) ∈ E , then B′ ≤ B, or B′ = B + 1 and A′ ≤ A.
We take integers t1, . . . , tk ≫ 0, which define S′. We will give conditions for these integers

later. By [5, Theorem 1.1], in the notation of Lemma 3.7 (2), any irreducible summand π′′ in
soc(soc(S′ × τ × S)⋊ σ) is of Arthur type, and has an extended multi-segment of the form

E ′′ = E ∪
k∪
i=1

{
([A,B]ρ, l, ηi), ([A+ ti, B + ti]ρ, l, η

′
i)
}
,

where the order < on E ′′ is given by

([A′, B′]ρ′ , l
′, η′) < ([A,B]ρ, l, η1) < · · · < ([A,B]ρ, l, ηk)

< ([A+ t1, B + t1]ρ, l, η
′
1) < · · · < ([A+ tk, B + tk]ρ, l, η

′
k)

for any ([A′, B′]ρ, l
′, η′) ∈ E . Notice that this is an admissible order since if ρ′ ∼= ρ and

B′ = B + 1, then [A′, B′]ρ′ ⊂ [A,B]ρ.
We write

E ∪ {([A,B]ρ, l, ηi) | i = 1, . . . , k} = {([A′
j , B

′
j ]ρ′ , l

′
j , η

′
j) | j = 1, . . . , k′},

which is independent of t1, . . . , tk. Now we choose integers t1, . . . , tk ≫ 0 so that there are
integers t′1, . . . , t

′
k′ ≥ 0 such that

E ′′
≫ =

{
([A′

j + t′j , B
′
j + t′j ]ρ′ , l

′
j , η

′
j)
∣∣ j = 1, . . . , k′

}
∪
{
([A+ ti, B + ti]ρ, l, η

′
i)
∣∣ i = 1, . . . , k

}
has a non-negative DDR, i.e.,

0 ≤ B′
1 + t′1 ≤ A′

1 + t′1 < · · · < B′
k′ + t′k′ ≤ A′

k′ + t′k′

< B + t1 ≤ A+ t1 < · · · < B + tk ≤ A+ tk.

In particular, B + t1 > A. Then by construction, one can write

π(E ′′) = L(m1 +m0;π(ϕ1 ⊕ ϕ0, ε)),

where

• m1 is the multi-segment given by

m1 =
k∑
i=1

l−1∑
j=0

[B + ti + j,−A− ti + j]ρ;

• ϕ1 is the representation of WF × SL2(C) given by

ϕ1 =

k⊕
i=1

A−B−2l⊕
j=0

ρ⊠ S2(B+ti+l+j)+1;

• ε satisfies that
ε(ρ⊠ S2(B+ti+l+j)+1) = (−1)jη′i

for 1 ≤ i ≤ k and 0 ≤ j ≤ A−B − 2l;
• m0 is a multi-segment such that if [x,−y]ρ ∈ m0, then x < y < B + t1;



UNITARY DUAL OF SO2n+1 AND Sp2n: THE GOOD PARITY CASE (AND SLIGHTLY BEYOND) 25

• ϕ0 is a tempered representation of WF × SL2(C) such that if ρ ⊠ S2d+1 ⊂ ϕ0, then
d < B + t1.

Now, by Lemma 3.7, we take π(E ′′) ↪→ soc(soc(S′ × τ × S)⋊ σ) so that

DS(π(E
′′)) ≥ soc(S′ ⋊ π).

Lemma 3.11. We have soc(S′ ⋊ π) = L(m1 + m′
0;π(ϕ1 ⊕ ϕ′0, ε

′)) for some m′
0, ϕ

′
0, ε

′ with
ε′|ϕ1 = ε|ϕ1. In other words, m1 and (ϕ1, ε|ϕ1) remain in the Langlands data of soc(S′ ⋊ π).

Proof. We write soc(S′ ⋊ π) = L(m′;π(ϕ′, ε′)). For 1 ≤ i ≤ k and 0 ≤ j ≤ l − 1, assuming
that m′ contains

k∑
i′=i+1

l−1∑
j′=0

[B + ti′ + j′,−A− ti′ + j′]ρ +

j−1∑
j′=0

[B + ti + j′,−A− ti + j′]ρ,

we will show [B + ti + j,−A− ti + j]ρ ∈ m′.
Suppose first that for any [x, y]ρ ∈ m′, we have y ̸= −A − ti + j. Then by looking at the

cuspidal support, we see that ϕ′ ⊃ ρ ⊠ S2(A+ti−j)+1. Note that Dρ|·|x(soc(S
′ ⋊ π)) = 0 for

B + ti < x ≤ A+ ti since the same condition holds for π(E ′′) and ti ≫ 0. It implies that

ϕ′ ⊃ ρ⊠
(
S2(B+ti+j)+1 ⊕ · · · ⊕ S2(A+ti−j)+1

)
.

Then for any sequence x1, . . . , xm with xm = −A− ti + j, we have

Dρ|·|xm ◦ · · · ◦Dρ|·|x1 (L(m
′;π(ϕ′, ε′))) = 0.

In particular, we have Jac(L(m′;π(ϕ′, ε′))) ̸≥ S′ ⊗ π, which is a contradiction. Hence there is
[x, y]ρ ∈ m′ such that y = −A− ti + j.

Let [x,−A−ti+j]ρ ∈ m′. Note that x < A+ti−j. If x > B+ti+j, then sinceDρ|·|x(π(E
′′)) =

0 and hence Dρ|·|x(L(m
′;π(ϕ′, ε′))) = 0, we must have [x−1, y]ρ ∈ m′ such that y < −A−ti+j.

However, by looking at the cuspidal support, we cannot take such y. If x < B + ti + j,
then Dρ|·|x,...,ρ|·|−A−ti+l(L(m

′;π(ϕ′, ε′))) ̸= 0, and hence Dρ|·|x,...,ρ|·|−A−ti+l ◦ DS(π(E
′′)) ̸= 0.

Since ti ≫ 0, this is impossible. Therefore, we have x = B + ti + j, and we conclude that
[B + ti + j,−A− ti + j]ρ ∈ m′.

By induction, we see that soc(S′⋊π) = soc(L(m1)⋊π0) for some irreducible representation
π0. Since

soc(S′ ⋊ π) ≤ DS(π(E
′′))

≤ DS (L(m1)⋊ L(m0;π(ϕ1 ⊕ ϕ0, ε)))

= L(m1)⋊DS (L(m0;π(ϕ1 ⊕ ϕ0, ε))) ,

we see that π0 ≤ DS(L(m0;π(ϕ1⊕ϕ0, ε))). Since t1, . . . , tk ≫ 0, we see that π0 = L(m′
0;π(ϕ1⊕

ϕ′0, ε
′)) for some m′

0 and (ϕ′0, ε
′). Hence soc(S′⋊π) = L(m1+m′

0;π(ϕ1⊕ϕ′0, ε′)), as desired. □
Recall that σ is of Arthur type.

Proposition 3.12. Continue in the above setting. There is an extended multi-segment E0

such that

• π(E0) = σ;
• E0 contains {([A,B]ρ, l, η

′
i) | i = 1, . . . , k};

• if ([A′, B′], l′, η′) ∈ E0 is not in {([A,B]ρ, l, η
′
i) | i = 1, . . . , k}, then ([A′, B′], l′, η′) <

([A,B]ρ, l, η
′
i).
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Admitting this proposition, by [6, Algorithm 3.3], we conclude that π = soc(τ ⋊ σ) is of
Arthur type. In fact, π has an extended multi-segment E1 obtained from E0 by replacing
([A,B]ρ, l, η

′
i) with ([A + 1, B + 1]ρ, l, η

′
i) for i = 1, . . . , k. This will complete the proof of

Proposition 3.5.

Proof of Proposition 3.12. First of all, by [6, Theorem 4.1], there is an extended multi-segment
E with σ = π(E ) such that if ([A′, B′]ρ, ∗, ∗) ∈ E , then B′ ≤ B, or B′ = B + 1 and A′ ≤ A.
We choose such an E so that the number

X =
∑

([A′,B′]ρ,l′,η′)∈E
B′=B

A′

is maximal. By changing the admissible order if necessary, we may assume that we can write

E = E1 ∪ {([Ai, B]ρ, li, ηi)}i=1,...,m ∪ {([A′
i, B + 1]ρ, l

′
i, η

′
i)}i=1,...,m′ ,

where

• {([A′
i, B + 1]ρ, l

′
i, η

′
i)}i=1,...,m′ is the multi-set contained E consisting of ([A′, B′]ρ, ∗, ∗)

such that B′ = B + 1, hence A′
i ≤ A;

• {([Ai, B]ρ, li, ηi)}i=1,...,m is the multi-set contained E consisting of ([A′, B′]ρ, ∗, ∗) such
that B′ = B and A′ ≥ A;

• E1 is the multi-set contained E consisting of other ([A′, B′]ρ′ , ∗, ∗);
• the admissible order is so that

([A′, B′]ρ′ , ∗, ∗) < ([Ai, B]ρ, li, ηi) < ([A′
i, B + 1]ρ, l

′
i, η

′
i)

for ([A′, B′]ρ′ , ∗, ∗) ∈ E1, and the canonical orders on {1, . . . ,m} and {1, . . . ,m′}.
Note that [Ai, B]ρ ⊃ [A′

j , B + 1]ρ for any 1 ≤ i ≤ m and 1 ≤ j ≤ m′. Hence by changing the
admissible order and updating the notations, we can rewrite

E = E ′
1 ∪ {([A,B′

i]ρ, l
′
i, η

′
i)}i=1,...,m′ ∪ {([Ai, B]ρ, li, ηi)}i=1,...,m

such that

• {([Ai, B]ρ, li, ηi)}i=1,...,m is the multi-set contained E consisting of ([A′, B′]ρ, ∗, ∗) such
that B′ = B and A′ ≥ A;

• {([A,B′
i]ρ, l

′
i, η

′
i)}i=1,...,m′ is the multi-set contained E consisting of ([A′, B′]ρ, ∗, ∗) such

that B′ < B and A′ = A;
• E ′

1 is the multi-set contained E consisting of other ([A′, B′]ρ′ , ∗, ∗);
• the admissible order is so that

([A′, B′]ρ′ , ∗, ∗) < ([A,B′
i]ρ, l

′
i, η

′
i) < ([Ai, B]ρ, li, ηi)

for ([A′, B′]ρ′ , ∗, ∗) ∈ E ′
1, and the canonical orders on {1, . . . ,m} and {1, . . . ,m′}.

Note that m and m′ can be equal to zero.
Let m0 = #{i = 1, . . . ,m | Ai = A} and suppose that m0 < k. We may assume that

A < A1 ≤ · · · ≤ Am−m0 and Ai = A for m − m0 + 1 ≤ i ≤ m. Since the number X is
maximum among E ′ such that π(E ′) = σ, to hold Lemma 3.11 for t1, . . . , tk ≫ 0, namely for
m1 and (ϕ1, ε|ϕ1) appearing in the Langlands data of soc(S′ ⋊ π) = soc(soc(S′ × τ)⋊ σ), we
need to have m > m0 and m′ > 0. Moreover, by the same argument as in [4, Theorem 5.2],
we see that ([A,Bm′ ]ρ, l

′
m′ , η′m′) and ([A1, B]ρ, l1, η1) satisfies one of conditions in [4, Theorem
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5.2]. Hence by this theorem, we can change E so that {([A,Bm′ ]ρ, l
′
m′ , η′m′), ([A1, B]ρ, l1, η1)}

is replaced with
{([A1, Bm′ ]ρ, l

′, η′), ([A,B]ρ, l, η)}
for some (l, η) and (l′, η′). Hence we can replace m0 with m0 + 1. Repeating this argument,
we can achieve E0 as in the assertion. □

This completes the proof of Proposition 3.5. Now, Theorem 3.3 follows from Lemma 3.4
and Proposition 3.5.

3.7. The initial step. Let π ∈ IrrG be of good parity. In this section, we will prove that if

Dρ|·|x(π) ̸= 0 =⇒ x ∈
{
0,

1

2

}
for any ρ∨ ∼= ρ, then π is of Arthur type. Indeed, we will prove a slightly more general
statement. To state it, we need to introduce some notation.

Let π ∈ IrrG be of good parity. Write

π = L(∆ρ1 [x1,−y1], . . . ,∆ρr [xr,−yr];π(ϕ, ε))
as in the Langlands classification, where

ϕ =

s⊕
j=1

ρ′j ⊠ S2zj+1

is a tempered L-parameter such that ρ1, . . . , ρr, ρ
′
1, . . . , ρ

′
s ∈ CGL are all self-dual. Fix ρ ∈ CGL

with ρ ∼= ρ∨. We set

Lρ|·|x(π) = Lx(π) = {i ∈ {1, . . . , r} | ρi ∼= ρ, xi = x},
Rρ|·|x(π) = Rx(π) = {i ∈ {1, . . . , r} | ρi ∼= ρ, yi = x},
Tρ|·|x(π) = Tx(π) = {j ∈ {1, . . . , s} | ρ′j ∼= ρ, zj = x}

and
Aρ|·|x(π) = Ax(π) = Lx ⊔Rx ⊔ Tx.

We will prove the following.

Theorem 3.13. Notations are as above. For each self-dual ρ ∈ CGL, denote bρ ∈ {0, 12} such
that ρ⊠S2bρ+1 is the same type as ϕ. Assume that there are half-integers aρ, a1, . . . , ak, b1, . . . , bk
(depending on ρ) such that

• they are all congruent to bρ modulo Z;
• we have

bρ ≤ aρ < bk ≤ ak < bk−1 ≤ ak−1 < · · · < b1 ≤ a1;

• if Dρ|·|x(π) = 0, then x ∈ {bρ, bk, . . . , b1};
• if Ax(π) ̸= ∅, then bρ ≤ x ≤ aρ or bi ≤ x ≤ ai for some 1 ≤ i ≤ k;
• if bi ≤ x ≤ ai for some 1 ≤ i ≤ k, then |Ax(π)| = 1, so that Ax(π) is equal to exactly
one of Lx(π), Tx(π) or Rx(π);

• for each 1 ≤ i ≤ k,

|{x | bi ≤ x ≤ ai, Ax(π) = Lx(π)}| = |{x | bi ≤ x ≤ ai, Ax(π) = Rx(π)}|.
Then π is of Arthur type.
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When the implication Dρ|·|x(π) ̸= 0 =⇒ x ∈ {0, 12} holds for any ρ∨ ∼= ρ, then π satisfies
the conditions of Theorem 3.13 with k = 0.

We prove Theorem 3.13 by induction on

X(π) =
∑
ρ

∑
bρ<x≤aρ

|Aρ|·|x(π)|.

Suppose first that this number is zero. Then there are ηρ, ηi ∈ {±1} (which depend on ρ)
such that if we set

E =
∪
ρ

{([bρ, bρ]ρ, 0, ηρ), . . . , ([bρ, bρ]ρ, 0, ηρ)︸ ︷︷ ︸
|Abρ (π)|

} ∪
k∪
i=1

{([ai, bi]ρ, li, ηi)}


with

li = |{x | bi ≤ x ≤ ai, Ax(π) = Lx(π)}| = |{x | bi ≤ x ≤ ai, Ax(π) = Rx(π)}|,
then we have π(E ) = π. See Section 3.5. Therefore, π is of Arthur type.

Now, we suppose that aρ − bρ > 0 for some ρ ∼= ρ∨. We may assume that bk is big enough
so that there is an integer t > 0 such that

aρ + 1 < bρ + t ≤ aρ + t < bk − 1.

Here, when k = 0, we ignore the inequality aρ + t < bk − 1. Consider

π′ = soc


bρ + t . . . aρ + t

...
. . .

...
bρ + 1 . . . aρ + 1


ρ

⋊ π


which is irreducible by [5, Proposition 3.4]. By Tadić’s formula (Corollary 2.2), we see that

Dρ|·|x(π
′) ̸= 0 =⇒ x ∈ {bρ, bρ + t, bk, . . . , b1,−(aρ + 1)}.

Lemma 3.14. In the setting above, we have

Dρ|·|−(aρ+1)(π′) = 0.

Proof. Suppose that Dρ|·|−(aρ+1)(π′) ̸= 0. Then the inclusion

π′ ↪→

bρ + t . . . aρ + t
...

. . .
...

bρ + 2 . . . aρ + 2


ρ

× Zρ[bρ + 1, aρ]× ρ| · |aρ+1 ⋊ π

factors through

π′ ↪→

bρ + t . . . aρ + t
...

. . .
...

bρ + 2 . . . aρ + 2


ρ

× Zρ[bρ + 1, aρ]⋊ soc(ρ| · |−(aρ+1) ⋊ π).

Hence

π = Dρ|·|−(aρ+1) ◦Dρ|·|bρ+1,...,ρ|·|aρ ◦
(
Dρ|·|bρ+2,...,ρ|·|aρ+2 ◦ · · · ◦Dρ|·|bρ+t,...,ρ|·|aρ+t

)
(π′).
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On the other hand, by definition of π′, we have

π = Dρ|·|aρ+1 ◦Dρ|·|bρ+1,...,ρ|·|aρ ◦
(
Dρ|·|bρ+2,...,ρ|·|aρ+2 ◦ · · · ◦Dρ|·|bρ+t,...,ρ|·|aρ+t

)
(π′).

These equations imply that

soc(ρ| · |−(aρ+1) ⋊ π) ∼= soc(ρ| · |aρ+1 ⋊ π),

which is equivalent to saying that ρ| · |aρ+1 ⋊ π is irreducible. But since Aaρ(π) ̸= ∅ and
Aaρ+1(π) = ∅, this is impossible by [9, Corollary 7.2]. □

Now we consider Ax(π
′). Note that

|Ax(π′)| =


|Ax(π)| − 1 if bρ ≤ x ≤ aρ,

1 if bρ + t ≤ x ≤ aρ + t,

1 if bi ≤ x ≤ ai, 1 ≤ i ≤ k,

0 otherwise.

In particular, for bρ + t ≤ x ≤ aρ + t, exactly one of

Ax(π
′) = Lx(π

′), Ax(π
′) = Tx(π

′), or Ax(π
′) = Rx(π

′)

holds. Moreover, since Dρ|·|x(π
′) = 0 for bρ + t < x ≤ aρ + t, by [9, Theorem 7.1], we see that

• if x ≥ bρ + t+ 1 and Ax(π
′) = Lx(π

′), then Ax−1(π
′) = Lx−1(π

′);
• if x ≤ aρ + t− 1 and Ax(π

′) = Rx(π
′), then Ax+1(π

′) = Rx+1(π
′).

Write

l+ = |{bρ + t ≤ x ≤ aρ + t | Ax(π′) = Lx(π
′)}|,

l− = |{bρ + t ≤ x ≤ aρ + t | Ax(π′) = Rx(π
′)}|.

A key lemma is as follow.

Lemma 3.15. We have l+ = l−.

Proof. First of all, we show that l+ ≤ l−. Indeed, for x ≥ bρ + t, if Ax(π
′) = Lx(π

′), then
∆ρ[x,−y] appears in the Langlands data of π′ for some y > x. Hence Ay(π

′) = Ry(π
′). The

map x 7→ y induces an injection

{x ≥ bρ + t | Ax(π′) = Lx(π
′)} ↪→ {y ≥ bρ + t | Ay(π′) = Ry(π

′)}.

Since

|{x | bi ≤ x ≤ ai, Ax(π) = Lx(π)}| = |{y | bi ≤ y ≤ ai, Ax(π) = Rx(π)}|
for 1 ≤ i ≤ k by assumption, we have l+ ≤ l−. In particular, if l− = 0, then l+ = 0 as well
and we get l+ = l−.

In the rest of the proof of this lemma, we assume that l− > 0. In particular, Aaρ+t(π
′) =

Raρ+t(π
′). It implies by [9, Corollary 7.2] that Laρ(π) = Taρ(π) = ∅. Since Dρ|·|x(π) = 0 for

any bρ < x ≤ aρ, we see that ∆ρ[bρ,−aρ] appears in the Langlands data of π with multiplicity

exactly k = |Raρ(π)| = |Aaρ(π)|. Namely, there is τ ∈ IrrG such that π ↪→ ∆ρ[bρ,−aρ]k ⋊ τ
and such that Aaρ(τ) = ∅.
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Now, for the sake of a contradiction, we assume that π′ ↪→ ∆ρ[bρ,−aρ]k ⋊ τ ′ for some

τ ′ ∈ IrrG. Then the inclusion

π′ ↪→

bρ + t . . . aρ + t
...

. . .
...

bρ + 1 . . . aρ + 1


ρ

×∆ρ[bρ,−aρ]k ⋊ τ

must factor through

π′ ↪→ soc

∆ρ[bρ,−aρ]k ×

bρ + t . . . aρ + t
...

. . .
...

bρ + 1 . . . aρ + 1


ρ

⋊ τ

↪→ ∆ρ[bρ,−aρ]k ×

bρ + t . . . aρ + t
...

. . .
...

bρ + 1 . . . aρ + 1


ρ

⋊ τ

↪→ ∆ρ[bρ,−aρ]k ×

bρ + t . . . aρ + t
...

. . .
...

bρ + 2 . . . aρ + 2


ρ

× Zρ[bρ + 1, aρ]× ρ| · |aρ+1 ⋊ τ.

Since Aaρ(τ) = ∅, by [9, Corollary 7.2], we see that ρ| · |aρ+1 ⋊ τ is irreducible so that

ρ| · |aρ+1 ⋊ τ ∼= ρ| · |−(aρ+1) ⋊ τ . Then the above inclusion implies that Dρ|·|−(aρ+1)(π′) ̸= 0.

This contradicts Lemma 3.14.
By the last paragraph, one can see that the Langlands data of π′ contains ∆ρ[x

′,−(aρ+ t)]
for some bρ < x′ < aρ+t. Then we see that Dρ|·|x′ (π

′) ̸= 0. Hence we conclude that x′ = bρ+t,

i.e., the singleton Abρ+t(π
′) is equal to Lbρ+t(π

′).
If Ay(π

′) = Ry(π
′) for some bρ + t < y < aρ + t, then the Langlands data of π′ contains

∆ρ[x,−y] for some bρ ≤ x < y. We claim that x > bρ + t. For the sake of a contradiction,
we assume that there is ∆ρ[x,−y] in the Langlands data of π′ such that x ≤ bρ + t and
bρ + t < y < aρ + t. We may assume that y is maximum among this condition. Then
∆ρ[x

′,−(y + 1)] is in the Langlands data of π′ for some x′ ≥ bρ + t. Since the segment
[x,−y]ρ is contained in [x′,−(y+1)]ρ, by [9, Theorem 7.1], we have Dρ|·|y+1(π′) ̸= 0, which is

a contradiction. Therefore, for bρ + t ≤ y ≤ aρ + t with Ay(π
′) = Ry(π

′), if ∆ρ[x,−y] in the
Langlands data of π′, then bρ + t ≤ x ≤ aρ + t. This gives the bijection

{bρ + t ≤ y ≤ aρ + t | Ay(π′) = Ry(π
′)} → {bρ + t ≤ x ≤ aρ + t | Ax(π′) = Lx(π

′)}
and we conclude that l+ = l−, as desired. □

Now we set bk+1 = bρ + t and ak+1 = aρ + t. Then π′ satisfies all of the assumptions in
Theorem 3.13 for aρ, a1, . . . , ak+1, b1, . . . , bk+1. Moreover, since∑

ρ

∑
bρ<x≤aρ

|Aρ|·|x(π)| −
∑
ρ

∑
bρ<x≤aρ

|Aρ|·|x(π′)| = aρ − bρ > 0,

we can apply the inductive hypothesis to π′. Hence we can write π′ = π(E ′). Moreover, we
may assume that

E ′ ∋ ([aρ + t, bρ + t], l, η)



UNITARY DUAL OF SO2n+1 AND Sp2n: THE GOOD PARITY CASE (AND SLIGHTLY BEYOND) 31

for some η ∈ {±1}, where l = l+ = l− is defined in Lemma 3.15. Then by construction, with

E = (E ′ \ {([aρ + t, bρ + t], l, η)}) ∪ {([aρ, bρ], l, η)},
we have π = π(E ). Therefore, we conclude that π is of Arthur type. This completes the proof
of Theorem 3.13.

Now Theorem 3.1 follows from Theorems 3.3 and 3.13.

4. Slightly beyond case

In this section, we treat a case slightly beyond the good parity case, which may be important
for global applications.

4.1. Statement. We know that if ψ ∈ Ψ(G), then all members in Πψ are unitary. However,
due to the lack of a proof of the Ramanujan conjecture, if Ψ is a global A-parameter of a
classical group G over a number field F, and if v is a place of F such that Fv = F and
G = G(Fv), then the localization ψ = Ψv belongs to Ψ+(G) but may not lie in Ψ(G).

By the weak Ramanujan bound, which is know, it takes the form

ψ = ψ0 ⊕
r⊕
i=1

(ρi| · |xi ⊕ ρ∨i | · |−xi)⊠ Sci ⊠ Sdi ,

where

• ψ0 = ψgood;

• ρi ∈ CGL is unitary;
• 0 ≤ xi <

1
2 ;

• if xi = 0, then ρi ⊠ Sci ⊠ Sdi is not self-dual of the same type as ψ.

Here, r may be zero, in which case ψ = ψgood is of good parity. For such a parameter ψ, its
A-packet Πψ is defined as the set of irreducible parabolic inductions

π =
r

×
i=1

Sp(ρi, ci, di)| · |xi ⋊ π0

for π0 ∈ Πψ0 .
In this section, we prove the following theorem, which was conjectured in [21, Conjecture

5.9].

Theorem 4.1. Let

π =
r

×
i=1

Sp(ρi, ci, di)| · |xi ⋊ π0

where π0 is of Arthur type of good parity, ρi is unitary, and 0 ≤ xi <
1
2 for 1 ≤ i ≤ r. Suppose

that π is irreducible. For each ρ ∈ CGL with ρ ∼= ρ∨, and for any pair of positive integers
(c, d), we set

I(ρ, c, d) = {i ∈ {1, . . . , r} | ρi ∼= ρ, (ci, di) = (c, d)}.
Then π is unitary if and only if for each ρ and any (c, d), the following conditions hold:

• If ρ ̸∼= ρ∨, then

{xi | i ∈ I(ρ, c, d), xi ̸= 0} = {xi | i ∈ I(ρ∨, c, d), xi ̸= 0}
as multisets.

• If ρ ∼= ρ∨ and |I(ρ, c, d)| is odd, then the unitary induction Sp(ρ, c, d)⋊π0 is irreducible.
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For the proof, we use (UI), (UR), (CS) and (RP1) in Proposition 2.3 frequently.

4.2. Proof of unitarity. Here, we prove the “if” part of Theorem 4.1. Namely we show that
if π satisfies the conditions in Theorem 4.1, then π is unitary. The proof is by induction on r.

First, suppose that xi = 0 for some i. Since π is irreducible, by [17, Theorem 1.2], we see
that Sp(ρi, ci, di)⋊π0 is also irreducible. Then since π′ = ×j ̸=iSp(ρj , cj , dj)| · |xj⋊π0 is unitary
by induction hypothesis, so is π = Sp(ρi, ci, di)⋊π′ by (UI). In the rest of this subsection, we
assume that xi > 0 for any i.

Fix ρ unitary and a pair (c, d). Suppose that r ≥ 2 and that there are i and j with i ̸= j
such that ρi ∼= ρ, ρj ∼= ρ∨ and (ci, di) = (cj , dj) = (c, d). We may assume that (i, j) = (1, 2),
x1 ≥ x2 and that x1 = x2 if ρ ̸∼= ρ∨. By induction hypothesis,

π′ =
r

×
i=3

Sp(ρi, ci, di)| · |xi ⋊ π0

is unitary. Since 0 < x2 <
1
2 , by [40], Sp(ρ, c, d)| · |x2 × Sp(ρ, c, d)| · |−x2 is unitary. Hence

Sp(ρ, c, d)| · |x2 × Sp(ρ, c, d)| · |−x2 ⋊ π′ ∼= Sp(ρ, c, d)| · |x2 × Sp(ρ∨, c, d)| · |x2 ⋊ π′

is an irreducible unitary representation by (UI). In particular, if ρ ̸∼= ρ∨, then π is unitary. If
ρ ∼= ρ∨ and if we set

Πt = Sp(ρ, c, d)| · |t × Sp(ρ, c, d)| · |x2 ⋊ π′,

then for x2 ≤ t ≤ x1, we see that Πt is irreducible hermitian representation since ρ ∼= ρ∨ ∼= ρ.
Since Πx2 is unitary, by (CS), we see that π = Πx1 is also unitary.

Hence we may assume that ρi ∼= ρ∨i for any 1 ≤ i ≤ r, and that I(ρ, c, d) is a singleton or
empty for each ρ ∼= ρ∨ and (c, d). For (t1, . . . , tr) with 0 ≤ ti ≤ xi, we consider

Π(t1,...,tr) =
r

×
i=1

Sp(ρi, ci, di)| · |ti ⋊ π0.

By assumption together with [17, Theorem 1.2], we see that Π(0,...,0) is irreducible. In partic-
ular, Π(t1,...,tr) is an irreducible hermitian representation for any (t1, . . . , tr) with 0 ≤ ti ≤ xi.
Since Π(0,...,0) is unitary, by (CS), we see that π = Π(x1,...,xr) is also unitary. This completes
the proof of the “if” part of Theorem 4.1.

4.3. Proof of non-unitarity. In this subsection, we will prove the “only if” part by in-
duction on r. Suppose that π is unitary. Our goal is to show the conditions in Theorem
4.1.

First, we assume that xi = 0 for some i. Put π′ = ×j ̸=iSp(ρj , cj , dj)| · |xj ⋊ π0. Then
Sp(ρi, ci, di)⊗ π′ is an irreducible hermitian representation of a Levi subgroup of G such that
its induction Sp(ρi, ci, di)⋊π′ is unitary. Hence by (UR), we see that Sp(ρi, ci, di)⊗π′ is also
unitary. In particular, π′ is unitary. Repeating this argument, we may assume that xi > 0
for 1 ≤ i ≤ r.

Next, we assume that ρ ̸∼= ρ∨. Since π is hermitian, we see that

π ∼=
r

×
i=1

Sp(ρi, ci, di)| · |xi ⋊ π0 ∼=
r

×
i=1

Sp(ρ∨i , ci, di)| · |xi ⋊ π∨0

∼=

(
r

×
i=1

Sp(ρi, ci, di)| · |−xi ⋊ π0

)∨
∼=

(
r

×
i=1

Sp(ρ∨i , ci, di)| · |xi ⋊ π0

)∨
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is isomorphic to π∨. Hence |I(ρ, c, d)| = |I(ρ∨, c, d)| and {xi | i ∈ I(ρ, c, d)} = {xi | i ∈
I(ρ∨, c, d)} as multi-sets. Moreover, if ρ1 ∼= ρ, ρ2 ∼= ρ∨, (c1, d1) = (c2, d2) = (c, d) and
x1 = x2, then since

π ∼= Sp(ρ, d, c)| · |x2 × Sp(ρ, d, c)| · |−x2 ⋊ π′

is an irreducible unitary representation with π′ = ×r
i=3Sp(ρi, ci, di)| · |xi ⋊π0, by (UR), we see

that (
Sp(ρ, c, d)| · |x2 × Sp(ρ, c, d)| · |−x2

)
⊗ π′

is also unitary. In particular, π′ is unitary. Repeating this argument, we may assume that
ρi ∼= ρ∨i for 1 ≤ i ≤ r.

Suppose that ρ ∼= ρ∨. If ρ1 ∼= ρ2 ∼= ρ and (c1, d1) = (c2, d2) = (c, d), then by (CS), we see
that

Sp(ρ, c, d)| · |x2 × Sp(ρ, c, d)| · |x2 ⋊ π′ ∼= Sp(ρ, c, d)| · |x2 × Sp(ρ, c, d)| · |−x2 ⋊ π′

is an irreducible unitary representation with π′ = ×r
i=3Sp(ρi, ci, di)| · |xi ⋊ π0. By (UR), we

see that π′ is unitary. Repeating this argument, we may assume that I(ρ, c, d) is at most a
singleton for each ρ ∼= ρ∨ and (c, d).

If Sp(ρ1, c1, d1)⋊π0 is irreducible, then by [17, Theorem 1.2], we see that Sp(ρ1, c1, d1)⋊π′
is also irreducible with π′ = ×r

i=2Sp(ρi, ci, di)| · |xi ⋊π0. By (CS) and (UR), the unitarity of π
implies that π′ is also unitary. Repeating this argument, we may assume that Sp(ρi, ci, di)⋊π0
is reducible for 1 ≤ i ≤ r.

We have proven that we may now assume the following:

(1) π = ×r
i=1Sp(ρi, ci, di)| · |xi ⋊ π0 is an irreducible unitary representation;

(2) ρi ∼= ρ∨i and 0 < xi <
1
2 for 1 ≤ i ≤ r;

(3) for i ̸= j, we have ρi ̸∼= ρj or (ci, di) ̸= (cj , dj);
(4) Sp(ρi, ci, di)⋊ π0 is reducible for 1 ≤ i ≤ r.

The goal is to show that r = 0 in this case. For the sake of a contradiction, we assume that
r > 0.

Proposition 4.2. Continue in the above setting. Let P = MN be the maximal parabolic
subgroup of G such that πM = (×r

i=1Sp(ρi, ci, di)) ⊠ π0 ∈ Irr(M). Then there is an A-
parameter ψM ∈ Ψ(M) with πM ∈ ΠψM such that RP (w, πM , ψM ) is not a scalar operator,
where w is the unique non-trivial Weyl element in W (M,G).

Proof. By [17, Corollary 3.33], there exist 1 ≤ i ≤ r and an irreducible summand π′ of

×
1≤j≤r
j ̸=i

Sp(ρj , cj , dj)⋊ π0

such that Sp(ρi, ci, di) ⋊ π′ is reducible. For simplicity, set ρ = ρi and (c, d) = (ci, di). Since
π′ is unitary and of good parity, we can write π′ = π(E ′) for some extended multi-segment
E ′. In [17, Definition 3.4], Bošnjak–Stadler introduced a modification of E ′ given by

F−1 : E ′ =
∪
ρ′

{([Ai, Bi]ρ′ , li, ηi)}i∈Iρ′ 7→ S ′ =
∪
ρ′

{([Ai, Bi]ρ′ , µi)}i∈Iρ′

with

µi =

i−1∏
j=1

(−1)Aj−Bj

 ηi(Ai −Bi + 1− 2li).



34 HIRAKU ATOBE AND ALBERTO MÍNGUEZ

We may assume that S ′ is standard in the sense of [17, Definition 3.15]. Then by [17, Corollary
3.30], there are two irreducible summands π1 and π2 of Sp(ρ, c, d) ⊠ π′ associated to S ′

1 =
S ∪ {([C,D]ρ, ν), ([C,D]ρ, ν)} and S ′

2 = S ∪ {([C,D]ρ, ν + 2), ([C,D]ρ, ν + 2)}, respectively,
for some ν ∈ Z with ν ≡ d mod 2, where C = c+d

2 − 1 and D = c−d
2 . Note that S ′

1 and
S ′
2 give the same A-parameter ψ ∈ Ψ(G) as in [17, Definition 3.3(d)], which satisfies that
π1, π2 ∈ Πψ. Moreover, we may assume that ψ comes from an A-parameter ψM ∈ Ψ(M) so
that πM ∈ ΠψM . That is,

ψ =

 r⊕
j=1

ρj ⊠ Scj ⊠ Sdj

⊕2

⊕ ψ0

with π0 ∈ Πψ0 . By the description of F in [17, Definition 3.4] together with [4, Theorem 3.6]
(corrected in [6, Appendix A]), we see that

r∏
j=1

⟨e(ρj , cj , dj), π1⟩ψ
⟨e(ρj , cj , dj), π2⟩ψ

= (−1)
|ν+2|−|ν|

2

(
(−1)d−1 sgn(ν)

sgn(ν + 2)

)d
with the convention sgn(0) = 1. A case-by-case computation shows that the right-hand side
is always equal to −1.

Now by the local intertwining relation proven by Arthur [2, Theorem 2.4.1], the normalized
local intertwining operator RP (w, πM , ψM ) acts on πk by the scalar

∏r
j=1⟨e(ρj , cj , dj), πk⟩ψ

for k = 1, 2. Therefore, the eigenvalue of RP (w, πM , ψM ) on π1 differs from the one on π2. □
In particular, (RP1) in Proposition 2.3 implies that for sufficiently small s > 0, the ir-

reducible representation ×r
i=1Sp(ρi, ci, di)| · |s ⋊ π0 is not unitary. However, (CS) together

with the unitarity of π would imply that this representation should be unitary. This is a
contradiction. This completes the proof of the “only if” part of Theorem 4.1.

5. Remarks on the further beyond

We have described the unitary dual of split SO2n+1(F ) and Sp2n(F ) in the good parity
case and a slightly beyond. In the further beyond case, several new phenomena arise, which
we now explain in this section.

5.1. One-parameter complementary series. The first step beyond the good parity case
is to consider the set of representations of the form

Πs = Sp(ρ, a, b)| · |s ⋊ πA,

where

• πA is of Arthur type and of good parity;
• ρ ∈ CGL with ρ∨ ∼= ρ;
• s > 0.

To study this, it is important to consider the first reducibility point

FRP(Sp(ρ, a, b), π) = inf {s ≥ 0 | Sp(ρ, a, b)| · |s ⋊ π is reducible} .
It is a half-integer and can be computed algorithmically ([5, Theorem 5.3, Corollary 5.4]). If
s ≡ FRP(Sp(ρ, a, b), π) mod Z, then all irreducible subquotients of Πs are of good parity. We
need to consider the other case.
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Question 5.1. Let π ∈ IrrG be of good parity and of Arthur type. For s > 0 with s ̸≡
FRP(Sp(ρ, a, b), π) mod Z, if the irreducible representation Sp(ρ, a, b)| · |s⋊ π is unitary, then
must it be that s < FRP(Sp(ρ, a, b), π)?

The converse follows from (CS). Note that if s is larger than FRP(Sp(ρ, a, b), π) but close
to it, the non-unitarity would follow if one could establish an analytic property of intertwining
operators (see [34, (RP)(ii), Section 2]).

To deal with cases where s is much larger than FRP(Sp(ρ, a, b), π), we need more ex-
plicit control over FRP(Sp(ρ, a, b), π) than is currently available in [5]. The difficulty is that
FRP(Sp(ρ, a, b), π) really depends on the pair (a, b), unlike in the earlier settings treated in
[27] and [34].

5.2. Some example. Finally, we give some explicit example of unitary representations, be-
yond the good parity case. In this subsection, we set ρ = 1GL1(F ), and we drop ρ from the
notations.

Let σ be the unique irreducible supercuspidal representation in the A-packet Πψ associated

to ψ = S5 ⊗ S5 ∈ Ψ(Sp24(F )). Then FRP(Sp(2, 2), σ) = 4. Fix 0 < ϵ < 1
2 . Since the induced

representation

Sp(2, 2)| · |−s ⋊ σ

is irreducible for 0 ≤ s ≤ 2 + ϵ, we see that Sp(2, 2)| · |2+ϵ ⋊ σ is unitary. We consider

Πs = Sp(2, 2)| · |−(2+ϵ) × Sp(2, 2)| · |−s ⋊ σ.

It is irreducible for 0 ≤ s < ϵ. Therefore, all irreducible subquotients of Πϵ are unitary. Note
that Sp(2, 2)| · |−(2+ϵ) × Sp(2, 2)| · |−ϵ contains L| · |−(1+ϵ) as an irreducible subquotient, where
L is Leclerc’s representation (see Remark 3.6) given by

L = L(∆[−1,−2], | · |0,∆[1,−1],∆[2, 1]).

Hence

L| · |1+ϵ ⋊ πA = L(∆[−2− ϵ,−3− ϵ], | · |−1−ϵ,∆[−ϵ,−2− ϵ],∆[ϵ, ϵ− 1];σ)

is unitary. However, it is difficult to see from the Langlands data alone why the right-hand
side is unitary. This suggests that further notions may be necessary to fully describe the
unitary dual of classical groups.

Additional difficulties arise when considering the limit ϵ→ 1
2 . Since all irreducible subquo-

tients of the complementary series are unitary, we conclude that

π = L
(
∆
[
−5

2 ,−
7
2

]
, | · |−

3
2 ,∆

[
−1

2 ,−
5
2

]
,∆
[
1
2 ,−

1
2

]
;σ
)

is also unitary.
We see from the above argument that π is not isolated in the unitary dual. However,

we do not know how to prove this fact directly from the Langlands data, since the induced
representation

Π = L
(
∆
[
−5

2 ,−
7
2

]
, | · |−

3
2 ,∆

[
−1

2 ,−
5
2

]
,∆
[
1
2 ,−

1
2

])
⋊ σ

is reducible. (To see that, one can check that Π is preserved under Aubert duality, whereas
π is not.)
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[34] G. Muić and M. Tadić, Unramified unitary duals for split classical p-adic groups; the topology and isolated
representations. On certain L-functions, 375–438, Clay Math. Proc., 13, Amer. Math. Soc., Providence,
RI, 2011.
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